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Large-Scale Inverse Ku-Band Backscatter
Modeling of Sea Ice

Quinn P. Remund, Member, IEEE, and David G. Long, Senior Member, IEEE

Abstract—Polar sea ice characteristics provide important inputs
to models of several geophysical processes. Microwave scatterom-
eters are ideal for monitoring these regions due to their sensitivity
to ice properties and insensitivity to atmospheric distortions.Many
forward electromagnetic scattering models have been proposed to
predict the normalized radar cross section ( ) from sea ice char-
acteristics. These models are based on very small scale ice features
and generally assume that the region of interest is spatially homo-
geneous. Unfortunately, spaceborne scatterometer footprints are
very large (5–50 km) and usually contain very heterogeneous mix-
tures of sea ice surface parameters. In this paper, we use scatterom-
eter data in a large-scale inverse modeling experiment. Given the
limited data resolution, we adopt a simple geometric optics for-
ward-scattering model to analyze surface and volume scattering
contributions to observed Ku-band signatures. A model inversion
technique based on recursive optimization of an objective function
is developed. The result is a least squares estimate of three surface
parameters: the power reflection coefficient at nadir, the rms sur-
face slope, and the volume scattering albedo. Simulations demon-
strate the performance of the method in the presence of noise. The
inverse model is implemented using Ku-band image reconstructed
data collected by the National Aeronautics and Space Administra-
tion scatterometer. The results are used to analyze and interpret
phenomena occurring in the Antarctic and the Arctic.

Index Terms—Inverse modeling, National Aeronautics and
Space Administration (NASA) Scatterometer (NSCAT), scattering
models, sea ice, Special Sensor Microwave/Imager (SSM/I).

I. INTRODUCTION

THE CRYOSPHERE regions of the earth play a critical
role in many global geophysical processes. In particular,

polar sea ice packs are important in understanding weather pat-
terns and climate trends. Sea ice influences heat exchange, fresh
water exchange, and the absorption of solar radiation and is be-
lieved to be a sensitive indicator of long-term climate trends [1],
[2]. Consequently, the remote sensing community has great in-
terest in monitoring these important regions. The primary goal
of cryosphere remote sensing is the extraction of key sea ice sur-
face characteristics from the observed signatures.
A wide array of spaceborne instruments has been employed

in past and current efforts to study and monitor the cryosphere.
The various instruments cover a broad spectrum of frequencies,
polarizations, spatial resolutions, and measurement collection
schemes. Microwave remote sensing instruments have proven
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extremely valuable in observing the polar regions. Active mi-
crowave instruments exhibit low sensitivity to cloud cover, pre-
cipitation, and other forms of atmospheric distortion in the polar
regions, but significant sensitivity to sea ice characteristics. Be-
cause active weather patterns in the polar regions often result
in heavy cloud cover during a significant portion of the annual
weather cycle, and polar winters are characterized by long sea-
sons of continuous darkness, optical sensors can be difficult to
apply. Unlike optical instruments, microwave sensors do not de-
pend upon solar illumination to collect measurements.
Several satellite instruments have proven the utility of scat-

terometers in monitoring the Arctic and Antarctic regions. The
first was the Seasat-A Scatterometer (SASS). Though the SASS
mission was short, SASS data illustrated that Ku-band mea-
surements are sensitive to the presence of sea ice and show
valuable variations within the ice pack that relate to surface
features [3]–[6]. Later, the Active Microwave Instrumentation
(AMI) scatterometers aboard the European Remote Sensing 1
and 2 (ERS-1 and ERS-2) satellites demonstrated the value of
C-band active scatterometer data in monitoring sea and glacial
ice regions [4], [7], [8]. The National Aeronautics and Space
Administration (NASA) Scatterometer (NSCAT) flew aboard
the Advanced Earth Observation Satellite (ADEOS) platform
from approximately August 1996 through June 1997. Ku-band
NSCAT data have been used in a number of cryosphere studies
[4], [9]–[11]. When the NSCAT mission was prematurely ter-
minated due to a solar panel failure, the NASA-built SeaWinds
instrument aboard QuikSCAT filled the gap of active Ku-band
data in mid-1999. SeaWinds data is used to monitor sea ice
extent [12].

