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ABSTRACT

IMPROVING RECORD LINKAGE THROUGH PEDIGREES

Burdette Pixton

Department of Physical

and Mathematical Sciences

Master of Science

Record linkage, in a genealogical context, is the process of identifying indi-

viduals from multiple sources which refer to the same real-world entity. Current

solutions focus on the individuals in question and on complex rules developed by hu-

man experts. Genealogical databases are highly-structured with relationships existing

between the individuals and other instances. These relationships can be utilized and

human involvement greatly minimized by using a filtered structured neural network.

These neural networks, using traditional back-propagation methods, are biased in a

way to make the network human readable. The results show an increase in precision

and recall when pedigree data is available and used.
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Chapter 1

Introduction

Record linkage is the process of integrating information from two or more

independent sources. It ensures that records believed to represent the same object are

matched and treated as a single entity. Record linkage is a subset of a larger problem

known as the object-identity problem. The object-identity problem is common in

large or distributed databases. The duplication of objects within a database or across

several databases causes a host of problems, including increased storage requirements,

performance degradation, undesired bias towards duplicates in statistical analyses [1],

and non-deterministic behavior if duplicates do not agree on all data fields. Under

such conditions, it is not only necessary to detect duplicates but also to merge the

corresponding records.

In addition to solving the above technical problems, identifying and merg-

ing duplicates has beneficial side-effects. For example, in the medical domain, one

may be able to discover hereditary conditions [2] or to highlight links among various

pharmaceutical drugs and medical conditions by detecting identical patients across a

pharmacy’s and a physician’s databases. In the domain of genealogy, where record

linkage seeks specifically to identify whether or not individuals belonging to different

pedigrees refer to the same person [2], one may be able to obtain missing information

from the work of others. Consider two genealogical researchers R1 and R2 who are

each examining a pedigree represented in Figures 1.1 and 1.2.

Assume that records K and E are found to refer to the same individual. The

two pedigrees can now be merged and both researchers immediately gain access to new

information, from missing details about individuals to completely new individuals.
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Figure 1.1: R1’s Pedigree

Here, for example, R2 discovers F , a child of K, from information in R1’s pedigree.

R1 is similarly benefited by discovering J , the mother of E, from information in R2’s

pedigree.

Genealogical researchers greatly benefit from merging pedigrees with other

researchers as it not only provides additional knowledge about certain instances, but

can also be used to detect erroneous information and eliminate duplication of work.

Furthermore, there is a kind of snowball effect to record linkage. As more pedigrees are

merged, more knowledge becomes available about existing pedigrees. This knowledge

in turn can be used to merge more pedigrees, and so on.

As the custodian of the largest source of genealogical data, the Church of

Jesus Christ of Latter-day Saints’ Family and Church History Department (FCHD)

has a keen interest in accurate record linkage. The FCHD’s main objectives are to

(a) guarantee the integrity and overall quality of the available data, (b) facilitate

researchers’ work by merging together complementary information, and (c) avoid

duplication of ordinance work.

Traditionally, record linkage strategies have focused on designing similarity

2
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Figure 1.2: R2’s Pedigree

metrics and combining them intelligently to produce an overall score whose value is

used to predict whether two individuals are the same. The focus is generally on the

attributes of individuals (e.g., name, date of birth), which implicitly presupposes that

such information is available. Although this is often the case, there are also many sit-

uations, arising naturally from the genealogical research process, where details about

individuals are lacking. For example, suppose a genealogist discovers a new person,

newPerson, in a given pedigree. At this stage, not much research has been done on

newPerson by the genealogist; only its existence and placement in the pedigree has

occurred. A natural next step for the genealogist would be to determine whether any

other researcher has discovered (and documented) newPerson before. By locating

this information, the genealogist can save time by merging both findings.

Current record linkage strategies do not facilitate this kind of discovery. They

require the genealogist to first research the details of newPerson and only then at-

tempt to find a potential match in other pedigrees. Our proposed approach, Mining

and Linking for Successful Information eXchange (MAL4:6), is an attempt at alle-

viating this situation by explicitly taking into account the pedigrees when matching

individuals. MAL4:6 traverses both pedigrees in parallel to judge the similarities of

each pair of corresponding individuals. These measurements are combined and a final

classification is predicted.

3



Chapter 2

Related Work

Algorithms that perform record linkage generally involve the four steps shown

in Figure 2.1. Step 1 consists of comparing the individual attributes of the instances

of interest. The attributes of a genealogical database would include things such as

names, locations and dates. These attributes are generally stored as strings, and thus

string metrics are often used for their comparisons. Step 2 involves quantifying the

previous comparisons. The numerical comparison provided by the string metric is

mapped to a score through a set of rules. In step 3, all of the scores from the various

attributes are used and combined to produce an overall similarity. This process

attempts to aggregate the knowledge from the various pieces to determine an overall

similarity for the entities. Finally, in step 4, a classification is made for the entities.

In genealogical terms, this would mean predicting that the two entities involved refer

to the same individual or not.

Step 1. Compare the attributes
Step 2. Quantify the comparisons
Step 3. Combine the scores from the comparisons
Step 4. Compare against a threshold

Figure 2.1: Steps in Record Linkage
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2.1 Basic Definitions

To assist with the rest of this discussion and throughout the thesis, we provide

the following set of basic definitions.

Let Γ = {γ1, γ2, ..., γn} be the set of attributes that characterize individuals.

In practice, each γk represents some piece of information about individuals, such as

first name, last name, date of birth, place of birth, etc.

An individual x is denoted by an ordered set of attribute value pairs < γk:vk >

(e.g., < firstname: John, lastname: Smith, . . . >). We use γxk to refer to the value

of attribute γk of an individual x. Two individuals, x and y, that are being compared

against each other consititute a pair p.

For each attribute, γk, there is an associated similarity measure, simγk , which

is selected based upon the type of γk (see Table 3.1 in Chapter 3). Then, for any pair

of individuals, p =< x, y >, we define a similarity function as follows.

simp(x, y) =
|Γ|∑

k=1

αksimγk(γ
x
k , γ

y
k) (2.1)

where the αk’s are optional weights applied to the attributes.

In some cases, similarity measures are used in a mapping process (described as

step 3 in Figure 2.1) to create a new score for the attribute. In these circumstances,

ek will be used to denote a score for attribute γk.

