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Abstract: Biofilm development in drinking water distribution systems (DWDSs) is a real problem 

negatively affecting service and water quality, and, thus, the satisfaction of the final consumers. 
It is the direct and indirect responsible for many of the DWDSs’ problems, and a lot of resources 
are invested to mitigate its effects. Addressing this problem has been a concern of researchers 
and DWDS managers for years. However, it is only recently that both technology and data have 
been available to support the new approach presented in this work. Our proposal is based on 
the combination of various existing data sets from similar studies to conduct a meta-data 
analysis of biofilm development. The approach lies on an intensive data pre-processing. Having 
a complete and extensive database on biofilm development in DWDSs allows applying Machine 
Learning techniques to develop a practical model. It is based on a multidisciplinary research 
vision to formulate effective biofilm control strategies. This work presents the basis for the 
development of a useful decision-making tool to assist in DWDS management. The negative 
effects on service and consumers caused by biofilm would be mitigated maintaining it at the 
lowest level. The performance of the suggested models is tested with data coming from two 
different case-studies: the DWDSs of the city of Thessaloniki (Greece) and the Pennine Water 
Group experimental facility (UK). The results obtained validate this methodology as an excellent 
approach to studying biofilm development in DWDSs. 

 
Keywords: biofilm; drinking water distribution system; pre-processing; random forests; regression 
trees.  
 
 
1 INTRODUCTION 

 
The most important factor in planning and operating a water distribution system is satisfying consumer 
demand. This means continually providing users with quality water in adequate volumes at reasonable 
pressure, and so ensuring a reliable water distribution system. While there is a plethora of different 
approaches for analysing and predicting water demand [Herrera et al., 2010; Brentan et al., 2016], 
studies on the water quality supplied to the final customer are not so frequent. In this regard, most of 
the reported problems by end-users to water utilities are aesthetic deterioration of water (resulting in 
colour, odour and taste degradation) [Vreeburg and Boxall, 2007], while operational problems caused 
by pipe biocorrosion are also of concern [Lopes et al., 2009]. Both problems usually have a common 
origin in communities of microorganisms growing within the inner pipe walls in contact with water, also 
known as biofilm. Biofilm also reduces flow speed and pipe capacity of circulation [Cowle et al., 2014]. 
Most importantly, biofilm formation can be involved in health issues deriving from both its associated 
disinfectant decay and its role as a pathogen shelter [Adhikari et al., 2012; Ashbolt 2015]. 
 
This paper proposes a multidisciplinary approach aiming at formulating effective biofilm control 
strategies. Numerous studies have been carried out in relation to the influence that pipes and water 
flow characteristics have on biofilm development. However, the considered features affecting biofilm 
are studied individually or at most in pairs [Shaw et al., 2014; Wu et al., 2015]. One of the main 
novelties introduced in this work is the investigation of a larger number of conditions that ease biofilm 
development in pipes, since it is currently accepted that biofilm formation depends on complex 
interactions among such aspects as water quality, infrastructure, and operational factors associated 
with distribution systems. Obtaining biofilm samples, that are representative of the spatial, temporal 
and physicochemical variation of real drinking water distribution systems (DWDSs), is highly 
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challenging, since they are live, functioning systems comprised of buried infrastructure [Fish et al., 
2015]. Consequently, much of the current understanding about DWDS biofilms is based upon from 
pilot or bench-top scale experimental models of drinking water systems [Fish et al., 2015], under 
simplified conditions. To cope with these drawbacks, this work proposes using both data collected in a 
thoroughgoing, state-of-the-art review, and data obtained in two case studies. 
 
The first source of data used in this work is derived from a combination of information found in 
literature and data directly provided by other researchers thanks to their collaboration in this proposal. 
All the information is pre-processed and homogenised through suitable approaches to outlier 
detection, selection of variables, and handling missing data. An Exploratory Data Analysis is done 
over the now clean and complete synthetic database. This provides useful insights to carry out further 
statistical analysis to understand biofilm formation by Machine Learning (ML) methods. In this case, 
Regression Trees and Random Forest algorithms have been applied. This methodology is validated 
when observing the good results obtained when testing the performance of the models with data from 
two different case-studies: the DWDS of the city of Thessaloniki (Greece) and the Pennine Water 
Group experimental facility (UK).  
 
 
2 DATA SCIENCE BASED APPROACH 
 
When studying biofilm development in DWDSs, getting field data is an arduous task which requires 
high workload and time, while developing experimental laboratory studies is still very complex and 
highly qualified staff and equipment are needed. In both cases, time tends to be too long and the 
amount of data obtained scarce. These difficulties, along with the complexity of the communities and 
environment under study, result in studies’ simplification [Ramos-Martínez, 2016]. Generally, no more 
than one or two factors in relation to biofilm development are studied and/or simplified growth devices 
are used.  
 