II. NSCAT INSTRUMENT AND IMAGE RECONSTRUCTION

Microwave signatures of sea ice contain important infor-
mation about surface characteristics [13]. The goal of inverse
modeling is to extract or estimate those parameters from
measurements. The observed signatures are also a function of
instrument design and measurement collection specifications
such as frequency, polarization, and incidence angle [14]–[18].
This section describes the instrument used in this paper for mea-
surement collection and the image reconstruction algorithms
that produce enhanced resolution imagery. These images func-
tion as inputs to the inverse model of Section IV.
NSCAT has a number of characteristics that make it useful in

monitoring sea ice [10]. It is a dual-polarization Ku-band scat-
terometer operating at approximately 14 GHz. NSCAT employs
six v-pol and two h-pol fan beams that measure the normal-
ized radar cross section ( ) at various azimuth angles [19]. The
beams are further resolved through Doppler filtering, resulting
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Fig. 1. Sample ice-masked NSCAT AVE v-pol imagery for 1996 days 270–275. The images are, from Sleft to right, � , � , and � , respectively. The original
images contain 1940 � 1940 pixels with a nominal pixel spacing of 4.45 km.

in a number of measurement cells within each fan beam foot-
print. The cells have various incidence angles with a nominal
spatial resolution of about 25 km. Observations at multiple inci-
dence angles allow for the estimation of incidence angle depen-
dence—an important factor in determining surface characteris-
tics. Furthermore, dual-polarization measurements allow for the
determination of the polarization response of sea ice.
Multiple NSCAT passes over the polar regions are used to

reconstruct imagery. To improve the nominal resolution of
NSCAT measurements, resolution enhancement algorithms can
be applied to generate images. These methods rely upon a pa-
rameterization of the dependence of on incidence angles.
Various-order models can be used with increasing sensitivity to
noise as order is increased. In general, (in decibels) can be
modeled by

(dB) (1)

where is the incidence angle; is normalized to 40 ; is
the linear incidence angle dependence of ; is the quadratic
incidence angle dependence of , and so forth. For a limited
range of incidence angles of 20 and 60 , NSCAT is found
to have a nearly linear dependence on . Higher order models
can be used to more accurately represent the dependence though
the higher coefficients become increasingly sensitive to noise.
Several reconstruction methods exist for the generation of

scatterometer imagery. For this study, a polar stereographic pro-
jection was used in all image products. The first reconstruc-
tion method consists of binning measurements into 22.25
22.25-km grid cells. For each cell, a polynomial fit of a chosen
order is applied to model the dependence of . Hence,
binned images are produced where is the polynomial order.
Since the nominal NSCAT resolution is 25 km, this technique
does not improve measurement resolution but is less prone to
reconstruction artifacts and noise.
The AVE algorithm is another reconstruction technique for

scatterometer image production [20]. Like the binning method,
a polynomial fit is used for each pixel to estimate the pertinent
coefficients. However, the AVEmethod uses a higher resolution
4.45 4.45-km grid and produces images with an effective res-
olution of 12–15 km. For a particular pixel, the polynomial fit
measurement set consists of all the measurements whose spatial

footprint response include that pixel. AVE images are produced
for each polynomial coefficient. Sample ice-masked AVE im-
ages of the Antarctic during 1996, days 270–275 are shown in
Fig. 1 in which a second-order model was employed. The im-
ages are ice masked using an NSCAT-derived method described
in [9]. Significant detail relating to surface parameters is evident
in varying , , and pixel values. The images also demon-
strate that higher order terms are increasingly sensitive to mea-
surement and reconstruction noise.
The final image reconstruction method is the scatterometer

image reconstruction (SIR) algorithm [20]. SIR is a modified
multivariate multiplicative algebraic reconstruction technique
that uses multiple passes of a satellite instrument to increase
spatial resolution [21]. Like the AVE algorithm, a 4.45-km nom-
inal pixel spacing is used. SIR reconstructed images produce an
effective resolution of approximately 10 km instead of the nom-
inal 25–50-km resolution of the instrument [22]. SIR results in
increased reconstruction artifacts as well as increased resolu-
tion. For this reason, only the first-order versus model is
used for SIR imagery.
Each of the described reconstruction algorithms have inherent

strengths and weaknesses. The binning images have the lowest
resolution, but less noise in higher order coefficients. The AVE
images have medium resolution with somewhat higher noise
levels. The SIR reconstructed images have the highest resolution
but are more sensitive to noise in the high-order coefficients. For
the Antarctic and Arctic regions, all of these methods require
six days included in the image generation to achieve full v- and
h-pol coverage with a range of incidence angles in each pixel.
Ice motion during the imaging interval can cause blurring in the
final image products particularly in the AVE and SIR images.