2.2 Record Linkage Standards

Entities in standard databases do not generally share a common relationship.

Each row is independent from other entries. This limits the algorithms used to detect

matches to the data contained in the row. A naive approach is to compare each data

element (cell) of a row with every other row in the database. The rows whose data

matches exactly along predetermined cells are removed as duplicates. This method

is a straightforward fix and removes the obvious duplicates. It is, however, very weak

in that it may not find all of the duplicates. Records, whose data differ, even slightly,

will not be located with this method.
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Detecting misspellings and standardizing the data to a common form solves

some of the problems with the naive approach. String metrics, discussed in the next

chapter, are used to assign a numerical value by judging the similarity between two

strings. Not all differences among like data rows are caused by errors. Some of the

differences are intentional. Individual data elements may refer to the same real-world

entity but be in a different form. Proper names often have different forms within

the same database. The names Jen and Jenny, for example, refer to the same name

but are spelled differently. They should be standardized to the same root name of

Jennifer. Locations often need to be standardized too. For example, the two locations

of Murray, UT and Holiday, UT are realistically different places but should probably

be considered part of the larger Salt Lake City in a national database. Geographical

and name dictionaries are routinely used in determining root or base forms of these

types of nouns.

The current record linkage system used by the FCHD uses standardization and

relies on a scoring mechanism based on sophisticated, hand-crafted comparison rules

(e.g., if the birth year matches within some tolerance, a positive score is awarded; if

it differs, a negative score). This approach has some basis in the Probabilistic Record

Linkage formula, which was introduced by Newcomb [3] and formalized by Fellegi &

Sunter [4].

2.2.1 Fellegi-Sunter

Many record linkage techniques have a basis in the principles introduced by

Newcomb [3] in 1959. Ten years later, in 1969, Fellegi & Sunter [4] gave a formal math-

ematical account of Newcomb’s work. Winkler, in [5], highlights three key reasons

why the Fellegi-Sunter approach is useful: (1) it estimates outcome probabilities, (2)

it provides estimates on error rates without manual intervention, and (3) it estimates

threshold values based on those error rates. The method relies on the use of proba-

bilities on attributes which entities may have in common. A detailed explanation of

how this is implemented is in [4] and [6].

6



2.2.2 Bayesian Systems

Algorithms based on Fellegi & Sunter’s method to predict threshold values are

often extended to include weights on the various attributes. Weights allow greater (or

lesser) importance to be apportioned to certain data elements. Many techniques may

be used to calculate the values for the weights, including machine learning algorithms,

rule-based approaches and statistical analysis. A Bayesian network is commonly used

in the statistical approach.

Bayesian networks are built using probabilities computed from a training set.

Weights, in this case, are defined by Equation 2.2.

wi = ln[P (M |ek)]
= ln [P (M)] + ln

[
P (ek|M)

P (ek)

]
(2.2)

P (M) is a constant and is the probability of a match occurring between two

instances given a pair p; it is calculated from the distribution of the test set. P (ek)

is the probability that given a record, attribute k will have a score of at least e; it is

estimated from a training set. Ideally, the probability, P (ek|M), that an attribute will

have a score of at least e given that it is a match is calculated from known samples.

This weight of Equation 2.2 is applied to an unknown pair p based on the

similarity of the attributes that exist between p’s individuals, as shown in Equation

2.3.

ek =




wi if simγk(p.γk : pk) > δ,

−wi otherwise.
(2.3)

It is important to note that the similarity score produced by simγk(p.γk : pk)

is not applied to ek. It is only used to determine a value for ek. Finally, the δ value,

although it can be learned, is generally defined by the user.

7



2.2.3 Handcrafted Fellegi-Sunter

Many current approaches perform the steps mentioned in Figure 2.1 by relying

on human knowledge and intuition. Step 1 is often performed using an arbitrary string

metric to compare the attributes that an expert deems to be important. Scores (wi)

are determined using a mapping function like the one described in Equation 2.3. The

value for wi can be manipulated in order to increase precision/recall. The various

values that wi can assume are often determined by guess-work and humans learn ideal

weights through trial and error. This methodology performs well on some sets because

humans tend to have intuition about which attributes are important in determining

if pairs are a match. For instance, a human can quite easily decide that a low wi is

appropriate if two genders match. However, if two individuals do not share the same

gender a very large negative weight should be applied.

The Bayesian and handcrafted method of the Fellegi-Sunter equations often

ignore the similarity value that is generated between each of the attributes for two

individuals. This value is ignored in the sense that it is only used to compare against a

threshold δ. The mapped score, not the similarity measurement, is used in calculating

a final similarity score for the 2 individuals.

The final similarity score is computed using a set of rules which follow the

format described in Equation 2.3. These rules consist of many criteria and thresholds

(δ). Each of these rules returns a score which is aggregated with other scores to

determine a prediction. The final two steps (aggregating and comparing the scores)

are typically accomplished similarly to how step 2 is done. A set of rules or a function

can combine the various scores. The threshold (δ) in step 4 can be adjusted similarly

to wi.

A rule-based approach relies heavily on human intervention. The scores re-

turned and the criteria are predetermined. Rules are maintained manually and ad-

ditional rules may be added to the set to increase performance. A set of rules may

therefore be overfitted by human intervention to perform well on a certain test set.

It should be noted that overfitting may take place with all models, whether built by

8



humans or machines, especially when limited data sets are available for experimenta-

tion.

Probabilistic methods depend on the existence and correctness of an individ-

ual’s data. Missing or erroneous attributes can greatly impact the performance of such

methods. Probabilistic methods attempt to mitigate this by adjusting the weights of

attributes which are often missing or wrong in a training set. Prior knowledge can be

very useful here. However, by bringing the weights closer to zero (thus limiting their

importance), additional emphasis is placed on the remaining attributes.

2.3 Problems with Current Approaches

Current approaches do not fully utilize the structure that is associated with

genealogical records. A genealogical database is rich in structure with individuals

often having links or connections with other individuals in the database through

family relationships. Harvesting the attributes of other instances can help spread the

dependency across more values and thus lessen the impact of erroneous and missing

data. In genealogical databases, the process of creating additional data is relatively

straightforward. A relative’s data can be used to generate additional attributes. For

example, the fact that two individuals have the same parents listed will have an

impact in determining whether or not the persons are the same.

