
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2006-06-30

Brand X, A Cross-Layer Architecture for Quality of Transport (QoT) Brand X, A Cross-Layer Architecture for Quality of Transport (QoT)

Gregory Arthur De Hart
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
De Hart, Gregory Arthur, "Brand X, A Cross-Layer Architecture for Quality of Transport (QoT)" (2006).
Theses and Dissertations. 456.
https://scholarsarchive.byu.edu/etd/456

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F456&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F456&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/456?utm_source=scholarsarchive.byu.edu%2Fetd%2F456&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

BRAND X, A CROSS-LAYER ARCHITECTURE FOR QUALITY OF

TRANSPORT (QOT)

by

Gregory A. DeHart

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2006

ii

Copyright © 2006 Gregory A. DeHart

All Rights Reserved

iv

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Gregory A. DeHart

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date Charles D. Knutson, Chair

Date Daniel Zappala

Date Eric G. Mercer

vi

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Gregory A. DeHart
in its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

Date Charles D. Knutson
Chair, Graduate Committee

Accepted for the Department

Tony R. Martinez
Department Chair

Accepted for the College

Thomas W. Sederberg
Associate Dean,
College of Physical and Mathematical Sciences

viii

ABSTRACT

BRAND X, A CROSS-LAYER ARCHITECTURE FOR QUALITY OF TRANSPORT

(QOT)

Gregory A. DeHart

Department of Computer Science

Master of Science

Computing devices are commonly equipped with multiple transport technologies

such as IrDA, Bluetooth and WiFi. Transport switching technologies, such as Quality of

Transport (QoT), take advantage of this heterogeneity to keep network sessions active as

users move in and out of range of various transports or as the networking environment

changes. Autonomous transport switching technologies rely on information regarding cur-

rent network status and the ambient wireless environment in order to make intelligent

decisions. This thesis proposes Brand X, a cross-layer architecture designed for a QoT

environment to provide timely and accurate environment information in order to facili-

tate autonomous transport switching. This thesis also presents a performance analysis of

network protocol stack latency in a QoT environment considering the various cross-layer

mechanisms utilized in Brand X and other architectures.

x

ACKNOWLEDGMENTS

I would like to thank my wife for her patience and understanding throughout the

seemingly never ending research process. As my friends are fond of pointing out, I defi-

nitely overachieved when I married you.

To my advisor, Dr. Knutson, thank you once again for all of your insightful com-

mands and guidance throughout the research process. Thank you for time spent editing and

helping to make my writing more technical and punchy.

I would like to thank Dr. Zappala for his ability to clearly see the obstacles that I

would face in this research and for pointing out a better path.

Lastly, for those long nights when everything seemed stacked against me I would

like to thank my keyboard for being the only part of my computer that never let me down.

Day after day it worked just as expected, unlike the rest of the infuriating machine.

xii

Contents

Acknowledgments xi

List of Tables xxiii

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Thesis Layout . 2

List of Figures 1

2 Brand X, A Cross-Layer Architecture for Wireless Intra-Device Heterogeneity 5

2.1 Introduction . 5

2.2 Related Work . 7

2.2.1 Cross-Layer Designs for Specific Environments 8

2.2.2 Cross-Layer Analysis . 11

2.2.3 Quality of Transport (QoT) . 12

2.3 Cross-Layer Taxonomy . 13

2.3.1 Attributes of Cross-Layer Architectures 13

2.3.2 Taxonomic Relationships . 21

2.3.3 Brand X Taxonomy Classification: 23

2.4 Brand X, Cross-Layer Architecture for QoT 24

xiii

2.4.1 Brand X Features . 24

2.4.2 Brand X Implementation . 26

2.4.3 Test Harness Design . 29

2.5 Performance Analysis of Cross-Layer Architectures in a QoT Environment 34

2.5.1 Cross-Layer Performance Analysis Goals 34

2.5.2 Performance Analysis Factors . 34

2.5.3 Evaluation Techniques . 38

2.5.4 Evaluation Metrics . 41

2.5.5 Experiment Setup and Configuration 41

2.5.6 Results and Analysis . 43

2.6 Conclusions and Future Work . 56

2.6.1 Performance Analysis . 56

2.6.2 Timer versus Event Activation Mechanisms 57

2.6.3 Future Work . 57

3 ANOVA Tables 59

A Cross-Layer Test Harness Reference Manual 1.1 69

A.1 appClient Class Reference . 72

A.1.1 Detailed Description . 75

A.1.2 Constructor & Destructor Documentation 75

A.1.3 Member Function Documentation 75

A.1.4 Field Documentation . 79

A.2 appClient::experiment Struct Reference 82

A.2.1 Detailed Description . 82

xiv

A.2.2 Field Documentation . 82

A.3 appServer Class Reference . 84

A.3.1 Detailed Description . 85

A.3.2 Constructor & Destructor Documentation 85

A.3.3 Member Function Documentation 86

A.3.4 Field Documentation . 86

A.4 appServer::packetInfo Struct Reference 89

A.4.1 Detailed Description . 89

A.4.2 Field Documentation . 89

A.5 ClientSocket Class Reference . 91

A.5.1 Detailed Description . 91

A.5.2 Constructor & Destructor Documentation 91

A.5.3 Member Function Documentation 92

A.6 configureTab Class Reference . 95

A.6.1 Detailed Description . 98

A.6.2 Constructor & Destructor Documentation 99

A.6.3 Member Function Documentation 99

A.6.4 Field Documentation . 108

A.7 model Class Reference . 109

A.7.1 Detailed Description . 111

A.7.2 Constructor & Destructor Documentation 111

A.7.3 Member Function Documentation 112

A.7.4 Field Documentation . 116

A.8 name_value Struct Reference . 119

xv

A.8.1 Detailed Description . 119

A.8.2 Field Documentation . 119

A.9 packetData Struct Reference . 120

A.9.1 Detailed Description . 120

A.9.2 Field Documentation . 120

A.10 procTab Class Reference . 122

A.10.1 Detailed Description . 122

A.10.2 Constructor & Destructor Documentation 123

A.10.3 Member Function Documentation 123

A.10.4 Field Documentation . 123

A.11 ServerSocket Class Reference . 125

A.11.1 Detailed Description . 125

A.11.2 Constructor & Destructor Documentation 126

A.11.3 Member Function Documentation 126

A.12 Socket Class Reference . 130

A.12.1 Detailed Description . 132

A.12.2 Constructor & Destructor Documentation 132

A.12.3 Member Function Documentation 132

A.12.4 Field Documentation . 137

A.13 SocketException Class Reference . 140

A.13.1 Detailed Description . 140

A.13.2 Constructor & Destructor Documentation 140

A.13.3 Member Function Documentation 141

A.13.4 Field Documentation . 141

xvi

A.14 TabDialog Class Reference . 142

A.14.1 Detailed Description . 142

A.14.2 Constructor & Destructor Documentation 142

A.14.3 Field Documentation . 142

A.15 af_inet.c File Reference . 144

A.15.1 Define Documentation . 145

A.15.2 Function Documentation . 146

A.15.3 Variable Documentation . 148

A.16 appClient.cpp File Reference . 151

A.16.1 Function Documentation . 152

A.17 appClient.h File Reference . 156

A.17.1 Define Documentation . 157

A.17.2 Variable Documentation . 158

A.18 appServer.cpp File Reference . 159

A.18.1 Function Documentation . 159

A.19 appServer.h File Reference . 160

A.19.1 Define Documentation . 160

A.20 brandx.c File Reference . 162

A.20.1 Define Documentation . 163

A.20.2 Function Documentation . 164

A.21 ClientSocket.cpp File Reference . 168

A.22 ClientSocket.h File Reference . 169

A.23 ip_output.c File Reference . 170

A.23.1 Define Documentation . 173

xvii

A.23.2 Function Documentation . 173

A.23.3 Variable Documentation . 179

A.24 loopback.c File Reference . 182

A.24.1 Define Documentation . 183

A.24.2 Function Documentation . 183

A.24.3 Variable Documentation . 185

A.25 phystub.c File Reference . 188

A.25.1 Function Documentation . 188

A.26 qotstub.c File Reference . 191

A.26.1 Function Documentation . 193

A.27 qotstub.h File Reference . 200

A.27.1 Function Documentation . 203

A.27.2 Variable Documentation . 208

A.28 ServerSocket.cpp File Reference . 212

A.29 ServerSocket.h File Reference . 213

A.30 Socket.cpp File Reference . 214

A.31 Socket.h File Reference . 215

A.31.1 Variable Documentation . 215

A.32 SocketException.h File Reference . 216

A.33 tabdialog.cpp File Reference . 217

A.34 tabdialog.h File Reference . 218

A.35 tcp.c File Reference . 219

A.35.1 Define Documentation . 220

A.35.2 Function Documentation . 220

xviii

A.35.3 Variable Documentation . 222

A.36 udp.c File Reference . 225

A.36.1 Define Documentation . 226

A.36.2 Function Documentation . 227

A.36.3 Variable Documentation . 228

Bibliography 234

xix

xx

List of Tables

2.1 ANOVA Table for Cross-Layer Experiment Analysis 40

2.2 Factors and Levels for Cross-Layer Performance Analysis 41

2.3 Main Effects in the Cross-Layer Performance Analysis 44

2.4 ANOVA Table for Cross-Layer Performance Analysis 51

2.5 Significant Factors in Cross-Layer Network Latency 53

3.1 ANOVA Table for Cross-Layer Performance Analysis 60

3.2 Cross-Layer Performance Analysis Compiled Data 61

3.3 Main Effects in the Cross-Layer Performance Analysis 62

3.4 Data Repetition Number 1 . 63

3.5 Data Repetition Number 2 . 64

3.6 Data Repetition Number 3 . 65

3.7 Interactions Between Factors A and B . 66

3.8 Interactions Between Factors A and C . 66

3.9 Interactions Between Factors A and D . 66

3.10 Interactions Between Factors B and C . 66

3.11 Interactions Between Factors B and D . 66

3.12 Interactions Between Factors C and D . 67

3.13 Interactions Between Factors A, B and C 67

3.14 Interactions Between Factors A, B and D 67

xxi

3.15 Interactions Between Factors A, C and D 68

3.16 Interactions Between Factors B, C and D 68

xxii

List of Figures

2.1 Quality of Transport (QoT) Data Exchange. 6

2.2 Piped Message Cross-Layer Architecture. 8

2.3 Data Store Cross-Layer Architecture. 9

2.4 Inter-Layer Signaling Cross-Layer Architecture. 10

2.5 Quality of Transport (QoT) Architecture. 12

2.6 Hierarchical Representation of Taxonomic Relationships. 21

2.7 Cross-Layer Performance Analysis Test Harness. 29

2.8 Test Harness Graphical User Interface. 30

2.9 Test Harness Graphical User Interface. 31

2.10 Packet Transmission Startup Cycle . 43

2.11 Architecture Parameters . 44

2.12 Volatility Parameter Levels . 45

2.13 Component Percentages of Total Variation 49

2.14 FactorB, a comparison of Activation Mechanism Transfer Times 50

2.15 Event Transmission times with Workload at 1µs 54

xxiii

xxiv

Chapter 1

Introduction

There is an increasing trend for mobile devices to be equipped with multiple wire-

less transceivers, such as IrDA infrared, Bluetooth, Wi-Fi or cellular, which we refer to

asintra-device transport heterogeneity. Current mobile communication architectures pro-

vide inadequate support for intra-device transport heterogeneity in which a single device is

equipped with multiple wireless transports [1]. Rather, applications are generally bound to

a specific application-layer or session-layer protocol and thus to a particular transport. As a

consequence, applications are forced to communicate through a single transport when mul-

tiple transport options exist between devices. Architectures in which applications are bound

to a particular session layer protocol and its corresponding lower layers are commonly re-

ferred to asstovepipearchitectures. Such architectures render applications inaccessible

whenever the transport they rely on is unavailable, even if another transport could establish

an acceptable link to the desired endpoint.

This binding between applications and transports has motivated the development of

transport switching technologies that provide the capability to maintain session connection

integrity despite changes at the transport connectivity level. The Quality of Transport (QoT)

project [2] at Brigham Young University has sought to resolve the problem of transport-

bound applications by enhancing the capability of such devices to intelligently utilize mul-

tiple transports. The goal of QoT is to provide a synergistic solution to intra-device trans-

port heterogeneity through intelligent autonomous transport switching and multi-transport

multiplexing to increase connectivity and transport utilization without increasing complex-

ity at the session, application, or transport layers.

1

One of the significant challenges in implementing intelligent and autonomous trans-

port switching is that effective decision making is often dependent on the availability of

environmental information not generally accessible outside the layer in which such in-

formation is directly discerned. One way of solving this problem is to use a cross-layer

architecture. Cross-layer mechanisms can be employed to gather environment information

from individual protocol layers, without requiring a complete redesign of the protocol stack

or a compromise of layered architectural principles.

Cross-layer architecture is a relatively new area of research that does not bene-

fit from a large body of established results, well-tested design methodologies, or well-

constructed validation and verification procedures. Previous research in cross-layer archi-

tectures focused on the ability to improve network throughput or maintain connectivity

in adverse conditions without addressing the local network protocol stack effects of those

mechanisms. Our research indicates that the type of mechanism utilized in a cross-layer

architecture has a potentially large impact on the performance of the local network protocol

stack.

1.1 Thesis Statement

This thesis presents Brand X, a cross-layer feedback mechanism for supplying en-

vironmental information from multiple protocol stack layers to the autonomous transport

switching algorithms of QoT. This research facilitates the enhancement of QoT by enabling

dynamic, configurable, autonomous environment information gathering. This thesis also

presents the results of an empirical performance analysis of network protocol stack latency

in a QoT environment resulting from Brand X and other cross-layer architectures.

1.2 Thesis Layout

The remainder of this thesis is outlined as follows: Chapter 2 consists of a journal

paper currently in preparation for submission. This paper describes the design and features

of Brand X and a detailed description of the cross-layer performance analysis. This paper

also includes supporting research in cross-layer taxonomies resulting from our work with

2

Brand X. Chapter 3 includes extended tables and data sets derived from the analysis of

variance (ANOVA) performance evaluation of Brand X and other cross-layer architectures.

Appendix A is the Cross-Layer Test Harness documentation, which details our im-

plementations of Brand X, Synchronous Push and Synchronous Pull cross-layer architec-

tures. Documentation is also included for the supporting test harness software and the

modifications made to the Linux TCP/IP and UDP protocol stacks.

3

4

Chapter 2

Brand X, A Cross-Layer Architecture for Wireless Intra-Device Het-

erogeneity

2.1 Introduction

Recent trends in wireless heterogeneity are yielding mobile computing devices

equipped with multiple transport mechanisms (including IrDA, Bluetooth, Wi-Fi, and cel-

lular). Current mobile device architectures provide inadequate support forintra-device

heterogeneityin which a single device is equipped with multiple wireless transports1 [1].

Rather, applications are generally bound to a specific application-layer or session-layer pro-

tocol and thus to a particular transport. Architectures in which applications are bound to a

particular session layer protocol and its corresponding lower layers are commonly referred

to asstovepipearchitectures. Such architectures render applications inaccessible when-

ever the transport they rely on is unavailable, even if another transport could establish an

acceptable link to the desired endpoint.

The Quality of Transport (QoT) project [2] at Brigham Young University has sought

to resolve the problem of transport-bound applications by enhancing the capability of such

devices to intelligently utilize multiple transports. The goal of QoT is to provide a syner-

gistic solution to intra-device transport heterogeneity by providing intelligent, autonomous

transport switching and multi-transport multiplexing to increase connectivity and transport

1By “transport” we refer broadly to traditional stovepipe communication architectures interfaced primarily
via the transport layer of the protocol stack. Hence, when we use the term “transport,” we refer to all layers
from the transport layer to the physical layer inclusive. As an example, we would refer to IrDA, Bluetooth
and Wi-Fi as separate “transports.”

5

utilization without increasing complexity at the session, application, or transport layers.

QoT alleviates the constraints of stovepipe architectures by directing data flow through the

most desirable available transport in a manner transparent to the application and session

layers while applications continue to send data through the session protocols for which

they were designed. Figure 2.1 shows an example of QoT using IrDA as the best available

transport for a Bluetooth application.

OBEX

QoT

Bluetooth

HTTP

IrDA

FTP

QoT

Bluetooth

OBEX

WiFi

HTTP

IrDA

Device 1 Device 2

Figure 2.1: Quality of Transport (QoT) Data Exchange.

One of the significant challenges in implementing an architecture such as QoT is

that effective transport selection is often dependent on the availability of environmental in-

formation not generally accessible outside the layer in which such information is directly

discerned. Protocol stacks are designed utilizing a layered approach in order to limit cou-

pling between layers and allow independent system development while retaining compat-

ibility. Layered protocol stacks limit the accessibility of environment information outside

the source protocol layer. This masks information that is necessary for intelligent deci-

sion making. Examples of environment information useful for intelligent network decision

making but not available outside of the source protocol layer include signal strength, lost

packets, interference and radio noise.

One way of solving this problem is to use a cross-layer architecture. Cross-layer

mechanisms can be employed to gather environment information from individual protocol

6

layers, without requiring a complete redesign of the protocol stack or a compromise of

layered architectural principles.

In this paper we present Brand X, a hybrid cross-layer architecture designed for the

QoT multi-transport environment. Brand X employs a Data Store cross-layer mechanism,

which enables loosely coupled asynchronous communication between protocol layers. The

asynchronous data store facilitates information queries across multiple transports while

providing simple and configurable cross-layer data retrieval.

We demonstrate that an implementation of Brand X in a Linux kernel can provide

fully configurable information retrieval. We evaluate the performance of Brand X and com-

pare its performance to several other cross-layer architectures. The performance analysis

results show that Brand X out performs synchronous cross-layer mechanisms by as much

as 47.6% on incurred protocol stack latency.

The remainder of this paper is structured as follows. Section 2.2 outlines previous

work in the area of cross-layer design and analysis. Section 2.3 presents a cross-layer

taxonomy we have developed to aid in the comparison of cross-layer architectures based

on their functional attributes and performance results. Section 2.4 is a detailed description

of Brand X, a cross-layer architecture for the QoT environment. Section 2.5 presents our

cross-layer performance study and results. In Section 2.6 we present our conclusions and

future work.

2.2 Related Work

Research in cross-layer architectures has historically taken one of two forms: 1)

design and implementation of cross-layer architectures for specific environments; 2) anal-

ysis of performance improvements due to application of cross-layer mechanisms. In the

following sections we present an overview of common cross-layer architectures. We then

summarize research conducted on the performance enhancements of cross-layer architec-

tures and the potential problems arising from improper use of cross-layer mechanisms. We

conclude this section by presenting an overview of the Quality of Transport research.

7

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 2.2: Piped Message Cross-Layer Architecture.

2.2.1 Cross-Layer Designs for Specific Environments

Architectures for cross-layer mechanisms can be generalized into three categories:

Piped Message, Data Store and Inter-Layer Signaling. We briefly discuss each of these

approaches in turn.

2.2.1.1 Piped Message

Piped Message architectures, (see Figure 2.2), require the modification of one or

more protocol layers to gather environment information and transmit it to other layers via

the protocol stack. Environment information is detected at appropriate protocol layers and

assembled into cross-layer packets, which are injected into the protocol stack in the direc-

tion of the recipient layer. The recipient layer recognizes the cross-layer packet, reads the

environment information contained therein and utilizes the information to influence its own

decision making.

Several implementations of Piped Message have been proposed. Montenegro and

8

Figure 2.3: Data Store Cross-Layer Architecture.

Drach [3] use Internet Control Message Protocol (ICMP) [4] messages to notify an oper-

ating system of a lost connection. Their architecture is very limited in the scope of the

information it is able to transmit. Furthermore, their dependence on the ICMP protocol

does not allow for implementation on a wide range of devices (such as handhelds). Su-

dame and Badrinath extend the design of Montenegro and Drach to propagate network

environment information throughout the stack [5]. Their extensions include the idea of

notable events2 and the capability of communicating a wide array of environment informa-

tion. Wu, et al., present an implementation of Interlayer Signaling Pipes that relies on the

Wireless Extension Headers (WEH) of IPv6 [6].

2.2.1.2 Data Store

Data Store architectures, (see Figure 2.3), share the common characteristic that one

or more layers of a given protocol stack write information to a centralized location. When

new network status information becomes available it is recorded in the data store where it

can be accessed by interested protocol stack layers. It is the responsibility of each layer

of a protocol stack to make available through the data store the results of a notable event.

2A notable event is a change in the environmental conditions or stack performance that causes the state of
the system to cross one or more predetermined thresholds.

9

Figure 2.4: Inter-Layer Signaling Cross-Layer Architecture.

Through the use of such a mechanism Harter, et al., were able to reduce the number of

writes to a centralized database for a context aware system by more than 90% [7].

Several Data Store architectures have been proposed. Chen, et al., discuss the use of

a cross-layer data store in an ad hoc network environment [8]. The cross-layer mechanism

provides additional communication between middleware and routing layers to allow faster

look-up of media services and higher quality streaming of that data. Clark and Tennenhouse

propose the use of a single field which could be accessed by all protocol layers or modules

in order to improve performance [9].

2.2.1.3 Inter-Layer Signaling

Inter-Layer Signaling architectures, (see Figure 2.4), support bi-directional data

communication between non-neighboring layers, reducing the propagation latency com-

mon in other cross-layer approaches. This structure was first proposed by Wang et al. in

the design of Cross-Layer Signaling Shortcuts (CLASS) [10]. The theoretical propagation

latency in CLASS is only about 1
(n−1)

as large compared to the Piped Message architecture,

wheren is the number of layers traversed. Wu, et al., propose Interlayer Signaling Pipe,

10

a communication architecture that does not require the use of standardized protocols for

internal signaling, thus facilitating a lightweight internal message format [6].

For a specific protocol stack implementation, cross-layer interactions are task-

dependent and protocol-specific. Inter-Layer Signaling architectures focus on communi-

cation between layers of the protocol stack. It creates unique communication channels

between stack layers that exchange information. Creating such communication channels

requires cooperation from the designers of the various protocol layers and reduces the in-

herent flexibility of a protocol stack. As a result, the complexity of system design increases

and maintainability of the system decreases.

2.2.2 Cross-Layer Analysis

Raisinghani and Iyer [11] analyze the benefits of a cross-layer feedback mecha-

nism for mobile devices. They present a representative survey of the OSI protocol layers

and present examples of cross-layer feedback for each layer, discussing the benefits and

disadvantages incurred. Koucheryavt, et al., [12], present an overview of recent devel-

opments in cross-layer architecture in next generation systems and outline directions of

further work in performance evaluations of all-IP next generation systems. Current traffic

modeling and wireless channel modeling techniques are considered and their limitations

for future IP based mobile systems are addressed.

Raisinghani, et al., [13], outline two mechanisms for cross-layer feedback with TCP

and model their performance benefits. These cross-layer feedback mechanisms rely on an

extended implementation of TCP that allows modification to application priority through

receiver window control. They show that by using their proposed mechanism they achieve

an improvement of up to 150% over TCP Reno.

Fang and McDonald, [14], demonstrate that improper use of cross-layer technology

can have a significant negative impact on energy efficiency, throughput, and delay. In their

results, a twelve hop path with no transport contention is shown to achieve 90% throughput

at 100 Kbps, dropping to 50% at 500 Kbps. When transport contention along the network

path reduces system throughput to 40% at only 100 Kbps.

11

Application

Presentation

Session

QoT

Transport

Network

Link

Physical

Application

Presentation

Session

Transport

Network

Link

Physical

Application

Presentation

Session

Transport

Network

Link

Physical

Figure 2.5: Quality of Transport (QoT) Architecture.

2.2.3 Quality of Transport (QoT)

The goal of Quality of Transport (QoT) is to facilitate dynamic, transparent and

autonomous transport switching for multi-transport devices in order to provide the highest

quality data transfer capability within heterogeneous wireless environments. QoT automat-

ically manages the nature of the underlying network connection in order to maximize user

experience and satisfaction. In one case maximizing a user’s experience means maintaining

a connection through various network environments, while in another case the user might

want to optimize battery life at the expense of higher data throughput. Duffin, et al., [15],

presented a qualitative method for establishing user defined constraints for QoT.

Barnes, et al., [16], introduce multi-transport discovery within the context of the

QoT architecture. This paper presents transport probing as a method by which QoT may

establish a communication link with each remote device. Transport querying then uses the

link established during the transport probing phase to identify all of the transport capabili-

ties of the remote device. QoT then maintains a table of device-to-address translations and

transport availabilities to determine the appropriate transport to be utilized.

Knutson, et al., [17], present an overview of the QoT architecture (see Figure 2.5)

12

including transport discovery, service discovery, object exchange, transport switching, and

intelligent transport selection. Their preliminary results suggest that intelligent transport

switching can help to improve user experience and session layer performance in heteroge-

neous wireless environments.

2.3 Cross-Layer Taxonomy

Cross-layer architecture is a relatively new area of research that does not bene-

fit from a large body of established results, well-tested design methodologies, or well-

constructed validation and verification procedures. We have developed a conceptual tax-

onomy that provides insight into the ways in which cross-layer architectures are employed

to solve problems, the functionality they provide, and the mechanisms on which they rely.

Additionally, this taxonomy provides a foundational set of definitions by which cross-layer

research can be compared and discussed.

We present the cross-layer taxonomy in two parts: attributes of cross-layer archi-

tectures and taxonomic relationships. The cross-layer attributes section contains categories

that are used to classify and compare cross-layer functionality. In the taxonomic relation-

ship section we present a hierarchical representation of the cross-layer attributes along with

a description of the relationships that are observed between certain cross-layer attributes.

2.3.1 Attributes of Cross-Layer Architectures

In order to develop a useful cross-layer taxonomy, we must first consider the fun-

damental factors dealt with during design and operation of cross-layer architectures. These

factors are common across all cross-layer architectures and provide a consistent reference

for comparison. We found that cross-layer architectures are distinguished by their attributes

and the functionality they employ to provide their results. These attributes and functional

mechanisms make up the classification categories in the cross-layer taxonomy.

In the following sections we define terminology and categories that can be used

for the classification, identification, and comparison of cross-layer architectures. We have

13

identified eight categories of classification that are common among cross-layer research that

distinguish the mechanisms involved in cross-layer operation. These eight categories have

been selected because they provide information about key aspects of cross-layer behavior.

2.3.1.1 Information Discovery

Information discoverydescribes the mechanism employed to collect environment

information from the protocol layer in which such information is collected. Each cross-

layer architecture employs some method for breaking the strict layered protocol structure

and gathering the required environment information. For example, a cross-layer architec-

ture could extend the existing TCP protocol implementation to store information about

packet retransmissions as they occur. The mechanism utilized to gather information deter-

mines the invasiveness of the cross-layer architecture to the current protocol structure.

We use the following three data collection techniques, common to software mon-

itoring systems, to classify information discovery methods used in cross-layer architec-

tures [18]. These data collection techniques can be used to produce the same results, but

they vary greatly in their environment impact and compatibility with existing software.

• Implicit Spyingrequires observing all communications between protocol layers. Im-

plicit spying is commonly used in network traffic sniffers. The advantage of implicit

spying is that there is no direct impact on the performance of the system being mon-

itored. No changes in the protocol layers are required, but the ability to observe data

as it passes between protocol layers must be guaranteed in order to obtain accurate

results.

• Explicit Instrumentationrequires direct modification of the protocol layers being

monitored. Protocol layers are modified to include data calculation algorithms and

reporting interfaces. Each item of environment information monitored requires mod-

ification in the protocol stack. Extensive modification of the protocol stack, resulting

from extensive information gathering, increases system complexity and decreases

maintainability [19].

14

• Probing requires making special ‘feeler’ calls to report the status of protocol lay-

ers. These calls, in the form of specially marked packets, are sent via the protocol

stack and are made available to the cross-layer application. The protocol layer must

be capable of capturing packets, including necessary information, and returning the

packet via the protocol stack to the cross-layer information repository. Well-defined

mechanisms do not exist for all transports so custom protocols and messages are

required [19].

2.3.1.2 Data Elicitation Method

The Data Elicitation Methoddescribes the protocol or application that initiates

transfer of environment information from the originating protocol layer to the final desti-

nation. Depending on the cross-layer architecture utilized and thefreshness3 or timeliness

of information required, the signal to transfer information can originate from the source

or destination module. Each method has advantages and disadvantages and must be fully

considered when developing a cross-layer architecture for a specific network environment.

There are three possible data elicitation schemes: 1) Data is pushed from the source

layer to the destination layer; 2) Data is requested by the destination layer and subsequently

returned by the source layer; 3) A hybrid approach is taken in which information is pushed

from the source layer or requested by the destination layer depending on the current status

of the system. Each of these three data elicitation methods are described below.

• Synchronous Pushis a model in which protocol layers relay detected environment in-

formation to a pre-determined destination (commonly another protocol layer). This

approach requires coordination between stack layers that exchange information. This

method delegates more of the data delivery timing and overhead to the protocol lay-

ers and reduces the possibility of a bottleneck in the destination layer. Improperly

designed query mechanisms can introduce tight coupling between protocol layers,

3By “freshness” we refer to the accuracy of stored environment information in reflecting the current state
of the network environment. “Freshness” is not a simple calculation of the length of time information has
been stored because as the volatility of the environment increases the length of time information can be
considered accurate decreases.

15

and increase system complexity, causing new bottlenecks in source protocol layers.

Protocol layers in a Synchronous Push architecture do not have the advantage of

knowing the current network status and behave using a greedy approach calculating

and sending information regardless of external conditions such as power consump-

tion or network utilization [20].

• Synchronous Pullis a model in which each protocol layer requiring environment in-

formation sends a query to the appropriate observation layer and receives a response.