III. LARGE-SCALE FORWARD MODELING OF
SEA ICE BACKSCATTER

Forward models of sea ice backscatter have been developed
that predict as a function of incidence angle and impor-
tant surface parameters. Various sea ice characteristics affect
observed signatures. For example, surface roughness reduces
specular reflections and increases backscatter. Geophysically,
this parameter is important in modulating wind shearing forces
on the ice pack and can be an indicator of internal stresses.
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Liquid water content also influences backscatter signatures. In-
creased water content results in less penetration by incident mi-
crowave pulses. Hence, the backscatter is dominated by the sur-
face scattering response. Snow cover adds another layer to the
multilayer structure. Very dry snow appears electrically trans-
parent at manymicrowave frequencies. However, as snow liquid
water content increases, the sea ice signature is increasingly
masked. In addition, sea ice salinity plays a role in determining
backscatter responses. Brine pockets increase the effective per-
mittivity and provide volume scattering elements. Since brine
pockets are commonly ellipsoidal in shape, the orientation of
these inclusions influences the polarization response. Both
snow cover and brine pocket distribution are closely related
to sea ice age. Older ice forms typically have greater accu-
mulated snow cover. Also, sea ice aging results in increased
brine drainage. Volume scattering air bubbles often remain in
the place of old brine inclusions.
A better understanding of scattering from sea ice enhances the

ability to estimate geophysical parameters through inverse mod-
eling. Current research in the field has focused on mathemati-
cally modeling the complex process of scattering from sea ice
on small scales as a function of the previously described param-
eters. The complexity is due in part to the anisotropic nature sea
ice permittivities. A particular source of anisotropy is the verti-
cally oriented brine pockets caught within the ice crystal lattice.
In addition, sea ice is a multilayer medium with rough surface
and volume scattering contributions to the backscatter signature.
Multilayer anisotropic scattering models have been proposed
using a dyadic Green’s function as well as the first-order Born
approximation to predict backscatter coefficients [23]. Tjuatja et
al. developed a scattering model for snow-covered sea ice using
radiative transfer theory [24]. While several radiative transfer
techniques have been proposed in the past, Tjuatja’s model is
considerably more robust by accounting for non-Rayleigh par-
ticle sizes and close spacing between scatterers. An example
of sea ice forward-scatter modeling is the work of Nghiem et
al. [25] in which a polarimetric backscattering model is de-
rived. Nghiem relates ice, brine, air, and salinity properties to
backscatter signatures.
Several factors limit the use of such models in large-scale in-

version studies. First, the wide seasonal and spatial variability in
the dielectric and large-scale surface roughness properties of the
ice hamper the interpretation of the backscatter maps. Second,
the detailed ice scattering models models assume the region of
interest has relatively homogeneous scattering properties. Some
randomness is allowed in the form of random surface height or
other parameters with specified variances but, in general, the
region is considered to be spatially homogeneous. This may be
appropriate for SAR imagery where the resolution is a few tens
of meters, but scatterometer footprints have 5–50-km resolution
and thus can often cover very heterogeneous regions. Also, the
detailed models are very computationally complex. Inversion of
the models on large fields of measurements is not computation-
ally feasible. Consequently, a model for use at the lower reso-
lution found in scatterometer imagery must be based on more
general, average, large-scale parameters. Computational com-
plexity of the forward model must be simple enough to allow for
inversions of large data sets in relatively short time frames. One

such simple model assumes that sea ice scattering consists of
incoherently summed surface and volume scattering responses
[26]–[28]

(2)

where
measured ;
surface scattering ;
volume scattering ,
measurement incidence angle;
plane wave power transmission coefficient at ;
number density of subsurface scattering elements;
per particle;

volume attenuation coefficient.
This bulk model does not require a detailed description of the
ice medium. Instead, several large-scale parameters are used to
represent the mean response in the region of interest. Following
Swift [27] three primary volume scattering parameters are com-
bined into one variable, the volume scatter albedo given by

(3)

Though it is a general parameter, is related to sea ice features
such as the number of volume scattering brine pockets and air
bubbles. It is also sensitive to the effective permittivity of the sea
ice layers below the surface. Highly saline brine pockets have
higher than air bubbles resulting in greater values for the
same number density, .
This simple volume scattering model assumes only single

scattering. While multiple scattering certainly occurs in a sea
ice medium, the model assumes these are negligible compared
to the direct backscatter response. Fig. 2 shows v-pol volume
backscatter as a function of incidence angle for various values.
The signatures exhibit low dependence on incidence angle. As
increases, the level of also rises. Volume scattering occurs

primarily in ice types containing numerous inhomogeneities and
low loss such as multiyear ice. Snow layers containing crystal-
lized structures can also result in strong volume scattering con-
tributions. Hence, in the model inversion, we expect multiyear
ice forms to have relatively high when compared with younger
ice types such as first-year ice.
Surface scattering is also an integral component of the

backscatter model. Assuming that the surface can be modeled
as an ensemble of reflective facets with Gaussian slope distri-
butions, a geometric optics solution can be used [27], [29] so
that