The human element involved in the handcrafted process makes it difficult to

add an arbitrary number of new parameters. The parameters that the system uses,

rules and weights, need to be maintained for each attribute. Adding new attributes

to the system requires not only new weights and rules but also adjustments to the

existing parameters. Adjustments to all parameters are made depending on the pres-

ence of other attributes. This set of rules may be easy to maintain if the number

of attributes is small or if they commonly exist. This approach, however, does not

work very well if attributes tend to be missing. A set of rules would be needed for

different distributions of data. For instance, a set of rules R1 may be appropriate if

an individual has much ancestry data, but a different set R2 may work better with

descendents in the pedigree. Depending on the granularity of the desired attributes,

9



the set of rules can be very large and difficult to maintain.

MAL4:6 eliminates the need for human interaction by automating all of the

steps outlined in Figure 2.1. Automatically generating a set of mapping rules would

be difficult for MAL4:6. Mapping rules are strongly dependent upon the aggregation

method used in the third step. The result of this is that for each algorithm tested in

the third step, a different set of mapping rules would potentially need to be learned.

Judging the success of different algorithms would then be difficult as success or failure

could be largely attributed to the mapping stage. For example, a given algorithm

may have performed better if its associated mapping function had separated the data

more uniformly.

We simplify the problem of creating rule sets or mapping functions for step

2 by using the string metric score of step 1 directly. In other words, ek = sim(γk).

This, of course, places greater emphasis on the metric chosen. We return to this in

Chapter 3. Finally, the third step of the process is also automated. Machine learning

algorithms are used for combining the various similarity scores and determining if a

pair is a match. One of the side benefits of this automation is that new models can be

adapted quickly when parameter adjustments (e.g., introduction of new attributes)

are needed.

10



Chapter 3

Similarity Function

Given a pair of entities, the first step in the record linkage process (see Fig-

ure 2.1) is to compare their data elements against each other. Genealogical records

consist of three different types of data, namely: names, dates and locations. Because

these data types are often stored as strings, a way is needed to compute the simi-

larity between two given strings. Simply deciding if two strings are equal (or not) is

insufficient. It is necessary to know how close they are to each other. String metrics

provide a method to judge the similarity on a continuous scale.

Many string metrics have been developed over time, and they each base their

similarity score on a number of different properties, such as spelling, phonetics and

compression. Edit distance metrics, such as Levenshtein’s distance, developed in

1965, focus on string transformations [7] and compare strings on a letter by letter

basis. Similarity metrics are akin to edit distance metrics but they focus on groups

of letters instead of individual letter placement. Jaro [8, 9], and a variation known as

Jaro-Winkler [10], are the two prime examples of this type of metric.

Some strings, such as names and locations, are commonly misspelled due to

ignorance, rather than typos. For example, John and Jon sound the same but are

spelled differently. These strings, when compared with Levenshtein or Jaro, would

receive a low score. These type of ’misspellings’ are common in genealogical data,

however, as recorders are sometimes left up to how they would spell a certain name.

Phonetic metrics focus on word sound rather than word spelling. With such metrics,

Jon and John would receive a high score. Soundex [11] is the primary example of this

type of metric.

11



The choice of string metric does not typically play a critical role in current

record linkage approaches, since the actual value, sim(γk), is only used as input to

a mapping process (a set of functions) that produce the second, actionable score,

ek. In order to reduce the human involvement in the process and allow MAL4:6 the

opportunity to manipulate the attribute weights on its own, no mapping is performed;

only sim(γk) is used directly. This decision has two major impacts on the system. It

eliminates the need for MAL4:6 (or a human expert) to learn/build a set of mapping

rules, and it places greater emphasis on the metric chosen.

3.1 String Metrics in MAL4:6

MAL4:6 must choose a metric that can adequately distinguish two strings.

Obviously, a metric would be considered good if it gives high scores to strings which

are very similar and low scores otherwise. Determining which metric works best is

not a trivial task. Furthermore, the different types of string metrics may perform

differently depending on the data type encountered. For instance, using an edit

distance metric may perform well on dates, but a phonetic metric may do better on

names.

A set of experiments were conducted to determine an appropriate metric for

each attribute. Metrics from the edit distance, similarity and phonetic classes were

selected and used in the experiments. Characteristics or trends involving these data

types (i.e., names, dates and locations) may lend themselves to the strengths of a

particular metric. In order for MAL4:6 to be successful, it is critical that good

metrics are chosen for the various data elements contained in the records.

3.1.1 A Universal Metric

Assume hi,hj,ua, and ub are strings from the set of matches (H) and mis-

matches (U). A metric is considered to be a universal classifier if it satisfies Equation

3.1.

∀hi, hj∀ua, ub sim(hi, hj) > sim(ua, ub) (3.1)

12



In other words, strings which originate from matches should have a higher

similarity score than strings originating from mismatches.

A universal classifier would not need any learning or training. However, due

to misspellings and erroneous information in H, coincidences in U , and errors in the

data sets, such a metric does not and may never exist.

3.1.2 Creating a Designer Metric

A series of experiments was performed to test how the different string metrics

performed on various types of genealogical data provided by the FCHD. We consider

Soundex [11], Jaro’s metric [8, 9], Jaro-Winkler’s metric [10], Dice’s approach [12, 13],

binary discrimination (i.e., same vs. different) and the inverse of the 1-norm (i.e., 1

over the absolute value of the difference; 1 if values are the same). The inverse of

the 1-norm is used primarily with numerical data. For this reason, the inverse of

the 1-norm was only applied to day numbers and years. Other string metrics were

also applied to these attributes, however, to compare their performance on numerical

data.

MAL4:6 calculates a similarity score for each attribute with each metric across

all pedigrees in H and U . This illustrates a basic assumption which is made through-

out the thesis. The corresponding relatives of a pair belong to the same classification

(match or mismatch) as p. For instance, if x and y are matches and therefore in set

H, then the pair made up of their respective fathers is also a match. While this is a

law of nature, errors contained in the associated pedigrees may cause this assumption

not to hold.

MAL4:6 stores the similarity score according to its classification (match, non-

match), the attribute, and the metric used. Upon completion of each pair in the sets,

an average score is computed. The optimal metric for each attribute is computed

using the algorithm shown in Figure 3.1.