Requests for information may be based on an immediate need, a regular time sched-

ule, or may vary based on protocol activity. Synchronous pull retains the informa-

tion request mechanisms for all protocol layers within the destination protocol layer.

Without delegating data elicitation to the source protocol layers there is a greater

chance for a network bottleneck at the destination protocol layer. Retaining control

of information updates in the decision making protocol layer allows for intelligent

scheduling of information updates based on the current network and system status.

Fine tuning update scheduling decreases excessive updating with the drawback that

sudden changes to the environment are not reported immediately [20].

• Billboard is a hybrid data elicitation method employing features of both Synchronous

Push and Synchronous Pull to generate a loosely coupled asynchronous information

transfer mechanism. In this approach, protocol layers discern and publish informa-

tion to a local data store4 either at some time interval, or as a result of some event

or condition. The information on the Billboard can then be accessed by other layers

asynchronously. In effect, observing layers publish information to the Billboard via

a Synchronous Push, while consuming layers access information from the Billboard

via a Synchronous Pull. This approach allows producers and consumers to effectively

decouple, yielding a tunable asynchronous cross-layer system.

4Billboard refers to a data elicitation method and data store refers to an independent module used for data
storage.

16

2.3.1.3 Activation Mechanism

Activation Mechanismdescribes the process that determines initiation of informa-

tion transfer between protocol layers. Once environment information has been determined

by the information discovery process, that information needs to be relayed to the destina-

tion location at some interval. For example, a cross-layer architecture closely monitoring

packet corruption could signal an information update each time a packet is received con-

taining corruption. The activation mechanism and frequency of information transfer can

have a large effect on the network efficiency due to the resources consumed by the transfer

mechanism. The degradation of network performance should be balanced with the need for

current and accurate information.

There are several factors that influence the frequency at which data is updated by the

cross-layer architecture. In a volatile network environment, information changes rapidly,

requiring frequent information transfer in order for the system to make accurate decisions.

Network utilization can have an effect on the appropriate frequency at which data should be

updated. During periods of little or no network utilization, battery power can be conserved

by updating information every few seconds. The type of network traffic can also help

determine the proper information update frequency.

Two classifications of activation mechanisms, (timer driven and event driven), are

common to cross-layer architectures and are described in the following sections:

• Timer driven mechanisms update environment information based on a regular time

interval regardless of changes to network utilization or network environment. A po-

tential side effect of timer driven mechanisms is a synchronization in update timers

across the protocol layers that results in all protocol layers attempting to update at

the same time. This synchronization occurs due to the limited granularity in current

operating system timers. This causes a short interval of high cross-layer overhead

which may introduce jitter into the network traffic latency.

17

• Eventdriven mechanisms establish intervals or thresholds used to determine if in-

formation should be updated. The intervals are based on information freshness re-

quirements and provide a level of granularity in information updating. If the current

environment information and the previously published information are within the

same interval they are considered current and no update occurs. If the values fall into

different intervals the previously published information is considered out of date and

an update occurs.

2.3.1.4 Information Requirements

Information Requirementsdescribe the environment information that each cross-

layer architecture is designed to gather and utilize in order to achieve its intended goal.

Environment information that can be useful in making cross-layer decisions is available in

all layers of the protocol stack. The set of information that each cross-layer architecture

requires is based on the intended cross-layer goal and the network environment.

Classification based on a cross-layer architecture’s information requirements helps

determine the intended goal of the architecture and the mechanisms that are utilized to

achieve the goal. Grouping architectures based on information requirements can be used

as a tool in comparing analogous cross-layer mechanisms and in designing new solutions

to cross-layer problems.

2.3.1.5 Motivation

Motivationdescribes the specific problem or opportunity which the cross-layer ar-

chitecture is designed to address. The following sections describe four categories of cross-

layer architecture design motivations:

• New Functionality– By providing protocols and applications access to cross-layer

environment information, new ideas, and directions in network communication are

made possible. New techniques in MAC retransmission or transport selection based

on the highest quality connection are two examples of recent research made possible

18

by the use of cross-layer information. Cross-layer design often occurs as a by-product

of other network research and is created in an effort to overcome traditional network

limitations.

• Improved Performance– Utilization of information from multiple protocol layers

facilitates informed decisions regarding network performance. Cross-layer architec-

tures provide a mechanism whereby access to a greater body of information is pos-

sible. Utilizing additional information available from other source protocol layers,

improved networking algorithms can be created that may increase network perfor-

mance.

• Robust Data Exchange– Utilization of cross-layer information can allow a device to

provide a more robust wireless connection and improve packet error correction due

to interference in the ambient wireless environment. Current robust data exchange

algorithms rely on encoding schemes or signal detection at the physical layer. Cross-

layer mechanisms can be used to determine packet errors or re-route traffic to avoid

the problematic area.

• Power Conservation– Varying signal strength based on cross-layer information al-

lows fine-tuned adjustments in the power to be made, thereby allowing a power con-

strained wireless mobile device to improve performance while decreasing power con-

sumption. Mobile devices equipped with multiple transport mechanisms are becom-

ing more common and as with any such device, battery life is an important issue. Si-

chitiu showed an increase in battery life from 3.2 months to 24.2 months in research-

ing cross-layer scheduling for power efficiency in wireless sensor networks [21].

2.3.1.6 Network Environment

Network environmentdescribes the network topology and physical transport that

the cross-layer architecture utilizes. This includes application of cross-layer mechanisms

on new and existing physical transports as well as current research on improved network

protocols.

19

Categorizing the network environment for which a cross-layer architecture is de-

signed helps to group architectures that have similar environment requirements and may

help identify other possible cross-layer solutions. This aids in collaboration between cross-

layer solutions and helps extend research to a broader subject domain.

2.3.1.7 Protocol Compatibility

Protocol compatibilityrefers to the specific protocol or protocols for which a cross-

layer architecture has been designed to be compatible. We define compatibility as the abil-

ity of a protocol to utilize cross-layer functionality or the use of a protocol by the cross-layer

architecture in order to provide an improvement in network communication. For instance,

a cross-layer solution can be designed to optimize TCP retransmission requests whereby

any application protocol utilizing TCP may experience an improvement in performance.

There are many different protocol structures for which cross-layer architectures are

designed and implemented. With each presenting a unique set of compatible protocols.

Cross-layer architectures can be designed to work with information from the entire protocol

stack, ensuring compatibility with all layers of the protocol stack. Additionally, a cross-

layer architecture can be designed to work with a single transport stack providing benefit

only to applications that utilize the enhanced transport. Cross-layer architectures can also

be designed to be independent of any specific protocol restrictions and remain compatible

with all types of network traffic for the target network environment.

2.3.1.8 System Definition

System Definitiondescribes the system boundaries of an architecture including af-

fected protocol layers, utilized system resources, and external application support. Cross-

layer architectures include a variety of resources depending on the availability of environ-

ment information and the cross-layer mechanisms utilized in data transfer. Typical system

resources that are utilized include protocol stack layers, operating system resources, and

battery power indicators.

20

Cross-Layer Architectures

Evolutionary

Self-Contained Interactive

Revolutionary

ProbingImplicit
Spying

 Explicit
Instrumentation

Push PullBillboard

Figure 2.6: Hierarchical Representation of Taxonomic Relationships.

The following are important questions to answer when classifying an architectural

system: 1) What protocol layers and system resources are utilized by the cross-layer archi-

tecture? 2) What modifications are required to the system and protocol layers? 3) Where

are the decision making algorithms for the cross-layer solution located?

2.3.2 Taxonomic Relationships

Two important relationships exist between the functional cross-layer taxonomy

characteristics including: 1) Evolutionary versus revolutionary design; 2) Self-contained

versus multi-layer (see Figure 2.6).

2.3.2.1 Evolution versus Revolution

Researchers have generally followed one of two approaches in cross-layer research:

evolutionaryor revolutionary. Evolutionary is a traditional approach to cross-layer design

21

in which existing layered protocols are extended and backward compatibility is retained.

Revolutionary is an approach in which the layered protocol stacks are removed in favor of

high-performance custom protocol architectures [22].

Evolutionary design for cross-layer systems focuses on extending existing layered

protocol structures in an effort to maintain backward compatibility while realizing perfor-

mance and functional improvement. Adhering to strict protocol layering provides backward

compatibility but also limits design flexibility and performance.

Revolutionary design is not bound by existing protocol implementations or layered

design approaches. Rather, revolutionary design prioritizes performance above compati-

bility and removes strict layering in favor of performance. Because of the high cost of

hardware and software upgrades when introducing protocol changes, abandoning strict lay-

ering and neglecting backward compatibility have limited revolutionary designs to research

environments [23].

2.3.2.2 Self-contained versus Multi-layer

Cross-layer architectures are traditionally designed to transfer information from one

protocol layer to another with out compromising the advantages of a layered stack structure.

The mechanisms involved in transferring information between protocol layers is a topic

of continuing research. Each mechanism has advantages and disadvantages that must be

considered when designing a cross-layer architecture for a particular environment.

Self-contained cross-layer designs are bound by a reliance on the limited set of

data available as packets are processed within the protocol layer. Toumpis and Gold-

smith [24] propose two self-contained cross-layer architectures that vary energy efficiency

and packing density in the Medium Access Control (MAC) sub-layer of the Data Link

layer. Toumpis and Goldsmith’s architectures make decisions based on cross-layer infor-

mation gathered from network packet headers in order to conserve energy and increase

channel utilization without requiring access to other protocol layers.

22

In contrast, multi-layer architectures involve direct communication between proto-

col layers. Knowledge of the protocol stack layers allows the cross-layer designer to take

advantage of information available within all protocol layers. Leveraging information from

throughout the protocol stack, advanced network algorithms can be created to improve net-

work performance. Multi-layer architectures are able to gain the benefits of a non-layered

protocol while maintaining the advantages of a layered protocol stack [25].

2.3.3 Brand X Taxonomy Classification:

The following is a taxonomic classification of Brand X in a QoT environment.

• Information Discovery: Explicit instrumentation is utilized in the Brand X architec-

ture for information discovery. Protocol layers are modified to calculate and report

various items of environment information.

• Data Elicitation Method: The Brand X architecture utilizes a Billboard data elicita-

tion model. Environment information is pushed from the source protocol layers to

the data store and QoT then pulls from the Billboard when information is required.

• Activation Mechanism: Brand X utilizes both Timer and Event driven activation

mechanisms. Protocol layers report environment information using a Timer mech-

anism in order to reduce cross-layer overhead in network traffic processing. QoT

pulls information from Brand X utilizing an Event mechanism. Brand X can con-

figure source protocols and QoT for alternative activation mechanisms depending on

the ambient wireless environment and network traffic flow.

• Information Requirements: Brand X creates a registration system for producers

whereby any type of information can be registered and exchanged. No limitations

on information type are enforced by Brand X.

• Motivation: The goal of the Brand X is to facilitate robust data exchange in a hetero-

geneous wireless environment by providing accurate environment information to the

QoT autonomous transport switching algorithms.

23

• Network Environment: Brand X operates in a heterogeneous wireless environment

encompassing multiple protocols and network transports.

• Protocol Compatibility: Brand X is designed to operate independently of any specific

set of network or application protocols.

• The Brand X system includes: Brand X Core, Brand X Interface, Brand X Brain,

network protocol layers extensions and QoT.

2.4 Brand X, Cross-Layer Architecture for QoT

Brand X is a cross-layer architecture specifically designed for a QoT multi-transport

environment. Brand X employs a Billboard data elicitation mechanism that provides

loosely coupled asynchronous data communication between producer and consumer proto-

cols. The following sections describe the features and implementation of Brand X.

2.4.1 Brand X Features

Some of the most salient features of Brand X include: Cross-Layer Configuration,

Protocol Integration, and Information Update Frequency. We briefly discuss each of these

in turn.

2.4.1.1 Cross-Layer Configuration

Brand X utilizes both push and pull data elicitation mechanisms in order to interact

with producer and consumer protocol layers. Communication mechanisms between proto-

col layers and Brand X can be configured to utilize either a push or pull mechanism. The

ability to configure data elicitation mechanisms allows Brand X to efficiently respond to

highly volatile environments and minimize cross-layer overhead in stable environments.

Brand X can also vary information update frequencies in response to changes in the

ambient wireless environment. Adapting at the protocol level to changes in the wireless

24

environment minimizes system wide cross-layer overhead and provides timely information

in a highly varied network environment.

2.4.1.2 Protocol Integration

Brand X utilizes a registration and notification mechanism to create an asyn-

chronous communication mechanism between protocol layers. Protocol layers that pro-

duce environment information register with Brand X as a provider for a certain type of

information, while those layers requiring cross-layer information register with Brand X as

a consumer of information.

During registration, Brand X stores a callback function for the registered producer

or consumer protocol. Brand X uses the callback function of the producer protocol layer

to request information updates as needed, and to pass configuration information to the

producer protocol. The consumer protocol’s callback function is utilized by the Brand X

notification mechanism to inform the consumers of updated environment information.

Brand X maintains a time stamp that is associated with each item of information.

The time stamp is used by Brand X for monitoring information freshness. Once information

is considered out-of-date Brand X utilizes the producer callback function to request updated

environment information from the source protocol layer.

2.4.1.3 Information Update Frequency

Determining optimal information update frequencies for environment information

is a complex problem involving various factors, including, ambient wireless environment,

network utilization, traffic type and battery consumption. QoT and other consumer pro-

tocols determine the update frequency for information they require. Consumers have two

options for information updating: 1) The consumer protocol utilizes a pull mechanism and

queries Brand X for information according to the determined update frequency. 2) The

consumer protocol utilizes a push mechanism and passes the update configuration to Brand

X, causing Brand X to signal the consumer protocol with information updates as specified

25

by the update frequency.

2.4.2 Brand X Implementation

We implemented a proof-of-concept version of Brand X using the SUSE 9.2 Linux

operating system with the 2.6.8-24 kernel. Utilizing an open-source Linux operating sys-

tem provides access to kernel and network source code.

The Brand X implementation includes functional extensions to the native Linux

network protocol layers that integrate cross-layer functionality into the existing network

protocol stack. These functional extensions include data calculation functionality, a query

response interface, a timing mechanism for information updates, information threshold

simulation for event driven updating, and a configuration interface. The following sections

detail the architecture of Brand X and highlight key functional extensions and cross-layer

components.

2.4.2.1 Brand X Core

The Brand X Core provides storage for network protocol registration, environment

configuration data and environment information transferred between protocol layers. In-

formation update settings are transferred from QoT and stored in the Brand X Core for use

by the Brand X Brain. This module also provides a caching mechanism for information

passed between protocol layers in order to reduce the number of protocol layer interrupts

necessary to service information updates.

Brand X Core utilizes a data store mechanism in which protocol layers can post or

retrieve information, and configuration data. The advantage of the data store is that mul-

tiple information queries can be serviced simultaneously without interrupting the source

protocol layer. This mechanism decouples the source and destination layers thus reducing

overhead that results from cross-layer communication.

26

2.4.2.2 Brand X Brain

Brand X Brain provides autonomous information update services. Guided by in-

formation update requirements provided by QoT, the Brand X Brain utilizes environment

information stored in the Brand X Core to determine future updates. Brand X Brain also

configures the connection mechanisms used for communication between Brand X and the

source protocol layers. Brand X Brain is responsible for managing Brand X functionality

in order to maximize information exchange while minimizing cross-layer overhead.

2.4.2.3 Brand X Interface

The Brand X Interface controls data communication between Brand X and other

protocol layers. This interface is used to register protocol layers, accept information up-

dates, handle information requests, push configuration settings to protocol layers and dis-

tribute environment information as directed by the Brand X Brain. One of the primary

responsibilities of the Brand X Interface is to maintain information integrity by enforcing

an order to the reads and writes to the stored data.

2.4.2.4 Protocol Layer Modules

Brand X enabled protocol layers are extended with algorithms for environment in-

formation calculation, interface mechanisms, and activation mechanisms. These changes

are minimally intrusive and do not alter existing functionality, thus allowing a layered pro-

tocol stack structure to be maintained. Protocol layers are additionally extended with inter-

faces for handling configuration and information requests. Environment information calcu-

lation algorithms are unique for each protocol layer and depend on the implementation of

the protocol along with the type of information required. Protocol layers are extended with

timer and event activation mechanisms that are used for initiating information updates. By

maintaining a small code footprint in the protocol layers, this approach minimizes cross-

layer induced overhead in protocol layer functionality.

27

2.4.2.5 QoT Interface Module

The QoT/Brand X interface provides a more sophisticated configuration interface in

addition to the information request interface that exists between Brand X and other protocol

layers. These additional configuration mechanisms are required between QoT and Brand

X in order to transfer configuration settings from QoT Brain to Brand X.

No environment information determination mechanisms are required in QoT since

all environment information is passed from the network protocols via Brand X to QoT. Any

information calculated in QoT would be a subset of information gathered from the network

protocol stack. QoT implements timer and event activation mechanisms as a part of QoT

Core. The activation mechanisms initiate information updates with Brand X as information

is required.

2.4.2.6 Communication Mechanism

The Inter_Module Communication (IMC) interface is utilized in the im-

plementation of Brand X to facilitate communication between the various kernel modules

and the protocol stack layers. TheIMC interface allows modules to register functions or

data that can be retrieved and used by other modules. Through this process, callback func-

tions are registered between Brand X, QoT, and the other network protocol layers. By

utilizing callback functions, we are able to eliminate the overhead and complexity that

occurs with other process communication, such as, sockets and shared memory.

Interaction between user-space modules and kernel-space modules is achieved

through the use of the/proc file system. The/proc file system allows modules running

in user-space to interface with kernel-space modules through a file or stream read/write in-

terface. This interface requires a user-space module to read or write to a file in the/proc

directory. The file in the/proc directory is a stub interface provided by the Linux ker-

nel that in turn calls a registered function in the kernel module. The one-sided initiation

inherent with this mechanism makes it useful for configuration but limits kernel initiated

data transfer. Other mechanisms should be employed for any time sensitive or two-way

28

Graphical Interface

Hardware
Boundary

B
r
a
n
d

X

Application

Presentation

Session

QoT Stub

Transport

Network

Link

Physical Stub/Driver

Physical

Client Server

Figure 2.7: Cross-Layer Performance Analysis Test Harness.

communication between modules in kernel-space and user-space.

2.4.3 Test Harness Design

A test harness was constructed to control the QoT environment and measure system

performance (see Figure 2.7). The test harness consists of a graphical user interface, an

application driver, a QoT stub, a physical layer stub, protocol layer extensions, and a Brand

X module.

The graphical user interface (GUI) is provided for test setup and debugging. The

GUI allows direct access to protocol level configuration (see Figure 2.8). The GUI also

provides a scripted interface which can accept and run test environment configurations (see

Figure 2.9). In addition to the GUI, a programmatic interface is provided to facilitate more

elaborate test harness interaction and to allow series of test to be run programmatically.

The programmatic interface offers all of the functionality present in the GUI as well as

additional debugging and scripting mechanisms.

29

Figure 2.8: Test Harness Graphical User Interface.

An application driver sits on top of the protocol stack and is used to generate work-

load traffic and to provide protocol configuration. The application driver consists of two

separate client and server modules.

• The client module generates network traffic according to the specifications of the

experiment. As each packet is constructed the current system time is included in the

packet payload. The traffic is then sent via the BSD socket interface into the network

protocol stack.

• The server module listens on a specified port for configuration and data packets.

Once a packet is received, a time stamp of the current system time is taken and stored

along with the time stamp and packet information included in the payload. The test

30

Figure 2.9: Test Harness Graphical User Interface.

packet protocol consists of one configuration packet, used to synchronize the settings

between the client and the server modules, followed by test data packets and a final

configuration packet marking the end of the test transfer. The number of workload

packets sent can vary depending on the experiment. Once the final configuration

packet is received the stored result-data is written to a log file.

A stubbed QoT protocol layer is inserted between the Session layer and the Trans-

port layer of the protocol stack. The QoT stub receives all network traffic as it passes be-

tween the upper protocol layers and the transport protocol layer. The test harness QoT layer

implements the limited functionality necessary to interact with a cross-layer architecture

but does not include any transport switching or decision making functionality. Interfaces

31

to perform Synchronous Push, Synchronous Pull, Billboard, and configuration communi-

cation were implemented along with a configurable delay that can be applied to network

traffic passing through QoT in order to approximate execution time for a full QoT system.

A physical layer stub is inserted in the protocol stack between the hardware and

software interfaces. This protocol layer stub provides a delay mechanism used to provide

a consistent physical transmission time. The delay is configurable and occurs uniformly

on all traffic passed through the physical stub. By applying a consistent time delay, any

variation resulting from uncontrolled changes to the ambient wireless environment can be

eliminated.

During the performance analysis, the loopback interface is utilized to eliminate

variability due to fluctuations in the ambient wireless environment. By controlling traffic

delay at the physical stub and the properties of the loopback interface, the test harness can

simulate various wireless transports.

Physical transports between devices can be tested using a remote Application Driver

module. The Application Driver module is executed on the remote machine and intercepts

traffic from the source client. By running across a live network environment it is possible

to study protocol stack latency and physical transmission latency over various transmission

mediums.

2.4.3.1 Brand X – Asynchronous Billboard

The Brand X module provides storage for data and configuration during information

transfer between the network protocol layers and QoT. Information is passed to Brand X

from the protocol layers and cached until it is requested by QoT. The Brand X module

is able to provide asynchronous communication since it resides in the Linux kernel space

but is not included in the layered network protocol stack. Any computations performed by

Brand X do not directly effect the flow of network traffic.

Protocol layers pass information to Brand X utilizing a push communication mech-

anism and either a timer or event activation mechanism. Information is stored by Brand X

32

until a request is made by QoT, at which time the latest environment information is returned

to QoT. The advantage of implementing Brand X separate of the network protocol stack is

the ability to service information update interrupts out of the network data control path.

2.4.3.2 Synchronous Push

In the Synchronous Push architecture source protocol layers publish information

directly to QoT via an interrupt mechanism. QoT is passed an interrupt and must block to

service the information update. As more protocol layers are included in the system, QoT

is forced to handle an increasing number of update interrupts. The increased interrupts for

QoT can consume resources necessary for timely network traffic handling.

The Synchronous Push test harness utilizes the Application Driver module, the QoT

module, the Physical layer module and the protocol layer extensions. The Brand X module

is not utilized during Synchronous Push experiments.

2.4.3.3 Synchronous Pull

In Synchronous Pull architectures, QoT interacts directly with network protocol

layers during the environment information gathering process by relating requests for in-

formation via a registered callback system. When information is required by QoT, an

information update is signalled and sent to the source protocol layer. When the source

protocol receives an update request, the response must be calculated and returned to QoT.

This mechanism blocks network protocols longer than Synchronous Push architectures but

can scale to handle much larger sets of network protocols.

The Synchronous Pull test harness utilizes the Application Driver module, the QoT

module, the Physical layer module and the protocol layer extensions. The Brand X module

is not utilized during Synchronous Pull experiments.

33

2.5 Performance Analysis of Cross-Layer Architectures in a QoT Environment

We conducted a performance analysis of network protocol stack latency on vari-

ous cross-layer architectures. The following sections describe the performance analysis

in greater detail. In the following sections, we present cross-layer performance analysis

goals, performance analysis factors, evaluation techniques, evaluation metrics, test harness,

results and analysis.

2.5.1 Cross-Layer Performance Analysis Goals

The goal of this performance analysis is to quantify the effect on network protocol

stack latency of four cross-layer factors across multiple factor levels, focusing on increased

latency in the network protocol stack due to the cross-layer interference. While prior re-

search has focused on the effects of cross-layer architectures on end-to-end network per-

formance, the area of network stack performance has received significantly less attention.

2.5.2 Performance Analysis Factors

The four factors included in the experimental performance analysis are: Archi-

tecture, Activation Mechanism, Workload, and Volatility. These factors represent four

performance intensive areas that are common among cross-layer architectures. They are

described in greater detail in the following sections.

2.5.2.1 Architecture

Three cross-layer architectures are compared with a control environment to isolate

the effect of cross-layer mechanisms. The Control architecture is an unmodified Linux

network protocol stack in which there are no cross-layer mechanisms. The three cross-

layer architectures represent three fundamental data elicitation mechanisms, Brand X, Syn-

chronous Push, and Synchronous Pull, described in Section 2.3.1.2. The three cross-layer

34

architectures were constructed from the same code base as the control architecture and in-

clude modifications for cross-layer functionality. We briefly discuss each of these three

cross-layer architectures in turn.

• Analysis of the Billboard architecture facilitates an improved understanding of the

effects of a loosely coupled asynchronous cross-layer architecture on protocol stack

latency.

• Analysis of the Synchronous Pull and Synchronous Push architectures facilitates an

improved understanding of the effects of traffic blocking on protocol stack latency.

2.5.2.2 Activation Mechanism

The two activation mechanisms compared in our performance analysis are Timer

and Event. The activation mechanism determines the method by which information up-

dates are initiated. Timer activation mechanisms trigger information updates according

to a predefined time schedule. Event activation mechanisms monitor network traffic for

changes in the environment; once changes have reached a predefined threshold an infor-

mation update is signalled. By analyzing Timer and Event activation mechanisms we are

able to determine the effect of update interruptions and traffic monitoring on network stack

latency.

2.5.2.3 Workload

In order to accurately measure network stack latency, the system must be tested

while processing appropriate workloads. The workload generated by the test harness for

the experiments is comprised of UDP data packets. The packet size and packet frequency

parameters are varied along with the system workload.

Uncontrolled network traffic is eliminated by closing all network interfaces except

the loopback interface. Additionally network traffic on the loopback interface is monitored

and any active network processes are closed.

35

Early results indicated that varying workload packet size caused unpredictable

changes in the measured network protocol stack latency. The changes are a result of packet

fragmentation and assembly in the network protocol stack. As a result, workload packet

size is limited to 500 bytes, a level that causes no packet fragmentation and resulted in

stable protocol stack latency in the initial performance measurements.

The following four traffic workloads represent real system usage scenarios:

• Heavy Traffic – Packets are sent at 1 microsecond intervals. This load represents a

steady stream of data, pushing the boundaries of the capacity of the system, charac-

terized by 90% utilization of the system bandwidth.

• High Medium Traffic – Packets are sent at 10 microsecond intervals. This load rep-

resents high network usage, such as real-time streaming media and is characterized

by 70% utilization of the system.

• Low Medium Traffic – Packets are sent at 100 microsecond intervals. This load

represents normal active usage of the system without stressing the system capacity,

characterized by 30% utilization of the system.

• Light Traffic – Packets are sent at 1000 microsecond intervals. This load represents

low utilization of the system, characterized by less than 10% system utilization.

2.5.2.4 Volatility

Volatility represents the condition and stability of the wireless link. Volatility is

used to represent various link stabilities in the test system. Volatility levels produce work-

load on the system that can affect the performance of the cross-layer architecture.

The test harness implementation controls volatility levels through the information

query frequency parameter. By varying the query frequency we can simulate various am-

bient wireless environments in a consistent and repeatable way.

36

The Timer activation mechanism has four query frequency levels: 1 millisecond,

10 milliseconds, 100 milliseconds and 1000 milliseconds. Query frequency levels repre-

sent environment conditions in which protocol layer status changes sufficiently within the

respective time interval to require an information update.

The Event activation mechanism has query frequency thresholds: 1 unit, 10 units,

100 units and 1000 units levels to determine if an information update is required. Thresh-

olds are ranges in which environment information can fluctuate before an information up-

date is triggered.

• A highly volatile environment consists of perpetual changes in the ambient wireless

environment and link conditions, such as moving between a high quality state with

few bit errors and a low quality state with a high level of packet retransmission and

bit errors.

– Timer – 1 millisecond Query Interval

– Event – 1 unit Information Threshold

• A heightened environment consists of frequent changes in the wireless environ-

ment causing packet corruption and errors, such as traveling between wireless access

points.

– Timer – 10 millisecond Query Interval

– Event – 10 unit Information Threshold

• A moderately volatile environment consists of levels of packet corruption and errors

that are typical of an average use case with minimal interference.

– Timer – 100 millisecond Query Interval

– Event – 100 unit Information Threshold

• A stable environment has consists of minimal changes in the ambient wireless envi-

ronment and link conditions. Stability may suggest consistently good or consistently

37

bad conditions, but in either case minimal cross-layer updating is necessary to keep

environmental information up to date.

– Timer – 1000 millisecond Query Interval

– Event – 1000 unit Information Threshold

2.5.3 Evaluation Techniques

To quantify the effect of cross-layer interference on network protocol stack latency

each architecture is evaluated in context of the various network volatilities, workloads, and

activation mechanisms. The results from the experiments are input into an experimental

model to calculate the component effects. Once the component effects are known, the

experimental model is refined by removing components that are not statistically significant.

The following sections describe the experimental design, the experimental model

and the ANOVA terminology used in this paper.

2.5.3.1 Experimental Design

The experimental design uses ANOVA calculations to estimate the contribution of

factors, interactions, and measurement errors in the performance of the network protocol

stack. In order to determine component variance we performed a full factorial design uti-

lizing every possible combination of levels and factors. The number of experiments,n, in

our cross-layer study is:

n = (4 Architectures)×(2 Activation Mechanisms)×(4 Volatility Levels)×(4 Workloads)

= 128 experiments

The full factorial design facilitates calculation of the effects of factors, interactions, and

measurement error. The experiments are repeated three times to distinguish variance caused

by factors and interactions from measurement error.

38

Measuring a Control architecture in a theoretically implausible but conceptually

useful condition in which cross-layer mechanisms contribute no latency established a base-

line by which cross-layer architectures can be compared.

2.5.3.2 Experimental Model

The model for the cross-layer performance analysis is:

yijklm = µ + αi + βj + ζk + δl + γABij + γACik + γADil + γBCjk + γBDjl + γCDkl +

γABCijk + γABDijl + γACDikl + γBCDjkl + γABCDijkl + εijklm

i = 1, ..., a; j = 1, ..., b; k = 1, ..., c; l = 1, ..., d; m = 1, ..., r;

Where:

yijklm = response (observation) in themth replication of experiment with factors

A, B, CandD at levelsi, j, k andl, respectively.