(4)

where is the surface power reflection coefficient
at nadir and is the rms surface slope.The geometric optics so-
lution is derived under the assumption that the wavelength is
significantly smaller than the typical roughness dimensions. At
14GHz, the correspondingwavelength is approximately 2.1 cm.
Hence, the model accounts for roughness features that are much
larger than this, while smaller roughnesses may not be fully ac-
counted for in themodel.We expect that large surface roughness
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Fig. 2. Model-generated volume scattering v-pol � responses versus
incidence angle. Volume scattering responses as a function of � are shown in
the top frame. Surface scattering as a function of � � �� is shown in the
middle assuming ���� � ���� corresponding to a dielectric constant of 3.2.
The bottom frame illustrates three total scattering examples.

due to wave action, ice pack shearing forces, and ridges are well
within the bounds of this assumption. However, very small-scale
roughness due to such phenomena as wind roughening of open
water and melt ponds and very small surface inhomogeneities
are not accounted for in the model.
For the purposes of this paper, we define to simplify

the model inversion. Fig. 2 illustrates the theoretical v-pol scat-
tering responses for various values of . The plots show that as
surface slope increases, the response broadens in incidence
angle. For very smooth surfaces, a significant portion of the re-
sponse occurs below 20 incidence. Since 20 is used as the
lower cutoff for the NSCAT measurements used in the image
reconstructions, we expect that the inversion will have limited
capability in accurately identifying very low .
At Ku-band, surface scattering dominates young and

first-year ice responses that have relatively high water and brine
content. These types have significant conductivity and, hence,

high loss. Surface melting masks lower level volume scattering
and creates greater relative dependence on surface scattering
contributions. Inverse modeling of images should result in
relatively high in regions of significant surface deformation
and low values over smoother ice forms.
The two fundamental parameters in the surface scatter model,
and , are both related to important surface features. The

Fresnel reflectivity coefficient, , is directly related to the
effective permittivity of sea ice. It has been shown that lossless
sea ice permittivities are roughly between 3.0 and 4.5 [26], [30]
in the Ku-band portion of the spectrum resulting in values
within the range of 0.072–0.13. However, the forward model as-
sumes that the sea ice is lossless. While this applies reasonably
well for older ice forms such as ice bergs and multiyear ice in
winter, internal water content or surface melt introduces con-
ductivity and loss to the medium. Hence, dielectric constants
should not be directly computed from estimates of derived
from the inverse model described in the following section. Nev-
ertheless, can be used to obtain a general idea of effective
relative permittivities throughout the ice pack.
Fig. 2 shows the total scattering v-pol responses for sample
, , and values. The plots illustrate that the theoretical

versus signatures can not always be fit with a linear approxi-
mation between 20 and 60 . A linear model is appropriate for
plot a), but b) and c) clearly require higher order terms to ac-
curately represent the incidence angle dependence. In general,
the linear dependence assumption does not fit well in scenarios
with relatively low values. Swift was able to fit such plots
to SASS observations of multiyear ice in the Arctic [27],
demonstrating the ability to invert the model and estimate the
three fundamental parameters.
The three forward model parameters ( , , ) can be used

as proxy values in the interpretation of polar imagery.We expect
a close relationship to exist between these values and sea ice
type. Consequently, the parameter estimates can be used in ice
classification efforts.

IV. MODEL INVERSION METHODOLOGY

The theoretical scattering model parameters, , , and
can be estimated from observed NSCAT signatures given
sufficient incidence angle sampling. In this section, an auto-
mated inversion technique is presented for determining the three
parameters from NSCAT reconstructed imagery.
The inversion approach consists of the automated steepest de-

scent optimization of an objective function. The objective func-
tion provides a measure of the error between observed signa-
tures and estimated model parameters

(5)
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Fig. 3. Flowchart illustrating the inverse model simulation process.

where
total squared modeling error;
observed backscatter cross section at ;
modeled backscatter cross section at ;
vector of model parameters .

Hence, is a measure of the accuracy of the model
parameters in predicting the observed signature. The
response is computed given the versus variable-order poly-
nomial fit coefficients for a particular pixel in the reconstructed
imagery. Since total squared error is a sufficient statistic for
mean squared error, the inversion method is a minimum mean
squared error technique. Simulated three-dimensional objective
functions (given an observed signature) indicate that the
function has a well defined minimum within the range of
expected , , and . Hence, the optimal parameters are
found at the yielding minimum .
One method of automated optimization of an objective func-

tion is the steepest descent approach. Steepest descent locates
the minimum of a function in an iterative fashion through the
estimation of the local slope. The slope is obtained from the
partial derivatives of the objective function

(6)

where is the direction vector. The partial derivatives
in (6) are analytical functions of , , , and given any
location in the objective function. Consequently, can
be computed for any location vector and points in the direction
of steepest descent.
A recursive algorithm for computing the model parameters,

and thus searching for the minimum of is given by

(7)

where
vector of step sizes for each model parameter;
Schur element by element vector product operator.