The outcome from these experiments is given in Table 3.1, where the best

metric is listed for each type of attribute. These results give rise naturally to a

heterogeneous metric for MAL4:6.
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Input: sets H and U
For each attribute a

maxam = 0
For each metric m

dam = AvgH(m(a)) - AvgU(m(a))
If dam > maxam
maxam = dam
optimalMetrica = m

Figure 3.1: Optimal Metric Algorithm

3.1.3 Validation of Heterogeneous Metric

In order to validate our selection of the heterogeneous metric, it is necessary

to compare its accuracy with that of the homogeneous approaches. This initial im-

plementation of MAL4:6 is referred to as version 0.1. As a first attempt, each metric

is used across the attributes and an overall score (step 3 in the process) is computed

as a simple average as follows.

sim(x, y) =

∑|Γ|
k=1 αksimγk(x.γk : vk, y.γk : vk)

N

where N is the number of attributes with values in both x and y. Note that N ≤ |Γ|.
In the homogeneous case, simγk is the same for all attributes and is the metric being

tested. In the heterogeneous case, simγk is the optimal metric for the type of attribute

k, as given in Table 3.1. Further, we define simγk(x.γk : xk, y.γk : yk) = 0 whenever

either of xk or yk is missing.

Empirical results suggest that our composite metric is slightly superior to all

of the homogeneous metrics. Figure 3.2 graphs the ROC curves parameterized by

the similarity threshold for matching pairs. To highlight the differences, Figure 3.3

displays the corresponding log curves for the three best performing metrics in the

study.
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Attribute Type Metric
Gender Binary Discrimination
Name Soundex

Location Jaro
Day 1-norm

Month Dice
Year 1-norm

Table 3.1: Metric Selection Table

ROC (Receiver Operating Characteristic) analysis has its origin in signal de-

tection theory. It was recently introduced in the field of Machine Learning/Data

Mining (e.g., see [14]). ROC curves display the true positive rate or sensitivity (i.e.,

the ratio of the number of matches found to the total number of matches) versus the

false positive rate or 1 minus specificity (i.e., the ratio of the number of incorrectly

found matches to the total number of mismatches). Each point on the curve repre-

sents a decrease in the threshold value used to classify matches. At the far left, the

threshold is set to 100%, therefore nothing is classified as a match and thus we get 0%

on both the false positive rate and the true positive rate. At the far right, the inverse

is true. The threshold is set to its lowest value, so that everything is classified as a

match. A steep slope shows that the metric is predicting many instances correctly

with few misses. A steeper slope indicates a more accurate system. The other item of

importance in ROC analysis is the area under the curve (AUC). A large area suggests

that the metric gets more right with a higher threshold.

The strict and the Jaro metric both have slightly better slope than our com-

posite metric (labeled Heterogeneous in Figures 3.2 and 3.3), but our AUC is slightly

superior to that of Jaro and much larger than that of the strict metric. It is interesting

to note that the strict or binary discrimination metric did very well. This is due to

the fact that the experimental data has been cleansed and standardized. An increase

in misspellings and missing data would surely decrease its performance, and in turn

widen the gap between our composite metric and all other homogeneous metrics.
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For comparison purposes with future extensions, a single precision and recall

value is calculated with the acceptance threshold set to 0.7, as this gives good results.

Precision for a class C, is calculated as the ratio of the number of instances correctly

identified as C to the total number of instances classified. Recall is also a ratio, but

of the number of instances correctly classified to the number of instances of class C.

Precision and recall can be formally defined as:

P =
TP

TP + FP
∗ 100%

and

R =
TP

TP + FN
∗ 100%

where TP , FP , and FN refer to the number of true positive, the number of false

positive, and the number of false negative predictions, respectively. The final results

are shown in Table 3.2, where Distribution denotes the ratio of matches to mismatches

in the data and Generations denotes the number of ancestor (respectively, descendant)

generations used in the pedigree.

Table 3.2: Version 0.1 Results

Version 0.1
Distribution 1:2.8
Generations 4 up and 4 down
Precision 71.8%
Recall 94.6%

3.2 Remaining Challenges

Although the above results are encouraging, two main challenges remain.

1. The similarity metric is applied uniformly across the data, i.e., it is non-weighted,

and
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2. Machine learning algorithms often have difficultly predicting a minority class

when the data distribution is highly skewed.

Weights are needed to vary the impact an attribute carries. Version 0.1 treats each

attribute equally. Therefore each attribute contributes equally in determining the

class of the instance. This is also true across relatives. Thus, the closeness of the

date of birth for two individuals carries the same weight, or importance, as their great-

grandmother’s christening date. A more appropriate method would involve different

weights depending on the attribute as well on the relatives being measured.

Further, the system, not human intuition, should determine how much weight

ought to be given to each attribute. This allows new models to be created quickly

and for insight to be gained on the role of certain attributes in record linkage.

One of the inherent characteristics of record linkage data sets is their (some-

times extreme) skewness, arising from the fact that there are far more mismatches

than there are matches, i.e., the probability that two records taken at (almost) ran-

dom represent the same person is — in practice, at least — very small. Skewness is a

major challenge for any learning algorithm and several solutions have been proposed

(e.g., see [15]).

Our solution to both of these problems is addressed with a Filtered Structured

Neural Network (MAL4:6, version 1.0) and detailed in the following chapter.
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Chapter 4

Filtered Structured Neural Network

A structured neural network provides a way for the system to learn and adjust

weights based on attributes and relatives. Filtering or blocking methods are used to

reduce the effect of skewness. We begin with some additional definitions specific to

the context of pedigree-based record linkage.

4.1 Pedigree Definitions

The following definitions extend our earlier set to take into account pedigree.

They also form the basis of the design of our structured neural network.

We denote by R = {R0, R1, ..., Rm} the set of functions mapping individuals to

individuals that capture relevant family relationships (e.g., Father(x)). By construc-

tion, Ri(x) is a member of the pedigree belonging to individual x. By convention,

R0 is the identity function, i.e., R0(x) = x. For example, a person x may have the

relations {x, Father(x),Mother(x), Spouse(x), Father(Father(x))}.
An extended individual, EI, is an individual together with its relatives up to

uplimit generations and down to downlimit generations.

