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Abstract 
 

A new methodology based on a conservation principle in the orientation space is 
developed to simulate the texture evolution in a cubic-orthotropic polycrystalline system. 
A least squares error method was used to improve the accuracy of the simulation results 
obtained from the texture evolution function. The model is applied to uniaxial tension, 
compression and rolling for a large deformation of more than 50% using a single 
evolution parameter. The validity and application range of this new model are discussed 
by simulating and predicting texture evolution during different loading conditions. The 
new methodology provides a family of texture evolution paths and streamlines which 
empowers the materials designer to optimize the desired microstructure. 
 
1. Introduction 
 

A major goal for materials design is the selection and optimization of 
microstructures for a specified set of properties and mechanical constraints. To achieve 
this goal, it is necessary to choose the right and most appropriate processing path. The 
solution may not be unique and the optimum path may depend on a number of parameters 
including cost and reliability. Traditional design methodologies attempt to relate 
properties to off-the-shelf materials while the range of microstructures (texture, grain 
size, deformation history, etc.) for each material of choice is usually ignored. Such 
variation in the microstructure of a specific material provides a large range of properties 
that may meet specific design constraints not readily available in the conventional off-
the-shelf materials design. 

To make a direct linkage to microstructures, Adams et al. (2001, 2004) proposed a 
novel methodology, known as microstructure sensitive design (MSD), which shifted the 
current paradigm for designer materials. The new methodology, as was introduced 



originally, is concentrated on texture (orientation distribution function) in polycrystalline 
materials as a basic variable for design. The other microstructure attributes such as grain 
size, grain boundary distribution, morphology, second phase particles and precipitates 
may be included in the framework using two and higher order statistical distribution 
functions (Garmestani and Lin, 2000, 2001; Lin et al., 1998, 2000; Jefferson et al., 2004). 
The linkage to property enclosure may require the correct form of the constitutive 
relations based on better understanding of the physics and the underlying deformation 
mechanisms. The representation of microstructure in the form of texture may assume the 
most basic form and by itself can cover anywhere from a single crystal (as a limiting 
form of the distribution function) to bi-crystals and random polycrystals. Appreciable 
anisotropic properties are usually possessed by single crystals which are expensive to 
obtain. Polycrystalline materials are usually less expensive to produce and more readily 
available. The incentive to cut the cost by utilizing the state of anisotropy to maximize 
the potential application of polycrystalline material prompts material scientists to seek the 
means to achieve the optimized texture by thermomechanical processing. In 
homogeneous polycrystalline materials texture determines the anisotropy in mechanical, 
thermal, magnetic and electrical properties. MSD in its present form is an approach to 
balance the requirements of several different properties by optimizing texture (Adams et 
al., 2001, 2004; Kalidindi et al., 2004). To achieve this goal, a quantitative description of 
material microstructure as a set of texture coefficients, which is associated with 
properties, is introduced as a variable in design. 

Texture is commonly represented as a Fourier series of generalized spherical 
harmonics weighted by appropriate texture coefficients (Bunge, 1965). Using the set of 
texture coefficients as a descriptor, microstructures can be represented as points in a 
multidimensional space with coordinates as texture coefficients (Adams et al., 2001, 
2004). The dimension depends on the number of the texture coefficients used. Each point 
in this Fourier space stands for a unique texture, associated with corresponding 
properties. Texture coefficients are important in determining the properties of 
polycrystalline materials. The properties of polycrystalline materials can be represented 
as a summation of the product of property coefficients and spherical harmonics: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
evolution is defined as a continuous line in the texture hull to represent the texture 
evolution. Texture is conventionally measured using X-ray diffraction as a set of pole 
figures. The complete representation of texture requires a number of pole figures 
depending on the crystal group and sample symmetry. For cubic-orthotropic case, three 
pole figures are usually needed to fully characterize texture. Using ODF plots has some 



other limitations. They distort the distribution geometrically in Euler space. Random 
distribution looks like textured in the ODF plots. Also there is a multiplicity in ODF 
plots, especially for high symmetry materials. Although texture can be represented in a 
number of ways, the spectral representation can introduce a new geometrical 
representation in the texture hull such that every point represents one specific 
microstructure (texture). 