The step size can be chosen in a number of ways. Steepest
descent algorithms often use step sizes that are a function of the
objective function. Hence, smaller steps are taken closer to the
minimum. For this study, a fixed step size is used

(8)

yielding model parameter estimate resolutions of 0.001, 0.002,
and 0.002 for , , and , respectively.
The algorithm is initialized with arbitrary . Simulations

indicate that the minimum is found as long as is in the

Fig. 4. Comparison of inverse model-derived responses at various orders with
the true response from the three total scattering cases in Fig. 2. Case (a) (top),
case (b) (middle), case (c) (bottom).

range of possible sea ice parameter values. For a given image
set of polynomial fit coefficients, the algorithm is run for each
pixel. The resulting products are images of , , and used
in determining the spatial distribution of important surface
parameters.
The algorithm has various strengths that make it useful in

model inversion. First, the proposed algorithm is fully auto-
mated. Many previous inverse modeling studies focusing on fit-
ting observed and forward modeled signatures have relied on
user interaction to manually perturb the model parameters until
a satisfactory match is obtained. The technique presented in this
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TABLE I
INVERSE MODEL SIMULATION EXAMPLES IN THE ABSENCE OF NOISE AND WITH INCIDENCE ANGLE SAMPLING AT EACH DEGREE IN THE RANGE � � ��� � �� �

paper requires no user interaction and quickly estimates model
parameters given an observed versus response. This facili-
tates the production of model parameter image sequences from
scatterometer imagery. In addition, if the incidence angle de-
pendence model is sufficient (of high enough order) the algo-
rithm finds the best parameters in the minimum mean squared
error sense.
The estimated parameters provide, in effect, the mean re-

sponses over the pixel region. These are useful on acroscopic
level when viewing entire sea ice packs. We note that the prod-
ucts of the inversion technique have limited utility on very small
scales. Because the model is based on a specific forward model,
the quality of the resulting parameter estimates are directly re-
lated to the quality of the original forward model. We expect
some error since the forward model does not account for such
things as complex sea ice permittivities and small-scale rough-
ness features.

V. INVERSE MODEL SIMULATIONS

To evaluate the capability of the inversion technique, simu-
lations are designed and implemented. The simulation method-
ology is outlined in Fig. 3. First, the “ground truth” model pa-
rameters , , and are run through the forward model to
produce a versus response. This signature is then sampled
in incidence angle between 20 and 60 to simulate scatterom-
eter measurement collection. At this point, Monte Carlo scat-
terometer noise is added to each measurement using the noise
model

(9)

where
noise-added at incidence angle ;
original noiseless ;
normally distributed random variable with stan-
dard deviation .

The noise-corrupted measurements are used to obtain polyno-
mial fit coefficients. Variable degree polynomials are used to
determine the effect of model order on the inversion. The coef-
ficients are then input to the inverse model resulting in surface
parameter estimates. Error analysis is performed with the orig-
inal parameter values and the inverse model results.
For the purposes of illustration, we consider model inversion

using the total scattering cases in Fig. 2. The inverse model is
first evaluated in the absence of noise with ideal incidence angle
sampling consisting of samples at each degree from 20 to 60 .
For each case, the simulation is implemented using polynomial

Fig. 5. “Truth” parameter images, ����, �, and �, used in the model
simulations.

Fig. 6. Inverse model ���� parameter estimates at various � versus � model
orders and noise levels.

Fig. 7. Inverse model � parameter estimates at various � versus � model
orders and noise levels.
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Fig. 8. Inverse model � parameter estimates at various � versus � model
orders and noise levels.

fit orders from one to four to illustrate the algorithm’s perfor-
mance. The first case to be inverted is example a) from Fig. 2.
Table I contains the resulting estimates for all three parame-
ters using different reconstruction model orders. These values
demonstrate that virtually all polynomial orders provide good
estimates of the true values. Since the response is close to linear
in the 20 to 60 range that the inversemodel considers, even the
first-order model performs reasonably well. Fig. 4 shows a com-
parison of the true signature with the estimated signatures
at each of the considered orders. The vertical lines at 20 and
60 incidence angle bound the range over which the signature
matching is performed. The plots are virtually indistinguishable
demonstrating the proper performance of the algorithm.
The case (b) inversion illustrates the inverse model’s perfor-

mance with nonlinearities in the true versus signature.
In Table I it is evident that the first-order model performed
poorly. The estimate is particularly erroneous. However, at
order two and above, the estimates are close to the actual values.
Fig. 4 offers a graphical interpretation of the inversion case. The
plots clearly show the poor performance of the first-order model
values.
The true response in case (c) exhibits extreme nonlinearities.