EI(x, uplimit, downlimit) = {R0(x), R1(x), ..Rp(x)} (4.1)

where the Ri refer to the relatives in the pedigree of x within uplimit and downlimit

generations.

Finally, we define the similarity measure between two extended individuals as

follows:
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simEI (EI(x, up, down), EI(y, up, down)) =
|EI(x,up,down)|∑

i=0

ωisimI(Ri(x), Ri(y)) (4.2)

where ωi is the weight associated with a relative, Ri, and Ri(x) and Ri(y) always refer

to the same relative in both pedigrees (e.g., mother). A neutal score (.5) is given if

either individual is missing from their respective pedigree.

4.2 Learning Weights with a Structured Neural Network

There are many algorithms and machine learning approaches which could be

used to determine weights. A neural network system was chosen as a foundation be-

cause of its success in other applications and its ability to fine tune weights. However,

there are two major drawbacks in using a standard neural network. The first is that

the training time can be very long. A fully connected neural network may contain

many hidden layers and nodes which all must be updated after each instance. The

second disadvantage to neural networks is that the network is not comprehensible. In

a semi-large network, the intricate interdependencies among nodes make it generally

impossible for a human to make sense of the weights.

We side-step the first disadvantage by assuming that the accuracy of the sys-

tem is more important to the success of MAL4:6 than is its training time. Further-

more, once trained, neural networks are very computationally efficient. We overcome

the second limitation by imposing structure to the neural network used. A structured

neural network is a neural network whose architecture or topology is constrained in

some way to bias its learning (e.g., see [16, 17]).

Consider Equation 4.3, an extension of Equations 2.1 and 4.2, where each

relative has a different weight (ωi) and each attribute is also weighted (αij) differently

for each relative.

sim(x, y) =
p∑

i=0

ωi
n∑

j=1

αijsimγj(γ
Ri(x)
j , γ

Ri(y)
j ) (4.3)

By designing a network that implements Equation 4.3, the model becomes
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human readable and facilitates knowledge extraction. Figure 4.1 gives a visual rep-

resentation of the corresponding network.

Figure 4.1: A Structured Neural Network

The links in the figure represent weights. Each attribute (e.g., date of birth)

has a link to the corresponding relative (e.g., mother). There is also a link between

each person in the network and the output nodes. This architecture allows the system

to treat each portion of the pedigree (including individual components) separately.

Two output nodes allows one set of weights (ω) to focus on predicting a match and

another set to focus on predicting a mismatch. This was found to give better results

than using a single output node in preliminary experiments. MAL4:6 uses the results

of the two output nodes to compute a ratio, which in turn serves to compute final

prediction of the pairs’ matching status.

It is clear that a structured neural network does not contain the same number
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of connections as a fully connected neural network. Our structured neural network

only contains one hidden layer and each element in the input layer is connected to

only one hidden node. The hidden nodes are fully connected to the output nodes.

Given i input nodes, h hidden nodes, and p output nodes, a fully connected neural

network will contain h(i + p) weights. By contrast a structured neural network of

this variety will only contain (h ∗ p) + i. Obviously, for large values of i the difference

can be very significant. By using all the attributes that exist for all members in a

pedigree, there are often hundreds of inputs into the network. The network becomes

more readable by reducing the number of weights and connections. While not critical

to the success of MAL4:6, the training time is also shortened by reducing the number

of updates (a factor of h at the input layer).

4.3 Filtering Neural Networks

Filtering, or blocking, is the process of eliminating as many instances of the

over-represented class as possible, thus reducing skewness and easing learning [18].

Blocking is typically applied to highly skewed sets as a preprocessing step. A similar

process to the one described in Section 2.2.3 is used here, with a few alterations: a

smaller set of rules, fewer attributes (usually name, gender, and date of birth), and

a relaxation of δ. The goal is to compare all of the instances against each other (N2

comparisons) quickly without eliminating any potential matching pairs. After the

blocking sequence is completed a new set of size n is formed, where ideally n << N .

A more thorough approach is performed on the n remaining instances (n2 operations).

MAL4:6 extends this idea by applying a type of filtering method on previously blocked

data.

In the spirit of [19], our filtering approach allows a kind of successive re-

proportioning of the data through delegation among structured neural networks. Ex-

treme instances, which contribute to the skewness are filtered out at each stage, as

follows.

Let T = M ∪m be the current training set, where M is the set of pairs from

the over-represented, or majority, class in T (i.e., either match or mismatch) and m
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the set of pairs from the other class. Define:

δM =
1

|M |
∑

p∈M

MATCH(p)

MISMATCH(p)
(4.4)

where MATCH(p) is the value of the output node MATCH when p is presented

to the network and MISMATCH(p) is the value of the output node MISMATCH.

Similarly,

δm =
1

|m|
∑
p∈m

MATCH(p)

MISMATCH(p)
(4.5)

Finally, the ratio for the pair p is defined:

r =
MATCH(p)

MISMATCH(p)
(4.6)

Figure 4.2 gives a description of the filtering process. An instance p is classified

as the majority class (as determined by T ) and filtered out (i.e., removed from the

training set) if r lies extreme to δM . When the majority class M is match, a value of

r above δM would be considered extreme. When M is mismatch, a value of r below

δM is considered extreme. A new training is built from the unfiltered instances. This

is to allow a new network to be built based on data with a more even distribution.

The process is repeated with the new structured neural network.

As instances from the majority class are removed, the distribution for both

the training and test set becomes more balanced (closer to 1:1) if the majority class

of the test set is the same as the majority class in the training set. This allows

future networks to focus their learning time on the remaining instances without the

influence from the outliers. The basic assumption is that instances with highly skewed

scores towards a classification will not benefit from additional learning. In fact, their

presence may hinder the ability of the network to correctly distinguish other instances.