µ = mean response.

αi = effect of factorA at leveli.

βi = effect of factorB at levelj.

ζi = effect of factorC at levelk.

δi = effect of factorD at levell.

γXY xy = interaction between two factorsX andY at levelsx andy.

γXY Zxyz = interaction between three factorsX, Y and Z at levelsx, y and z,

respectively.

γABCDijkl = interaction betweenA, B, CandD at levelsi, j, k andl, respectively.

εijklm = errors at levelsi, j, k, l over repetitionsm.

2.5.3.3 ANOVA Terms

An overview of the ANOVA equations is provided in Table 2.1. The following are

terms used in an ANOVA performance analysis:

39

Table 2.1: ANOVA Table for Cross-Layer Experiment Analysis
Component Sum of Squares Percentage of Variation Degrees of Freedom Mean Square F-value F-table

y SSY =
∑

(y2
ijklr

) abcdr

ȳ.. SS0 = abcdrµ2 1
y − ȳ.. SST = SSY − SS0 100 abcdr − 1

A SSA = bcdr
∑

α2
i 100(SSA

SST
) ar − 1 MSA = SSA

a−1
MSA
MSE

F[1−α;a−1,a(r−1)]

B SSB = acdr
∑

β2
j 100(SSB

SST
) br − 1 MSB = SSB

b−1
MSB
MSE

F[1−α;b−1,b(r−1)]

C SSC = abdr
∑

ζ2
k

100(SSC
SST

) cr − 1 MSC = SSC
c−1

MSC
MSE

F[1−α;c−1,c(r−1)]

D SSD = abcr
∑

δ2
l

100(SSD
SST

) dr − 1 MSD = SSD
d−1

MSD
MSE

F[1−α;d−1,d(r−1)]

e SSE =
∑

e2
ijklm

100(SSE
SST

) abcd(r − 1) MSE = SSE
abcd(r−1)

• Sum of Squaresis a quantification of the results associated with the given component.

A component consists of a factor or the interaction between multiple factors.

• Percentage of Variationis a comparison of the individual component value and the

summation of the total variation that provides the percentage of over all variation that

is due to the effects of the stated component.

• Degrees of Freedomare the number of independent terms in the sum of squares

calculation.

• Mean Squareis calculated by taking the sum of squares over the degrees of freedom

and is used in calculating an F-value for a component.

• TheF-value is a ratio of the variance of a component and the variance of error. F-

value is used in determining the statistical significance of a component.

• F-tableis a computed ratio of the F distribution using the ratio of component degrees

of freedom over error degrees of freedom. The computed ratio, F-value, is com-

pared with F-table obtained from the table of F quantiles and the sums of squares are

considered significantly different if the computed F-value is more than F-table. The

comparison between calculated F-value and expected F-table is called the F-test.

40

Table 2.2: Factors and Levels for Cross-Layer Performance Analysis

Symbol Factor Level 1 Level 2 Level 3 Level 4

A Architecture Control Brand X Synchronous Push Synchronous Pull
B Activation Mechanism Timer Event
C Workload 1µs 10µs 100µs 1000µs
D Volatility 1 µs/1 unit 10µs/10 unit 100µs/1000 unit 1000µs/1000 unit

2.5.4 Evaluation Metrics

Latencyis defined as the time it takes a packet to travel from an application, down

the protocol stack, across a wireless link, and back up the protocol stack of the receiver.

The hypothesis is that cross-layer architectures increase overall network performance at the

expense of increased latency during packet processing within the protocol stack. Based on

measured latency and experiment traffic patterns the theoretical throughput of the system

can be calculated.

2.5.5 Experiment Setup and Configuration

The performance analysis consists of a matrix of experiments generated by the com-

bination of all possible factors and levels, (see Table 2.2). The experiments in the matrix

were repeated to ensure accuracy in the results and allow determination of statistical sig-

nificance for the effects.

The matrix consists of:

• Four Architectures. Control, Brand X, Synchronous Push, and Synchronous Pull (see

Section 2.5.2.1).

• Two Activation Mechanisms. Timer and Event (see Section 2.5.2.2).

• Four Workload Levels. The workload levels are varied through the network packet

41

frequency. The four packet intervals are 1 microsecond, 10 microseconds, 100 mi-

croseconds and 1000 microseconds (see Section 2.5.2.3).

• Four Volatility Levels. The level of volatility is dependant on the activation mech-

anism (see Section 2.5.2.4). Timer mechanism volatility levels are 1 microsecond,

10 microseconds, 100 microseconds and 1000 microseconds. The event mechanism

volatility levels are referenced in terms of changes of 1 unit, 10 units, 100 units and

1000 units.

There are 128 experiments contained in the matrix of factors and factor levels. Each

experiment represents a unique cross-layer setup and the matrix of experiments covers all

possible combinations of values. In order to differentiate measurement errors from vari-

ation due to statistically significant factors, the experiments were repeated three times.

Repetition of the experiment matrix provides us with the necessary data to calculate main

effects, interaction effects and effects due to experimental error. Repetition of the experi-

ment matrix provides us with the summary of 768,000 independent measurements.

2.5.5.1 Steady State Calculation

Each experiment has an initial startup cycle in which system latency fluctuates be-

fore a steady packet transmission time is achieved (see Figure 2.10). We are interested in

measuring system performance during stable workload conditions due to the fact that the

QoT environment remains active while the network protocol stack is alive. Initial startup

occurs during the system startup cycle and does not impact the user experience.

In order to accurately measure the system each experiment is repeated 2,100 times.

The initial 100 measurements represent the startup cycle and the results are discarded. The

remaining 2,000 measurements are recorded and averaged in order to return system latency

at steady state.

42

 0

 50

 100

 150

 200

 0 50 100 150 200 250

T
ra

ns
m

is
si

on
 T

im
e

(u
s)

Packet Number

Control
Brand X

Synchronous Push
Synchronous Pull

Figure 2.10: Packet Transmission Startup Cycle

2.5.6 Results and Analysis

The following sections provide an overview of results of our experiments and detail

the statistical techniques used in the analysis.

2.5.6.1 Computation of Effects

The table mean (µ), must first be computed in order to calculate the main effects of

the factors for all experiments. The table mean is used throughout the ANOVA calculations

when comparing a set of the experimental results to the predicted results. The equation for

calculating the table mean (µ) is:

µ = ȳ.... = 1
abcdr

∑r
i=1

∑a
j=1

∑b
k=1

∑c
l=1

∑d
m=1 yijklm = 92.04

Once the table mean is calculated, the parameters for the factors at each level can be

calculated. Parameters are calculated for each factor at each respective value by averaging

43

Table 2.3: Main Effects in the Cross-Layer Performance Analysis
Factor Level 1 Level 2 Level 3 Level 4
Architecture -16.15 -.045 3.71 12.89
Activation Mechanism -11.17 11.17
Workload -0.17 0.26 -0.06 -0.03
Volatility 5.82 -2.05 -2.12 -1.65

along various axes of the experiment matrix and subtracting the table mean. The following

are the parameter values of FactorA, Architecture:

Control= α1 = ȳ1... − ȳ.... = 75.89− 92.04 = −16.15

Brand X= α2 = ȳ2... − ȳ.... = 91.59− 92.04 = −0.45

Synchronous Push= α3 = ȳ3... − ȳ.... = 95.75− 92.04 = 3.71

Synchronous Pull= α4 = ȳ4... − ȳ.... = 104.93− 92.04 = 12.89

Parameters are valuable for identifying trends in the experimental results but they are not

a direct indication of relative performance between trend levels. The parameters for the

factors at each respective level are listed in Table 2.3. There are several trends in the

parameter results that are of interest.

-20

-15

-10

-5

 0

 5

 10

 15

PullPushBrand XControl

Pa
ra

m
et

er
 V

al
ue

12.89

3.71

-16.15

-0.45

Figure 2.11: Architecture Parameters

44

-2

 0

 2

 4

 6

1000100101
Factor D, Query Interval. (Time in Microseconds)

5.82

-2.05 -2.12
-1.65

Figure 2.12: Volatility Parameter Levels

• FactorA, Architecture, shows a significant variance between the four factor levels:

parameter values range between -16.15 and 12.89 (see Figure 2.11). Level 1, the

Control architecture, has the lowest parameter value, signifying that the Control ar-

chitecture has the least latency of the four architectures. Level 2, Brand X, has the

second lowest parameter value at -0.45, signifying Brand X incurs less latency than

the synchronous cross-layer architectures. Level 3, Synchronous Push, has the next

lowest value, 3.71, which indicates that the shorter blocking times of Synchronous

Push architectures incur less latency than the longer blocking times of Synchronous

Pull architectures.

• The parameters of factorD, Query Interval, show an interesting trend (see Fig-

ure 2.12). The factor levels ofD represent query interval frequency and as the factor

levels decrease query frequency decreases. The parameter values at levels two, three

and four vary only slightly from one another suggesting that at the lower query fre-

quencies, network latency varies only slightly. From factor level two to factor level

one there is a significant increase. The high parameter value of factorD level one

suggests a large increase in latency between level two and level one. This indicates

that there is a threshold for query intervals between level one and level two.

45

Parameters are used to calculate the main effect of each factor by the respective

equation in Table 2.1. For instance, the effect of factorA is:

SSA = bcdr
∑

α2
i = 4∗2∗4∗3∗ ((−16.15)2 ∗ (−0.45)2 ∗ (3.71)2 ∗ (12.89)2) = 42337.52

By calculating the main effects we can determine what percentage of the variation results

from each factors.

2.5.6.2 Computation of Interactions

In order to calculate interactions between factors we must average across multiple

axes of the experimental matrix and account for individual factor effects as well as the

table mean. Parameter values are calculated for each axis of the experiment matrix. The

equation for calculating the parameters of the first order interaction between architecture

(A) and activation mechanism (B) at level one is:

γ11... = ȳ11... − ȳ1.... − ȳ.1... + ȳ..... = 75.7956− 91.8719− 75.8900 + 92.0419 = 0.0756

The resulting matrix of values is used to calculate the interactions with the following equa-

tion:

SSAB = cdr
∑

ij γ2
ij = 25058.19

Parameter calculation becomes increasingly complex in second-order and third-order inter-

actions as the number of individual effects and sub-interactions increases.

2.5.6.3 Computation of Errors

The test harness runs in a Linux operating system environment in which all possible

factors affecting the experiment results cannot be controlled. In order to limit uncontrolled

factors, all nonessential programs and processes are shutdown when experiments are con-

ducted. Even with these precautions, the operating system is very complex and not all

46

factors can be controlled. Therefor, factors outside the defined test system can still con-

tribute to the experiment results, causing artificially high or low measurements. In order to

ascertain the influence of outside factors, experiments are run in random order and repeated

multiple times.

The estimated response,ŷijkl, in the(i, j, k, l) experiment is given by a summation

of the table mean and all of the relative effects:

ŷijkl = µ + αi + βj + ζk + δl +
∑

interactions

ŷ1111 = 92.04 +−16.15 +−0.17 +−11.17 + 5.82 + 5.13 = 75.50

The difference between the observed response,yijklm, and the predicted response,ŷijkl, is

residual or error:

eijklm = yijklm − ŷijkl.

e11111 = 75.50− 74.72 = 0.78

The sum of the squared errors (SSE) is used to calculate the total variance due to

error and used to compute statistical significance for the effects. SSE is given by:

SSE =
∑abcd

i=1

∑r
j=1 e2

ij = 1257.73

SSE = (−0.7838)2 + (1.6823)2 + · · ·+ (0.4736)2 = 1257.73

The sum of the squared errors is used to calculate total variance because the sum of the

errors for the entire experiment always equals zero.

2.5.6.4 Allocation of Variation

Once the effects of the factors, interactions and errors have been calculated, the

total variation (SST) of the experiment can be calculated. SST is used in the allocation

and analysis of variance among the factors and interactions in the model. Using SST we

can calculate the percentage of variation due to an individual factor and if the effect is

statistically significant.

47

In our model, (see Section 2.5.3.1), the total variation ofy can be allocated to four

factors, eleven interactions and experiment errors. In order to do so, we square both sides

of the model and add across all observations:

∑
ijkl y

2
ijkl = abcdµ2 + bcd

∑
jkl α

2
jkl + acdr

∑
β2

j + abdr
∑

ζ2
k + abcr

∑
δ2
l + cd

∑
kl AB2 +

bd
∑

jl AC2 + bc
∑

jk AD2 + ad
∑

il BC2 + ac
∑

ik BD2 + ab
∑

ij CD2 + d
∑

l ABC2 +

c
∑

k ABD2 + b
∑

j ACD2 + a
∑

i BCD2 +
∑

ABCD2 +
∑

e2
ijklm

The sum of squares of the terms can be substituted in to clarify the equation:

SSY = SS0 + SSA + SSB + SSC + SSD + SSAB + SSAC + SSAD + SSBC +

SSBD + SSCD + SSABC + SSABD + SSACD + SSBCD + SSABCD + SSE

The total variation is calculated by the sum of squares of the factors and interactions in the

equation:

SST = SSY − SS0 =

SSA + SSB + SSC + SSD + SSAB + SSAC + SSAD + SSBC + SSBD +

SSCD +SSABC +SSABD +SSACD +SSBCD +SSABCD +SSE = 131662.84

SST = 3384798.12− 3253135.29 =

42337.52 + 47871.78 + 9.60 + 4346.15 + 25058.19 + 33.94 + 4404.45 + 7.42 +

2401.24 + 40.92 + 11.35 + 3659.65 + 132.00 + 23.31 + 67.59 + 1257.73 = 131662.84

Variation associated with measurement error and uncontrolled factors is:

e = 100(SSE
SST

) = 100(1257.73
131662.84

) = .0096 = 0.96%

A low error value is a sign of a well designed experiment in which all significant factors

have been included. The commonly accepted level for unexplained variation (error) in an

ANOVA evaluation is 0.05 or 5% [26]. This is a reassurance that the factors we selected

for our performance evaluation are the primary factors that influence cross-layer protocol

stack latency.

48

Figure 2.13: Component Percentages of Total Variation

In order to calculate the percentage of variation due to a specific factor the sum of

the square of the factor is divided by the total sum of the squares and multiplied by 100.

The three components that contribute a significant percentage of variation, 5% or greater,

account for 87.55% of the total variation (see Figure 2.13). These components are:

B = 100(SSB
SST

) = 100(47871.75
131662.84

) = 36.36%

A = 100(SSA
SST

) = 100(42337.52
131662.84

) = 32.16%

AB = 100(SSAB
SST

) = 100(25058.19
131662.84

) = 19.03%

FactorB represents the two activation mechanism implemented in the study: Timer

and Event. This factor accounts for the largest percentage of variation in the experiment

results: 36.36% (see Figure 2.13). The large percentage of variation suggests that the

fundamental differences between the Timer and Event mechanisms are the leading cause

for cross-layer latency in the network protocol stack. Event mechanisms had an average

increase in latency of 19% in Brand X, 31% in Synchronous Push and 44% in Synchronous

49

Pull.

 0

 20

 40

 60

 80

 100

 120

 140

 160

PullPushBrand XControl

T
ra

ns
m

is
si

on
 T

im
e

(u
s)

Factor A, Cross-Layer Architecture

Timer
Event

Figure 2.14: FactorB, a comparison of Activation Mechanism Transfer Times

The large increase in latency in Event activation mechanisms is a result of additional

network traffic processing that occurs with each network packet processed in the protocol

stack (see Figure 2.14). Event activation mechanisms monitor each network traffic packet

as it passes through the protocol stack. In contrast, the Timer activation mechanism only

monitors network traffic when an information update is requested. If network performance

is the highest priority then a Timer activation model should be utilized. If timely system

response in a highly volatile environment is a high priority and an increase in protocol stack

latency is acceptable then the event activation mechanism should be utilized.

FactorA represents the four architectures involved in the performance analysis,

Control, Brand X, Synchronous Push, Synchronous Pull. This factor has the second highest

percentage of variation, 32.16% (see Table 2.4). In Section 2.5.6.1, we determined the

relative order of factorA’s levels in terms of performance. The experimental results show

that the Control architecture has the lowest associated latency at 75.50µs. Brand X has an

8.3% increase in latency over the Control architecture with a Timer activation mechanism

50

Table 2.4: ANOVA Table for Cross-Layer Performance Analysis
Sum of Percentage of Degrees of Mean F- F-

Component Squares Variation Freedom Square Computed Table

y 3384798.12 384
ȳ 3253135.29 1
y − ȳ.... 131662.84 100 383

Main Effects 94565.05 71.82% 10 9456.50 1924.78 1.8678
A 42337.52 32.16% 3 14112.51 2872.47 2.6399
B 47871.78 36.36% 1 47871.78 9743.85 3.8780
C 9.60 0.01% 3 3.20 0.65 2.6399
D 4346.15 3.30% 3 887.39 180.62 2.6399

First-Order
Interactions 31946.15 24.26% 36 887.39 180.62 1.4633

AB 25058.19 19.03% 3 8352.83 1700.14 2.6399
AC 33.94 0.03% 9 3.77 0.77 1.9166
AD 4404.45 3.35% 9 489.38 99.61 1.9166
BC 7.42 0.01% 3 2.47 0.50 2.6399
BD 2401.24 1.82% 3 800.41 162.92 2.6399
CD 40.92 0.03% 9 4.55 0.93 1.9166

Second-Order
Interactions 3826.32 2.91% 54 70.86 14.42 1.3878

ABC 11.35 0.01% 9 1.26 0.26 1.9166
ABD 3659.65 2.78% 9 406.63 82.77 1.9166
ACD 132.00 0.10% 27 4.89 0.99 1.5294
BCD 23.31 0.02% 9 2.59 0.53 1.9166

Third-Order
Interaction

ABCD 67.59 0.05% 27 2.50 0.51 1.5294

Error
e 1257.73 0.96% 256 4.91

51

and a 28.0% increase with an Event activation mechanism. Synchronous Push has a 10.8%

increase in latency over the Control architecture with a Timer mechanism and a 42.4%

increase with an Event mechanism. Synchronous Pull has a 12.9% increase in latency over

the Control architecture utilizing a Timer mechanism and a 53.5% increase utilizing an

Event mechanism. It is clear from the experimental results that Brand X has the lowest

network protocol stack latency of the cross-layer architectures.

The third major component is the interaction between factorA and factorB, which

causes 19.03% of the total experiment variation. TheAB interaction can be seen in the re-

sults table by comparing the variance in packet transmission times between the Timer and

Event mechanism in the various architectures (see Figure 2.14). The rate of change in the

packet transmission times is not held constant across the various architectures. The large

percentage of variation due to this interaction indicates there is a correlation between the

architecture and the activation mechanism utilized. Brand X architecture utilizing a Timer

activation mechanism has the highest cross-layer performance of the tested. The experi-

mental results show that if an event system is required that the Brand X Event activation

system has the least incurred protocol latency due to cross-layer interference.

2.5.6.5 Analysis of Variance

In order to determine if a factor has a significant impact on the response the F-test

is used to compare the variance resulting from a factor with the variance caused by errors.

The F-test determines if variance due to a factor can be considered statistically significant.

The F-test is an appropriate determination of statistical significance in our model because

SSE and the sum of squares of the factors are assumed to have a chi-square distribution

with the errors that are normally distributed.

Sum of squares having a chi-square distribution of the ratioSSA/DFF
SSE/DFE

, where DFF

and DFE are the degrees of freedom for SSA and SSE respectively, have an F-distribution

with DFF numerator and DFE denominator degrees of freedom. The quantitySSA
DFA

is called

the Mean Square ofA (MSA). Similarly, SSE
DFE

is called the Means Square of Errors (MSE).

52

If the computed ratioMSA
MSE

is greater than the quantile,F[1−α;DFF,DFE], which can be ob-

tained from a table of quantiles of F-variates, then the variance based on the factorA is

considered statistically significant. For instance, the factorA has a calculated F-ratio of

2872.47, which is larger than the F-table value, 2.6399.

Factor A, F-ratio Table F-value
SSA/DFF
SSE/DFE

F[1−α;DFF,DFE]

42337.52/3
1257.73/256

F[0.95;3,256]

2872.47 > 2.6399

Table 2.5: Significant Factors in Cross-Layer Network Latency
Sum of Percentage of Degrees of Mean F- F-

Component Squares Variation Freedom Square Computed Table

A 42337.52 32.16% 3 14112.51 2872.47 2.6399
B 47871.78 36.36% 1 47871.78 9743.85 3.8780
D 4346.15 3.30% 3 887.39 180.62 2.6399

AB 25058.19 19.03% 3 8352.83 1700.14 2.6399
AD 4404.45 3.35% 9 489.38 99.61 1.9166
BD 2401.24 1.82% 3 800.41 162.92 2.6399

ABD 3659.65 2.78% 9 406.63 82.77 1.9166

Calculating the F-ratio for the factors of the performance analysis we found that

there are seven factors and interactions that are statistically significantly (see Table 2.5).

We have already discussed the three components that contribute the largest percentage of

variation (see Section 2.5.6.4). The four statistically significant components that contribute

less than 5% of the total variation are:

• FactorD, information query interval, contributes 3.30% of the total variation. Our

hypothesis was that the network stack latency would increase as the query level in-

creased. As the query level approaches the limit of the function (constant querying)

53

 0

 20

 40

 60

 80

 100

 120

 140

 160

Level 1 Level 2 Level 3 Level 4

T
ra

ns
m

is
si

on
 T

im
e

(u
s)

Query Interval Level

Contol
Brand X

Synchronous Push
Synchronous Pull

Figure 2.15: Event Transmission times with Workload at 1µs

the entire bandwidth of the system is utilized by information updates and there is an

infinite delay for network traffic (see Figure 2.15). We were not able to fully test this

hypothesis due to constraints in the Linux kernel timer mechanism.

The activation mechanisms are controlled by the kernel system timer. The kernel

system timer is the fastest timing mechanism available in the standard Linux 2.6.8-

24 kernel. Function pointers are registered in a system timer queue and are executed

after a set delay. The system timer is limited to the frequency of the system clock,

which is specified in the kernel variableHZ. TheHZvariable specifies the granularity

of the system timer. In the Linux 2.6.8-24 kernel theHZvalue is 1,000, meaning the

system timer launches at one millisecond intervals. The fastest information query

frequency available using the system timer is once per millisecond. Network traffic

is processed on the order of 10-100 microseconds, therefor a millisecond delay on

information updates is insufficient to fully test this factor.

54

Alternatives to the system timer have been considered including modified high-

frequency system timers, high-speed internal clocks, and multi-threaded query mech-

anisms that don’t rely on the system timer. These mechanism are not natively sup-

ported in the Linux 2.6.8-24 kernel and require substantial modification to the under-

lying kernel and network protocol stack. Such modifications have been implemented

but they are still in the experimental phase and are only supported on custom hard-

ware platforms.

• InteractionAD contributes 3.35% of the total variation. The interaction between

factor A, architecture, and factorD (query interval) results from a variation in the

transmission time as the query frequency increases over the various architectures.

The largest variation occurs in Synchronous Pull architectures utilizing an Event ac-

tivation mechanism. The least variation occurs in the Control architecture.

• InteractionBD contributes 1.82% of the total variation. Although small, this interac-

tion is still considered statistically significant. InteractionBD results from different

rates of increase in transmission times between Timer and Event activation mecha-

nisms as the query frequency is increased.

• InteractionABD contributes 2.78% of the total variation. This interaction is the re-

sult of different rates of change in theBD interaction among the various architectures.

The remaining interactions are not statistically significant and are considered negligible.

Removing the non-significant components from our original experiment model (see

Section 2.5.3.2) yields a simplified model that represents cross-layer network performance.

yijklm = µ + αi + βj + δl + γABij + γADil + γBDjl + γABDijl + εijklm

i = 1, ..., a; j = 1, ..., b; k = 1, ..., c; l = 1, ..., d; m = 1, ..., r;

55

2.6 Conclusions and Future Work

It was our hypothesis that an asynchronous cross-layer architecture could be utilized

in an efficient manor to provide accurate and timely environment information in a hetero-

geneous wireless environment. Brand X is the resulting cross-layer architecture that fulfils

the information gathering requirements of QoT and provides an extensible and configurable

autonomous data gathering mechanism. Implementation of the Brand X architecture pro-

vides a functional proof that the requirement for cross-layer information gathering in a QoT

context can be achieved in a heterogeneous wireless environment. In order to further vali-

date our hypothesis that an asynchronous cross-layer architecture can provide information

in a timely and efficient manner we examined the performance of Brand X versus a control

architecture and synchronous cross-layer architectures.

2.6.1 Performance Analysis

Our findings indicate that Brand X incurs between 7.96% and 47.6% less network

stack latency than the other cross-layer architectures measured. These findings confirm

the fact that an asynchronous cross-layer architecture can achieve less latency and higher

performance than similar synchronous architectures.

Brand X incurs as little as 8.13% and at most 39.38% more network stack latency

than the control environment. While Brand X out performs the other cross-layer architec-

tures in the study there remains room for improvement. Further optimization of the Brand

X communication mechanisms and internal code could lead to addition improvements in

network performance.

This research quantifies the effects of cross-layer architecture, activation mecha-

nism, workload, and volatility on network protocol stack latency. This study has shown

that the type of cross-layer architecture selected can have

56

2.6.2 Timer versus Event Activation Mechanisms

Examining the results from the Event activation mechanism experiments can be

misleading because of the large increase in network stack latency. The increase in network

protocol stack latency should be compared to the latency of the complete data transmission

to determine the effect of increased protocol stack latency on theoretical system through-

put. For instance, in a Bluetooth data transfer each transmission slot is 625µs long [27].

Utilizing Brand X the additional cross-layer latency for a Bluetooth environment is 30µs,

or 4.8% of the slot window. The 4.8% of the slot window utilized by Brand X occurs dur-

ing the protocol processing time frame and does not directly impact the data transmission

time, therefor theoretical throughput is not decreased. In 5 slot Bluetooth data transmission,

Brand X utilizes only 0.20% to 0.96% of the available slot.

In a worst case scenario, Synchronous Pull utilizes an Event mechanism and in-

creases protocol stack latency by 75µs. This will increase the protocol processing time and

reduce the data burst time by 55µs or 8.8%. The loss of 8.8% of the theoretical throughput

of the Bluetooth connection is a significant decrease in performance, but the cross-layer

functionality facilitates communication in an environment in which no stable connection

could be maintained.

2.6.3 Future Work

The cross-layer test harness provides a valuable tool for implementing and compar-

ing various cross-layer mechanisms in a Linux environment. The following are just a few

of the many areas that could be further examined.

The cross-layer test harness utilizes the Linux kernel system timer functionality

in order to schedule regular events, such as timer based information queries. The Linux

kernel timer is limited in timing granularity; the Linux 2.6.8-24 kernel timer is limited to

one millisecond intervals. The addition of a higher frequency timing mechanism would

provide the ability to fully test cross-layer architectures.

The results from the performance analysis focus on network stack latency in a single

57

network environment. The test harness could be extended to include support for various

wireless transports. This would allow examination of cross-layer architectures in their

target environments.

The results presented in this thesis dealt only with constant network traffic at set

data rates. It is well understood that traffic and usage patterns play an important role in

evaluating network performance. Extension of the Application Driver to include dynamic

and repeatable traffic generation would allow researches to study the effects of traffic pat-

terns on cross-layer architectures in a heterogeneous wireless environment.

58

Chapter 3

ANOVA Tables

59

Table 3.1: ANOVA Table for Cross-Layer Performance Analysis
Sum of Percentage of Degrees of Mean F- F-

Component Squares Variation Freedom Square Computed Table

y 3384798.12 384
ȳ 3253135.29 1
y − ȳ.... 131662.84 100 383

Main Effects 94565.05 71.82% 10 9456.50 1924.78 1.8678
A 42337.52 32.16% 3 14112.51 2872.47 2.6399
B 47871.78 36.36% 1 47871.78 9743.85 3.8780
C 9.60 0.01% 3 3.20 0.65 2.6399
D 4346.15 3.30% 3 887.39 180.62 2.6399

First-Order
Interactions 31946.15 24.26% 36 887.39 180.62 1.4633

AB 25058.19 19.03% 3 8352.83 1700.14 2.6399
AC 33.94 0.03% 9 3.77 0.77 1.9166
AD 4404.45 3.35% 9 489.38 99.61 1.9166
BC 7.42 0.01% 3 2.47 0.50 2.6399
BD 2401.24 1.82% 3 800.41 162.92 2.6399
CD 40.92 0.03% 9 4.55 0.93 1.9166

Second-Order
Interactions 3826.32 2.91% 54 70.86 14.42 1.3878

ABC 11.35 0.01% 9 1.26 0.26 1.9166
ABD 3659.65 2.78% 9 406.63 82.77 1.9166
ACD 132.00 0.10% 27 4.89 0.99 1.5294
BCD 23.31 0.02% 9 2.59 0.53 1.9166

Third-Order
Interaction

ABCD 67.59 0.05% 27 2.50 0.51 1.5294

Error
e 1257.73 0.96% 256 4.91

60

Ta
bl

e
3.

2:
C

ro
ss

-L
ay

er
P

er
fo

rm
an

ce
A

na
ly

si
s

C
om

pi
le

d
D

at
a

A
rc

hi
te

ct
ur

e
C

on
tr

ol
B

ra
nd

X
P

us
h

P
ul

l
S

ta
tis

tic
s

C
ol

um
n

P
ac

ke
tF

re
q.

Q
ue

ry
In

te
rv

al
T

im
er

E
ve

nt
T

im
er

E
ve

nt
T

im
er

E
ve

nt
T

im
er

E
ve

nt
S

um
A

vg
E

ffe
ct

1
µ

s
1

µ
s

75
.5

07
1

75
.6

79
5

83
.8

84
4

10
5.