While we do not expect such a case to be common, it is included
to show the inverse model’s performance in extreme circum-
stances. For this scenario, third or fourth-order model coeffi-
cients are required as inputs to the inverse model to provide rea-
sonable estimates of the surface parameters. Fig. 4 illuminates
the situation further. These plots show the difficulty encountered
by first and second-order inputs in matching the true signature.
The sharp “elbow” in the response can only be accounted for
by third– or fourth-order polynomial fits. A greater range of in-
cidence angles included in the model would conceivably yield
better estimates at all orders. Unfortunately, scatterometers like
NSCAT do not collect measurements over such a broad range
of viewing angles.
These three simulations demonstrate that the inverse model

performs properly in the absence of noise given sufficient inci-
dence angle sampling and satisfactory polynomial fit coefficient

Fig. 9. Median absolute error of (top) ����, (middle) �, and (bottom) �
estimates as a function of measurement noise parameter � and model order.

inputs. In actual scatterometer image reconstructions, such ideal
incidence angle sampling is not common. For six-day NSCAT
images generated at the SIR and AVE spatial resolutions of
4.45 km, average pixel regions usually encounter at least ten
hits. Hence, for the remaining simulations, incidence angle sam-
pling is performed randomly from a uniform distribution be-
tween 20 and 60 with ten samples for each realization. In ad-
dition, measurement noise is simulated using (9) and various
values. Typical NSCAT levels are in the range 0 to 0.1. In
fact, for the NSCAT Antarctic v-pol data collected from 1996
days 270–275, 97% of the values are below 0.1 and 86% are
below 0.05.
To offer more comprehensive simulations that consider a

broad range of ( , , ) triplet combinations, synthetic
“ground truth” images are constructed of each parameter that
represent all possible sample combinations of the parameters
within the ranges
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Fig. 10. Ice-masked NSCAT Antarctic � SIR image series.

These values represent ranges that cover typical sea ice surface
parameters. The images are generated using 25 evenly spaced
samples of each parameter resulting in 25 combinations. Fig. 5
shows the truth images that are used in the simulation process.
Noise-corrupted polynomial coefficient images are simulated,
which become inputs to the inverse model.
The simulations are run using the incidence angle sample

scheme described previously. Noise levels ( ) are considered
at 0.02 increments from 0 to 0.1. The results are summarized
graphically in Figs. 6–8. In Fig. 6, the estimates are shown
with values of 0, 0.04, and 0.08. The image frames demon-
strate increasing ability in the algorithm to accurately repre-
sent the left-to-right increasing gradient as the model order in-
creases. Nearly all images show that the algorithm has difficulty
in areas corresponding with very low values. As previously
noted, extremely low correspond to scattering responses that
are primarily contained below the 20 incidence angle limit for
NSCAT data. The images also exhibit that higher order models
are increasingly sensitive to noise as evident by the speckling in
the estimate frames. Thus, a trade off exists between ability to
estimate parameters accurately (on average) and sensitivity to
measurement noise.
The performance of the algorithm in estimating is shown in

Fig. 7. The image panels reveal that first-order coefficients are
not sufficient to accurately represent the surface roughness in-
duced characteristics of the forward-scattering model. The first-
order frames are nearly constant in value. In contrast, the second
to fourth-order models are muchmore successful in reproducing
the upward gradients in the truth image. Like , the es-
timates are increasingly sensitive to noise as order increases.
Estimates of the final parameter, , are shown in Fig. 8. Sim-

ilar trends with order exist for estimates as with the previous
two. The first-order model has difficulty generating the con-
stant frames in the truth image. However, all of the higher order
models appear to perform relatively well.
In order to provide a quantitative measure of algorithm per-

formance over all the possible parameter combinations, the me-
dian absolute error is used. This metric is computed for each
parameter as the median of the ensemble of absolute errors over

the entire truth image. The estimate images have few very large
errors caused by poor sampling or extreme noise. However, the
few outliers can skew an average error metric. Themedian abso-
lute error is used to reduce the confusing effects of these outliers.
Fig. 9 illustrates the error metric for the three forward-scat-

tering model parameter estimates as a function of . All of the
plots indicate that parameter estimate error is lower for higher
order models in the absence of noise. However, as rises, the
second or third-order estimates have the lowest median absolute
error. The curves also show that higher order models are increas-
ingly sensitive to , evident in steeper slopes in the error plots.
The first-order model is relatively insensitive to in all three
figures since this model performs the most averaging. From the
results in Fig. 9, we conclude that the second- or third-order
versus polynomial coefficients provide the best inputs to the
inverse model in the presence of noise. Since both offer similar
error characteristics, the second-order model is used with actual
NSCAT data as presented in the following section.