The final epoch of the last filtering stage is similar to the earlier stages, except

a threshold of the minority class is also computed, δm. If the minority class is assumed

to be a match, instances with ratios above δm would be classified as a match and all
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remaining instances are classified as mismatches (the majority class of the training

set). Precision and recall values are computed based on the number of true/false

positive/negative obtained in all networks used.
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function Filtering(trainSet, testSet, numTP , numFP , numTN , numFN , epochsLeft)
Initialize a separate neural network
Using back propagation, train the network using instances in trainSet for all training cycles
δmismatch = 1

|mismatch|
∑
p∈m

MATCH(p)
MISMATCH(p)

δmatch = 1
|match|

∑
p∈M

MATCH(p)
MISMATCH(p)

Loop through each pair p, in trainSet and testSet

Compute rp = MATCH(p)
MISMATCH(p)

If |mismatch| > |match| in trainSet
If rp ≥ δmismatch AND p ∈ trainSet

Insert p into newTrainSet
If rp < δmismatch AND p ∈ testSet

Classify p as mismatch and increment numTP , numFP , numTN , numFN as appropiate
Else if epochsLeft = 0

If rp < δmatch AND p ∈ testSet
Classify p as mismatch and increment numTP , numFP , numTN , numFN as appropiate

Else if p ∈ testSet
Classify p as match and increment numTP , numFP , numTN , numFN as appropiate

Else
If rp ≤ δmatch AND p ∈ trainSet

Insert p into newTrainSet
If rp > δmatch AND p ∈ testSet

Classify p as match and increment numTP , numFP , numTN , numFN as appropiate
Else if epochsLeft = 0

If rp > δmismatch AND p ∈ testSet
Classify p as match and increment numTP , numFP , numTN , numFN as appropiate

Else if p ∈ testSet
Classify p as mismatch and increment numTP , numFP , numTN , numFN as appropiate

If p is not classifed AND p ∈ testSet
Insert p into newTestSet

If epochsLeft > 0
Call Filtering(newTrainSet, newTestSet, numTP , numFP ,
numTN , numFN , epochsLeft-1)

Figure 4.2: Filtering Algorithm
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Chapter 5

Experimental Results

A set of experiments are presented to measure the effectiveness of filtering

structured neural networks. The experiments are quantified in terms of precision and

recall.

5.1 Data

The data used in the experiments presented was provided by the Family and

Church History Department (FCHD) of The Church of Jesus Christ of Latter-day

Saints. The data consists of 17,350 pairs and their associated pedigrees. Due to legal

concerns over privacy, the vast majority of the data is from the 1500-1700’s.

The instances were randomly divided into 3 sets for experimental purposes.

The first two sets were used for development and training of MAL4:6. When devel-

opment was completed, MAL4:6 was tested using the third set. All results in this

chapter were obtained using this setup.

The data was initially pre-processed using a blocking algorithm (obvious non-

matches are eliminated) performed by the FCHD. Thus all remaining instances are

considered close. Each instance was classified by hand by a professional genealogist.

The final distribution between matches and non-matches is 1:2.8 (i.e., 2.8 mismatches

for each match).
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5.2 Verification of Filtering and Structured Neural Networks

For experimental purposes, we created data sets with distributions of 1:1 and

1:100. Each is an extreme case, 1:1 being most desirable and 1:100 being least desir-

able. We note at the onset that the data set with 1:100 distribution, because it was

generated from post-blocking data, provides a kind of worst-case scenario in terms of

performance since all pairs are close, whether they are matches or mismatches. In a

typical case, blocking is applied on skewed but more diverse data. The 1:1 data set

is also used to test how filtering affects a balanced data set.

Tables 5.1 and 5.2 report the results of using filtering versus no filtering. Table

5.1 shows how the distributions are affected at each filtering pass. Table 5.2 shows

the precision and recall values if the current network were the last network. The

non-filtering approach was trained with 1,000 epochs (or training cycles) and each

filtering pass consisted of 200 epochs.

Table 5.1: Distribution Shifts Under Filtering

Dis. Pass 1 Pass 2 Pass 3 Pass 4 Pass 5
1:100 1:79.7 1:28.9 1:3.18 – –
1:1 1:0.42 1:4.45 1:2.59 1:1.42 1:2.47

Table 5.2: Precision/Recall Evolution With Filtering

Dis. None Pass 1 Pass 2 Pass 3 Pass 4 Pass 5
1:100 25.0/33.3 70.0/33.3 44.4/85.7 44.4/85.7 – –
1:1 80.3/81.6 91.6/85.7 91.4/86.7 88.0/94.0 88.6/93.5 88.9/93.8

The 1:100 distribution went through only three passes, since after the third
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pass there were not enough match elements left in the training set for the system to

learn properly. It is interesting to note that the distribution becomes less balanced

between the fourth and fifth pass on the 1:1 distribution. This is because the training

set had a different majority class than the testing set at that stage. While the training

set became more balanced, the test set did not. This appears not to have impacted

the learner as precision and recall actually improve between these stages.

Table 5.2 shows an interesting property of precision and recall values. Typi-

cally one value increases and the other decreases. Either value can be easily increased

simply by decreasing the other value. For instance, if recall is desired, the threshold

can be set low as to declare match on more instances. This has the desired effect,

but it may decrease precision as more instances are misclassified. An increase in both

precision and recall demonstrates improved accuracy in the system.

Both distributions seem to benefit from filtering. The 1:100 shows an increase

of 19.4% in precision and over 50% in recall. After the first pass, both precision and

recall values are increased with the 1:1 distribution. Overall, between the second

pass and the last pass, recall increases by 8.1% with a small decrease of 2.7% in

precision. This performance may be acceptable depending on the user’s priorities.

Traditionally, recall is favored when dealing with highly skewed data and precision

becomes increasingly more important as the distribution is balanced.

Finally, Table 5.3 compares the results of the extension presented here with

the results of version 0.1 (see Chapter 3) of the system. Because of the sparseness of

the dataset, using descendants did not seem to offer much benefit and was therefore

excluded from experiments with Version 1.0.

Table 5.3: Version 0.1 vs Version 1.0

Version 0.1 Version 1.0
Distribution 1:2.8 1:2.8
Generations 4 up and 4 down 3 up
Precision 71.8% 85.2%
Recall 94.6% 90.9%
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Precision was increased by over 13.4%, while recall decreased by only 3.7%.

A decrease in recall can be expected, since at each stage of the filtering process

some pairs are misclassified and not introduced into the next stage. We believe that

this reduction of recall is offset by the significant increase in precision and overall

accuracy of the system. These results validate the approach of weights and filtering.

Additionally, they compare well with results generally reported in the record linkage

literature(e.g., see [20, 21, 22]).