Modeling texture evolution is an important component of MSD. To modify the 
properties through thermomechanical deformation requires correct representation of the 
evolution of microstructures. A conservation principle in the orientation space proposed 
by Clement and Coulomb (1979, 1982) was used in this work to model the texture 
evolution. This principle refers to an infinitesimal volume element in the orientation 
(Euler) space during processing. Based on Clement�s formalism and the continuity 
equation, Bunge and Esling (1984) studied the flow field of single orientations of face 
centered cubic (fcc) metals using a crystal plasticity formulation based on slip activity on 
the {1 1 1} < 1 1 0 > slip system. In a later work (Klein and Bunge, 1991), a numerical 
integration methodology was used to obtain a relationship between the texture 
coefficients and the deformation step. In a recent study by Li and Garmestani (2003a,b) 
an alternate approach using polycrystalline texture representation rather than single 
crystal orientation description was used to describe texture evolution. This approach 
established a linear relationship between the rate of change of the texture coefficients and 
the texture coefficients. Further progress is made in the present study for a direct 
relationship between texture coefficients and deformation parameter. A processing path 
function is proposed to describe the evolution of texture coefficients in the form of 
processing parameters and initial texture coefficients. To examine the accuracy and range 
of applicability for this approach, a modified Taylor model proposed by Kalidindi et al. 
(1992a, 1992b) was used for comparison. In Taylor model, it is assumed that all the 
individual grains in polycrystalline materials undergo the same deformation gradient as 
the macroscopic one. This simplification satisfies the local compatibility, but often 
violates equilibrium. Although the Taylor model ignores many complexities embedding 
in mechanical deformation, it provides a fairly accurate approximate solution for the 
texture evolution of single phase, highly symmetric lattice structures such as fcc 
polycrystals during large plastic deformation (Kalidindi et al., 1992a, 1992b; Garmestani 
et al., 2002). 
 
2. Evolution of texture coefficient during plastic deformation 
 

Using the conservation principle in the orientation space, a set of relationships for 
the evolution of texture coefficients can be derived. A formulation is presented here for 
the streamlines as an analytical form among the texture coefficients for any specific 
thermomechanical process. In the formulation presented here, η is used as an appropriate 
metric of the process. For example, in the case of uniaxial tension, η represents the 
drawing strain and in the case of compression, η represents the compression ratio. 

Texture descriptor used in this study is a set of   
coefficients that changes as a function of η.  If  f(g, η) is used to represent texture as a 
function of orientation g and processing parameter η, texture at any η can be expressed as 

a series of generalized spherical harmonic functions in which are the weights 
(coefficients) of these harmonics, as shown in the following equation: 
 



 
In Clement�s work (1982), the texture evolution is regarded as a fluid flow in 
orientation space. Three Eulerian angles compose the orthogonal coordinates of this 

 
the increase of the quantity of matter in an element of volume dv and the material 
moving across the surface S should be zero. The continuity equation can then be 
represented as: 

 



 
 
The coefficients represented by the sixth rank tensor A, can be rearranged as the elements 
of a matrix and will be called ��texture evolution matrix�� in this work. In this 
study, Eq. (12) was used to simulate the texture evolution of fcc materials with random 
texture to generate a process path. If the number of useful texture coefficients 

 
distribution, precipitates, dislocation density, second phase particles which can affect the 
evolution. A Taylor type crystal plasticity model is used in this paper to calculate the 
sixth order ��A��. The application of Taylor may introduce a limitation in the range of 
applications but within the limits of Taylor, many of these microstructural parameters can 
be incorporated. As a first exercise, this paper concentrates on Taylor and produces 
enough results which will show that such continuity relations and the consequent 
streamlines (derived in this paper) are valid for a large range of deformation processes. 
The incorporation of the other alternative (crystal plasticity homogenization) 
methodologies can be easily incorporated at a later time. 



Texture is defined as ��preferred orientation distribution�� and is a macroscopic 
and average representation of the microstructure. A formulation based on texture does not 
take into account grain structure and grain boundary character and also the grain to grain 
interaction. Texture as an average representation is only a one point distribution function. 
Higher order statistics can incorporate the additional details of the microstructure 
(Garmestani et al., 2000, 2001; Lin et al., 1998, 2000; Jefferson et al., 2004; Adams et al., 
1989; Torquato and Stell, 1985) and can be used for the evolution of the microstructure. 
It is clear that the evolution of texture is a function of the details and physics of the 
microstructure and the underlying deformation mechanism. At a first glance it seems that 
such details are neglected in the formulation presented in the paper. All these details are 
however embedded in the sixth order tensor ��A��. It sounds very optimistic to expect that 
such a parameter can incorporate all these effects but the main goal of this paper is to 
investigate whether such a claim is valid and to what degree. It will be shown that the 
evolution can be taken care of using conservation principle for more than 50% 
deformation. 
 