48
85

83
.6

82
1

11
5.

16
27

85
.2

55
7

15
5.

73
65

78
0.

40
97

.5
5

5.
51

10
µ

s
75

.5
94

4
76

.1
59

7
81

.9
16

4
97

.7
55

4
82

.4
99

4
10

8.
30

91
80

.9
56

7
11

6.
94

14
72

0.
13

90
.0

2
-2

.0
3

10
0
µ

s
75

.7
46

1
76

.0
20

0
81

.9
04

4
97

.9
32

0
81

.0
96

6
10

6.
71

14
81

.5
02

5
11

9.
05

79
71

9.
97

90
.0

0
-2

.0
5

10
00

µ
s

75
.9

35
8

75
.7

22
3

83
.3

51
4

97
.9

07
9

82
.7

98
5

10
6.

36
58

81
.5

08
2

11
5.

81
13

71
9.

40
89

.9
3

-2
.1

2
10

µ
s

1
µ

s
75

.6
97

2
76

.2
09

2
84

.8
77

6
10

6.
26

20
83

.9
56

3
11

4.
75

21
84

.2
58

3
15

8.
29

79
78

4.
31

98
.0

4
6.

00
10

µ
s

75
.5

66
4

75
.7

12
4

83
.0

04
6

99
.5

83
2

80
.6

19
0

10
9.

33
16

82
.1

61
1

11
3.

30
32

71
9.

28
89

.9
1

-2
.1

3
10

0
µ

s
75

.9
81

9
75

.4
70

1
81

.2
35

3
97

.8
53

6
81

.3
51

4
10

6.
42

82
81

.4
56

4
11

8.
01

72
71

7.
79

89
.7

2
-2

.3
2

10
00

µ
s

76
.0

80
8

75
.8

52
0

83
.7

52
1

98
.1

54
0

81
.3

12
1

10
6.

57
55

88
.0

11
4

12
2.

48
71

73
2.

22
91

.5
3

-0
.5

1
10

0
µ

s
1

µ
s

76
.0

67
0

75
.6

02
8

85
.1

87
3

10
6.

12
15

84
.5

02
4

11
5.

83
99

83
.6

67
9

15
7.

23
25

78
4.

22
98

.0
3

5.
99

10
µ

s
75

.5
51

6
75

.8
25

9
81

.9
32

7
99

.6
00

2
81

.9
69

7
10

7.
95

93
80

.8
31

1
11

6.
03

17
71

9.
70

89
.9

6
-2

.0
8

10
0
µ

s
75

.9
83

7
76

.2
78

1
81

.7
28

2
97

.5
42

5
81

.0
88

4
10

6.
94

44
80

.6
42

5
11

7.
73

80
71

7.
95

89
.7

4
-2

.3
0

10
00

µ
s

75
.9

19
9

76
.0

92
9

81
.5

88
5

10
0.

17
52

81
.3

08
1

10
6.

42
59

81
.3

28
9

11
8.

77
52

72
1.

61
90

.2
0

-1
.8

4
10

00
0µ

s
1

µ
s

76
.0

59
4

75
.4

78
5

85
.3

36
5

10
7.

66
19

84
.8

68
1

11
4.

43
15

85
.0

87
7

15
3.

68
53

78
2.

61
97

.8
3

5.
78

10
µ

s
75

.7
48

6
76

.0
78

7
82

.2
38

8
97

.5
84

3
81

.7
80

3
10

8.
76

00
81

.2
47

4
11

7.
30

00
72

0.
74

90
.0

9
-1

.9
5

10
0
µ

s
76

.1
67

3
76

.9
35

5
82

.1
22

4
97

.6
05

1
81

.7
93

4
10

6.
56

55
81

.1
82

4
11

9.
30

41
72

1.
68

90
.2

1
-1

.8
3

10
00

µ
s

75
.6

78
2

76
.0

77
3

81
.8

04
0

97
.8

69
9

81
.9

64
8

10
6.

93
32

81
.2

55
8

11
7.

75
78

71
9.

34
89

.9
2

-2
.1

2
S

ta
tis

tic
s

S
um

12
13

.2
9

12
15

.1
9

13
25

.8
6

16
05

.1
0

13
16

.5
9

17
47

.5
0

13
20

.3
5

20
37

.4
8

11
78

1.
36

A
vg

75
.8

3
75

.9
5

82
.8

7
10

0.
32

82
.2

9
10

9.
22

82
.5

2
12

7.
34

92
.0

4
R

ow
E

ffe
ct

-1
6.

21
-1

6.
09

-9
.1

8
8.

28
-9

.7
5

17
.1

8
-9

.5
2

35
.3

0

61

Table 3.3: Main Effects in the Cross-Layer Performance Analysis
Factor Level 1 Level 2 Level 3 Level 4
A -16.15 -.045 3.71 12.89
B -11.17 11.17
C -0.17 0.26 -0.06 -0.03
D 5.82 -2.05 -2.12 -1.65

62

Ta
bl

e
3.

4:
D

at
a

R
ep

et
iti

on
N

um
be

r
1

A
rc

hi
te

ct
ur

e
Q

ue
ry

C
on

tr
ol

B
ra

nd
X

P
us

h
P

ul
l

S
ta

tis
tic

s
C

ol
um

n
P

ac
ke

tF
re

q.
In

te
rv

al
T

im
er

E
ve

nt
T

im
er

E
ve

nt
T

im
er

E
ve

nt
T

im
er

E
ve

nt
S

um
A

vg
E

ffe
ct

1
µ

s
1

µ
s

74
.7

23
3

75
.0

09
9

81
.6

10
7

10
4.

53
34

80
.7

20
6

11
3.

94
68

85
.8

22
1

15
9.

44
13

77
5.

80
85

96
.9

76
0

51
.1

31
5

10
µ

s
75

.2
04

6
75

.3
81

3
81

.3
27

7
97

.4
82

3
81

.4
01

3
10

7.
77

22
79

.9
65

8
11

7.
17

14
71

5.
70

69
89

.4
63

3
43

.6
18

8
10

0
µ

s
75

.2
38

2
75

.2
46

1
81

.3
10

8
97

.1
97

2
79

.7
88

5
10

5.
43

34
80

.8
17

9
11

6.
86

06
71

1.
89

32
88

.9
86

6
43

.1
42

1
10

00
µ

s
75

.0
15

7
75

.4
10

3
85

.8
53

7
96

.7
99

5
84

.7
96

4
10

5.
86

42
81

.5
27

0
11

5.
04

20
72

0.
30

93
90

.0
38

6
44

.1
94

1
10

µ
s

1
µ

s
75

.1
14

1
75

.4
52

9
84

.9
54

7
10

5.
67

12
81

.4
53

9
11

3.
77

32
84

.0
33

1
15

5.
89

16
73

9.
14

83
92

.3
93

5
46

.5
48

9
10

µ
s

74
.9

42
6

75
.0

58
9

82
.9

10
0

99
.7

54
3

80
.0

12
6

11
2.

30
19

80
.9

22
6

11
2.

21
46

71
2.

05
62

89
.0

07
0

43
.1

62
4

10
0
µ

s
75

.3
55

6
75

.1
71

4
81

.1
46

7
97

.1
02

5
80

.1
67

8
10

5.
70

91
79

.9
80

5
11

7.
42

24
71

8.
11

78
89

.7
64

7
43

.9
20

1
10

00
µ

s
75

.4
46

0
75

.2
66

7
82

.6
97

5
97

.8
81

1
80

.9
67

3
10

5.
09

25
10

1.
79

80
11

9.
99

89
77

6.
34

50
97

.0
43

1
51

.1
98

5
10

0
µ

s
1

µ
s

75
.6

43
3

75
.2

29
3

84
.7

36
9

10
4.

77
01

83
.4

97
1

11
6.

36
19

81
.2

87
2

15
0.

70
33

72
3.

08
36

90
.3

85
4

44
.5

40
9

10
µ

s
75

.1
45

1
74

.8
26

4
81

.8
56

3
99

.2
14

0
80

.5
01

8
10

7.
01

73
81

.1
13

0
11

6.
64

17
71

5.
09

83
89

.3
87

2
43

.5
42

7
10

0
µ

s
74

.9
50

5
75

.2
16

7
82

.4
03

9
97

.0
79

4
81

.3
39

2
10

6.
65

96
79

.3
45

0
11

8.
10

36
71

6.
31

61
89

.5
39

5
43

.6
94

9
10

00
µ

s
74

.8
42

7
75

.0
22

6
82

.3
03

5
10

4.
11

67
80

.9
82

6
10

5.
87

11
81

.1
13

6
11

8.
83

06
77

2.
22

93
96

.5
28

6
50

.6
84

1
10

00
µ

s
1

µ
s

75
.1

95
6

75
.3

17
2

85
.0

55
7

10
8.

75
69

84
.5

50
2

11
4.

16
88

85
.4

52
3

15
2.

19
83

71
6.

68
27

89
.5

85
3

43
.7

40
7

10
µ

s
75

.6
01

7
75

.4
64

4
81

.3
94

5
97

.4
40

2
80

.8
90

0
10

8.
27

88
79

.7
36

4
12

0.
46

81
72

3.
43

92
90

.4
29

9
44

.5
85

3
10

0
µ

s
75

.0
63

1
75

.8
85

3
82

.5
17

0
97

.4
03

4
81

.9
91

5
10

6.
39

82
80

.7
95

3
12

3.
38

50
71

9.
27

45
89

.9
09

3
44

.0
64

7
10

00
µ

s
75

.1
39

9
75

.3
67

1
82

.0
05

2
97

.1
49

9
82

.2
43

5
10

6.
43

18
80

.9
98

9
11

7.
34

61
78

0.
69

54
97

.5
86

9
51

.7
42

3
S

ta
tis

tic
s

S
um

12
02

.6
2

10
53

.9
3

13
24

.0
8

14
97

.8
1

81
7.

13
10

81
.9

8
13

24
.7

0
20

31
.7

2
11

73
6.

20
A

vg
75

.1
63

9
75

.2
81

1
82

.7
55

3
99

.8
54

6
81

.5
81

5
10

8.
81

75
82

.7
94

3
12

6.
98

25
3

45
.8

44
5

R
ow

E
ffe

ct
29

.3
19

3
29

.4
36

5
36

.9
10

8
54

.0
10

0
35

.7
37

0
62

.9
73

0
36

.9
49

80
81

.1
37

9

63

Table
3.5:

D
ata

R
epetition

N
um

ber
2

A
rchitecture

C
ontrol

B
rand

X
P

ush
P

ull
S

tatistics
C

olum
n

P
acketF

req.
Q

uery
Interval

T
im

er
E

vent
T

im
er

E
vent

T
im

er
E

vent
T

im
er

E
vent

S
um

A
vg

E
ffect

1
µ

s
1

µ
s

77.1894
77.2525

86.5655
106.4445

86.9521
116.7543

86.4350
154.3167

726.66
90.83

44.99
10

µ
s

76.7580
77.2756

83.4445
99.1236

84.2635
108.0615

81.7870
117.8180

736.81
92.10

46.26
100

µ
s

77.3630
76.9853

83.5066
100.5481

83.5860
109.0710

83.6223
122.1252

728.53
91.07

45.22
1000

µ
s

76.6602
76.6844

83.0878
98.8022

83.0710
107.8716

83.2209
117.2583

791.91
98.99

53.14
10

µ
s

1
µ

s
77.6397

77.3419
86.2678

108.5066
85.7754

115.9742
85.8143

161.5676
739.57

92.45
46.60

10
µ

s
77.1594

77.6512
84.2409

101.5902
82.0289

109.5129
85.1873

115.8432
733.48

91.68
45.84

100
µ

s
77.5176

76.6802
82.3740

99.2977
83.6938

108.3730
83.2362

122.3062
733.21

91.65
45.81

1000
µ

s
77.1257

77.2909
87.9143

99.8327
82.1973

109.8885
82.4182

122.8990
798.89

99.86
54.02

100
µ

s
1

µ
s

76.9221
76.6828

87.2199
108.6118

86.5413
116.9553

85.8890
164.8154

736.98
92.12

46.28
10

µ
s

76.5934
77.0368

83.5060
101.0884

84.5266
110.8774

81.8038
115.2572

726.43
90.80

44.96
100

µ
s

76.7438
78.3151

82.7838
99.4913

81.7849
108.4492

82.4871
116.3782

730.69
91.34

45.49
1000

µ
s

77.4398
78.0805

82.6433
100.0026

82.2199
108.3172

82.7470
125.5302

803.64
100.45

54.61
1000

µ
s

1
µ

s
77.4261

76.8906
86.5255

108.5855
86.4613

115.5466
85.6376

157.4114
728.66

91.08
45.24

10
µ

s
77.0668

77.2593
84.5597

98.8648
82.4855

110.4098
83.5171

117.4250
728.42

91.05
45.21

100
µ

s
76.8974

77.0110
83.5818

99.0694
83.1057

107.8901
82.2173

118.6497
731.59

91.45
45.60

1000
µ

s
77.0105

77.4571
83.0700

99.6486
83.1257

107.9600
82.6944

117.6960
794.48

99.31
53.47

S
tatistics

S
um

1156.32
1158.64

1264.73
1523.06

1254.87
1655.16

1252.28
1912.98

11178.04
A

vg
77.09

77.24
84.32

101.54
83.66

110.34
83.49

127.53
43.66

R
ow

E
ffect

31.24
31.40

38.47
55.69

37.81
64.50

37.64
81.69

64

Ta
bl

e
3.

6:
D

at
a

R
ep

et
iti

on
N

um
be

r
3

A
rc

hi
te

ct
ur

e
C

on
tr

ol
B

ra
nd

X
P

us
h

P
ul

l
S

ta
tis

tic
s

C
ol

um
n

P
ac

ke
tF

re
q.

Q
ue

ry
In

te
rv

al
T

im
er

E
ve

nt
T

im
er

E
ve

nt
T

im
er

E
ve

nt
T

im
er

E
ve

nt
S

um
A

vg
E

ffe
ct

1
µ

s
1

µ
s

74
.6

08
6

74
.7

75
9

83
.4

77
1

10
5.

48
76

83
.3

73
5

11
4.

78
70

83
.5

09
7

15
3.

45
13

71
1.

24
88

.9
0

43
.0

6
10

µ
s

74
.8

20
6

75
.8

22
2

80
.9

76
9

96
.6

60
2

81
.8

33
2

10
9.

09
36

81
.1

17
3

11
5.

83
48

71
1.

21
88

.9
0

43
.0

6
10

0
µ

s
74

.6
37

0
75

.8
28

5
80

.8
95

8
96

.0
50

5
79

.9
15

3
10

5.
62

97
80

.0
67

3
11

8.
18

78
71

6.
16

89
.5

2
43

.6
8

10
00

µ
s

76
.1

31
5

75
.0

72
1

81
.1

12
6

98
.1

22
0

80
.5

28
1

10
5.

36
14

79
.7

76
4

11
5.

13
36

77
3.

47
96

.6
8

50
.8

4
10

µ
s

1
µ

s
74

.3
37

7
75

.8
32

7
83

.4
10

3
10

4.
60

81
84

.6
39

7
11

4.
50

87
82

.9
27

4
15

7.
43

45
71

7.
96

89
.7

5
43

.9
0

10
µ

s
74

.5
97

1
74

.4
27

1
81

.8
62

7
97

.4
05

1
79

.8
15

4
10

6.
17

99
80

.3
73

5
11

1.
85

17
70

7.
85

88
.4

8
42

.6
4

10
0
µ

s
75

.0
72

6
74

.5
58

7
80

.1
85

2
97

.1
60

4
80

.1
92

5
10

5.
20

25
81

.1
52

6
11

4.
32

30
70

6.
51

88
.3

1
42

.4
7

10
00

µ
s

75
.6

70
7

74
.9

98
4

80
.6

44
4

96
.7

48
0

80
.7

71
7

10
4.

74
54

79
.8

18
0

12
4.

56
34

77
7.

70
97

.2
1

51
.3

7
10

0
µ

s
1

µ
s

75
.6

35
5

74
.8

96
4

83
.6

04
9

10
4.

98
26

83
.4

68
7

11
4.

20
25

83
.8

27
5

15
6.

17
89

70
4.

78
88

.1
0

42
.2

5
10

µ
s

74
.9

16
4

75
.6

14
4

80
.4

35
6

98
.4

98
2

80
.8

80
6

10
5.

98
32

79
.5

76
5

11
6.

19
62

71
2.

31
89

.0
4

43
.1

9
10

0
µ

s
76

.2
56

7
75

.3
02

5
79

.9
96

8
96

.0
56

8
80

.1
41

0
10

5.
72

44
80

.0
95

2
11

8.
73

22
71

2.
10

89
.0

1
43

.1
7

10
00

µ
s

75
.4

77
1

75
.1

75
7

79
.8

18
5

96
.4

06
1

80
.7

21
7

10
5.

08
94

80
.1

26
2

11
1.

96
48

77
6.

80
97

.1
0

51
.2

6
10

00
µ

s
1

µ
s

75
.5

56
5

74
.2

27
8

84
.4

28
2

10
5.

64
33

83
.5

92
8

11
3.

57
92

84
.1

73
1

15
1.

44
61

71
2.

68
89

.0
8

43
.2

4
10

µ
s

74
.5

77
1

75
.5

12
4

80
.7

62
2

96
.4

47
7

81
.9

65
3

10
7.

59
13

80
.4

88
7

11
4.

00
68

71
3.

17
89

.1
5

43
.3

0
10

0
µ

s
76

.5
41

3
77

.9
10

0
80

.2
68

3
96

.3
42

5
80

.2
83

0
10

5.
40

82
80

.5
34

5
11

5.
87

74
71

1.
35

88
.9

2
43

.0
7

10
00

µ
s

74
.8

84
3

75
.4

07
7

80
.3

36
7

96
.8

11
2

80
.5

25
0

10
6.

40
77

80
.0

74
2

11
8.

23
15

71
3.

17
89

.1
5

43
.3

0
S

ta
tis

tic
s

S
um

11
29

.1
1

11
30

.5
9

12
18

.7
4

14
77

.9
4

12
19

.2
7

16
14

.7
1

12
14

.1
3

18
59

.9
6

10
86

4.
45

A
vg

75
.2

7
75

.3
7

81
.2

5
98

.5
3

81
.2

8
10

7.
65

80
.9

4
12

4.
00

42
.4

4
R

ow
E

ffe
ct

29
.4

3
29

.5
3

35
.4

0
52

.6
8

35
.4

4
61

.8
0

35
.1

0
78

.1
5

65

Table 3.7: Interactions Between Factors A and B
AB Interactions B L1 B L2
A L1 11.1057 -11.1057
A L2 2.4394 -2.4394
A L3 -2.3004 2.3004
A L4 -11.2447 11.2447

Table 3.8: Interactions Between Factors A and C
AC Interactions C L1 C L2 C L3 C L4
A L1 0.0756 -0.3272 0.0832 0.1684
A L2 -0.1550 -0.0107 0.2000 -0.0342
A L3 0.2455 -0.4704 0.0600 0.1649
A L4 -0.1660 0.8084 -0.3432 -0.2992

Table 3.9: Interactions Between Factors A and D
AD Interactions D L1 D L2 D L3 D L4
A L1 -5.9211 1.9361 2.3064 1.6786
A L2 -1.8087 0.9058 0.2714 0.6315
A L3 -1.9220 1.4473 0.3683 0.1065
A L4 9.6518 -4.2892 -2.9461 -2.4166

Table 3.10: Interactions Between Factors B and C
BC Interactions C L1 C L2 C L3 C L4
B L1 0.1147 0.0727 -0.2374 0.0500
B L2 -0.1147 -0.0727 0.2374 -0.0500

Table 3.11: Interactions Between Factors B and D
BD Interactions D L1 D L2 D L3 D L4
B L1 -4.3267 1.3961 1.3085 1.6221
B L2 4.3267 -1.3961 -1.3085 -1.6221

66

Table 3.12: Interactions Between Factors C and D
CD Interactions D L1 D L2 D L3 D L4
C L1 -0.1410 0.1911 0.2480 -0.2981
C L2 -0.0802 -0.3437 -0.4525 0.8765
C L3 0.2251 0.0253 -0.1171 -0.1334
C L4 -0.0039 0.1273 0.3216 -0.4450

Table 3.13: Interactions Between Factors A, B and C
ABC Interactions C L1 C L2 C L3 C L4
A L1 B L1 -0.1548 -0.0027 0.2623 -0.1049

B L4 0.1548 0.0027 -0.2623 0.1049
A L2 B L1 0.1079 0.0305 -0.1620 0.0236

B L4 -0.1079 -0.0305 0.1620 -0.0236
A L3 B L1 0.0420 -0.3379 0.1655 0.1304

B L4 -0.0420 0.3379 -0.1655 -0.1304
A L4 B L1 0.0049 0.3102 -0.2659 -0.0491

Table 3.14: Interactions Between Factors A, B and D
ABD Interactions D L1 D L2 D L3 D L4
A L1 B L1 4.4315 -1.5009 -1.3519 -1.5787

B L4 -4.4315 1.5009 1.3519 1.5787
A L2 B L1 2.2717 -0.8489 -0.5753 -0.8475

B L4 -2.2717 0.8489 0.5753 0.8475
A L3 B L1 2.3953 -1.3667 -0.5077 -0.5209

B L4 -2.3953 1.3667 0.5077 0.5209
A L4 B L1 -9.0985 3.7165 2.4349 2.9471

B L4 9.0985 -3.7165 -2.4349 -2.9471

67

Table 3.15: Interactions Between Factors A, C and D
ACD Interactions D L1 D L2 D L3 D L4
A L1 C L1 0.0411 0.0007 -0.3434 0.3016

C L2 0.3145 0.2722 0.1745 -0.7612
C L3 -0.2030 -0.1415 0.1499 0.1946
C L4 -0.1526 -0.1313 0.0190 0.2650

A L2 C L1 -0.4500 -0.4822 0.2548 0.6774
C L2 -0.2002 0.9380 0.0088 -0.7465
C L3 -0.3152 0.1472 -0.1299 0.2979
C L4 0.9653 -0.6030 -0.1336 -0.2287

A L3 C L1 -0.1615 -0.0159 -0.4169 0.5942
C L2 -0.0031 0.3774 0.5569 -0.9312
C L3 0.2946 -0.2164 0.1340 -0.2122
C L4 -0.1300 -0.1451 -0.2740 0.5491

A L4 C L1 0.5703 0.4973 0.5055 -1.5732
C L2 -0.1113 -1.5876 -0.7401 2.4390
C L3 0.2236 0.2107 -0.1540 -0.2803
C L4 -0.6827 0.8795 0.3886 -0.5854

Table 3.16: Interactions Between Factors B, C and D
BCD Interactions D L1 D L2 D L3 D L4
C L1 B L1 -0.0898 -0.1203 -0.1918 0.4019

B L4 0.0898 0.1203 0.1918 -0.4019
C L2 B L1 -0.4220 0.1242 0.0662 0.2316

B L4 0.4220 -0.1242 -0.0662 -0.2316
C L3 B L1 0.0579 0.1152 0.2117 -0.3848

B L4 -0.0579 -0.1152 -0.2117 0.3848
C L4 B L1 0.4539 -0.1191 -0.0862 -0.2486

B L4 -0.4539 0.1191 0.0862 0.2486

68

Appendix A

Cross-Layer Test Harness Reference Manual 1.1

69

Cross-Layer Test Harness Class Hierarchical Index

appClient . 72

appClient::experiment . 82

appServer . 84

appServer::packetInfo . 89

configureTab . 95

model . 109

name_value . 119

packetData . 120

procTab . 122

Socket . 130

ClientSocket . 91

ServerSocket . 125

SocketException . 140

TabDialog . 142

70

Cross-Layer Test Harness File Index

af_inet.c . 144

appClient.cpp . 151

appClient.h . 156

appServer.cpp . 159

appServer.h . 160

brandx.c . 162

ClientSocket.cpp . 168

ClientSocket.h . 169

ip_output.c . 170

loopback.c . 182

phystub.c . 188

qotstub.c . 191

qotstub.h . 200

ServerSocket.cpp . 212

ServerSocket.h . 213

Socket.cpp . 214

Socket.h . 215

SocketException.h . 216

tabdialog.cpp . 217

tabdialog.h . 218

tcp.c . 219

udp.c . 225

71

Cross-Layer Test Harness Documentation

A.1 appClient Class Reference

Experimental workload generation class. This class controls the flow of network

traffic during performance analysis experiments, including packet size, packet frequency

and transport protocol utilization.

#include <appClient.h >

Public Member Functions

• appClient ()

Constructor Sets the default values of the client.

• ∼appClient ()

Deconstructor Cleanup and free remaining memory.

• void setTCPUDP(const char∗name)

Public Function Set TCP or UDP traffic.

• void setLogFile(const char∗name)

Public Function Setter for the log file name.

72

• void setAvgFile(const char∗name)

Public Function Setter for the avg log file name.

• void setPacketSize(int newSize)

Public Function Setter for the packet size.

• int getPacketSize()

Public Function Getter for the packet size.

• void setPacketInterval(int newInterval)

Public Function Setter for the packet interval.

• int getPacketInterval ()

Public Function Getter for the packet interval.

• void setBurstSize(int newBurst)

Public Function Setter for the burst size.

• int getBurstSize()

Public Function Getter for the burst size.

• void generateWorkload()

Public Function Generates workload consistent with the predefined settings.

• void socketConfiguration()

Public Function Opens and listens on a socket for configuration and initialization calls.

This socket is utilized by the GUI configuration utility.

73

Private Member Functions

• void log (char∗buf, int type)

Private Function Log function. Logs data to a file or stdout.

Private Attributes

• int packetSize

TCP packet size in bytes.

• int packetInterval

Interval at which packets are sent in microseconds.

• int burstSize

Number of packets sent during the course of the test.

• int nextSize

Temporary integer used in syncing the client and server packet size.

• int recieve

• char∗ logFile

Log file name, this is sent to the server during initialization.

• char∗ avgFile

Data Structures

• structexperiment

Private experiment structure.

74

A.1.1 Detailed Description

Traffic generation class.

appClient(p. 72) is a TCP traffic generation class. This call drives the workload

generation as well as encompassing several workload configuration functions. The match-

ing workload recipient class isappServer(p. 84).

Definition at line 41 of file appClient.h.

A.1.2 Constructor & Destructor Documentation

A.1.2.1 appClient::appClient ()

Constructor Sets the default values of the client.

Definition at line 14 of file appClient.cpp.

References avgFile, burstSize, logFile, nextSize, packetInterval, packetSize, and

recieve.

A.1.2.2 appClient::∼appClient ()

Deconstructor Cleanup and free remaining memory.

Definition at line 36 of file appClient.cpp.

References avgFile, and logFile.

A.1.3 Member Function Documentation

A.1.3.1 void appClient::generateWorkload ()

Public Function Generates workload consistent with the predefined settings.

Definition at line 113 of file appClient.cpp.

75

References avgFile, burstSize, SocketException::description(), INIT_SIZE, log-

File, MAX_SIZE, nextSize, packetInterval, packetSize, and ClientSocket::send_buffer_-

udp().

Referenced by main(), and socketConfiguration().

A.1.3.2 int appClient::getBurstSize ()

Public Function Getter for the burst size.

Returns:

int, umber packets sent when generating workload

Definition at line 88 of file appClient.cpp.

References burstSize.

A.1.3.3 int appClient::getPacketInterval ()

Public Function Getter for the packet interval.

Returns:

int, number of microseconds between workload packets.

Definition at line 71 of file appClient.cpp.

References packetInterval.

A.1.3.4 int appClient::getPacketSize ()

Public Function Getter for the packet size.

Returns:

int, number of bytes of in workload packet

Definition at line 54 of file appClient.cpp.

References packetSize.

76

A.1.3.5 void appClient::log (char∗ buf, int type) [private]

Private Function Log function. Logs data to a file or stdout.

Parameters:

buf character pointer to data to be logged

type integer flag, 0 -> stdout, 1 -> logfile

Definition at line 380 of file appClient.cpp.

References FILE, and STDOUT.

Referenced by socketConfiguration().

A.1.3.6 void appClient::setAvgFile (const char∗ name)

Public Function Setter for the avg log file name.

Parameters:

name character pointer, Name for the next log file

Definition at line 105 of file appClient.cpp.

References avgFile.

Referenced by main().

A.1.3.7 void appClient::setBurstSize (intnewBurst)

Public Function Setter for the burst size.

Parameters:

newBurst int, number packets sent when generating workload

Definition at line 80 of file appClient.cpp.

References burstSize.

Referenced by main(), and socketConfiguration().

77

A.1.3.8 void appClient::setLogFile (const char∗ name)

Public Function Setter for the log file name.

Parameters:

name character pointer, Name for the next log file

Definition at line 96 of file appClient.cpp.

References logFile.

Referenced by main().

A.1.3.9 void appClient::setPacketInterval (intnewInterval)

Public Function Setter for the packet interval.

Parameters:

newInterval int, time in microseconds between workload packets

Definition at line 63 of file appClient.cpp.

References packetInterval.

Referenced by main(), and socketConfiguration().

A.1.3.10 void appClient::setPacketSize (intnewSize)

Public Function Setter for the packet size.

Parameters:

newSizeint, number of bytes of in workload packet

Definition at line 45 of file appClient.cpp.

References nextSize.

Referenced by main(), and socketConfiguration().

78

A.1.3.11 void appClient::setTCPUDP (const char∗ name)

Public Function Set TCP or UDP traffic.

A.1.3.12 void appClient::socketConfiguration ()

Public Function Opens and listens on a socket for configuration and initialization

calls. This socket is utilized by the GUI configuration utility.

The function is called by the local main method. Configuration packets are recieved

as well as commands to generate workload.