5.3 Interpreting Structured Neural Networks

As mentioned earlier, a major benefit of structured neural networks is their

readability by a human. The weights from different networks can be compared against

each other. This allows researchers to identify attributes which may change in im-

portance. As an illustration, we compare the first networks from the 1:100 and 1:1

distributions of the experiments in Section 5. Attributes which have a high change in

weight values suggest that as the distribution changes, these attributes either increase

of decrease in importance. A small sample of attributes with the weights used in the

different networks are displayed in Table 5.4.

Table 5.4: Weights of Attributes/Relatives for Two Distributions

Attribute/Relative 1:1 Ratio 1:100 Ratio Difference
Self’s Christening Loc. -70.0 8.84 -78.84
Father’s Given Name -8.22 1.24 -9.46
Paternal Grandmother’s Marriage Loc. -0.159 -0.171 .012
Self’s Death Year 15.48 -9.95 25.43
Self’s Given Name 15.77 -8.15 23.92
Self (Relative) 9.66 -7.85 17.51
Mother (Relative) -5.94 -.35 -5.59

The knowledge contained in Table 5.4 allows researchers to focus on specific

attributes depending on the distribution of the sets. For instance, a genealogist who
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deals with highly skewed data may consider focusing on obtaining the correct chris-

tening location. On the other hand, as the distribution becomes more balanced, the

expert may want to rely more on other attributes at the individual’s level (e.g., death

year). Some attributes, such as the paternal grandmother’s marriage location, ap-

pear to play little role in both distributions. This knowledge can also be helpful to

researchers who use rule-based approaches. A researcher in this field can eliminate

time in obtaining or building rules not focusing attention on this seemingly unim-

portant attribute. The weights on relatives also vary depending on the distribution.

More emphasis is placed on the individual’s self node for more balanced distribu-

tions, while the mother’s node actually decreasing in importance. Reasons for these

fluctuations can be researched further and exploited by a human expert.

5.4 Utilizing Pedigree Data

One of the main motivations for MAL4:6 is the ability to use pedigree infor-

mation to improve record linkage, especially in the case of sparse individual data. As

a first attempt at measuring the improvement, we run MAL4:6 on the original data

set with and without pedigree data. When no pedigree data is used, the structured

neural network consists of only one hidden node, which represents the individual.

The results are shown in Table 5.5.

Table 5.5: Comparison of Accuracy With and Without Pedigree Data

No Pedigree Pedigree
Distribution 1:2.8 1:2.8
Generations Individual only 3 up
Precision (Match) 85.3% 85.2%
Recall (Match) 89.0% 90.9%
Precision (Non-Match) 95.9% 96.5%
Recall (Non-Match) 94.2% 94.1%

While recall is improved slightly, the accuracy measurements are rather close.
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This experiment alone does not seem to provide a strong argument for using pedigree

data. An explanation for this somewhat unexpected behavior can be found by closely

examining the training data.

5.4.1 Data Characteristics

The FCHD’s record linkage method relies on hand-crafted rules that focus

on individual data. With only a few exceptions, pedigree data is not used in these

rules, and was therefore likely not a priority in the FCHD’s data collection strategies.

Furthermore, as mentioned in Section 5.1, the majority of the data provided by the

FHCD is from the 1500-1700’s. Pedigree data becomes increasingly scarce as pedigrees

go further back in time.

Consequently, most of the instances in the datasets provided by the FCHD

contain large amounts of data at the individual level, but very little data at the

pedigree level. In fact, out of the 17,350 pairs, only 1005 (8.9%) have at least one

corresponding relative, meaning they shared at least one relative at the same pedigree

position.

Missing even a single relative can have a major impact on a pedigree-based

system such as MAL4:6. A missing father means that all of his ancestors are also

missing. It is difficult for neural networks to learn and adjust values appropriately

when the training set is sparse. This is due in part to the way neural networks adjust

the weights and the necessary choice of input values for missing data. In an attempt

to remain unbiased in the context of inputs lying in [0, 1], a value of 0.5 is inserted for

each missing value in our implementation. Weights are adjusted after each iteration,

even if the attribute is missing from either individual in p. Hence, weights on missing

value links are also modified.

When no pedigree data is used, the network contains 40 input nodes (i.e., 40

attributes). On average, 26.6% of these nodes have data associated with them. In

contrast, when three generations upward are used in the experiments, a total of 880

inputs exist. Of these, on average only 1.6% have data associated with them. The

system has difficultly learning because there are an overwhelming number of network
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nodes containing missing data. Hence, the observed improvement is only marginal in

this case. However, the system gains in generality since it needs not be re-designed

for each set of possible attributes.

5.4.2 Situations Targeted by MAL4:6

Genealogy work is typically done based on a pedigree tree. New individuals

are discovered through a process of finding a known person’s relative. For example,

children, parents, and/or spouses are discovered for a person already in the pedigree.

Little information is known about this new individual upon discovery. Generally a

name and a gender can be inferred. Standard record linkage approaches may have

difficulty in this environment, as they may require further attributes, such as dates

and locations before accurate linkage could take place. On the other hand, MAL4:6

is designed specifically for these types of situations. This is demonstrated in the

following experiments.

In a first experiment, we exploit the data available from the FCHD by re-

stricting attention to instances that have a lot of missing data at the individual level

but a low amount of missing data at the pedigree level. As expected, only a very

small number of instances fit this criterion (≈ 60 instances). These instances used the

structured neural network but no filtering was done due to the small number. The

results are displayed in Table 5.6.

Table 5.6: Instances with Rich Pedigrees

No Pedigree Pedigree
Distribution 1:2.1 1:2.1
Generations Individual only 3 up
Precision (Match) 73.7% 78.9%
Recall (Match) 100.0% 100.0%
Precision (Non-Match) 100.0% 100.0%
Recall (Non-Match) 66.7% 71.4%
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While no claims should be made with such a small data set, it is promising

that significant improvements are observed. To further test this effect, we conducted

the following experiment.

We consider all of the instances provided by the FCHD. However, we modify

them systematically to reduce information at the individual’s level, whilst retaining

pedigree information. All attributes on the individual’s level are removed except for

first name, last name, and gender. All of the available information about the other

members of the pedigree remains intact. This scenario might illustrate the situation

of discovering a new child for a known individual. No information about the child is

known except for the name, gender, and placement in the pedigree of the new person.

Filtering is applied. Precision and recall values were computed after five fil-

tering passes. They are reported in Table 5.7.