3. Simulation result of texture coefficient evolution 
 

 
simulate the texture evolution based on different assumptions. Such methods include the 
self-consistent model (Lopes et al., 2003), the finite element analysis method  
(Nakamachi et al., 2000; Raabe and Roters, 2003; Kalidindi, 2001; Demirel et al., 2003; 
Houtte et al., 2002) and the Constrained Hybrid model (Parks and Ahzi, 1990; Ahzi et al., 
1994). This work is neither to verify the correctness of the Taylor model, nor to develop a 
new model in terms of deformation mechanisms. Factors that will be considered in 
physical models, such as the constitutive relations in the slip systems, strain hardening 
and strain rate, are not considered at this stage. Prediction from Taylor model simulation 
and not experimental data are used since the Taylor model gives accurate estimates at 
different strains. The goal of our study is to propose an analytical form for the texture 
evolution and check its validity, limitations and applicability. 

 



 

 
 
 
 
 



 
are calculated for five different strains and the four simultaneous sets of equations 
are solved for the A coefficients. In the second method, texture data at a large number 
of strains are used and a least squares error method is used to calculate the A 
coefficients. 
 
3.1. Determined systems approach 
 

 
 
 
 



 

 
 
 
 
 
 



 
 
the available experimental data. Fully utilizing the strain range of the experimental data 
will increase the accuracy of this model to predict the texture evolution behavior outside 
of the experimental data. 
 
3.2. Least square errors method 
 

To improve the model�s texture evolution predictions, the full range of the 
experimental data in the initial strain set is utilized. This was achieved by using 
the least squares error method to obtain the texture evolution coefficients. 
If M + 1 is the dimension of the initial strain set, there are M simultaneous sets 

 
used to recalculate the evolution of texture coefficients during the deformation from 20% 
to 50%. To illustrate the advantage of the least squares error method, the results are also 
shown in Fig. 2. It can be seen that the least squares error method describes the behavior 
better than using a strain step of 5%. The first result has a small initial strain set range 
(from 30% to 40%) while the second result has a relatively large initial strain set range 
(from 25% to 45%). The agreement with the Taylor prediction of the simulated results 
using least squares method is almost the same as using the strain step of 5% in the strain 



range of 25% to 45%. This range is included in the initial strain set. When extrapolated 
outside of the initial strain range, the recalculated texture coefficients evolution curves 
using the least squares error method are closer to the curves from the Taylor prediction 
than any other simulated curves. The texture evolution coefficients obtained using least 
squares method give a more accurate description of the texture evolution behavior during 
mechanical deformation. 

 

 
mined system (least square errors method) are all smaller than the mean errors of the 
corresponding texture coefficients using the determined system method. The simulation 
from strain step of 5% is the next most accurate followed by the 2% strain step. For a 
strain step of 1%, the mean error becomes very large. This large error occurs because the 
error is averaged in a strain range which is 10 times the range of its initial strain set. The 
analysis of the mean error corresponds to the analysis of simulation behavior of the 
previous texture evolution function. 
 
3.3. Influence of truncation limit for texture coefficients 
 

 
 
 
 
 
 
 
 
 
 
 



 
 
comparison. Using a higher truncation limit (Lmax = 8), the predictions for the texture 
coefficients are closer to Taylor�s results. 

The texture coefficients for the initial microstructure has been selected near the 
origin of the texture hull, which represents a random state. The spherical harmonics 
method is efficient in representing the random or weak textured microstructures. This 
efficiency may have contributed to the small differences using the different truncation 
limits in Fig. 4. The results may be different if the initial microstructure is selected as a 
highly textured material. A full study of these other factor will be presented in a later 
work. 
 
3.4. Application of the texture evolution model for other processing paths 
 

This model has shown a remarkable success in representing texture evolution in 
uniaxial tension. It can also be applied to other processing paths including uniaxial 
compression test. From the same random texture, the evolution of the texture coefficients 
is illustrated in Fig. 5 for compression. 

 
 
 
 
 
 
 
 
 



 
 

 



 
 

 
 
deviation from the Taylor prediction. In the strain range from 0% to 30%, the mean error 
using least squares error method is only one-fifth to one-tenth of that using strain step dη 
of 5%. 