On recieving a command to generate workload thegenerateWorkload()(p. 75)

function is called and no more packets are recieved until the call has been completed.

Definition at line 222 of file appClient.cpp.

References ServerSocket::accept(), avgFile, generateWorkload(), INIT_SIZE,

log(), logFile, MAX_SIZE, packetSize, ServerSocket::rec_buffer(), recieve, setBurst-

Size(), setPacketInterval(), setPacketSize(), and STDOUT.

A.1.4 Field Documentation

A.1.4.1 char∗ appClient::avgFile [private]

Log file name, this is sent to the server during initialization, This file contains the

avg transmission times over the course of an expiriment

Definition at line 60 of file appClient.h.

Referenced by appClient(), generateWorkload(), setAvgFile(), socket-

Configuration(), and∼appClient().

A.1.4.2 int appClient::burstSize [private]

Number of packets sent during the course of the test.

79

Definition at line 50 of file appClient.h.

Referenced by appClient(), generateWorkload(), getBurstSize(), and setBurst-

Size().

A.1.4.3 char∗ appClient::logFile [private]

Log file name, this is sent to the server during initialization.

Definition at line 57 of file appClient.h.

Referenced by appClient(), generateWorkload(), setLogFile(), socket-

Configuration(), and∼appClient().

A.1.4.4 int appClient::nextSize [private]

Temporary integer used in syncing the client and server packet size.

Definition at line 52 of file appClient.h.

Referenced by appClient(), generateWorkload(), and setPacketSize().

A.1.4.5 int appClient::packetInterval [private]

Interval at which packets are sent in microseconds.

Definition at line 48 of file appClient.h.

Referenced by appClient(), generateWorkload(), getPacketInterval(), and set-

PacketInterval().

A.1.4.6 int appClient::packetSize [private]

TCP packet size in bytes.

Definition at line 46 of file appClient.h.

80

Referenced by appClient(), generateWorkload(), getPacketSize(), and socket-

Configuration().

A.1.4.7 int appClient::recieve [private]

Recieve configuration flag, set to 0 to stop listening for configuration data and exit

the program

Definition at line 55 of file appClient.h.

Referenced by appClient(), and socketConfiguration().

The documentation for this class was generated from the following files:

• appClient.h

• appClient.cpp

81

A.2 appClient::experiment Struct Reference

Private experiment structure.

Data Fields

• int packetFrequency
• int queryInterval
• int packetSize
• int activationMechanism
• int architecture
• int state

A.2.1 Detailed Description

Private experiment structure.

Stores the configuration settings for a specific experimental configuration. This
struct is used to store the matrix on experiments in order to randamize the experiment order
for statistical reasons.

Definition at line 78 of file appClient.h.

A.2.2 Field Documentation

A.2.2.1 int appClient::experiment::activationMechanism

activationMechanism stores the Timer or Event activation mechanism to be utilized

Definition at line 82 of file appClient.h.

A.2.2.2 int appClient::experiment::architecture

architecture states which of the architectures is to be used. Control, Brand X, Push,
or Pull

Definition at line 83 of file appClient.h.

A.2.2.3 int appClient::experiment::packetFrequency

packetFrequency stores the number of microseconds between packets sent by the
appClient(p. 72)

Definition at line 79 of file appClient.h.

82

A.2.2.4 int appClient::experiment::packetSize

packetSize states the size of the packet payload for the workload definition. This is
set in number of bytes.

Definition at line 81 of file appClient.h.

A.2.2.5 int appClient::experiment::queryInterval

queryInterval stores the number of microseconds between information queries at
the network protocol layers. Kernal timer granularity limites this to a millisecond delay not
the microseconds the variable is set in.

Definition at line 80 of file appClient.h.

A.2.2.6 int appClient::experiment::state

states stores the status of the experiment, Not run, running, completed, errors

Definition at line 84 of file appClient.h.

The documentation for this struct was generated from the following file:

• appClient.h

83

A.3 appServer Class Reference

Traffic reception class.

#include <appServer.h >

Public Member Functions

• appServer()

Constructor.

• ∼appServer()

Deconstructor Cleanup and free remaining memory.

• void recievePackets()

Public Function.

• void stopReceiving()

Public Function.

Private Member Functions

• void log (char∗buf, int type)

Private Function Log function. Logs data to a file or stdout.

Private Attributes

• int packetSize

TCP packet size in bytes.

• int packetInterval

Interval at which packets are sent in microseconds.

• int burstSize

Number of packets sent during the course of the test.

• int nextSize

Temporary integer used in syncing the client and server packet size.

• int recvPackets

84

Receiving flag that governs when to stop listening at the socket.

• char∗ logFile

Log file name, this is sent to the server during initialization.

• char∗ avgFileName

Log file name, this is sent to the server during initialization.

Data Structures

• structpacketInfo

Private Data Structure.

A.3.1 Detailed Description

Traffic reception class.

appServer(p. 84) is a TCP traffic generation class. This call receives workload
packets from theappClient(p. 72) and documents the traffic statistics. The matching work-
load generation class isappClient(p. 72).

Definition at line 33 of file appServer.h.

A.3.2 Constructor & Destructor Documentation

A.3.2.1 appServer::appServer ()

Constructor.

Definition at line 7 of file appServer.cpp.

References avgFileName, and logFile.

A.3.2.2 appServer::∼appServer ()

Deconstructor Cleanup and free remaining memory.

Definition at line 22 of file appServer.cpp.

References logFile.

85

A.3.3 Member Function Documentation

A.3.3.1 void appServer::log (char∗ buf, int type) [private]

Private Function Log function. Logs data to a file or stdout.

Parameters:
buf character pointer to data to be logged

type integer flag, 0 -> stdout, 1 -> logfile

Definition at line 34 of file appServer.cpp.

References FILE, and STDOUT.

Referenced by recievePackets().

A.3.3.2 void appServer::recievePackets ()

Public Function.

Initializes the socket and waits to recieve data from the client app. Once data is
received the time payload is stripped and written to a log file with the time of packet recep-
tion.

Definition at line 62 of file appServer.cpp.

References ServerSocket::accept(), avgFileName, ServerSocket::BindUDP(),
INIT_SIZE, log(), logFile, MAX_SIZE, appServer::packetInfo::number, app-
Server::packetInfo::packetSize, packetSize, ServerSocket::rec_buffer_udp(), app-
Server::packetInfo::Sec, STDOUT, and appServer::packetInfo::USec.

Referenced by main().

A.3.3.3 void appServer::stopReceiving ()

Public Function.

This function stops the server from recieving packets and closes the port. This
function is called from the parent app

Definition at line 50 of file appServer.cpp.

References recvPackets.

A.3.4 Field Documentation

A.3.4.1 char∗ appServer::avgFileName [private]

Log file name, this is sent to the server during initialization.

86

Definition at line 64 of file appServer.h.

Referenced by appServer(), and recievePackets().

A.3.4.2 int appServer::burstSize [private]

Number of packets sent during the course of the test.

Definition at line 56 of file appServer.h.

A.3.4.3 char∗ appServer::logFile [private]

Log file name, this is sent to the server during initialization.

Definition at line 62 of file appServer.h.

Referenced by appServer(), recievePackets(), and∼appServer().

A.3.4.4 int appServer::nextSize [private]

Temporary integer used in syncing the client and server packet size.

Definition at line 58 of file appServer.h.

A.3.4.5 int appServer::packetInterval [private]

Interval at which packets are sent in microseconds.

Definition at line 54 of file appServer.h.

A.3.4.6 int appServer::packetSize [private]

TCP packet size in bytes.

Definition at line 52 of file appServer.h.

Referenced by recievePackets().

A.3.4.7 int appServer::recvPackets [private]

Receiving flag that governs when to stop listening at the socket.

Definition at line 60 of file appServer.h.

Referenced by stopReceiving().

The documentation for this class was generated from the following files:

• appServer.h

87

• appServer.cpp

88

A.4 appServer::packetInfo Struct Reference

Private Data Structure.

Data Fields

• int number
• doubleSec
• doubleUSec
• int packetSize

A.4.1 Detailed Description

Private Data Structure.

Data structure to store the packet information for the received server packets.

Definition at line 44 of file appServer.h.

A.4.2 Field Documentation

A.4.2.1 int appServer::packetInfo::number

Structure int value to store the number of the packet

Definition at line 45 of file appServer.h.

Referenced by appServer::recievePackets().

A.4.2.2 int appServer::packetInfo::packetSize

Structure int value to store the size of the packet

Definition at line 48 of file appServer.h.

Referenced by appServer::recievePackets().

A.4.2.3 double appServer::packetInfo::Sec

Structure double value to store the second the packet was received

Definition at line 46 of file appServer.h.

Referenced by appServer::recievePackets().

89

A.4.2.4 double appServer::packetInfo::USec

Structure double value to store the microsecond the packet was received

Definition at line 47 of file appServer.h.

Referenced by appServer::recievePackets().

The documentation for this struct was generated from the following file:

• appServer.h

90

A.5 ClientSocket Class Reference

Public Class.

#include <ClientSocket.h >

Inheritance diagram for ClientSocket::

Public Member Functions

• ClientSocket(std::string host, int port)

Public Constructor.

• ∼ClientSocket()

Public DeConstructor.

• constClientSocket& operator<< (const std::string &) const
• constClientSocket& operator>> (std::string &) const
• constClientSocket& send_buffer(const char∗buf, int length) const

Public Function.

• constClientSocket& send_buffer_udp(char∗buf, int length) const

Public Function.

A.5.1 Detailed Description

Public Class.

ClientSocket(p. 130) class. This class contains the interface for the client end of the
socket connection. This is utilized during TCP and UDP connections to create a connection,
send and receive data, and accept incomming connections.

Definition at line 19 of file ClientSocket.h.

A.5.2 Constructor & Destructor Documentation

A.5.2.1 ClientSocket::ClientSocket (std::stringhost, int port)

Public Constructor.

This is a constructor for theClientSocket(p. 91) class. This creates a TCP socket
for the specified host and connects to the host at the specified port.

Parameters:
host string Host to which the TCP and UDP connections will be established

91

port int Port at which the TCP connection will be bound and listen.

Definition at line 7 of file ClientSocket.cpp.

References Socket::connect(), and Socket::create().

A.5.2.2 ClientSocket::∼ClientSocket () [inline]

Public DeConstructor.

This is the deconstructor for the CLientSocket class. This cleans up the socket
connections and frees memory.

Definition at line 44 of file ClientSocket.h.

A.5.3 Member Function Documentation

A.5.3.1 const ClientSocket & ClientSocket::operator<< (const std::string &) const

Definition at line 22 of file ClientSocket.cpp.

References Socket::send().

A.5.3.2 const ClientSocket & ClientSocket::operator>> (std::string &) const

Definition at line 34 of file ClientSocket.cpp.

References Socket::recv().

A.5.3.3 const ClientSocket & ClientSocket::send_buffer (const char∗ buf, int
length) const

Public Function.

Send a character array buffer via the TCP socket connection to the destination ma-
chine. This requires a TCP socket connection to be already established otherwise an error
is returned. This will send a guarenteed length in bytes to the host machine. If the input
buffer exceeds the length then the data will be truncated. If the input buffer is less than the
length than the message will be padded.

Parameters:
buf character pointer to the send buffer.

length int length of data to send to the host machine.

Reimplemented fromSocket(p. 136).

Definition at line 44 of file ClientSocket.cpp.

References Socket::send_buffer().

92

A.5.3.4 const ClientSocket & ClientSocket::send_buffer_udp (char∗ buf, int
length) const

Public Function.

Send a character array buffer via the UDP socket connection to the destination
machine. This requires a UDP socket connection to be already established otherwise an
error is returned. This will send a guarenteed length in bytes to the host machine. If the
input buffer exceeds the length then the data will be truncated. If the input buffer is less
than the length than the message will be padded.

Parameters:
buf character pointer to the send buffer.

length int length of data to send to the host machine.

Reimplemented fromSocket(p. 136).

Definition at line 55 of file ClientSocket.cpp.

References Socket::send_buffer_udp().

Referenced by appClient::generateWorkload().

The documentation for this class was generated from the following files:

• ClientSocket.h
• ClientSocket.cpp

93

94

A.6 configureTab Class Reference

Public Class.

#include <tabdialog.h >

Public Slots

• void startBrandX ()

Public QT Slot Function.

• void startPush ()

Public QT Slot Function.

• void startPull ()

Public QT Slot Function.

• void stopBrandX ()

Public QT Slot Function.

• void stopPush()

Public QT Slot Function.

• void stopPull ()

Public QT Slot Function.

• void startWorkload ()

Public Slot Function.

• void startBaseline()

Public QT Slot Function.

• void stopBaseline()

Public QT Slot Function.

• void setPacketSize()

Public QT Slot Function.

• void setQotDelay()

Public QT Slot Function.

95

• void setPhyDelay()

Public QT Slot Function.

• void setPacketFreq()

Public QT Slot Function.

• void setTestDuration()

Public QT Slot Function.

• void setLogFile()

Public QT Slot Function.

• void setTrigger ()

Public QT Slot Function.

• void setEventInterval ()

Public QT Slot Function.

• void setTriggerFrequency()

Public QT Slot Function.

Public Member Functions

• configureTab (model∗m, QWidget∗parent=0)

Private Constructor Creates an instance of theconfigureTab(p. 95)and sets us the appro-
priate initialization values. This also sets up all of the slot functions and the gui objects
for the tab.

• void setModel(modelm)

Private Function Sets the model for theconfigureTab(p. 95).

Private Member Functions

• void sendProcCmd(QString file, QString command)

Private Function Sends commands to the proc file system. This function handles all of the
interaction between the kernel level processes and the user level processes.

• void startLayers (QString regFunc)

Private Function Starts the protocol layer query mechanism.

96

• void registerLayers (QString regFunc)

Private Function Register the protocol layer Synchronous Pull functions.

• void registerQoT ()

Private Function Register the protocol layer extension callback functions with the QoT
stub layer.

• void configureQoT ()

Private Function Setup the QoT protocol layer with the proper delay and query times.

• void insertQoT ()

Private Function Insert QoT into the Linux protocol stack between the socket interface
and the TCP & UDP layers.

• void removeQoT()

Private Function Stops protocol layer extensions from querying.

• void startQoT ()

Private Function Start QoT traffic delay and information query timers.

• void stopQoT ()

Private Function Stop QoT traffic delay and information query timers.

• void unregisterQoT ()

Private Function Unregister the protocol layer extension callback functions with the QoT
stub layer.

• void initBrandx ()

Private Function Setup the Brand X protocol with the configuration.

• void initPhy ()

Private Function Setup the physical layer stub with the proper delay and query times.

• void startPhy ()

Private Function Start physical stub traffic delay and traffic monitoring.

• void initApp ()

Private Function Configure the application protocol layer extension with the proper query
interval.

97

• void stopLayers()

Private Function Stops protocol layer extensions from querying.

• void cleanupLayers()

Private Function Initializes the Brand X environment.

• void cleanupBrandx ()

Private Function Cleans up Brand X protocols functionality.

• void stopPhy()

Private Function Stops physical layer delay and traffic monitoring.

• void cleanupApp ()

Private Function Starts physical layer delay and traffic monitoring.

• void setPacketSize(int size)

Public Set Method.

• void appClientSocket(QString data)

Private Function Sends configuration packets toappClient(p. 72)over port 30001.

Private Attributes

• model∗ my_model

Private Variable.

A.6.1 Detailed Description

Public Class.

The configureTab(p. 95) class contains the graphical user interface code for the
configuration tab. All controls and their respective slots and functions are contained in the
configureTab(p. 95) class. This class is then utilizes within theTabDialog(p. 142) class.

Definition at line 230 of file tabdialog.h.

98

A.6.2 Constructor & Destructor Documentation

A.6.2.1 configureTab::configureTab (model∗ m, QWidget ∗ parent= 0)

Private Constructor Creates an instance of theconfigureTab(p. 95) and sets us the
appropriate initialization values. This also sets up all of the slot functions and the gui
objects for the tab.

Parameters:
m model, New model to be used in conjunction with theconfigureTab(p. 95)

parent QWidget, Parent widget for theconfigureTab(p. 95), Optional

Definition at line 919 of file tabdialog.cpp.

References setEventInterval(), setLogFile(), setPacketFreq(), setPacketSize(), set-
PhyDelay(), setQotDelay(), setTestDuration(), setTrigger(), setTriggerFrequency(), start-
Baseline(), startBrandX(), startPull(), startPush(), startWorkload(), stopBaseline(), stop-
BrandX(), stopPull(), and stopPush().

A.6.3 Member Function Documentation

A.6.3.1 void configureTab::appClientSocket (QStringdata) [private]

Private Function Sends configuration packets toappClient(p. 72) over port 30001.

Parameters:
data QString, configuration data to be sent toappClient(p. 72)

Definition at line 380 of file tabdialog.cpp.

Referenced by initApp().

A.6.3.2 void configureTab::cleanupApp () [private]

Private Function Starts physical layer delay and traffic monitoring.

Definition at line 659 of file tabdialog.cpp.

A.6.3.3 void configureTab::cleanupBrandx () [private]

Private Function Cleans up Brand X protocols functionality.

Definition at line 567 of file tabdialog.cpp.

Referenced by stopBrandX().

99

A.6.3.4 void configureTab::cleanupLayers () [private]

Private Function Initializes the Brand X environment.

Definition at line 515 of file tabdialog.cpp.

References sendProcCmd().

Referenced by stopBrandX(), and stopPull().

A.6.3.5 void configureTab::configureQoT () [private]

Private Function Setup the QoT protocol layer with the proper delay and query
times.

Definition at line 590 of file tabdialog.cpp.

References sendProcCmd().

Referenced by startBrandX(), startPull(), and startPush().

A.6.3.6 void configureTab::initApp () [private]

Private Function Configure the application protocol layer extension with the proper
query interval.

Definition at line 632 of file tabdialog.cpp.

References appClientSocket().

Referenced by startWorkload().

A.6.3.7 void configureTab::initBrandx () [private]

Private Function Setup the Brand X protocol with the configuration.

Definition at line 559 of file tabdialog.cpp.

Referenced by startBrandX().

A.6.3.8 void configureTab::initPhy () [private]

Private Function Setup the physical layer stub with the proper delay and query
times.

A.6.3.9 void configureTab::insertQoT () [private]

Private Function Insert QoT into the Linux protocol stack between the socket inter-
face and the TCP & UDP layers.

100

Definition at line 606 of file tabdialog.cpp.

References sendProcCmd().

Referenced by startBrandX(), startPull(), and startPush().

A.6.3.10 void configureTab::registerLayers (QStringregFunc) [private]

Private Function Register the protocol layer Synchronous Pull functions.

Parameters:
regFunc QString, Synchronouse Pull function

Definition at line 483 of file tabdialog.cpp.

References sendProcCmd().

Referenced by startPull().

A.6.3.11 void configureTab::registerQoT () [private]

Private Function Register the protocol layer extension callback functions with the
QoT stub layer.

Definition at line 616 of file tabdialog.cpp.

References sendProcCmd().

Referenced by startPull().

A.6.3.12 void configureTab::removeQoT () [private]

Private Function Stops protocol layer extensions from querying.

Definition at line 611 of file tabdialog.cpp.

References sendProcCmd().

Referenced by stopBrandX(), stopPull(), and stopPush().

A.6.3.13 void configureTab::sendProcCmd (QStringfile, QString command)
[private]

Private Function Sends commands to the proc file system. This function handles all
of the interaction between the kernel level processes and the user level processes.

Parameters:
file QString, Name of the file that the command will be sent to.

command QString, Text that is to be forwarded to the kernel level process.

101

Definition at line 810 of file tabdialog.cpp.

Referenced by cleanupLayers(), configureQoT(), insertQoT(), registerLayers(),
registerQoT(), removeQoT(), startLayers(), startPhy(), startQoT(), stopLayers(), stopPhy(),
stopQoT(), and unregisterQoT().

A.6.3.14 void configureTab::setEventInterval () [slot]

Public QT Slot Function.

Changes the model value of the event driven interval as changes are made to the
view.

Definition at line 870 of file tabdialog.cpp.

Referenced by configureTab().

A.6.3.15 void configureTab::setLogFile () [slot]

Public QT Slot Function.

Changes the model value of the log file as changes are made to the view.

Definition at line 847 of file tabdialog.cpp.

Referenced by configureTab().

A.6.3.16 void configureTab::setModel (modelm)

Private Function Sets the model for theconfigureTab(p. 95).

Parameters:
m model, New model to be used in conjunction with theconfigureTab(p. 95)

A.6.3.17 void configureTab::setPacketFreq () [slot]

Public QT Slot Function.

Changes the model value of the packet frequency as changes are made to the view.
This is called in connection with the packetFreq edit box

Definition at line 895 of file tabdialog.cpp.

Referenced by configureTab().

A.6.3.18 void configureTab::setPacketSize ()[slot]

Public QT Slot Function.

102

Changes the model value of the packet size as changes are made to the view. This
is called in connection with the packetSize edit box

Definition at line 829 of file tabdialog.cpp.

Referenced by configureTab().

A.6.3.19 void configureTab::setPacketSize (intsize) [private]

Public Set Method.

This function sets the size of the network traffic in the model.

Parameters:
size Int, Size of packet in bytes

A.6.3.20 void configureTab::setPhyDelay () [slot]

Public QT Slot Function.

Changes the model value of the Physical layer delay as changes are made to the
view. This is called in connection with the packetSize edit box

Definition at line 914 of file tabdialog.cpp.

Referenced by configureTab().

A.6.3.21 void configureTab::setQotDelay () [slot]

Public QT Slot Function.

Changes the model value of the QoT delay as changes are made to the view. This
is called in connection with the packetSize edit box

Definition at line 905 of file tabdialog.cpp.

Referenced by configureTab().

A.6.3.22 void configureTab::setTestDuration () [slot]

Public QT Slot Function.

Changes the model value of the test duration as changes are made to the view.

Definition at line 838 of file tabdialog.cpp.

Referenced by configureTab().

A.6.3.23 void configureTab::setTrigger () [slot]

Public QT Slot Function.

103

Changes the model value of the trigger as changes are made to the view.

Definition at line 856 of file tabdialog.cpp.

Referenced by configureTab().

A.6.3.24 void configureTab::setTriggerFrequency () [slot]

Public QT Slot Function.

Changes the model value of the query interval as changes are made to the view.

Definition at line 879 of file tabdialog.cpp.

Referenced by configureTab().

A.6.3.25 void configureTab::startBaseline () [slot]

Public QT Slot Function.

Starts the control cross-layer architecture functionality includeing: Delays, query-
ing, modification of the network protocol stack

Definition at line 662 of file tabdialog.cpp.

References startPhy().

Referenced by configureTab().

A.6.3.26 void configureTab::startBrandX () [slot]

Public QT Slot Function.

Starts the Brand X cross-layer architecture functionality includeing: Delays, query-
ing, modification of the network protocol stack

Definition at line 700 of file tabdialog.cpp.

References configureQoT(), initBrandx(), insertQoT(), startLayers(), startPhy(),
and startQoT().

Referenced by configureTab().

A.6.3.27 void configureTab::startLayers (QStringregFunc) [private]

Private Function Starts the protocol layer query mechanism.

Parameters:
regFunc QString, Name of the function that the query mechanism should reference

Definition at line 450 of file tabdialog.cpp.

104

References sendProcCmd().

Referenced by startBrandX(), and startPush().

A.6.3.28 void configureTab::startPhy () [private]

Private Function Start physical stub traffic delay and traffic monitoring.

Definition at line 576 of file tabdialog.cpp.

References sendProcCmd().

Referenced by startBaseline(), startBrandX(), startPull(), and startPush().

A.6.3.29 void configureTab::startPull () [slot]

Public QT Slot Function.

Starts the Synchronous Pull cross-layer architecture functionality includeing: De-
lays, querying, modification of the network protocol stack

Definition at line 772 of file tabdialog.cpp.

References configureQoT(), insertQoT(), registerLayers(), registerQoT(), start-
Phy(), and startQoT().

Referenced by configureTab().

A.6.3.30 void configureTab::startPush () [slot]

Public QT Slot Function.

Starts the Synchronous Push cross-layer architecture functionality includeing: De-
lays, querying, modification of the network protocol stack

Definition at line 739 of file tabdialog.cpp.

References configureQoT(), insertQoT(), startLayers(), and startPhy().

Referenced by configureTab().

A.6.3.31 void configureTab::startQoT () [private]

Private Function Start QoT traffic delay and information query timers.

Definition at line 620 of file tabdialog.cpp.

References sendProcCmd().

Referenced by startBrandX(), and startPull().

105

A.6.3.32 void configureTab::startWorkload () [slot]

Public Slot Function.

This takes the interupt from the generate workload button and calls the appropriate
workload generation utilities.

Definition at line 683 of file tabdialog.cpp.

References initApp().

Referenced by configureTab().

A.6.3.33 void configureTab::stopBaseline ()[slot]

Public QT Slot Function.

Stops the control cross-layer architecture functionality includeing: Delays, query-
ing, modification of the network protocol stack

Definition at line 687 of file tabdialog.cpp.

References stopPhy().

Referenced by configureTab().

A.6.3.34 void configureTab::stopBrandX () [slot]

Public QT Slot Function.

Stops the Brand X cross-layer architecture functionality includeing: Delays, query-
ing, modification of the network protocol stack

Definition at line 720 of file tabdialog.cpp.

References cleanupBrandx(), cleanupLayers(), removeQoT(), stopLayers(), stop-
Phy(), and stopQoT().

Referenced by configureTab().

A.6.3.35 void configureTab::stopLayers () [private]

Private Function Stops protocol layer extensions from querying.

Definition at line 537 of file tabdialog.cpp.

References sendProcCmd().

Referenced by stopBrandX(), and stopPush().

A.6.3.36 void configureTab::stopPhy () [private]

Private Function Stops physical layer delay and traffic monitoring.

106

Definition at line 586 of file tabdialog.cpp.

References sendProcCmd().

Referenced by stopBaseline(), stopBrandX(), stopPull(), and stopPush().

A.6.3.37 void configureTab::stopPull () [slot]

Public QT Slot Function.

Stops the Synchronous Pull cross-layer architecture functionality includeing: De-
lays, querying, modification of the network protocol stack

Definition at line 793 of file tabdialog.cpp.

References cleanupLayers(), removeQoT(), stopPhy(), stopQoT(), and unregister-
QoT().

Referenced by configureTab().

A.6.3.38 void configureTab::stopPush () [slot]

Public QT Slot Function.

Stops the Synchronous Push cross-layer architecture functionality includeing: De-
lays, querying, modification of the network protocol stack

Definition at line 757 of file tabdialog.cpp.

References removeQoT(), stopLayers(), and stopPhy().

Referenced by configureTab().

A.6.3.39 void configureTab::stopQoT () [private]

Private Function Stop QoT traffic delay and information query timers.

Definition at line 628 of file tabdialog.cpp.

References sendProcCmd().

Referenced by stopBrandX(), and stopPull().

A.6.3.40 void configureTab::unregisterQoT () [private]

Private Function Unregister the protocol layer extension callback functions with the
QoT stub layer.

Definition at line 624 of file tabdialog.cpp.

References sendProcCmd().

Referenced by stopPull().

107

A.6.4 Field Documentation

A.6.4.1 model∗ configureTab::my_model [private]

Private Variable.

The my_model variable is a local instatiation of the Model class and stores the
information for theconfigureTab(p. 95).

Definition at line 293 of file tabdialog.h.

The documentation for this class was generated from the following files:

• tabdialog.h
• tabdialog.cpp

108

A.7 model Class Reference

Public Model Class.

#include <tabdialog.h >

Public Member Functions

• model ()

Public Constructor.

• QStringgetPacketSize()

Public Get Method.

• void setPacketSize(QString)

Public Set Method.

• QStringgetPacketFreq()

Public Get Method.

• void setPacketFreq(QString)

Public Set Method.

• QStringgetTestDuration ()

Public Get Method.

• void setTestDuration(QString)

Public Set Method.

• QStringgetLogFile ()

Public Get Method.

• void setLogFile(QString)

Public Set Method.

• QStringgetTriggerMechanism()

Public Get Method.

• void setTriggerMechanism(QString)

Public Set Method.

109

• QStringgetTimerRange()

Public Get Method.

• void setTimerRange(QString)

Public Set Method.

• QStringgetTimerInterval ()

Public Get Method.

• void setTimerInterval (QString)

Public Get Method.

• QStringgetPhyDelay()

Public Get Method.

• void setPhyDelay(QString)

Public Set Method.

• QStringgetQotDelay()

Public Get Method.

• void setQotDelay(QString)

Public Set Method.

Private Attributes

• QStringpacketSize

packetSize stores the size in bytes of the workload packet payload

• QStringtestDuration

testDuration stores the number of packets to send in a workload set

• QStringphyDelay

phyDelay stores the time in microseconds that the physical layer delays network packets
before forwarding them on.

• QStringqotDelay

qotDelay stores the time in microseconds that QoT delays network packets before for-
warding them on.

110

• QStringpacketFreq

packetFreq stores the delay in microseconds between workload packets

• QStringlogFile

logFile stores the name of the next log file, received from the gui control

• QStringavgFile

avgFile stores the name of the file to store the averages of the experiments

• QStringtriggerMechanism

triggerMechanism stores the current trigger or activation mechanism for the experiment,
Timer or Event.

• QStringtimerRange

timerRange stores the probability of an Event driven activation mechanism to start an
information query. The timerRange follows a uniform distribution

• QStringtimerInterval

timerInterval stores the interval that a Timer driven activation mechanism starts an infor-
mation query. This is set in microseconds but the Linux kernel is limited to milliseconds.

A.7.1 Detailed Description

Public Model Class.

The Model class contains all of the data and configuration for the graphical user
interface. This data is utilized in the experiments run from the gui as well as in setting up
an environment for experiments run from the proc interface.