VI. RESULTS

The inversion method is applied to second-order NSCAT re-
constructed v-pol AVE imagery ( , , and ) to study the
behavior of the technique and to interpret phenomena observed
in the reconstruction images. First, the inversion is performed
on Antarctic image sequences. Three six-day Antarctic SIR im-
ages are shown in Fig. 10. While the inversion is performed on
third-order AVE imagery, enhanced resolution SIR images
are shown here for illustrative purposes. The differences be-
tween the SIR and AVE algorithm products are discussed above.
The images are ice masked using an NSCAT-derived ice edge
algorithm [9]. The three frames each show significant detail
within the ice pack. The goal of the inversion is to extract useful
surface features from these variations and to provide maps of
them. However, in this discussion we restrict ourselves to a few
general observations in supplement to other studies, e.g., [31].
An interesting phenomenon illustrated by this image sequence
is the “blooming” of values near the ice perimeter. That is,
the values increase significantly in a very short period of
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Fig. 11. Inverse model estimates of Antarctic. (Left column) ����. (Center column) �. (Right column) �.

time in localized regions. An example is shown near the ice edge
in the outer Weddell Sea. The location of the Weddell Sea and
the Ronne Ice Shelf (to be discussed below) are indicated in the
first frame of Fig. 1. The values in this region during the day
279–284 image are significantly higher than the previous two
images. Special Sensor Microwave/Imager (SSM/I) radiometer
brightness temperatures drop significantly in the bloom area. As
described below, the inverse model is used to provide a physical
interpretation of this phenomenon.
The inverse model is implemented for the Antarctic AVE

image sets corresponding to the images in Fig. 10. Fig. 11 shows

the spatial distribution of estimates for each time interval.
Several large ice bergs with very high values are clearly
observed in the images such as B10A in the lower-left quadrant
of the image and several grounded ice bergs near the eastern
limit of the Ronne Ice Shelf. First-year ice dominates much of
the Antarctic ice pack. These regions have typically low
levels compared with ice bergs and several regions near the ice
edge. The Weddell Sea bloom is evident in increased indi-
cating an increase in the effective permittivity.
The estimates in Fig. 11 are visually more noisy than .

Areas of very smooth first-year ice have low values in the
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Fig. 12. Ice-masked NSCAT Arctic � SIR image series.

images. One example is near the western edge of the Ronne ice
shelf, which is a region of new ice growth as older ice forms are
drawn northward along the peninsula by the Weddell Gyre. The
area surrounding the previously discussed grounded bergs have
high consistent with sea ice deformations caused as the ice
pack collides with the bergs. The bloom area does not indicate
any obvious change in this parameter.
The parameter images are also shown in Fig. 11. The

highest volume scattering albedo values are found in pixels
covering ice bergs. Since ice bergs are composed of glacial ice,
they have virtually no salinity and, thus, low loss. Microwave
frequency pulses, therefore, are sensitive to scattering from
subsurface inhomogeneities. A small region of multiyear ice
near the tip of the peninsula also appears very bright in the
image. A narrow stream of older deformed ice with medium
values is also evident running through the middle of the

Weddell Sea parallel to the Ronne Ice Shelf. This line is created
by the Weddell Gyre motion pulling ice debris away from the
grounded ice bergs near the shelf. Much of the remaining ice
pack, consisting primarily of various forms of first-year ice,
have low volume scattering albedo. The only exceptions to this
are in various bloom regions. In the final image, increased
in the Weddell bloom area is accompanied by a sudden rise in
. A local refreezing event could cause the observed change in
volume scattering.
The inversion method is also applied to Arctic data. A four

AVE image set series representing the onset of Arctic summer is
used as inverse model inputs. The SIR ice-masked image series
corresponding to the AVE imagery actually used in the inversion
is illustrated in Fig. 12. As with the Antarctic case, SIR images
are shown though AVE imagery are used in the inversion. The
reconstructed SIR images exhibit greater detail in the and
images, but are more susceptible to imaging artifacts that make
them less desirable than their AVE counterparts for use in the
inversion. The Arctic ice pack is characterized by large regions
of multiyear ice exhibiting high values near the centers of
the images. Younger forms of ice have lower signatures. The
phenomenon examined in this sequence is the annual drop in
observations due to the passage of warm fronts over the ice pack
inducing significant surfacemelting.While the first images have
high multiyear signatures differentiating this ice type from

lower first-year ice, by the end of the image sequence the
two types are indistinguishable.
Fig. 13 contains the image estimates of Arctic . We