Table 5.7: Little Individual Information

No Pedigree Pedigree
Distribution 1:2.8 1:2.8
Generations Individual only 3 up
Precision (Match) 58.0% 64.0%
Recall (Match) 95.0% 95.3%
Precision (Non-Match) 97.5% 97.9%
Recall (Non-Match) 74.7% 80.0%

The precision is increased by 6.0%, when additional pedigree information is

used. In addition, no decrease in recall is experienced by the system, suggesting

that using pedigree data in this situation is indeed beneficial. Larger, more realistic

datasets with high amounts of pedigree information should confirm these results.

5.5 Comparison with FCHD Standard

We conclude this chapter with a partial comparison with the current FCHD

approach to record linkage. The FCHD results we were provided are based on the
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combination of a system of elaborate human-crafted rules (as discussed in 2.2.3) with

a support vector machine. We note at the onset that, concurrent and independent of

our work, the FCHD has been increasingly incorporating pedigree information in its

rules.

With the current, individual-oriented datasets, the FCHD’s best reported re-

sults are 96.8% precision for 96.8% recall. This is clearly, and not surprisingly so, far

superior to MAL4:6 results under the same conditions. As mentioned earlier, this may

be due in part to the human expertise embedded in the rules and their subsequent

fine-tuning to the data by hand.

A more meaningful comparison here would involve running the FCHD’s ap-

proach and MAL4:6 side-by-side on some of MAL4:6’s targeted situations. Unfortu-

nately, it has proven difficult for the FCHD to apply its approach to the experiments

designed in section 5.4.2. Rather than not try at all, however, we resorted to design-

ing experiments as reasonable as possible to allow some level of comparison between

MAL4:6 and the FCHD’s approach. These results are to be taken with caution since

neither corresponds to the area of expertise of either system.

Both experiments focus on the situation where little information is known

about the individual being linked. In the first experiment, only the attributes corre-

sponding to the name components for an individual are used as inputs into the neural

networks. In the second experiment, we extend this to including the name compo-

nents of relatives within one generation upward (i.e., mother and father). Filtering

was further turned off in MAL4:6. While this does negatively impact the results, it

does allow the construction of precision/recall curves. Figures 5.1 and 5.2 show the

results.

Precision/recall graphs make it possible to visualize the trade-off between the

two quantities as the similarity threshold varies. Figure 5.1 shows that with only

the name, the FCHD’s approach is able to achieve rather high performance (74%

precision with 94.5% recall). This further highlights the fact that the available data

is very rich in names, which, in turn, seem to be a key component in the rule-based

approach. MAL4:6 achieves 60% precision at the same recall point. The FCHD’s
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Figure 5.1: Only the Individual’s Name Used
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Figure 5.2: Individual and Near Relatives’ Name Used
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approach benefits more than MAL4:6 does when adding the names of close relatives.

Figure 5.2 shows that at 94.5% recall point, the FCHD has precision up to 84% while

MAL4:6 reaches only 65%. Although likely an artifact of the rules used, this may also

be an indication that either MAL4:6’s name similarity metric could be improved or

that using raw similarity scores for names may be more detrimental than expected.

As a final note, we remark that, as an approach, MAL4:6 does offer advantages

in terms of versatility and generality. MAL4:6 is completely automatic. It does not

rely on human experts to alter (modify, add or delete) rules or adjust inputs into the

network. This may become particularly relevant as new datasets are encountered.

Datasets with genealogies from different time periods and/or different locations are

likely to exhibit different characteristics than those in the FCHD’s current dataset.

For instance, date of birth is a common attribute that exists in the tested datasets.

However, it may not be common in pedigrees from the South Pacific. Other attributes,

such as tribe status may be more important to this culture and thus recorded in the

pedigree. A rule-based system would need to make changes in its rules to reflect these

characteristics. Other rules besides date of birth would need to be modified as well to

compensate for the missing values. Additionally, new attributes would result in new

rules being created, tested and modified. This process could be very time consuming

and may need to be repeated for several time periods and locations. MAL4:6 would

only need minor alterations to the network structure (if new attributes are used) or

no transformations at all. Its learning mechanism would automatically take care of

the various degrees of importance (i.e., weights) of attributes. We believe that this

generality is desirable and will pay off in the long run.
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Chapter 6

Conclusion

Current record linkage methods focus on individual data being richly pop-

ulated. This is often the case when dealing with data which has been carefully

examined and researched by genealogy experts for use in research. There are, how-

ever, circumstances when a researcher may want to link an individual even if little

is known about them, but more is known about their genealogy. By linking to an

already known entity, a researcher is able to glean new information and apply it to

the recently discovered individual. Table 5.7 does indeed suggest that by applying

the full pedigree, precision may be increased without losing performance in recall.

6.1 Contributions

MAL4:6 offers insight into how pedigree information can be used in the record

linkage process. Often ignored, pedigree information is valuable and may become

essential as individuals conduct merging algorithms on the fly over heterogeneous

sources of data. MAL4:6 also demonstrates how knowledge from a structured neural

network can be compared and examined with other structured neural networks of

the same variety. This can provide insight into areas where further research might

be necessary. Weight fluctuations between networks can give an indication of the

importance of an attribute or a relative.

6.2 Future Work

Further experiments are needed to more fully validate MAL4:6’s ability to

improve record linkage through pedigree information. Obtaining records with high

37



amounts of pedigree information is therefore an area of future work. These records

will be created by additional research or be made available through more current

records. Improved results can hopefully be obtained as pedigrees become richer in

information.

Dealing with missing data is a problem whenever machine learning algorithms

are used. Decisions are learned without a full knowledge of the space. A possible

solution is to combine attributes at the input layer. This will lessen the amount

of missing information. On the other hand, this prohibits the system from learning

weights for a specific attribute. Instead, a weight would be learned for a group of

attributes. Groupings could be biased to reduce the effects. Birth information (place

and dates) which now constitute seven distinct fields could be aggregated into one

field, for example.

A recent grant provided by Brigham Young University to the Data Mining Lab

will also allow researchers to explore alternative record linkage techniques. One such

alternative is Bayesian networks. Bayesian networks may lend themselves well to these

problems because they allow for measured probabilities to be applied. Additionally,

confidence in a classification can be assigned which may prove useful for a human

researcher.
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