Currently, we have at our disposal technology and data of great quality to support new research 
approaches.  In this context, the undertaken work and the acquired knowledge over the last years in 
the field of the study of biofilm development in DWDSs have been used. We propose the collection 
and pre-processing of the data obtained during these years of research to overcome the difficulties 
found when acquiring DWDSs’ biofilm data. That is, the combination of multiple datasets on similar 
studies to carry out an analysis of these meta-data and study the biofilm development in DWDSs 
through partial views of the problem. 
 
2.1 Data collection 

 
The first step in data collection is to deeply understand the treated subject. When studying the biofilm 
development in DWDSs it is important to know that microbiological aspects are not the only 
explanation aspects. Biofilm also depends on a complex interaction between water quality, 
infrastructure and operational factors of the system itself. 
 
Biofilm data have been collected from previous research works on biofilm development in DWDSs (the 
selected papers, published from 1998 to 2013, cannot be included here for space reasons; we refer 
the reader to [Ramos-Martínez, 2016] for an exhaustive list). The journal papers analysed for the 
study have been obtained from various scientific search engines such as Web of Science, Google 
Scholar, IEEE Xplore Digital Library and ScienceDirect, among others. They are all search engines for 
scientific and academic research that search directly for articles in peer-reviewed and well-regarded 
publications. The main searched keywords have been biofilm, drinking water distribution systems, 
HPC/cm2 and R2A, and the various combinations among them. (HPC stands for heterotrophic plate 
count). The papers found under these criteria have been studied to be included in the data 
compilation. All the measurements associated with HPC/cm2 biofilm data have also been compiled. 
 
To begin with, some of the main criteria used to exclude data from the study are: 

1. Studies based on cultured communities seeded with investigator-selected species or 
developed using an inoculum. 

2. Biofilm developed on unrepresentative materials for DWDSs. The use of glass coupons within 
annular reactors is very common. 
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The presence of missing values is a common problem in data analysis. In the case where removing 
variables or observations with missing data is not an option it must be resorted to fill in or “impute” 
missing values. Imputation methods keep the full sample size, which can be advantageous for bias 
and precision. To solve this problem we have applied Multivariate Imputation by Chained Equations 
(MICE) that has emerged as a principled method of dealing with missing data [Azur et al., 2011]. After 
data set reconstruction the final data set is formed by 284 complete cases with 14 attributes and a 
target variable (hpc). Finally, to be sure that there are not hidden correlations a survey plot has been 
carried out on the complete cases. At this point, the pre-processing step is finished. The variables and 
categories of the resulting data set are presented below. 
 
1. Physical characteristics of the system 

 Device (device): propella reactor PR, flow cell system FC, annular reactor AR, Robbins device  
RD, Pedersen device PE, direct D (samples obtained directly from real DWDSs), pipe P 
(samples obtained from pilot scale system) 

 Tested material (material): thermoplastic polymers TP, iron based I, steel based S, cement 
based C 

 Duct's shape (pipe_like): Yes Y, No N 
2. Hydraulic characteristics of the system 

 Circulation type (c_type): Single pass SP (water flowing past the device does not return), 
continuous C (there is some recirculation of water), no continuous NC (water is constantly 
recirculating; there is no renewal) 

 Constant circulation (c_constant): Yes Y, No N 
3. Sampling and Incubation 

 Removal technique (removal): low L, medium M, strong S 
 Type of insert (insert): slide S, coupon C, direct D (samples are directly taken from the pipe wall 

or from inserts that do not stand above the pipe wall and respect the curvature of the pipe, 
simulating the real conditions of DWDS pipes) 

 Incubation time (inc_time) 
 Incubation temperature (inc_temp) 
 Plating method (culture): spread plate S, pour plate P 

4. Physico-chemical characteristics of water 
 Water itinerary (itinerary): from the tap T, from the water treatment plant TR 
 Water source (w_source): groundwater G, superficial water S 
 Water temperature (w_temp) 
 Residual free chlorine concentration (freeCl) 

6. Biofilm 
 Log of R2A cultivable cell per cm2 in biofilm (hpc) 

 
2.3 Model development 
 
Nowadays, data is not only becoming more accessible but also more understandable to computers 
and analysts. Data driven solutions are rapidly advancing and becoming very valuable tools. ML 
methods have a leading role in this transformation of data into valid and useful knowledge. 
 