note that the noisy values near the pole are due to insufficient
incidence angle sampling caused by satellite orbit geometry
and the NSCAT measurement collection configuration. Un-
satisfactory sampling of the incidence angle spectrum results
in poor estimates of polynomial fit coefficients in the image
reconstruction. Consequently, very low confidence is placed on
the near-pole parameter estimates. For comparison, SSM/I-de-
rived multiyear and first-year ice concentration images are
presented in Fig. 14 for the first Arctic image in the set (1997
days 138–143). These were produced by the NASA Team
algorithm and were obtained from the National Snow and Ice
Data Center (NSIDC). The general trend in the imagery
consists of relatively high and low values for multiyear and
first-year sea ice, respectively. The melt event causes to
drop quickly over the entire multiyear area.
The distribution of surface roughness values are shown

in Fig. 13. Comparison with the ice concentration imagery of
Fig. 14 illustrates that multiyear ice has typically high levels
in contrast to lower observations over first-year ice. Newer ice
forms are typically less deformed than old ice that has been sub-
jected to wave deformation, ice pack shearing, and large-scale
roughness caused by melt/refreeze cycles. As the sequence pro-
gresses, values drop until nearly the entire multiyear region
appears similar to the first-year observations. The source of
the change may be due to surface smoothing of features due to
melting and the creation of melt ponds, [6], [10].
The estimate images of Arctic volume scattering albedo

shown in Fig. 13 illustrate the intense volume scattering con-
tributions characteristic of multiyear ice. Varying levels of
within multiyear regions can be related to the number density
of volume scatterers and mean volume scattering element cross
sections. Areas of younger ice have much lower due to higher
salinity and dielectric loss. The image progression shows de-
creasing as temperature rises and surface melting occurs. In
the last image frame, volume scattering has been almost com-
pletely masked by increased water content that reduces penetra-
tion depth. Such signatures masking makes the various ice types
completely indistinguishable at Ku-band.
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Fig. 13. Inverse model estimates of Arctic (Left column) ����. (Center column) �. (Right column) �.

These results illustrate the utility of the inverse model in in-
terpreting the sources of scattering phenomena observed in re-
constructed NSCAT imagery. Since the model inversion method

is fully automated, large ensembles of measurements can be in-
verted providing estimates of the spatial distribution and magni-
tude of important surface parameters. These parameters can then
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Fig. 14. NSIDC SSM/I-derived multiyear (left) and first-year (right) Arctic sea ice concentration images for 1997 days 138–143.

be related to sea ice types as previously described. In general,
older ice types such as multiyear ice exhibit very high and
values in the absence of significant surface melt. In contrast,

first-year ice and other relatively young ice types have much
lower and . Smoother ice types have typically lower
levels. Temporal variations in the parameters can be used to un-
derstand the evolution of scattering mechanisms within the var-
ious ice types as considered in this section.

VII. CONCLUSION

This study has presented an inversion technique applied to
a simple, but robust forward-scattering model. The method is
fully automated requiring no user interface. Consequently, large
scatterometer polynomial fit coefficient images representing the
incidence angle dependence of can be used as inputs to the
inverse model. The algorithm is used to determine the spatial
distribution of three important surface parameters: the power
reflection coefficient at nadir, , the rms surface slope,
(represented by in the inverse model), and the volume
scattering albedo, .
Simulations of the method demonstrate the capability of the

algorithm. Higher order incidence angle dependence models
yield better estimates of the surface parameters in the absence of
noise. When noise is introduced, a trade-off exists between the
capability to estimate a wide range of possible parameter combi-
nations and sensitivity to noise. The first-order model performs
reasonably well for and estimation but cannot effectively
reproduce true values. A good balance is found in using a
second-order model.
The inverse model is applied to NSCAT Antarctic and Arctic

image sequences. The results show that the parameter images
have consistent spatial distributions. The image products are
used to interpret “blooming” phenomena in the Antarctic.
An increase in and is observed in the bloom regions with
little change in . The method is also used to analyze drastic
decreases over multiyear ice in the Arctic as the summer season
begins. The accompanying surface melt causes all three param-
eters to decrease abruptly. Surface roughness appears to be re-
duced and increased water content masks the volume scattering

contribution that give multiyear ice its characteristically high
signature.
The results of this study demonstrate the utility of one tech-

nique in inverting simple forward-scattering models for sea ice
surfaces. Validation data of surface roughness parameters, di-
electric properties, and volume scattering element characteris-
tics are needed to accurately measure the algorithm’s effective-
ness. Unfortunately, access to suitable validation data over such
large areas for this initial study was very limited and thus further
work is required. Regardless, the method can aid in the interpre-
tation of important polar geophysical phenomena.
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