Definition at line 76 of file tabdialog.h.

A.7.2 Constructor & Destructor Documentation

A.7.2.1 model::model ()

Public Constructor.

This is the constructor for the Model class. The Model class contains all of the
configuration data for the Application Driver GUI

Definition at line 139 of file tabdialog.cpp.

References logFile, packetFreq, packetSize, phyDelay, qotDelay, testDuration,
timerInterval, timerRange, and triggerMechanism.

111

A.7.3 Member Function Documentation

A.7.3.1 QString model::getLogFile ()

Public Get Method.

This function returns the log file name as specified in the model.

The logFile variable stores the name of the file that the test results will be stored in.

Definition at line 281 of file tabdialog.cpp.

References logFile.

A.7.3.2 QString model::getPacketFreq ()

Public Get Method.

This function returns the packet frequency as specified in the model.

Definition at line 186 of file tabdialog.cpp.

References packetFreq.

A.7.3.3 QString model::getPacketSize ()

Public Get Method.

This function returns the packet size as specified in the model.

The packetSize variable stores the size of the test data packet payload.

Definition at line 232 of file tabdialog.cpp.

References packetSize.

A.7.3.4 QString model::getPhyDelay ()

Public Get Method.

This function returns the physical layer network traffic delay time as specified in
the model.

Definition at line 164 of file tabdialog.cpp.

References phyDelay.

A.7.3.5 QString model::getQotDelay ()

Public Get Method.

This function returns the QoT delay time as specified in the model.

112

Definition at line 208 of file tabdialog.cpp.

References qotDelay.

A.7.3.6 QString model::getTestDuration ()

Public Get Method.

This function returns the test duration as specified in the model.

The testDuration value stores the number of packets to send in a test.

Definition at line 255 of file tabdialog.cpp.

References testDuration.

A.7.3.7 QString model::getTimerInterval ()

Public Get Method.

This function returns the query interval for the Timer activation mechanism as spec-
ified in the model.

Definition at line 358 of file tabdialog.cpp.

References timerInterval.

A.7.3.8 QString model::getTimerRange ()

Public Get Method.

This function returns the timer range as specified in the model.

The timerRange variable stores the time

Definition at line 334 of file tabdialog.cpp.

References timerRange.

A.7.3.9 QString model::getTriggerMechanism ()

Public Get Method.

This function returns the trigger mechanism as specified in the model.

The triggerMechanism variable stores the activation mechanism to use in the test.
0 == Timer activation mechansim, 1 == Event activation mechanism.

Definition at line 308 of file tabdialog.cpp.

References triggerMechanism.

113

A.7.3.10 void model::setLogFile (QStringnewFile)

Public Set Method.

This function sets the log file name in the model.

The logFile variable stores the name of the file that the test results will be stored in.

Parameters:
newFile QString, Name of the new log file

Definition at line 295 of file tabdialog.cpp.

References logFile.

A.7.3.11 void model::setPacketFreq (QStringnewFreq)

Public Set Method.

This function sets the packet frequency in the model.

Parameters:
newFreq QString, Packet frequency in microseconds

Definition at line 197 of file tabdialog.cpp.

References packetFreq.

A.7.3.12 void model::setPacketSize (QStringnewSize)

Public Set Method.

This function sets the packet size delay time in the model.

Parameters:
newSizeQString, Size of the test data packet payload.

Definition at line 243 of file tabdialog.cpp.

References packetSize.

A.7.3.13 void model::setPhyDelay (QStringnewDelay)

Public Set Method.

This function sets the physical layer network traffic delay time in the model.

Parameters:
newDelay QString, delay in microseconds

114

Definition at line 175 of file tabdialog.cpp.

References phyDelay.

A.7.3.14 void model::setQotDelay (QStringnewDelay)

Public Set Method.

This function sets the QoT delay time in the model.

Parameters:
newDelay QString, QoT delay time in microseconds

Definition at line 219 of file tabdialog.cpp.

References qotDelay.

A.7.3.15 void model::setTestDuration (QStringnewDuration)

Public Set Method.

This function sets the test duration in the model.

The testDuration value stores the number of packets to send in a test.

Parameters:
newDuration QString, number of packets in the workload burst

Definition at line 268 of file tabdialog.cpp.

References testDuration.

A.7.3.16 void model::setTimerInterval (QString newInterval)

Public Get Method.

This function returns the query interval for the Timer activation mechanism as spec-
ified in the model.

Parameters:
newInterval QString, the new timer interval

Definition at line 370 of file tabdialog.cpp.

References timerInterval.

115

A.7.3.17 void model::setTimerRange (QStringnewRange)

Public Set Method.

This function sets the timer range in the model. The timer range specifies the Event
activation mechanism query interval.

Parameters:
newRangeQString, new time

Definition at line 346 of file tabdialog.cpp.

References timerRange.

A.7.3.18 void model::setTriggerMechanism (QStringnewTrigger)

Public Set Method.

This function sets the trigger mechanism in the model.

The triggerMechanism variable stores the activation mechanism to use in the test.
0 == Timer activation mechansim, 1 == Event activation mechanism.

Parameters:
newTrigger QString, new trigger mechanism

Definition at line 322 of file tabdialog.cpp.

References triggerMechanism.

A.7.4 Field Documentation

A.7.4.1 QString model::avgFile [private]

avgFile stores the name of the file to store the averages of the experiments

Definition at line 118 of file tabdialog.h.

A.7.4.2 QString model::logFile [private]

logFile stores the name of the next log file, received from the gui control

Definition at line 116 of file tabdialog.h.

Referenced by getLogFile(), model(), and setLogFile().

116

A.7.4.3 QString model::packetFreq [private]

packetFreq stores the delay in microseconds between workload packets

Definition at line 112 of file tabdialog.h.

Referenced by getPacketFreq(), model(), and setPacketFreq().

A.7.4.4 QString model::packetSize [private]

packetSize stores the size in bytes of the workload packet payload

Definition at line 104 of file tabdialog.h.

Referenced by getPacketSize(), model(), and setPacketSize().

A.7.4.5 QString model::phyDelay [private]

phyDelay stores the time in microseconds that the physical layer delays network
packets before forwarding them on.

Definition at line 108 of file tabdialog.h.

Referenced by getPhyDelay(), model(), and setPhyDelay().

A.7.4.6 QString model::qotDelay [private]

qotDelay stores the time in microseconds that QoT delays network packets before
forwarding them on.

Definition at line 110 of file tabdialog.h.

Referenced by getQotDelay(), model(), and setQotDelay().

A.7.4.7 QString model::testDuration [private]

testDuration stores the number of packets to send in a workload set

Definition at line 106 of file tabdialog.h.

Referenced by getTestDuration(), model(), and setTestDuration().

A.7.4.8 QString model::timerInterval [private]

timerInterval stores the interval that a Timer driven activation mechanism starts an
information query. This is set in microseconds but the Linux kernel is limited to millisec-
onds.

Definition at line 126 of file tabdialog.h.

117

Referenced by getTimerInterval(), model(), and setTimerInterval().

A.7.4.9 QString model::timerRange [private]

timerRange stores the probability of an Event driven activation mechanism to start
an information query. The timerRange follows a uniform distribution

Definition at line 124 of file tabdialog.h.

Referenced by getTimerRange(), model(), and setTimerRange().

A.7.4.10 QString model::triggerMechanism [private]

triggerMechanism stores the current trigger or activation mechanism for the exper-
iment, Timer or Event.

Definition at line 122 of file tabdialog.h.

Referenced by getTriggerMechanism(), model(), and setTriggerMechanism().

The documentation for this class was generated from the following files:

• tabdialog.h
• tabdialog.cpp

118

A.8 name_value Struct Reference

Internal data storage structure.

Data Fields

• charname[80]
• int value

A.8.1 Detailed Description

Internal data storage structure.

A stucture to hold name-value pairs of environment information within Brand X.

Definition at line 28 of file brandx.c.

A.8.2 Field Documentation

A.8.2.1 char name_value::name[80]

Character pointer stores name value

Definition at line 30 of file brandx.c.

A.8.2.2 int name_value::value

Integer stores data value

Definition at line 32 of file brandx.c.

The documentation for this struct was generated from the following file:

• brandx.c

119

A.9 packetData Struct Reference

Private Data Structure.

Data Fields

• int rxBytes
• int txBytes
• int rxErrors
• int txErrors
• int packets
• int dropped

A.9.1 Detailed Description

Private Data Structure.

Data structure to store the packet information for the received server packets. This
structure is utilized to store the current information for the local protocol layer. This acts
as a caching mechanism for data for use with a Synchronized Push or Pull architecture.

Definition at line 181 of file af_inet.c.

A.9.2 Field Documentation

A.9.2.1 int packetData::dropped

Stores the number of packets dropped in this protocol layer up to this point

Definition at line 187 of file af_inet.c.

Referenced by appEnvironmentUpdate(), ipEnvironmentUpdate(), loEnvironment-
Update(), tcpEnvironmentUpdate(), and udpEnvironmentUpdate().

A.9.2.2 int packetData::packets

Stores the number of packets transmitted up to this point

Definition at line 186 of file af_inet.c.

Referenced by appEnvironmentUpdate(), ipEnvironmentUpdate(), loEnvironment-
Update(), tcpEnvironmentUpdate(), and udpEnvironmentUpdate().

A.9.2.3 int packetData::rxBytes

Stores the number of bytes of data recieved up to this point

120

Definition at line 182 of file af_inet.c.

Referenced by appEnvironmentUpdate(), ipEnvironmentUpdate(), loEnvironment-
Update(), tcpEnvironmentUpdate(), and udpEnvironmentUpdate().

A.9.2.4 int packetData::rxErrors

Stores any errors that occur during the recieve process

Definition at line 184 of file af_inet.c.

Referenced by appEnvironmentUpdate(), ipEnvironmentUpdate(), loEnvironment-
Update(), tcpEnvironmentUpdate(), and udpEnvironmentUpdate().

A.9.2.5 int packetData::txBytes

Stores the number of bytes of data transmitted up to this point

Definition at line 183 of file af_inet.c.

Referenced by appEnvironmentUpdate(), ipEnvironmentUpdate(), loEnvironment-
Update(), tcpEnvironmentUpdate(), and udpEnvironmentUpdate().

A.9.2.6 int packetData::txErrors

Stores any errors that occur during the transmission process

Definition at line 185 of file af_inet.c.

Referenced by appEnvironmentUpdate(), ipEnvironmentUpdate(), loEnvironment-
Update(), tcpEnvironmentUpdate(), and udpEnvironmentUpdate().

The documentation for this struct was generated from the following files:

• af_inet.c
• ip_output.c
• loopback.c
• tcp.c
• udp.c

121

A.10 procTab Class Reference

Public Class.

#include <tabdialog.h >

Public Slots

• void sendProcCmd()

Public Slot.

Public Member Functions

• procTab (model∗m, QWidget∗parent=0)

Private Constructor Creates an instance of theprocTab(p. 122)and sets us the appropri-
ate initialization values. This also sets up all of the slot functions and the gui objects for
the tab.

Private Attributes

• model∗ my_model

Private Variable.

• QStringfile

Private Variable.

• QStringcommand

Private Variable.

A.10.1 Detailed Description

Public Class.

The procTab(p. 122) class contains the graphical user interface code for the proc
interaction tab. All controls and their respective slots and functions are contained in the
procTab(p. 122) class. This class is then utilizes within theTabDialog(p. 142) class.

Definition at line 172 of file tabdialog.h.

122

A.10.2 Constructor & Destructor Documentation

A.10.2.1 procTab::procTab (model∗ m, QWidget ∗ parent= 0)

Private Constructor Creates an instance of theprocTab(p. 122) and sets us the ap-
propriate initialization values. This also sets up all of the slot functions and the gui objects
for the tab.

Parameters:
m model, New model to be used in conjunction with theconfigureTab(p. 95)

parent QWidget, Parent widget for theconfigureTab(p. 95), Optional

Definition at line 96 of file tabdialog.cpp.

References sendProcCmd().

A.10.3 Member Function Documentation

A.10.3.1 void procTab::sendProcCmd () [slot]

Public Slot.

This function writes the text in the procCmdEdit text box to the /proc file listed in
the procFileEdit text box.

Definition at line 57 of file tabdialog.cpp.

References FILE.

Referenced by procTab().

A.10.4 Field Documentation

A.10.4.1 QString procTab::command [private]

Private Variable.

The command string stores the data that is to be passed to the kernel process via the
proc file system.

Definition at line 204 of file tabdialog.h.

A.10.4.2 QString procTab::file [private]

Private Variable.

The file variable stores the current file in the linux proc file system that configuration
data will be stored at.

Definition at line 198 of file tabdialog.h.

123

A.10.4.3 model∗ procTab::my_model [private]

Private Variable.

The my_model variable is a local instatiation of the Model class and stores the
information for theconfigureTab(p. 95).

Definition at line 192 of file tabdialog.h.

The documentation for this class was generated from the following files:

• tabdialog.h
• tabdialog.cpp

124

A.11 ServerSocket Class Reference

Public Class.

#include <ServerSocket.h >

Inheritance diagram for ServerSocket::

Public Member Functions

• ServerSocket(int port)

Public Constructor.

• ServerSocket()

Public Constructor.

• ∼ServerSocket()

Public DeConstructor.

• void BindUDP (int port)

Public Function.

• constServerSocket& operator<< (const std::string &) const
• constServerSocket& operator>> (std::string &) const
• int rec_buffer (char∗buf, int length) const

Public Function.

• int rec_buffer_udp (char∗buf, int length) const

Public Function.

• void accept(ServerSocket&)

Public Function.

A.11.1 Detailed Description

Public Class.

ServerSocket(p. 130) class. This class contains the interface for the server end
of the socket connection. This is utilized during TCP and UDP connections to create a
connection, bind to a port, send and receive data, and accept incomming connections.

Definition at line 19 of file ServerSocket.h.

125

A.11.2 Constructor & Destructor Documentation

A.11.2.1 ServerSocket::ServerSocket (intport)

Public Constructor.

This is a constructor for theServerSocket(p. 125) class. This creates a TCP con-
nection at the input port and a UDP connection at a predefined port number. The TCP port
is then bound and set to listen at the specificed port number.

Parameters:
port int Port at which the TCP connection will be bound and listen.

Definition at line 7 of file ServerSocket.cpp.

References Socket::bind(), Socket::create(), and Socket::listen().

A.11.2.2 ServerSocket::ServerSocket ()

Public Constructor.

This is a constructor for theServerSocket(p. 125) class. This creates a UDP con-
nection at a predefined port number.

Definition at line 26 of file ServerSocket.cpp.

References Socket::create().

A.11.2.3 ServerSocket::∼ServerSocket ()

Public DeConstructor.

This is the deconstructor for theServerSocket(p. 125) class. This cleans up the
socket connections and frees memory.

Definition at line 35 of file ServerSocket.cpp.

A.11.3 Member Function Documentation

A.11.3.1 void ServerSocket::accept (ServerSocket &)

Public Function.

Sets the input socket to accept incomming socket connections. This function is used
with the TCP socket, m_sock.

Definition at line 96 of file ServerSocket.cpp.

References Socket::accept().

Referenced by appServer::recievePackets(), and appClient::socketConfiguration().

126

A.11.3.2 void ServerSocket::BindUDP (intport)

Public Function.

This function binds the UDP connection to the specified port.

Parameters:
port int Port that the UDP socket will utilize.

Definition at line 40 of file ServerSocket.cpp.

References Socket::bindUDP().

Referenced by appServer::recievePackets().

A.11.3.3 const ServerSocket & ServerSocket::operator<< (const std::string &)
const

Definition at line 49 of file ServerSocket.cpp.

References Socket::send().

A.11.3.4 const ServerSocket & ServerSocket::operator>> (std::string &) const

Definition at line 61 of file ServerSocket.cpp.

References Socket::recv().

A.11.3.5 int ServerSocket::rec_buffer (char∗ buf, int length) const

Public Function.

Receive a buffer of data from the host machine via a TCP connection. The function
will block until the length of data provided by the parameter ’length’ is received.

Parameters:
buf character pointer to the buffer for the received data.

length int length of data to expect from the host machine

Definition at line 71 of file ServerSocket.cpp.

References Socket::recv_buffer().

Referenced by appClient::socketConfiguration().

127

A.11.3.6 int ServerSocket::rec_buffer_udp (char∗ buf, int length) const

Public Function.

Receive a buffer of data from the host machine via a UDP socket connection. The
function will block until the length of data provided by the parameter ’length’ is received.

Parameters:
buf character pointer to the buffer for the received data.

length int length of data to expect from the host machine

Definition at line 83 of file ServerSocket.cpp.

References Socket::recv_buffer_udp().

Referenced by appServer::recievePackets().

The documentation for this class was generated from the following files:

• ServerSocket.h
• ServerSocket.cpp

128

129

A.12 Socket Class Reference

PublicSocket(p. 130) Class.

#include <Socket.h >

Inheritance diagram for Socket::

Public Member Functions

• Socket()

Public Constructor.

• ∼Socket()

Public DeConstructor.

• boolcreate()

Public Function.

• boolbind (const int port)

Public Function.

• boolcreateUDP()

Public Function.

• boolbindUDP (const int port)

Public Function.

• bool listen () const

Public Function.

• boolaccept(Socket&) const

Public Function.

• boolconnect(const std::string host, const int port)

Public Function.

• boolsend(const std::string buffer) const

Public Function.

• int recv (std::string &buffer) const

Public Function.

130

• boolsend_buffer(const char∗buf, int length) const

Public Function.

• int recv_buffer (char∗retbuf, int length) const

Public Function.

• boolsend_buffer_udp(char∗buf, int length) const

Public Function.

• int recv_buffer_udp (char∗retbuf, int length) const

Public Function.

• void set_non_blocking(const bool blocking)

Public Function.

• bool is_valid () const

Public Function.

• bool is_udp_valid () const

Public Function.

Private Attributes

• int m_sock

Private variable.

• sockaddr_inm_addr

Private variable.

• int udp_sock

Private variable.

• sockaddr_inudp_addr

Private variable.

131

A.12.1 Detailed Description

PublicSocket(p. 130) Class.

This class handles all of the low level socket connection functionality, including:
creation, bind, accept, listen, send and receive.

Definition at line 29 of file Socket.h.

A.12.2 Constructor & Destructor Documentation

A.12.2.1 Socket::Socket ()

Public Constructor.

This is the constructor for theSocket(p. 130) class

Definition at line 12 of file Socket.cpp.

References m_addr, and udp_addr.

A.12.2.2 Socket::∼Socket ()

Public DeConstructor.

This is the deconstructor for theSocket(p. 130) class

Definition at line 21 of file Socket.cpp.

References is_udp_valid(), is_valid(), m_sock, and udp_sock.

A.12.3 Member Function Documentation

A.12.3.1 bool Socket::accept (Socket &) const

Public Function.

Sets the input socket to accept incomming socket connections. This function is used
with the TCP socket, m_sock.

Definition at line 144 of file Socket.cpp.

References m_addr, and m_sock.

Referenced by ServerSocket::accept().

A.12.3.2 bool Socket::bind (const intport)

Public Function.

Binds the TCP socket to the input port. Returns zero if successful.

132

Parameters:
port int port to bind the TCP socket

Definition at line 78 of file Socket.cpp.

References is_udp_valid(), is_valid(), m_addr, and m_sock.

Referenced by bindUDP(), and ServerSocket::ServerSocket().

A.12.3.3 bool Socket::bindUDP (const intport)

Public Function.

Binds the UDP socket to the input port. Returns zero if successful.

Parameters:
port int port to bind the UDP socket

Definition at line 105 of file Socket.cpp.

References bind(), is_udp_valid(), udp_addr, and udp_sock.

Referenced by ServerSocket::BindUDP().

A.12.3.4 bool Socket::connect (const std::stringhost, const int port)

Public Function.

This function causes the TCP socket, m_sock, to connect to the input host at the
input port.

Parameters:
host string Host machine to connect to

port int Port to use to connect to the host machine

Definition at line 290 of file Socket.cpp.

References is_valid(), m_addr, and m_sock.

Referenced by ClientSocket::ClientSocket().

A.12.3.5 bool Socket::create ()

Public Function.

This method instantiates socket connections objects and sets any applicable settings.
Two connections are created, namely m_sock, a TCP SOCK_STREAM socket, and udp_-
sock, a UDP SOCK_DGRAM socket. The sockets are set to reuse addresses and with no
delay in order to minimize packet agglomeration during network processing.

133

Definition at line 30 of file Socket.cpp.

References is_udp_valid(), is_valid(), m_sock, and udp_sock.

Referenced by ClientSocket::ClientSocket(), and ServerSocket::ServerSocket().

A.12.3.6 bool Socket::createUDP ()

Public Function.

This method instantiates a socket connection objects and sets any applicable settings
for a UDP socket connection. udp_sock, a UDP SOCK_DGRAM socket is created. The
socket is set to reuse addresses and with the ’nodelay’ flag in order to minimize packet
agglomeration during network processing.

Definition at line 58 of file Socket.cpp.

References is_udp_valid(), and udp_sock.

A.12.3.7 bool Socket::is_udp_valid () const[inline]

Public Function.

Determines if the UDP socket is a valided initialized socket

Definition at line 224 of file Socket.h.

References udp_sock.

Referenced by bind(), bindUDP(), create(), createUDP(), and∼Socket().

A.12.3.8 bool Socket::is_valid () const[inline]

Public Function.

Determines if the TCP socket is a valided initialized socket

Definition at line 217 of file Socket.h.

References m_sock.

Referenced by bind(), connect(), create(), listen(), and∼Socket().

A.12.3.9 bool Socket::listen () const

Public Function.

Sets the TCP socket connection to listen with the number of possible connections
of MAXCONNECTIONS

Definition at line 126 of file Socket.cpp.

References is_valid(), m_sock, and MAXCONNECTIONS.

134

Referenced by ServerSocket::ServerSocket().

A.12.3.10 int Socket::recv (std::string & buffer) const

Public Function.

Receive a buffer of data from the host machine. The maximum data size to receive
is 66,000 bytes. The received data is returned in s.

Parameters:
buffer string buffer the buffer for the received data.

Definition at line 209 of file Socket.cpp.

References m_sock, and MAXRECV.

Referenced by ServerSocket::operator>>(), ClientSocket::operator>>(), and
recv_buffer().

A.12.3.11 int Socket::recv_buffer (char∗ retbuf, int length) const

Public Function.

Receive a buffer of data from the host machine via a TCP connection. The function
will block until the length of data provided by the parameter ’length’ is received.

Parameters:
retbuf character pointer to the buffer for the received data.

length int length of data to expect from the host machine

Definition at line 235 of file Socket.cpp.

References m_sock, and recv().

Referenced by ServerSocket::rec_buffer().

A.12.3.12 int Socket::recv_buffer_udp (char∗ retbuf, int length) const

Public Function.

Receive a buffer of data from the host machine via a UDP socket connection. The
function will block until the length of data provided by the parameter ’length’ is received.

Parameters:
retbuf character pointer to the buffer for the received data.

length int length of data to expect from the host machine

135

Definition at line 260 of file Socket.cpp.

References udp_sock.

Referenced by ServerSocket::rec_buffer_udp().

A.12.3.13 bool Socket::send (const std::stringbuffer) const

Public Function.

Send a string buffer via the TCP socket connection to the destination machine. This
requires a TCP socket connection to be already established otherwise an error is returned.

Parameters:
buffer string buffer to send to the host machine.

Definition at line 156 of file Socket.cpp.

References m_sock.

Referenced by ServerSocket::operator<<(), ClientSocket::operator<<(), and
send_buffer().

A.12.3.14 bool Socket::send_buffer (const char∗ buf, int length) const

Public Function.

Send a character array buffer via the TCP socket connection to the destination ma-
chine. This requires a TCP socket connection to be already established otherwise an error
is returned. This will send a guarenteed length in bytes to the host machine. If the input
buffer exceeds the length then the data will be truncated. If the input buffer is less than the
length than the message will be padded.

Parameters:
buf character pointer to the send buffer.

length int length of data to send to the host machine.

Reimplemented inClientSocket(p. 92).

Definition at line 169 of file Socket.cpp.

References m_sock, and send().

Referenced by ClientSocket::send_buffer().

A.12.3.15 bool Socket::send_buffer_udp (char∗ buf, int length) const

Public Function.

136

Send a character array buffer via the UDP socket connection to the destination
machine. This requires a UDP socket connection to be already established otherwise an
error is returned. This will send a guarenteed length in bytes to the host machine. If the
input buffer exceeds the length then the data will be truncated. If the input buffer is less
than the length than the message will be padded.

Parameters:
buf character pointer to the send buffer.

length int length of data to send to the host machine.

Reimplemented inClientSocket(p. 93).

Definition at line 182 of file Socket.cpp.

References udp_sock.

Referenced by ClientSocket::send_buffer_udp().

A.12.3.16 void Socket::set_non_blocking (const boolblocking)

Public Function.

Sets the TCP socket connection to be a blocking or non-blocking socket.

Parameters:
blocking boolean True sets the connection to be non-blocking, False sets the connec-

tion to be a blocking connection

Definition at line 309 of file Socket.cpp.

References m_sock.

A.12.4 Field Documentation

A.12.4.1 sockaddr_in Socket::m_addr [private]

Private variable.

TCP socket port

Definition at line 241 of file Socket.h.

Referenced by accept(), bind(), connect(), and Socket().

A.12.4.2 int Socket::m_sock [private]

Private variable.

137

TCP socket connection variable

Definition at line 234 of file Socket.h.

Referenced by accept(), bind(), connect(), create(), is_valid(), listen(), recv(),
recv_buffer(), send(), send_buffer(), set_non_blocking(), and∼Socket().

A.12.4.3 sockaddr_in Socket::udp_addr [private]

Private variable.

UDP socket port

Definition at line 256 of file Socket.h.

Referenced by bindUDP(), and Socket().

A.12.4.4 int Socket::udp_sock [private]

Private variable.

UDP socket connection variable

Definition at line 249 of file Socket.h.

Referenced by bindUDP(), create(), createUDP(), is_udp_valid(), recv_buffer_-
udp(), send_buffer_udp(), and∼Socket().

The documentation for this class was generated from the following files:

• Socket.h
• Socket.cpp

138

139

A.13 SocketException Class Reference

Public Class.

#include <SocketException.h >

Public Member Functions

• SocketException(std::string s)

Public Constructor.

• ∼SocketException()

Public DeConstructor.

• std::stringdescription ()

Public Function.

Private Attributes

• std::stringm_s

Private Variable.

A.13.1 Detailed Description

Public Class.

Socket(p. 130) Exception Class. This handles exceptions in the socket connection
and error reporting for theSocket(p. 130) class.

Definition at line 18 of file SocketException.h.

A.13.2 Constructor & Destructor Documentation

A.13.2.1 SocketException::SocketException (std::strings) [inline]

Public Constructor.

This is the constructor for theSocket(p. 130) Exception class

Definition at line 27 of file SocketException.h.

140

A.13.2.2 SocketException::∼SocketException () [inline]

Public DeConstructor.

This is the deconstructor for theSocket(p. 130) Exception class

Definition at line 35 of file SocketException.h.

A.13.3 Member Function Documentation

A.13.3.1 std::string SocketException::description () [inline]

Public Function.

Returns the string description for a socket error number

Definition at line 43 of file SocketException.h.

References m_s.

Referenced by appClient::generateWorkload().

A.13.4 Field Documentation

A.13.4.1 std::string SocketException::m_s [private]

Private Variable.

Stores the current exception string value.

Definition at line 52 of file SocketException.h.

Referenced by description().

The documentation for this class was generated from the following file:

• SocketException.h

141

A.14 TabDialog Class Reference

Public Class.

#include <tabdialog.h >

Public Member Functions

• TabDialog (QWidget∗parent=0)

Private Constructor Creates an instance of theTabDialog(p. 142)and sets us the appro-
priate initialization values. This also sets up all of the slot functions and the gui objects
for the tab.

Private Attributes

• QTabWidget∗ tabWidget
• model∗ my_model

Private Variable.

A.14.1 Detailed Description

Public Class.

TheTabDialog(p. 142) class is a holder for the various tab classes in the GUI.

Definition at line 137 of file tabdialog.h.

A.14.2 Constructor & Destructor Documentation

A.14.2.1 TabDialog::TabDialog (QWidget∗ parent= 0)

Private Constructor Creates an instance of theTabDialog(p. 142) and sets us the
appropriate initialization values. This also sets up all of the slot functions and the gui
objects for the tab.

Parameters:
parent QWidget, Parent widget for theconfigureTab(p. 95), Optional

A.14.3 Field Documentation

A.14.3.1 model∗ TabDialog::my_model [private]

Private Variable.

142

The my_model variable is a local instatiation of the Model class and stores the
information for theconfigureTab(p. 95).

Definition at line 157 of file tabdialog.h.

A.14.3.2 QTabWidget∗ TabDialog::tabWidget [private]

Definition at line 151 of file tabdialog.h.

The documentation for this class was generated from the following file:

• tabdialog.h

143

Cross-Layer Test Harness File Documentation

A.15 af_inet.c File Reference

#include <linux/timer.h >

#include <linux/proc_fs.h >

#include <linux/random.h >

Data Structures

• structpacketData

Private Data Structure.

Defines

• #defineTIMER 0
• #defineEVENT 1
• #defineNAMESIZE 512
• #defineTHRESHOLD 25

Functions

• static voidappQueryData (unsigned long input)

Private Function.

• int appCatchProcRead(char∗buf, char∗∗start, off_t offset, int len, int∗unused,
void ∗data)

Public Function.

144

• static intappQueryRead(char∗name)

Public Function.

• int appCatchProcWrite (struct file∗file, const char __user∗buffer, unsigned long
count, void∗data)

Public Function.