Another state of stress used for the deformation process is rolling. From the same 
initial random texture, the evolution of the texture coefficients during rolling for a strain 
range between 0% and 30% is shown in Fig. 7. The resultant simulated curves for the 
evolution of the texture coefficients are also illustrated in Fig. 7. The results show that the 
texture evolution model also fits the Taylor prediction in rolling and the simulation 
results from the least squares error method are in better agreement than that using strain 
step dη of 5%. The mean errors of these two simulation methods for the strain range from 
0% to 30% shown in Fig. 8 gives the same trend. 
 



Predictive range of the texture evolution model is not very impressive when it is 
applied to the Taylor simulation. It works well in the range close to the initial strain set. If 
the texture evolution matrix is applied to highly deformed microstructures or those quite 
different from the initial texture, the error is increased. This deviation may be attributed 
to the limitation of the Taylor model which is based on the assumption of homogeneous 
deformation rate throughout the material. This limitation leads to the limited predictive 
range of the conservation principle. 

The limitation in using the simulation from Taylor is also revealed in the 
restriction of the predictive range of the texture evolution matrix A for other points in the 
texture hull. The ideal texture evolution matrix A should work for any microstructure 
with different textures as long as the same processing path is used. It is clear from this 
investigation that predictive range of A is large but limited. For example, A for uniaxial 
tension obtained from the initial strain set of 30%, 31%,. . .,40% using the least squares 
error method is applied to a randomly textured sample which was 
 

 
 
 
 
 
 
 



 
 

 
 
rolled to 5%. As shown in Fig. 9, the deviation of the present model for the texture 
evolution is very large when compared to Taylor�s model. More work is needed to 
improve the predictive capability of the texture evolution matrix. Increasing the 
truncation limit for the texture coefficients may improve the error as mentioned in the 
earlier section. 
 
 
 
 
 
 
 
 



 
 
4. Texture evolution path in texture hull 
 

 



 
 
cubic-orthotropic system from Taylor�s simulation and the texture evolution path model. 
The results describe the texture evolution from a strain of 20% to a strain of 50% 
during uniaxial tension. Using the model proposed in this paper, the evolution of 
texture coefficients as a function of the deformation is obtained. This model describes 
a simple but effective methodology to connect the evolution of microstructure and 
processing. The solid texture evolution path from the Taylor prediction is 
indistinguishable from the red dashed texture evolution path lines simulated 
using least squares error method. The dashed texture evolution path line denoted 
by symbol  represents the simulation result by a strain step of 5%. It deviates a little 
from the texture evolution path as constructed from the Taylor prediction. The texture 
evolution path lines simulated by a strain step of 2% shows a larger deviation. The 
application of texture evolution path in MSD becomes very convenient and more 
understandable when it is constructed in the texture hull. Illustrated in Fig. 11, the 
texture hull is a compact convex subspace. All textures (representing microstructures) 
can only exist inside this convex subspace such that no point can exist outside 



 
 
of 50% during uniaxial tension. The texture evolution matrix was obtained from the least 
squares error method for this simulation. The starting point is very close to origin of the 
coordinate system because the first three texture coefficients of the original random state 
are all zero. Using MSD, properties closure (Adams et al., 2001, 2004; Kalidindi et al., 
2004) can be obtained by the intersection of several hyperplanes and may result in a 
subspace in the texture hull. Similarly, properties along the texture evolution path can be 
obtained by simple arithmetic averages of these microstructure components using 
Taylor�s model as upper bound and Sach�s model as lower bound. Taylor�s model 
assumes a uniform deformation gradient for all grains in the polycrystalline materials and 
identical to the macroscopic deformation gradient. Sachs model assumes uniform stress 
throughout all the grains. Constrained-hybrid model adds the assumption of zero 
extension along some specific crystal directions (Parks and Ahzi, 1990). These models all 
require a clear understanding of the underlying deformation mechanism. They are applied 
in different materials and different deformation stages. The model proposed here in this 
study can simulate the texture evolution from the experimental measurement of textures 
without fully understanding the underlying deformation mechanisms. The model can 
clearly work best for interpolation as long as the texture evolution matrix (A) can be 
determined from the experimental data. Extrapolation seems to give large deviation from 



the expected results when textures are predicted farther away from the initial strain set. 
Improving the deformation mechanisms may add some constraints and improve the 
predictive capability. 

In this work only uniaxial tension, compression and rolling were studied. The 
same methodology can be implemented in obtaining texture evolution functions for other 
processing methods, such as biaxial tension, processing in magnetic field and so on. With 
the broadened knowledge, the processing path from one initial microstructure to a desired 
microstructure can be achieved by a combination of these texture evolution path 
functions. 
 