2.3.1 Regression Trees 
 
Due to the nature of our synthetic database, there are incidental or inherent dependencies that make 
metadata present a trend towards a natural hierarchical structure. Applying the Regression Tree (RT) 
methodology to the complete database obtained allows us to develop a valid model to explore. 
 
RTs are ML methods for constructing non-linear prediction models from data. The models are 
obtained by recursively partitioning the data space and fitting a simple prediction model within each 
partition [Loh, 2011]. As a result, the partitioning can be represented graphically as a decision tree. 
Each of the terminal nodes, or leaves, of the tree represents a cell of the partition, and has attached a 
simple model which applies in that cell only. RTs are a piecewise-constant models. There are several 
advantages associated to this approach [Shalizi, 2006]: 
 

1. Making predictions is fast. 
2. It is easy to understand what variables are important in making the prediction. 
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3. Because the algorithm asks a sequence of hierarchical Boolean questions, it is relatively 
simple to understand and interpret the results. 

4. If some data is missing, we might not be able to go all the way down the tree to a leaf, but we 
can still make a prediction by averaging all the leaves in the sub-tree we do reach. 

5. The model gives a jagged response, so it can work when the true regression surface is not 
smooth. If it is smooth, though, the piecewise-constant surface can approximate it arbitrarily 
closely (under the assumption of having enough leaves). 

6. There are fast, reliable algorithms to learn these trees. 
 
The RT analysis has been implemented through the R package “rpart” version 4.1-10 [Therneau et al., 
2015]. 
 
2.3.2 Random Forests 
 
Random Forest (RF) algorithms are ensemble learning algorithms. As a result, they can be more 
accurate and robust to noise than single classifiers [Rodríguez-Galiano et al., 2012]. An RF [Breiman, 
2001] is an ensemble classifier consisting of many decision trees, where the final predicted class for a 
test example is obtained by combining the predictions of all individual trees. Each tree contributes with 
a single vote for the assignment of the most frequent class to the input data [Rodríguez-Galiano et al., 
2012]. An RF uses a random feature selection, a random subset of input features or predictive 
variables in the division of every node, instead of using the best variables, which reduces the 
generalization error. Additionally, to increase the diversity of the trees, an RF uses bootstrap 
aggregation (bagging) to make the trees grow from different training data subsets [Gray et al., 2013]. 
In summary, an RF is an all-purpose model that performs well on most problems, can handle noisy 
data, categorical or continuous features, and selects only the most important features [Lantz, 2013]. 
 
The RF algorithm used has been implemented through the R package “randomForest”, version 4.6-12 
[Breiman et al., 2015]. The regression type of random forest has been used. An ensemble of 500 trees 
has been created and the number of variables tried at each split has been set to 5. The goal of using a 
large number of trees is to train enough so that each feature has a chance to appear in several 
models. 
 
 
3 MODEL PERFORMANCE 

 
It is important to note that not all the variables have been used in the RT construction. Actually, just 
culture, device, freecl, inc_temp, itinerary, material, removal and w_temp variables have been used. 
This means that the variables that have not been used (pipe_like, c_type, c_constant, insert, inc_temp 
and w_source) have been considered not relevant for the construction of the model. The tree is split in 
the first place by the device variable. The devices P, D and AR are grouped together, therein 
suggesting that have a similar behaviour. That is, the cylinder devices that are more similar to the real 
pipe conditions have been separated from the rest of the devices that do not resemble a pipe. These 
are PE, RD and FC. The branch of the P, D and AR devices is just split by the removal variable, thus 
suggesting that it is an important issue to take into account when sampling. It can influence the 
obtained results and, thus, the possible comparisons among different studies. 
 
In the RF, since there is not a graphical representation, we focus on %IncMSE. It increases with 
importance of the variable. We observe that inc_temp is especially important. This variable has been 
pointed as one of the most important in the previous RT. However, the most relevant in the previous 
case was the device variable, which in the RF is third in importance. In the second place, with a value 
very similar to the device variable, we find the culture variable. It enhances its already known 
importance [Van Soestbergen and Lee, 1969] when comparing HPC results. 
 
Prior to applying the algorithms to the synthetic database, a stratified sampling has been carried out to 
keep a representative amount of the model data to be, subsequently, used to test the performance of 
the final model. The number of data kept for test is 20; thus, the analysis has been performed with the 
265 remaining data. 
 
The models have been tested with the metadata kept from the model (n = 20) and with the real data 
obtained from two case studies (n = 9). Data obtained directly from the DWDS of the city of 
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