• static intappEnvironmentUpdate (struct sock∗sk)

Variables

• static struct timer_listapp_timer
• static int(∗ app_func)(char∗name, int value)
• static struct proc_dir_entry∗ app_test_entry
• static intappTimerInterval = 1000
• static intappTimerRange= 100
• static intappQuery = 0
• static intappTrigger = 0
• static charappQueryName[NAMESIZE]
• static intappRegistered= 0
• static intdebug= 0
• static intappState= 0
• semaphoreapp_sem
• packetData appData

A.15.1 Define Documentation

A.15.1.1 #define EVENT 1

EVENT defines the Event Activation Mechanism

Definition at line 153 of file af_inet.c.

Referenced by ip_queue_xmit(), trafficStation(), and udpTrafficStation().

A.15.1.2 #define NAMESIZE 512

NAMESIZE defines the maximim length of a name in a name-value pair

Definition at line 154 of file af_inet.c.

Referenced by appCatchProcWrite(), ipCatchProcWrite(), loCatchProcWrite(),
tcpCatchProcWrite(), and udpCatchProcWrite().

145

A.15.1.3 #define THRESHOLD 25

THRESHOLD defines the change in environment status before a Information Query
is initiated with an Event Activation Mechanism

Definition at line 155 of file af_inet.c.

A.15.1.4 #define TIMER 0

TIMER defines the Timer Activation Mechanism

Definition at line 152 of file af_inet.c.

Referenced by appQueryData(), init_module(), ipQueryData(), loQueryData(), tcp-
QueryData(), and udpQueryData().

A.15.2 Function Documentation

A.15.2.1 int appCatchProcRead (char∗ buf, char ∗∗ start, off_t offset, int len, int ∗
unused, void ∗ data)

Public Function.

This function catches anything trying to read from /proc/brandxapp. This function
is called to handle the output of information to user space.

Parameters:
buf character pointer, The buffer where the data is to be inserted

start double character pointer, If you don’t want to use the buffer allocated by the
kernel

len int, Current position in the file

unused int, Size of the buffer in the first argument

data void pointer, For future use

Definition at line 256 of file af_inet.c.

References appQuery, appRegistered, appTimerInterval, appTimerRange, and app-
Trigger.

A.15.2.2 int appCatchProcWrite (struct file ∗ file, const char __user∗ buffer,
unsigned longcount, void ∗ data)

Public Function.

This function catches anything trying to write to /proc/brandxapp. This function is
called to handle the input of information from user space.

146

Parameters:
file a file pointer, To the file to be read

buffer a character buffer, To put the data into (in the user segment)

count unsigned long, The length of the buffer

data void pointer, Offset in the file to store the data at

Definition at line 308 of file af_inet.c.

References app_timer, appQuery, appQueryData(), appQueryName, appQuery-
Read(), appRegistered, appTimerInterval, appTimerRange, appTrigger, debug, and
NAMESIZE.

A.15.2.3 static int appEnvironmentUpdate (struct sock∗ sk) [static]

/brief Public Function

This function updates the internal cache stored in the local protocol layer. This is
utilized in decreasing response time with a Synchronized Pull architecture.

Definition at line 480 of file af_inet.c.

References appData, debug, packetData::dropped, packetData::packets, packet-
Data::rxBytes, packetData::rxErrors, packetData::txBytes, and packetData::txErrors.

A.15.2.4 static void appQueryData (unsigned longinput) [static]

Private Function.

Timer activated information update mechanism. This function is utilized during
information updates based on a Timer activation mechanism. Special care must be taken
to remove the registered tcp_timer value before this function is removed or is will cause a
segmenation fault.

Definition at line 200 of file af_inet.c.

References app_func, app_sem, app_timer, appQuery, appQueryName, appTimer-
Interval, appTrigger, debug, and TIMER.

Referenced by appCatchProcWrite().

A.15.2.5 static int appQueryRead (char∗ name) [static]

Public Function.

Intermodule Communication function, calls the registered callback function with
updated environment information. This is utilized during the Synchronous Pull architec-
ture.

Definition at line 277 of file af_inet.c.

147

References app_func, appQueryName, and debug.

Referenced by appCatchProcWrite().

A.15.3 Variable Documentation

A.15.3.1 int(∗ app_func)(char∗name, int value) [static]

Stores the pointer to the function launched with the timer object

Definition at line 158 of file af_inet.c.

Referenced by appQueryData(), and appQueryRead().

A.15.3.2 struct semaphore app_sem

Stores the semaphore for the local layer race condition control

Definition at line 168 of file af_inet.c.

Referenced by appQueryData().

A.15.3.3 struct proc_dir_entry∗ app_test_entry [static]

Stores the entry for the proc file system in the Linux Kernel

Definition at line 159 of file af_inet.c.

A.15.3.4 struct timer_list app_timer [static]

Stores the Linux kernel timer object utilized with a Timer Activation Mechanism

Definition at line 157 of file af_inet.c.

Referenced by appCatchProcWrite(), and appQueryData().

A.15.3.5 struct packetData appData

Referenced by appEnvironmentUpdate(), readFromBillboard(), and writeOn-
Billboard().

A.15.3.6 int appQuery = 0 [static]

Stores if the protocol layer is actively performing information queries

Definition at line 162 of file af_inet.c.

Referenced by appCatchProcRead(), appCatchProcWrite(), and appQueryData().

148

A.15.3.7 char appQueryName[NAMESIZE] [static]

Stores the names of the different architectures utilized in the experiments

Definition at line 164 of file af_inet.c.

Referenced by appCatchProcWrite(), appQueryData(), and appQueryRead().

A.15.3.8 int appRegistered = 0 [static]

Stores if the protocol layer IMC functions have been registered with the Linux
Kernel

Definition at line 165 of file af_inet.c.

Referenced by appCatchProcRead(), and appCatchProcWrite().

A.15.3.9 int appState = 0 [static]

Stores the current state of the information query

Definition at line 167 of file af_inet.c.

A.15.3.10 int appTimerInterval = 1000 [static]

Defines the timer interval for Timer driven information querys

Definition at line 160 of file af_inet.c.

Referenced by appCatchProcRead(), appCatchProcWrite(), and appQueryData().

A.15.3.11 int appTimerRange = 100 [static]

Defines the timer range for Event driven information querys

Definition at line 161 of file af_inet.c.

Referenced by appCatchProcRead(), and appCatchProcWrite().

A.15.3.12 int appTrigger = 0 [static]

Defines the activation mechanims utilized in the current experiment

Definition at line 163 of file af_inet.c.

Referenced by appCatchProcRead(), appCatchProcWrite(), and appQueryData().

149

A.15.3.13 int debug = 0 [static]

Stores the current DEBUG level

Definition at line 166 of file af_inet.c.

150

A.16 appClient.cpp File Reference

#include "appClient.h"

Functions

• void writeToFile (char∗fileName, char∗data)

Private Function.

• int brandxStart (int timer, int range, int trigger, int delay)

Private Function.

• int brandxStop ()

Private Function.

• int controlStart (int timer, int range, int trigger, int delay)

Private Function.

• int controlStop ()

Private Function.

• int pushStart (int timer, int range, int trigger, int delay)

Private Function.

• int pushStop()

Private Function.

• int pullStart (int timer, int range, int trigger, int delay)

Private Function.

• int pullStop ()

Private Function.

• int main (int argc, int argv[])

Main Function.

151

A.16.1 Function Documentation

A.16.1.1 int brandxStart (int timer, int range, int trigger, int delay)

Private Function.

This function starts the Brand X cross-layer architecture with the specified config-
uration. The input parameters are used to control the Brand X attributes and create various
test scenerios.

Parameters:
timer int Query interaval time

range int Event range variable

trigger int Timer or Event activation mechanism

delay int QoT and Physical layer delay times

Definition at line 425 of file appClient.cpp.

References BRANDX, and writeToFile().

Referenced by main().

A.16.1.2 int brandxStop ()

Private Function.

This function stops the Brand X cross-layer architecture and clear any structures or
memory that has been modified in the network protocol stack.

Definition at line 498 of file appClient.cpp.

References writeToFile().

Referenced by main().

A.16.1.3 int controlStart (int timer, int range, int trigger, int delay)

Private Function.

This function starts the Control cross-layer architecture with the specified configu-
ration. The input parameters are used to control the Control attributes and create various
test scenerios.

Parameters:
timer int Query interaval time

range int Event range variable

trigger int Timer or Event activation mechanism

152

delay int QoT and Physical layer delay times

Definition at line 539 of file appClient.cpp.

References CONTROL, and writeToFile().

A.16.1.4 int controlStop ()

Private Function.

This function stops the Control cross-layer architecture and clear any structures or
memory that has been modified in the network protocol stack.

Definition at line 579 of file appClient.cpp.

References writeToFile().

A.16.1.5 int main (int argc, int argv[])

Main Function.

This function starts the Application Client and work load generation. User input at
the command line or scripted values are used to control this function and launch automated
testing. This function can be linked with the gui to provide interface support or it can be
run in a scripted stand-alone mode.

Definition at line 810 of file appClient.cpp.

References brandxStart(), brandxStop(), appClient::generateWorkload(),
names, appClient::setAvgFile(), appClient::setBurstSize(), appClient::setLogFile(),
appClient::setPacketInterval(), and appClient::setPacketSize().

A.16.1.6 int pullStart (int timer, int range, int trigger, int delay)

Private Function.

This function starts the Synchronous Pull cross-layer architecture with the specified
configuration. The input parameters are used to control the Synchronous Pull attributes and
create various test scenerios.

Parameters:
timer int Query interaval time

range int Event range variable

trigger int Timer or Event activation mechanism

delay int QoT and Physical layer delay times

Definition at line 707 of file appClient.cpp.

References writeToFile().

153

A.16.1.7 int pullStop ()

Private Function.

This function stops the Synchronous Pull cross-layer architecture and clear any
structures or memory that has been modified in the network protocol stack.

Definition at line 783 of file appClient.cpp.

References writeToFile().

A.16.1.8 int pushStart (int timer, int range, int trigger, int delay)

Private Function.

This function starts the Synchronous Push cross-layer architecture with the spec-
ified configuration. The input parameters are used to control the Synchronous Push at-
tributes and create various test scenerios.

Parameters:
timer int Query interaval time

range int Event range variable

trigger int Timer or Event activation mechanism

delay int QoT and Physical layer delay times

Definition at line 604 of file appClient.cpp.

References PUSH, and writeToFile().

A.16.1.9 int pushStop ()

Private Function.

This function stops the Synchronous Push cross-layer architecture and clear any
structures or memory that has been modified in the network protocol stack.

Definition at line 674 of file appClient.cpp.

References writeToFile().

A.16.1.10 void writeToFile (char∗ fileName, char ∗ data)

Private Function.

This function writes the contents of the data parameter to the specified fileName.
This mechanisms communicates via the proc file system to go between the User level Linux
environment to Kernel level processes.

154

Parameters:
fileName character pointer holds the proc filename for the file write

data character pointer holds the data to be written to the file specified in fileName

Definition at line 404 of file appClient.cpp.

Referenced by brandxStart(), brandxStop(), controlStart(), controlStop(), pull-
Start(), pullStop(), pushStart(), and pushStop().

155

A.17 appClient.h File Reference

#include "ClientSocket.h"

#include "ServerSocket.h"

#include "SocketException.h"

#include <iostream >

#include <string >

#include <sys/time.h >

#include <unistd.h >

#include <stdlib.h >

#include <pthread.h >

#include <fstream >

Namespaces

• namespacestd

Data Structures

• classappClient

Traffic generation class.

• structappClient::experiment

Private experiment structure.

Defines

• #defineMAX_SIZE 66000

Maximum size for workload traffic.

• #defineSTDOUT 0

Defined value for logging data to stdout (debug).

• #defineFILE 1

Defined value for logging data to a file.

• #defineINIT_SIZE 128

156

Initial size of workload traffic.

• #defineCONTROL 0
• #definePUSH1
• #definePULL 2
• #defineBRANDX 3

Variables

• static charnames[][16] = {{"control"},{"push"},{"pull"},{"brandx"}}

A.17.1 Define Documentation

A.17.1.1 #define BRANDX 3

Definition at line 29 of file appClient.h.

Referenced by brandxStart(), and qotTimerQuery().

A.17.1.2 #define CONTROL 0

Definition at line 26 of file appClient.h.

Referenced by controlStart().

A.17.1.3 #define FILE 1

Defined value for logging data to a file.

Definition at line 23 of file appClient.h.

Referenced by appServer::log(), appClient::log(), and procTab::sendProcCmd().

A.17.1.4 #define INIT_SIZE 128

Initial size of workload traffic.

Definition at line 25 of file appClient.h.

Referenced by appClient::generateWorkload(), appServer::recievePackets(), and
appClient::socketConfiguration().

A.17.1.5 #define MAX_SIZE 66000

Maximum size for workload traffic.

157

Definition at line 19 of file appClient.h.

Referenced by appClient::generateWorkload(), appServer::recievePackets(), and
appClient::socketConfiguration().

A.17.1.6 #define PULL 2

Definition at line 28 of file appClient.h.

A.17.1.7 #define PUSH 1

Definition at line 27 of file appClient.h.

Referenced by pushStart().

A.17.1.8 #define STDOUT 0

Defined value for logging data to stdout (debug).

Definition at line 21 of file appClient.h.

Referenced by appServer::log(), appClient::log(), appServer::recievePackets(), and
appClient::socketConfiguration().

A.17.2 Variable Documentation

A.17.2.1 char names[][16] = {{"control"},{"push"},{"pull"},{"brandx"}}
[static]

Definition at line 30 of file appClient.h.

Referenced by main().

158

A.18 appServer.cpp File Reference

#include "appServer.h"

Functions

• int main (int argc, int argv[])

Main Function.

A.18.1 Function Documentation

A.18.1.1 int main (int argc, int argv[])

Main Function.

This function starts the Application Server and work load reception.

Definition at line 280 of file appServer.cpp.

References appServer::recievePackets().

159

A.19 appServer.h File Reference

#include <iostream >

#include "ServerSocket.h"

#include "SocketException.h"

#include <string >

#include <sys/time.h >

#include <fstream >

#include <unistd.h >

Data Structures

• classappServer

Traffic reception class.

• structappServer::packetInfo

Private Data Structure.

Defines

• #defineMAX_SIZE 66000

Maximum size for workload traffic.

• #defineSTDOUT 0

Defined value for logging data to stdout (debug).

• #defineFILE 1

Defined value for logging data to a file.

• #defineINIT_SIZE 128

Initial size of workload traffic.

A.19.1 Define Documentation

A.19.1.1 #define FILE 1

Defined value for logging data to a file.

Definition at line 17 of file appServer.h.

160

A.19.1.2 #define INIT_SIZE 128

Initial size of workload traffic.

Definition at line 19 of file appServer.h.

A.19.1.3 #define MAX_SIZE 66000

Maximum size for workload traffic.

Definition at line 13 of file appServer.h.

A.19.1.4 #define STDOUT 0

Defined value for logging data to stdout (debug).

Definition at line 15 of file appServer.h.

161

A.20 brandx.c File Reference

#include <linux/kernel.h >

#include <linux/module.h >

#include <linux/proc_fs.h >

Data Structures

• structname_value

Internal data storage structure.

Defines

• #defineSYSLOG 0
• #defineFILELOG 1
• #defineMAXPROC 1024

Functions

• void logData (char∗data, int type)

Public Function Log data out to relevant areas.

• void writeOnBillboard (const char∗name, int value)

Public Function Write a name-value pair to the billboard for latter use by QoT.

• int readFromBillboard (char∗name)

Public Function Read a value from the billboard. The name value pair must already exist
on the billboard or an error is returned.

• static intcatchProcRead(char∗buf, char∗∗start, off_t offset, int len, int∗eof, void
∗type)

Public Function Read data from the Brand X proc file, brandx. This is used for Kernel to
User level communication and configuration. This is utilized when a user level process
attempts to read the brandx proc file.

• int catchProcWrite (struct file∗file, const char __user∗buffer, unsigned long count,
void ∗data)

Public Function Write data to the Brand X proc file, brandx. This is utilized when a user
level process writes to the Brand X proc file. Utilizing this method user level processes
can communicate with kernel level processes.

162

• void regProcFunctions()

Public Function Register the proc filesystem functions with the Linux kernel.

• void unregProcFunctions()

Public Function Unregister the proc filesystem functions with the Linux kernel.

• void billboard_write (char∗name, int value)

Public Function Write a name-value pair to the billboard. This function is called via the
Inter process communication mechanism available through the Linux Kernel.

• int billboard_read (char∗name)

Public Function Read a name-value pair from the billboard. This function is called via
the Inter process communication mechanism available through the Linux Kernel.

• void regCallbackFunctions()

Public Function Register the cross intermodule callback functions, billboard_write and
billboard_read.

• void unregCallbackFunctions()

Public Function Unregister the cross intermodule callback functions, billboard_write and
billboard_read.

• int init_module ()

Module Initialization Function.

• void cleanup_module()

Module Destroy Function.

• MODULE_LICENSE ("GPL")

A.20.1 Define Documentation

A.20.1.1 #define FILELOG 1

Definition at line 18 of file brandx.c.

Referenced by logData().

A.20.1.2 #define MAXPROC 1024

Definition at line 19 of file brandx.c.

Referenced by qotCatchProcWrite().

163

A.20.1.3 #define SYSLOG 0

Need to: 1.Add a mechanism to erase from the billboard 2.Change hardcoded data
and config value to dynamic list 3.Add the ability to query for more than one value at a
time

Definition at line 17 of file brandx.c.

Referenced by catchProcRead(), logData(), readFromBillboard(), regCallback-
Functions(), regProcFunctions(), unregCallbackFunctions(), unregProcFunctions(), and
writeOnBillboard().

A.20.2 Function Documentation

A.20.2.1 int billboard_read (char ∗ name)

Public Function Read a name-value pair from the billboard. This function is called
via the Inter process communication mechanism available through the Linux Kernel.

Parameters:
name character pointer holds the name of the pair to be read from the billboard.

Definition at line 302 of file brandx.c.

Referenced by regCallbackFunctions().

A.20.2.2 void billboard_write (char ∗ name, int value)

Public Function Write a name-value pair to the billboard. This function is called
via the Inter process communication mechanism available through the Linux Kernel.

Parameters:
name character pointer holds the name of the pair to be written to the billboard.

value int holds the data to be writte to the billboard.

Definition at line 291 of file brandx.c.

References debug.

Referenced by regCallbackFunctions().

A.20.2.3 static int catchProcRead (char∗ buf, char ∗∗ start, off_t offset, int len, int ∗
eof, void ∗ type) [static]

Public Function Read data from the Brand X proc file, brandx. This is used for
Kernel to User level communication and configuration. This is utilized when a user level
process attempts to read the brandx proc file.

164

Parameters:
buf character pointer holds the buffer of the user level data

start character double pointer holds the start position to write data to the buffer

len int indicates the length of data to write to the input buffer

type void pointer not used

Definition at line 170 of file brandx.c.

References logData(), readFromBillboard(), and SYSLOG.

Referenced by regProcFunctions().

A.20.2.4 int catchProcWrite (struct file ∗ file, const char __user∗ buffer, unsigned
long count, void ∗ data)

Public Function Write data to the Brand X proc file, brandx. This is utilized when a
user level process writes to the Brand X proc file. Utilizing this method user level processes
can communicate with kernel level processes.

Parameters:
file file structure holds a pointer to the file that is written to.

buffer character pointer is the user level data, this must be copied because it is user
level memory.

count unsigned long holds the length of the data that was written

data void pointer not used

Definition at line 221 of file brandx.c.

References debug.

Referenced by init_module(), and regProcFunctions().

A.20.2.5 void cleanup_module (void)

Module Destroy Function.

Called when the module is unloaded into the Linux Kernel. All functions are im-
plemented as pluggable kernel modules. This function unregisters the inter-process com-
munication functions and removes the proc file system entries.

Definition at line 348 of file brandx.c.

A.20.2.6 int init_module (void)

Module Initialization Function.

165

Called when the module is loaded into the Linux Kernel. All functions are imple-
mented as pluggable kernel modules. This function registers the inter-process communica-
tion functions and the proc file system entries.

Definition at line 334 of file brandx.c.

A.20.2.7 void logData (char∗ data, int type)

Public Function Log data out to relevant areas.

Parameters:
data character pointer to message buffer to be logged.

type specifies the data logging system; 0=syslog, 1=file.

Definition at line 61 of file brandx.c.

References FILELOG, and SYSLOG.

Referenced by catchProcRead(), readFromBillboard(), regCallbackFunctions(),
regProcFunctions(), unregCallbackFunctions(), unregProcFunctions(), and writeOn-
Billboard().

A.20.2.8 MODULE_LICENSE ("GPL")

A.20.2.9 int readFromBillboard (char ∗ name)

Public Function Read a value from the billboard. The name value pair must already
exist on the billboard or an error is returned.

Parameters:
name character pointer holds the name of the name-value requested.

Definition at line 118 of file brandx.c.

References appData, debug, ipData, logData(), SYSLOG, tcpData, and udpData.

Referenced by catchProcRead().

A.20.2.10 void regCallbackFunctions (void)

Public Function Register the cross intermodule callback functions, billboard_write
and billboard_read.

Definition at line 311 of file brandx.c.

Referenced by init_module().

166

A.20.2.11 void regProcFunctions ()

Public Function Register the proc filesystem functions with the Linux kernel.

Definition at line 268 of file brandx.c.

References catchProcRead(), catchProcWrite(), logData(), and SYSLOG.

Referenced by init_module().

A.20.2.12 void unregCallbackFunctions (void)

Public Function Unregister the cross intermodule callback functions, billboard_-
write and billboard_read.

Definition at line 320 of file brandx.c.

Referenced by cleanup_module().

A.20.2.13 void unregProcFunctions ()

Public Function Unregister the proc filesystem functions with the Linux kernel.

Definition at line 278 of file brandx.c.

References logData(), and SYSLOG.

Referenced by cleanup_module().

A.20.2.14 void writeOnBillboard (const char∗ name, int value)

Public Function Write a name-value pair to the billboard for latter use by QoT.

Parameters:
name character pointer holds the name of the source protocol layer

value int holds the value written to the billboard

Definition at line 76 of file brandx.c.

References appData, debug, ipData, logData(), SYSLOG, tcpData, and udpData.

167

A.21 ClientSocket.cpp File Reference

#include "ClientSocket.h"

#include "SocketException.h"

168

A.22 ClientSocket.h File Reference

#include "Socket.h"

Data Structures

• classClientSocket

Public Class.

169

A.23 ip_output.c File Reference

#include <asm/uaccess.h >

#include <asm/system.h >

#include <linux/module.h >

#include <linux/types.h >

#include <linux/kernel.h >

#include <linux/sched.h >

#include <linux/mm.h >

#include <linux/string.h >

#include <linux/errno.h >

#include <linux/config.h >

#include <linux/socket.h >

#include <linux/sockios.h >

#include <linux/in.h >

#include <linux/inet.h >

#include <linux/netdevice.h >

#include <linux/etherdevice.h >

#include <linux/proc_fs.h >

#include <linux/stat.h >

#include <linux/init.h >

#include <linux/timer.h >

#include <net/snmp.h >

#include <net/ip.h >

#include <net/protocol.h >

#include <net/route.h >

#include <net/tcp.h >

#include <net/udp.h >

#include <linux/skbuff.h >

#include <net/sock.h >

#include <net/arp.h >

#include <net/icmp.h >

#include <net/raw.h >

170

#include <net/checksum.h >

#include <net/inetpeer.h >

#include <linux/igmp.h >

#include <linux/netfilter_ipv4.h >

#include <linux/netfilter_bridge.h >

#include <linux/mroute.h >

#include <linux/netlink.h >

Data Structures

• structpacketData

Private Data Structure.

Defines

• #defineTIMER 0
• #defineEVENT 1
• #defineNAMESIZE 512
• #defineTHRESHOLD 25

Functions

• __inline__ voidip_send_check(struct iphdr∗iph)
• static voidipQueryData (unsigned long input)

Private Function.

• int ipCatchProcRead(char∗buf, char∗∗start, off_t offset, int len, int∗unused, void
∗data)

Public Function.

• int ipQueryRead (char∗name)

Public Function.

• int ipCatchProcWrite (struct file ∗file, const char __user∗buffer, unsigned long
count, void∗data)

Public Function.

• static intipEnvironmentUpdate (struct sk_buff∗skb)

171

• static intip_dev_loopback_xmit(struct sk_buff∗newskb)
• static intip_select_ttl(struct inet_opt∗inet, struct dst_entry∗dst)
• int ip_build_and_send_pkt (struct sk_buff∗skb, struct sock∗sk, u32 saddr, u32

daddr, struct ip_options∗opt)
• static intip_finish_output2 (struct sk_buff∗skb)
• int ip_finish_output (struct sk_buff∗skb)
• int ip_mc_output (struct sk_buff∗∗pskb)
• static intip_output2 (struct sk_buff∗skb)
• int ip_output (struct sk_buff∗∗pskb)
• int ip_queue_xmit(struct sk_buff∗skb, int ipfragok)
• static voidip_copy_metadata(struct sk_buff∗to, struct sk_buff∗from)
• int ip_fragment (struct sk_buff∗skb, int(∗output)(struct sk_buff∗))
• int ip_generic_getfrag(void ∗from, char∗to, int offset, int len, int odd, struct sk_-

buff ∗skb)
• static unsigned intcsum_page(struct page∗page, int offset, int copy)
• int ip_append_data(struct sock∗sk, int getfrag(void∗from, char∗to, int offset,

int len, int odd, struct sk_buff∗skb), void∗from, int length, int transhdrlen, struct
ipcm_cookie∗ipc, struct rtable∗rt, unsigned int flags)

• ssize_tip_append_page(struct sock∗sk, struct page∗page, int offset, size_t size,
int flags)

• int ip_push_pending_frames(struct sock∗sk)
• void ip_flush_pending_frames(struct sock∗sk)
• static int ip_reply_glue_bits (void ∗dptr, char∗to, int offset, int len, int odd, struct

sk_buff∗skb)
• void ip_send_reply(struct sock∗sk, struct sk_buff∗skb, struct ip_reply_arg∗arg,

unsigned int len)
• void __init ip_init (void)
• EXPORT_SYMBOL (ip_finish_output)
• EXPORT_SYMBOL (ip_fragment)
• EXPORT_SYMBOL (ip_generic_getfrag)
• EXPORT_SYMBOL (ip_queue_xmit)
• EXPORT_SYMBOL (ip_send_check)

Variables

• int sysctl_ip_dynaddr
• int sysctl_ip_default_ttl= IPDEFTTL
• static struct timer_listip_timer
• static int(∗ ip_func)(char∗name, int value)
• static struct proc_dir_entry∗ ip_test_entry
• static intipTimerInterval = 1000

172

• static intipTimerRange = 100
• static intipQuery = 0
• static intipTrigger = 0
• static charipQueryName [NAMESIZE]
• static intipRegistered= 0
• static intdebug= 0
• static intipState= 0
• semaphoreip_sem
• packetData ipData
• static struct packet_typeip_packet_type

A.23.1 Define Documentation

A.23.1.1 #define EVENT 1

EVENT defines the Event Activation Mechanism

Definition at line 113 of file ip_output.c.

A.23.1.2 #define NAMESIZE 512

NAMESIZE defines the maximim length of a name in a name-value pair

Definition at line 114 of file ip_output.c.

A.23.1.3 #define THRESHOLD 25

THRESHOLD defines the change in environment status before a Information Query
is initiated with an Event Activation Mechanism

Definition at line 115 of file ip_output.c.

A.23.1.4 #define TIMER 0

TIMER defines the Timer Activation Mechanism

Definition at line 112 of file ip_output.c.

A.23.2 Function Documentation

A.23.2.1 static unsigned int csum_page (struct page∗ page, int offset, int copy)
[inline, static]

Definition at line 1137 of file ip_output.c.

Referenced by ip_append_page().

173

A.23.2.2 EXPORT_SYMBOL (ip_send_check)

A.23.2.3 EXPORT_SYMBOL (ip_queue_xmit)

A.23.2.4 EXPORT_SYMBOL (ip_generic_getfrag)

A.23.2.5 EXPORT_SYMBOL (ip_fragment)

A.23.2.6 EXPORT_SYMBOL (ip_finish_output)

A.23.2.7 int ip_append_data (struct sock∗ sk, int getfrag(void ∗from, char ∗to, int
offset, int len,int odd, struct sk_buff ∗skb), void ∗ from, int length, int
transhdrlen, struct ipcm_cookie∗ ipc, struct rtable ∗ rt, unsigned intflags)

Definition at line 1158 of file ip_output.c.

Referenced by ip_send_reply().

A.23.2.8 ssize_t ip_append_page (struct sock∗ sk, struct page∗ page, int offset,
size_tsize, int flags)

Definition at line 1423 of file ip_output.c.

References csum_page().

A.23.2.9 int ip_build_and_send_pkt (struct sk_buff∗ skb, struct sock∗ sk, u32
saddr, u32daddr, struct ip_options ∗ opt)

Definition at line 512 of file ip_output.c.

References ip_select_ttl(), and ip_send_check().

A.23.2.10 static void ip_copy_metadata (struct sk_buff∗ to, struct sk_buff ∗ from)
[static]

Definition at line 832 of file ip_output.c.

Referenced by ip_fragment().

A.23.2.11 static int ip_dev_loopback_xmit (struct sk_buff∗ newskb) [static]

Definition at line 471 of file ip_output.c.

Referenced by ip_mc_output().

174

A.23.2.12 int ip_finish_output (struct sk_buff∗ skb)

Definition at line 597 of file ip_output.c.

References ip_finish_output2().

Referenced by ip_mc_output(), and ip_output2().

A.23.2.13 static int ip_finish_output2 (struct sk_buff∗ skb) [inline, static]

Definition at line 553 of file ip_output.c.