5. Streamlines for the evolution of texture coefficients 
 

The texture evolution function, as described earlier, is a function of the processing 
parameter h. This may impose a restriction on the use of the present model to a variety of 
optimization processes. In the spirit of Microstructure Sensitive Design, it is desirable to 
get the family of all texture evolution path functions for a specific processing path. This 
means that independent of the initial texture (microstructure), a materials designer may 
wish to explore all the different texture evolution paths to examine the family of 
microstructures that may be achieved by a single process (rolling, etc.). In this section, the 
streamline functions will be derived from the texture evolution functions. If the evolution 
of texture coefficients for polycrystalline materials in the texture hull is considered as a 
fluid flow, streamlines can then describe the texture evolution independent of the path 
parameter, h. In the following, the streamline for the evolution of the texture 

 
 
 
 



 
 

 
The continuity relations in the Euler space can reduce a large set of constitutive 

relations and all its details into a sixth order tensor ��A�� for relatively large strains. Such 
a reduction and its consequent set of streamlines can make the optimization for the 
texture evolution path real simple and save the designer a large amount of time. The 



following example is provided to explain the main utility of the texture evolution path 
parameter. 

Texture can be represented by a set of texture coefficients as in Eq. (3). The first 
two nonzero texture coefficients are used in a two dimensional plot as in Fig. 13(a). 

An off-the-shelf material (manufactured by casting and rolling) maybe 
represented by point A in this two-dimensional plot. The material represented by point A, 
however, may not be the desired material and we may want to process a desired 
microstructure represented by point ��B��. The question that may be raised is how the 
material represented by A can be processed to become a material represented by B. Based 
on the present plasticity formulations we may have to depend on a large data base and the 
correct answer may lie in a large number of crystal plasticity set of simulations. The 
present paper provides a time saving and robust methodology to get to the material B 
with texture represented by Eq. (3) by selecting one or a multiple number of paths. If the 
family of all possible deformations paths are considered for both A and B (as in Fig. 
13(a)) the solution may be a combination of texture evolution paths connecting the two 
points (Fig. 13(b)). The solution is obviously not unique but using the streamlines 
formulation developed in the present paper we can choose a path which can best fit the 
designers objective. 



 
 
Texture is considered a macroscopic manifestation of the microstructure crystal grain 
orientation through the continuity relations in the Euler space. The results show that the 
continuity relations work in a large strain range which is a very important factor proving 
the accuracy of this principle. Remember that we use the continuity relations in the 
materials coordinate as part of the field equations in many of the formulations without 
 
 
 
 
 



 
 
 
regards to the underlying mechanisms for the deformation processes. It is clear that the 
continuity relations in the materials coordinate may also reach its limits and can only 
apply when the material can be assumed a continuous medium throughout the 
deformation process. The continuity relations in the orientation space can also reach its 
limits of usefulness when there is a discontinuity in the orientation space. This will occur 
during recrystallization and may occur in a number of other situations. 
 
 
 
 



 
6. Conclusion and perspectives 
 
A conservation principle for texture evolution has been utilized to get a texture evolution 
path function. The solution also provides streamlines during any mechanical deformation 
process (rolling forging, drawing, etc.). Using texture coefficients as a descriptor, 
microstructures can be represented as points in the multidimensional space whose axes 
are these texture coefficients. Texture evolution path, a trace of texture coefficients 
during deformation history, is used to represent the microstructure evolution in this 
multidimensional space. 

The texture evolution matrix A is a critical parameter in the processing path 
function developed here. It is calculated from texture coefficients at different levels of 
deformation defined as the initial strain set. The simulation works well as a predictive 
tool if the desired microstructure (texture) is calculated for deformations in the range of 
the initial strain set. Increasing the range of the initial strain set will improve the 
performance of simulated result in a larger strain range. If more data are available to 
calculate the texture evolution matrix, utilization of the least squares error method will 
increase the accuracy of simulated texture evolution path. 

Presenting the results of the texture evolution path in the texture hull shows how 
the microstructure evolves with the deformation parameter. Streamlines obtained from 
the texture evolution path functions give a representation of the texture evolution 
independent of the deformation parameter. Streamlines can simplify the optimization of 
the processing path and provide the mechanical designers with an important tool in 
Microstructure Sensitive Design. 
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