Referenced by ip_finish_output().

A.23.2.14 void ip_flush_pending_frames (struct sock∗ sk)

Definition at line 1668 of file ip_output.c.

A.23.2.15 int ip_fragment (struct sk_buff∗ skb, int(∗)(struct sk_buff ∗) output)

Definition at line 872 of file ip_output.c.

References ip_copy_metadata(), and ip_send_check().

Referenced by ip_mc_output(), and ip_output2().

A.23.2.16 int ip_generic_getfrag (void∗ from, char ∗ to, int offset, int len, int odd,
struct sk_buff ∗ skb)

Definition at line 1120 of file ip_output.c.

A.23.2.17 void __init ip_init (void)

register the function for the proc FS

Definition at line 1786 of file ip_output.c.

References ip_sem, ip_test_entry, ipCatchProcRead(), and ipCatchProcWrite().

A.23.2.18 int ip_mc_output (struct sk_buff∗∗ pskb)

Definition at line 608 of file ip_output.c.

References ip_dev_loopback_xmit(), ip_finish_output(), and ip_fragment().

175

A.23.2.19 int ip_output (struct sk_buff ∗∗ pskb)

Definition at line 680 of file ip_output.c.

References debug, ip_output2(), and ip_sem.

A.23.2.20 static int ip_output2 (struct sk_buff∗ skb) [inline, static]

Definition at line 669 of file ip_output.c.

References ip_finish_output(), and ip_fragment().

Referenced by ip_output().

A.23.2.21 int ip_push_pending_frames (struct sock∗ sk)

Definition at line 1561 of file ip_output.c.

References ip_select_ttl(), and ip_send_check().

Referenced by ip_send_reply().

A.23.2.22 int ip_queue_xmit (struct sk_buff∗ skb, int ipfragok)

Definition at line 704 of file ip_output.c.

References debug, EVENT, ip_select_ttl(), ip_send_check(), ipEnvironment-
Update(), ipQuery, ipQueryData(), ipState, ipTimerRange, and ipTrigger.

A.23.2.23 static int ip_reply_glue_bits (void∗ dptr, char ∗ to, int offset, int len, int
odd, struct sk_buff ∗ skb) [static]

Definition at line 1691 of file ip_output.c.

Referenced by ip_send_reply().

A.23.2.24 static int ip_select_ttl (struct inet_opt∗ inet, struct dst_entry ∗ dst)
[inline, static]

Definition at line 490 of file ip_output.c.

Referenced by ip_build_and_send_pkt(), ip_push_pending_frames(), and ip_-
queue_xmit().

A.23.2.25 __inline__ void ip_send_check (struct iphdr∗ iph)

Definition at line 99 of file ip_output.c.

176

Referenced by ip_build_and_send_pkt(), ip_fragment(), ip_push_pending_-
frames(), and ip_queue_xmit().

A.23.2.26 void ip_send_reply (struct sock∗ sk, struct sk_buff ∗ skb, struct
ip_reply_arg ∗ arg, unsigned int len)

Definition at line 1710 of file ip_output.c.

References ip_append_data(), ip_push_pending_frames(), and ip_reply_glue_-
bits().

A.23.2.27 int ipCatchProcRead (char∗ buf, char ∗∗ start, off_t offset, int len, int ∗
unused, void ∗ data)

Public Function.

This function catches anything trying to read from /proc/brandxip. This function is
called to handle the output of information to user space.

Parameters:
buf character pointer, The buffer where the data is to be inserted

start double character pointer, If you don’t want to use the buffer allocated by the
kernel

len int, Current position in the file

unused int, Size of the buffer in the first argument

data void pointer, For future use

Definition at line 216 of file ip_output.c.

References ipQuery, ipRegistered, ipTimerInterval, ipTimerRange, and ipTrigger.

Referenced by ip_init().

A.23.2.28 int ipCatchProcWrite (struct file ∗ file, const char __user∗ buffer,
unsigned longcount, void ∗ data)

Public Function.

This function catches anything trying to write to /proc/brandxtcp. This function is
called to handle the input of information from user space.

Parameters:
file a file pointer, To the file to be read

buffer a character buffer, To put the data into (in the user segment)

count unsigned long, The length of the buffer

177

data void pointer, Offset in the file to store the data at

Definition at line 268 of file ip_output.c.

References debug, ip_timer, ipQuery, ipQueryData(), ipQueryName, ipQuery-
Read(), ipRegistered, ipTimerInterval, ipTimerRange, ipTrigger, and NAMESIZE.

Referenced by ip_init().

A.23.2.29 static int ipEnvironmentUpdate (struct sk_buff∗ skb) [static]

/brief Public Function

This function updates the internal cache stored in the local protocol layer. This is
utilized in decreasing response time with a Synchronized Pull architecture.

Definition at line 440 of file ip_output.c.

References debug, packetData::dropped, ipData, packetData::packets, packet-
Data::rxBytes, packetData::rxErrors, packetData::txBytes, and packetData::txErrors.

Referenced by ip_queue_xmit().

A.23.2.30 static void ipQueryData (unsigned longinput) [static]

Private Function.

Timer activated information update mechanism. This function is utilized during
information updates based on a Timer activation mechanism. Special care must be taken
to remove the registered tcp_timer value before this function is removed or is will cause a
segmenation fault.

Make a call to brand X to retrieve data

Definition at line 160 of file ip_output.c.

References debug, ip_func, ip_sem, ip_timer, ipQuery, ipQueryName, ipTimer-
Interval, ipTrigger, and TIMER.

Referenced by ip_queue_xmit(), and ipCatchProcWrite().

A.23.2.31 int ipQueryRead (char∗ name)

Public Function.

Intermodule Communication function, calls the registered callback function with
updated environment information. This is utilized during the Synchronous Pull architec-
ture.

Make a call to brand X to retrieve data

Definition at line 237 of file ip_output.c.

178

References debug, ip_func, and ipQueryName.

Referenced by ipCatchProcWrite().

A.23.3 Variable Documentation

A.23.3.1 int debug = 0 [static]

Stores the current DEBUG level

Definition at line 126 of file ip_output.c.

A.23.3.2 int(∗ ip_func)(char ∗name, int value) [static]

Stores the pointer to the function launched with the timer object

Definition at line 118 of file ip_output.c.

Referenced by ipQueryData(), and ipQueryRead().

A.23.3.3 struct packet_type ip_packet_type[static]

Initial value:

{
.type = __constant_htons(ETH_P_IP),
.func = ip_rcv,

}

Definition at line 1777 of file ip_output.c.

A.23.3.4 struct semaphore ip_sem

Stores the semaphore for the local layer race condition control

Definition at line 128 of file ip_output.c.

Referenced by ip_init(), ip_output(), and ipQueryData().

A.23.3.5 struct proc_dir_entry∗ ip_test_entry [static]

Stores the entry for the proc file system in the Linux Kernel

Definition at line 119 of file ip_output.c.

Referenced by ip_init().

179

A.23.3.6 struct timer_list ip_timer [static]

Stores the Linux kernel timer object utilized with a Timer Activation Mechanism

Definition at line 117 of file ip_output.c.

Referenced by ipCatchProcWrite(), and ipQueryData().

A.23.3.7 struct packetData ipData

Referenced by ipEnvironmentUpdate(), readFromBillboard(), and writeOn-
Billboard().

A.23.3.8 int ipQuery = 0 [static]

Stores if the protocol layer is actively performing information queries

Definition at line 122 of file ip_output.c.

Referenced by ip_queue_xmit(), ipCatchProcRead(), ipCatchProcWrite(), and ip-
QueryData().

A.23.3.9 char ipQueryName[NAMESIZE] [static]

Stores the names of the different architectures utilized in the experiments

Definition at line 124 of file ip_output.c.

Referenced by ipCatchProcWrite(), ipQueryData(), and ipQueryRead().

A.23.3.10 int ipRegistered = 0 [static]

Stores if the protocol layer IMC functions have been registered with the Linux
Kernel

Definition at line 125 of file ip_output.c.

Referenced by ipCatchProcRead(), and ipCatchProcWrite().

A.23.3.11 int ipState = 0 [static]

Stores the current state of the information query

Definition at line 127 of file ip_output.c.

Referenced by ip_queue_xmit().

180

A.23.3.12 int ipTimerInterval = 1000 [static]

Defines the timer interval for Timer driven information querys

Definition at line 120 of file ip_output.c.

Referenced by ipCatchProcRead(), ipCatchProcWrite(), and ipQueryData().

A.23.3.13 int ipTimerRange = 100 [static]

Defines the timer range for Event driven information querys

Definition at line 121 of file ip_output.c.

Referenced by ip_queue_xmit(), ipCatchProcRead(), and ipCatchProcWrite().

A.23.3.14 int ipTrigger = 0 [static]

Defines the activation mechanims utilized in the current experiment

Definition at line 123 of file ip_output.c.

Referenced by ip_queue_xmit(), ipCatchProcRead(), ipCatchProcWrite(), and ip-
QueryData().

A.23.3.15 int sysctl_ip_default_ttl = IPDEFTTL

Definition at line 96 of file ip_output.c.

A.23.3.16 int sysctl_ip_dynaddr

Definition at line 95 of file ip_output.c.

181

A.24 loopback.c File Reference

#include <linux/timer.h >

#include <linux/proc_fs.h >

Data Structures

• structpacketData

Private Data Structure.

Defines

• #defineTIMER 0
• #defineEVENT 1
• #defineNAMESIZE 512
• #defineTHRESHOLD 25

Functions

• static voidloQueryData (unsigned long input)

Private Function.

• int loCatchProcRead(char∗buf, char∗∗start, off_t offset, int len, int∗unused, void
∗data)

Public Function.

• static intlinkQueryRead (char∗name)

Public Function.

• int loCatchProcWrite (struct file ∗file, const char __user∗buffer, unsigned long
count, void∗data)

Public Function.

• static intloEnvironmentUpdate (struct net_device_stats∗lb_stats)

Variables

• static struct timer_listlo_timer
• static int(∗ lo_func)(char∗name, int value)
• static struct proc_dir_entry∗ lo_test_entry

182

• static intloTimerInterval = 1000
• static intloTimerRange= 100
• static intloQuery = 0
• static intloTrigger = 0
• static charloQueryName[NAMESIZE]
• static intloRegistered= 0
• static intdebug= 0
• static intloState= 0
• semaphorelo_sem
• packetData loData

A.24.1 Define Documentation

A.24.1.1 #define EVENT 1

EVENT defines the Event Activation Mechanism

Definition at line 82 of file loopback.c.

A.24.1.2 #define NAMESIZE 512

NAMESIZE defines the maximim length of a name in a name-value pair

Definition at line 83 of file loopback.c.

A.24.1.3 #define THRESHOLD 25

THRESHOLD defines the change in environment status before a Information Query
is initiated with an Event Activation Mechanism

Definition at line 84 of file loopback.c.

A.24.1.4 #define TIMER 0

TIMER defines the Timer Activation Mechanism

Definition at line 81 of file loopback.c.

A.24.2 Function Documentation

A.24.2.1 static int linkQueryRead (char∗ name) [static]

Public Function.

183

Intermodule Communication function, calls the registered callback function with
updated environment information. This is utilized during the Synchronous Pull architec-
ture.

Definition at line 206 of file loopback.c.

References debug, lo_func, and loQueryName.

Referenced by loCatchProcWrite(), and udpCatchProcWrite().

A.24.2.2 int loCatchProcRead (char∗ buf, char ∗∗ start, off_t offset, int len, int ∗
unused, void ∗ data)

Public Function.

This function catches anything trying to read from /proc/brandxlo. This function is
called to handle the output of information to user space.

Parameters:
buf character pointer, The buffer where the data is to be inserted

start double character pointer, If you don’t want to use the buffer allocated by the
kernel

len int, Current position in the file

unused int, Size of the buffer in the first argument

data void pointer, For future use

Definition at line 185 of file loopback.c.

References loQuery, loRegistered, loTimerInterval, loTimerRange, and loTrigger.

A.24.2.3 int loCatchProcWrite (struct file ∗ file, const char __user∗ buffer,
unsigned longcount, void ∗ data)

Public Function.

This function catches anything trying to write to /proc/brandxlo. This function is
called to handle the input of information from user space.

Parameters:
file a file pointer, To the file to be read

buffer a character buffer, To put the data into (in the user segment)

count unsigned long, The length of the buffer

data void pointer, Offset in the file to store the data at

Definition at line 237 of file loopback.c.

References debug, linkQueryRead(), lo_timer, loQuery, loQueryData(), loQuery-
Name, loRegistered, loTimerInterval, loTimerRange, loTrigger, and NAMESIZE.

184

A.24.2.4 static int loEnvironmentUpdate (struct net_device_stats∗ lb_stats)
[static]

/brief Public Function

This function updates the internal cache stored in the local protocol layer. This is
utilized in decreasing response time with a Synchronized Pull architecture.

Definition at line 425 of file loopback.c.

References debug, packetData::dropped, loData, packetData::packets, packet-
Data::rxBytes, packetData::rxErrors, packetData::txBytes, and packetData::txErrors.

A.24.2.5 static void loQueryData (unsigned longinput) [static]

Private Function.

Timer activated information update mechanism. This function is utilized during
information updates based on a Timer activation mechanism. Special care must be taken
to remove the registered tcp_timer value before this function is removed or is will cause a
segmenation fault.

Definition at line 128 of file loopback.c.

References debug, lo_func, lo_sem, lo_timer, loQuery, loQueryName, loTimer-
Interval, loTrigger, and TIMER.

Referenced by loCatchProcWrite().

A.24.3 Variable Documentation

A.24.3.1 int debug = 0 [static]

Stores the current DEBUG level

Definition at line 95 of file loopback.c.

A.24.3.2 int(∗ lo_func)(char ∗name, int value) [static]

Stores the pointer to the function launched with the timer object

Definition at line 87 of file loopback.c.

Referenced by linkQueryRead(), and loQueryData().

A.24.3.3 struct semaphore lo_sem

Stores the semaphore for the local layer race condition control

Definition at line 97 of file loopback.c.

185

Referenced by loQueryData().

A.24.3.4 struct proc_dir_entry∗ lo_test_entry [static]

Stores the entry for the proc file system in the Linux Kernel

Definition at line 88 of file loopback.c.

A.24.3.5 struct timer_list lo_timer [static]

Stores the Linux kernel timer object utilized with a Timer Activation Mechanism

Definition at line 86 of file loopback.c.

Referenced by loCatchProcWrite(), and loQueryData().

A.24.3.6 struct packetData loData

Referenced by loEnvironmentUpdate().

A.24.3.7 int loQuery = 0 [static]

Stores if the protocol layer is actively performing information queries

Definition at line 91 of file loopback.c.

Referenced by loCatchProcRead(), loCatchProcWrite(), and loQueryData().

A.24.3.8 char loQueryName[NAMESIZE] [static]

Stores the names of the different architectures utilized in the experiments

Definition at line 93 of file loopback.c.

Referenced by linkQueryRead(), loCatchProcWrite(), and loQueryData().

A.24.3.9 int loRegistered = 0 [static]

Stores if the protocol layer IMC functions have been registered with the Linux
Kernel

Definition at line 94 of file loopback.c.

Referenced by loCatchProcRead(), and loCatchProcWrite().

A.24.3.10 int loState = 0 [static]

Stores the current state of the information query

186

Definition at line 96 of file loopback.c.

A.24.3.11 int loTimerInterval = 1000 [static]

Defines the timer interval for Timer driven information querys

Definition at line 89 of file loopback.c.

Referenced by loCatchProcRead(), loCatchProcWrite(), and loQueryData().

A.24.3.12 int loTimerRange = 100 [static]

Defines the timer range for Event driven information querys

Definition at line 90 of file loopback.c.

Referenced by loCatchProcRead(), and loCatchProcWrite().

A.24.3.13 int loTrigger = 0 [static]

Defines the activation mechanims utilized in the current experiment

Definition at line 92 of file loopback.c.

Referenced by loCatchProcRead(), loCatchProcWrite(), and loQueryData().

187

A.25 phystub.c File Reference

Functions

• unsigned intmain_hook (unsigned int hooknum, struct sk_buff∗∗skb, const struct
net_device∗in, const struct net_device∗out, int(∗okfn)(struct sk_buff∗))

Public Function Protype.

• int otp_func (struct sk_buff∗skb, struct device∗dv, struct packet_type∗pt)

Public Function.

• __u32in_aton (const char∗str)
• static voidcatchProcWrite (struct file∗file, const char __user∗buffer, unsigned long

count, void∗data)

Public Function.

• int init_module ()

Module Initialization Function.

• void cleanup_module()

Module Destroy Function.

A.25.1 Function Documentation

A.25.1.1 static void catchProcWrite (struct file∗ file, const char __user∗ buffer,
unsigned longcount, void ∗ data) [static]

Public Function.

This function catches anything trying to write to /proc/phystub. This function is
called to handle the input of information from user space.

Parameters:
file a file pointer, To the file to be read

buffer a character buffer, To put the data into (in the user segment)

count unsigned long, The length of the buffer

data void pointer, Offset in the file to store the data at

Start the query process

Stop the query process

Set the ipTrigger mechanism

188

Set the timer delay

Definition at line 204 of file phystub.c.

References debug, and main_hook().

A.25.1.2 void cleanup_module (void)

Module Destroy Function.

Called when the module is unloaded into the Linux Kernel. All functions are im-
plemented as pluggable kernel modules. This function unregisters the inter-process com-
munication functions and removes the proc file system entries.

Definition at line 317 of file phystub.c.

A.25.1.3 __u32 in_aton (const char∗ str)

Convert an ASCII string to binary IP.

Definition at line 169 of file phystub.c.

Referenced by otp_func().

A.25.1.4 int init_module (void)

Module Initialization Function.

register the function for the proc FS

Definition at line 305 of file phystub.c.

References catchProcWrite().

A.25.1.5 unsigned int main_hook (unsigned inthooknum, struct sk_buff ∗∗ skb,
const struct net_device∗ in, const struct net_device∗ out, int(∗)(struct
sk_buff ∗) okfn)

Public Function Protype.

Function prototype in<linux/netfilter>. This function is hooked everytime a packet
is processed in the network protocol stack. This is utilized to change any packet values
necessary and add latency to simulate various ambiant wireless environments.

Definition at line 89 of file phystub.c.

References debug.

Referenced by catchProcWrite().

189

A.25.1.6 int otp_func (struct sk_buff∗ skb, struct device∗ dv, struct packet_type∗
pt)

Public Function.

Packet Handler Function

Definition at line 125 of file phystub.c.

References in_aton().

190

A.26 qotstub.c File Reference

#include "qotstub.h"

Functions

• static int qotCatchProcRead (char ∗buf, char ∗∗start, off_t offset, int len, int
∗unused, void∗data)

A public function.

• static intqotCatchProcWrite (struct file∗file, const char __user∗buffer, unsigned
long count, void∗data)

Public Function.

• int trafficStation (struct kiocb∗iocb, struct sock∗sk, struct msghdr∗msg, size_t
size)

Public Function.

• int udpTrafficStation (struct kiocb∗iocb, struct sock∗sk, struct msghdr∗msg,
size_t size)

Public Function.

• void setDelay(int millisecondDelay)

Public Function.

• int getDelay()

Public Function.

• void setTimerInterval (int newInterval)

Public Function.

• int getTimerInterval ()

Public Function.

• void setTrigger (int newTrigger)

Public Function.

• int getTrigger ()

Public Function.

• static intqotEventQuery (unsigned long input)

191

Public Function.

• static voidqotTimerQuery (unsigned long input)

Public Function.

• void writeData (const char∗name, int value)

Public Function.

• int readData (char∗name)

Private Function.

• void qot_write (char∗name, int value)

Public InterModule Communication Functions.

• int qot_read (char∗name)

Public InterModule Communication Functions.

• void regCallbackFunctions()

Public Function Register the cross intermodule callback functions, billboard_write and
billboard_read.

• void unregCallbackFunctions()

Public Function Unregister the cross intermodule callback functions, billboard_write and
billboard_read.

• void insertIntoStack ()

Private Function.

• void removeFromStack()

Private Function.

• int init_module ()

Module Initialization Function.

• void cleanup_module()

Module Destroy Function.

• MODULE_AUTHOR ("Greg DeHart")
• MODULE_DESCRIPTION ("QoT Stub")
• MODULE_LICENSE ("GPL")

192

A.26.1 Function Documentation

A.26.1.1 void cleanup_module (void)

Module Destroy Function.

This function removes the module; it simply unregisters the directory entry from
the /proc file system and releases the Brand X callback.

unregister the function from the proc FS

Definition at line 788 of file qotstub.c.

References unregCallbackFunctions(), and unregProcFunctions().

A.26.1.2 int getDelay (void)

Public Function.

Return the current QoT simulation delay.

Definition at line 395 of file qotstub.c.

References qotDelay.

A.26.1.3 int getTimerInterval (void)

Public Function.

Return the QoT environment information query interval in milliseconds.

Definition at line 416 of file qotstub.c.

References qotTimerRange.

A.26.1.4 int getTrigger (void)

Public Function.

Return the current trigger mechanism.TIMER(0) (p. 226) orEVENT(1)(p. 226)
are the two trigger mechanisms available.

Definition at line 437 of file qotstub.c.

References qotTrigger.

A.26.1.5 int init_module (void)

Module Initialization Function.

This function is called by the Linux kernel when the module is loaded. It performs
basic setup routines and enters the proc file system hooks.

193

Set the query flag to false (0)

Definition at line 753 of file qotstub.c.

References qot_sem, qotCatchProcRead(), qotCatchProcWrite(), qotDelay, qot-
Query, qotTimerRange, qotTrigger, regCallbackFunctions(), regProcFunctions(), and
TIMER.

A.26.1.6 void insertIntoStack (void)

Private Function.

Insert the QoT layer into the existing TCP/IP Linux network protocol stack. This is
accomplished by redirecting the current function pointer structure to reference QoT func-
tions as a pass through system.

Definition at line 719 of file qotstub.c.

References originalTCPSend, originalUDPSend, trafficStation(), and udpTraffic-
Station().

Referenced by qotCatchProcWrite().

A.26.1.7 MODULE_AUTHOR ("Greg DeHart")

A.26.1.8 MODULE_DESCRIPTION ("QoT Stub")

A.26.1.9 MODULE_LICENSE ("GPL")

A.26.1.10 int qot_read (char∗ name)

Public InterModule Communication Functions.

This function is registered with the Linux Kernel and is utilized to pass data between
network protocol layers, Brand X and the QoT layer. Brand X utilizes this function to read
configuration settings from QoT.

Definition at line 680 of file qotstub.c.

References readData().

Referenced by regCallbackFunctions().

A.26.1.11 void qot_write (char∗ name, int value)

Public InterModule Communication Functions.

This function is registered with the Linux Kernel and is utilized to pass data between
network protocol layers, Brand X and the QoT layer. The network protocol layers and
Brand X utilize this function to pass data to QoT.

194

Definition at line 668 of file qotstub.c.

References writeData().

Referenced by regCallbackFunctions().

A.26.1.12 static int qotCatchProcRead (char∗ buf, char ∗∗ start, off_t offset, int len,
int ∗ unused, void ∗ data) [static]

A public function.

This function is what the /proc FS will call when anything tries to read
/proc/qotstub.

Parameters:
buf a character pointer

start a double character pointer

offset an offset into start

len an integer for the size of buf

unused an integer

Definition at line 14 of file qotstub.c.

References qotTrigger.

Referenced by init_module().

A.26.1.13 static int qotCatchProcWrite (struct file∗ file, const char __user∗ buffer,
unsigned longcount, void ∗ data) [static]

Public Function.

This function catches anything trying to write to /proc/qotstub. This function is
called to handle the input of information from user space.

Parameters:
file a file pointer, To the file to be read

buffer a character buffer, To put the data into (in the user segment)

count unsigned long, The length of the buffer

data void pointer, Offset in the file to store the data at

Stop the query process

Set the timer delay

Set the trigger mechanism

195

Set the trigger mechanism

Set the timer delay

Set the ipTrigger mechanism

Register the query functions

Cleanup the query functions

release Brand X callback function

Insert into TCP/IP protocol stack

Remove from TCP/IP protocol stack

Definition at line 35 of file qotstub.c.

References appFunc, brandxFunc, debug, insertIntoStack(), ipFunc, linkFunc,
MAXPROC, qot_timer, qotDelay, qotMode, qotQuery, qotTimerQuery(), qotTimerRange,
qotTrigger, removeFromStack(), tcpFunc, and TRIGGER.

Referenced by init_module().

A.26.1.14 static int qotEventQuery (unsigned longinput) [static]

Public Function.

This method is called from the traffic handling functions based on current traffic
patterns. This function is called from within the semaphore in order to ensure we don’t
reenter the calls to other protocols and overright the return data.

Definition at line 450 of file qotstub.c.

References appFunc, debug, ipFunc, linkFunc, qotQuery, qotTimerRange, and tcp-
Func.

Referenced by qotTimerQuery(), trafficStation(), and udpTrafficStation().

A.26.1.15 static void qotTimerQuery (unsigned longinput) [static]

Public Function.

This method performs periodic environment queries. The queries are based on the
input for the specific experiment. The experiment values are required to be pre-determined
and setup in the QoT environment.

Make a call to brand X to retrieve data

Definition at line 509 of file qotstub.c.

References BRANDX, debug, qot_sem, qot_timer, qotEventQuery(), qotMode,
qotQuery, qotTimerRange, and qotTrigger.

Referenced by qotCatchProcWrite().

196

A.26.1.16 int readData (char∗ name)

Private Function.

Read a value from the Brand X billboard for use in the QoT internal decision algo-
rithms

Definition at line 633 of file qotstub.c.

References data_store, and debug.

Referenced by qot_read().

A.26.1.17 void regCallbackFunctions (void)

Public Function Register the cross intermodule callback functions, billboard_write
and billboard_read.

Register the cross intermodule callback functions

Definition at line 691 of file qotstub.c.

References billboard_read(), billboard_write(), logData(), qot_read(), qot_write(),
and SYSLOG.

A.26.1.18 void removeFromStack (void)

Private Function.

This function restores the original TCP/IP Linux network protocol stack. The QoT
functional layer is removed from any processing.

put the pointer back to tcp’s original message sender

Definition at line 736 of file qotstub.c.

References originalTCPSend, and originalUDPSend.

Referenced by qotCatchProcWrite().

A.26.1.19 void setDelay (intmillisecondDelay)

Public Function.

Set the time, in milliseconds, that QoT will delay a packet in the TCP/IP stack as it
passes through. Initially set to 10 milliseconds.

Definition at line 385 of file qotstub.c.

References qotDelay.

197

A.26.1.20 void setTimerInterval (int newInterval)

Public Function.

Set the time interval, in milliseconds, that QoT will query for environment infor-
mation. This is only used if the Trigger Mechanism is set to TIMER.

Definition at line 407 of file qotstub.c.

References qotTimerRange.

A.26.1.21 void setTrigger (intnewTrigger)

Public Function.

Set the Trigger mechanism for environmental information querying.
TIMER(0) (p. 226) orEVENT(1)(p. 226) are the two trigger mechanisms available.

Definition at line 427 of file qotstub.c.

References qotTrigger.

A.26.1.22 int trafficStation (struct kiocb ∗ iocb, struct sock∗ sk, struct msghdr ∗
msg, size_tsize)

Public Function.

This function intercepts all traffic between the upper protocol layers and the TCP
protocol. Data packets are routed through this function for any cross-layer processing
necessary.

Definition at line 267 of file qotstub.c.

References debug, EVENT, qot_sem, qotDelay, qotEventQuery(), qotQuery, qot-
State, qotTimerRange, and qotTrigger.

Referenced by insertIntoStack().

A.26.1.23 int udpTrafficStation (struct kiocb ∗ iocb, struct sock∗ sk, struct msghdr
∗ msg, size_tsize)

Public Function.

This function intercepts all traffic between the upper protocol layers and the UDP
protocol. Data packets are routed through this function for any cross-layer processing
necessary.

Definition at line 327 of file qotstub.c.

References debug, EVENT, qot_sem, qotDelay, qotEventQuery(), qotQuery, qot-
State, qotTimerRange, and qotTrigger.

198

Referenced by insertIntoStack().

A.26.1.24 void unregCallbackFunctions (void)

Public Function Unregister the cross intermodule callback functions, billboard_-
write and billboard_read.

Unregister the cross intermodule callback functions

Definition at line 704 of file qotstub.c.

References logData(), and SYSLOG.

A.26.1.25 void writeData (const char∗ name, int value)

Public Function.

Write a name-value pair to the Brand X billboard for configuration of the network
protocol stack.

Definition at line 565 of file qotstub.c.

References data_store, debug, and qot_sem.

Referenced by qot_write().

199

A.27 qotstub.h File Reference

#include <linux/kernel.h >

#include <linux/netdevice.h >

#include <net/tcp.h >

#include <net/ip.h >

#include <linux/skbuff.h >

#include <linux/tcp.h >

#include <net/udp.h >

#include <linux/module.h >

#include <linux/proc_fs.h >

#include <linux/delay.h >

#include <linux/errno.h >

#include <linux/timer.h >

#include <asm/delay.h >

#include <linux/random.h >

Functions

• static int qotCatchProcRead (char ∗buf, char ∗∗start, off_t offset, int len, int
∗unused, void∗data)

A public function.

• static intqotCatchProcWrite (struct file∗file, const char __user∗buffer, unsigned
long count, void∗data)

Public Function.

• int udpTrafficStation (struct kiocb∗iocb, struct sock∗sk, struct msghdr∗msg,
size_t size)

Public Function.

• int trafficStation (struct kiocb∗iocb, struct sock∗sk, struct msghdr∗msg, size_t
size)

Public Function.

• void setDelay(int millisecondDelay)

Public Function.

200

• int getDelay(void)

Public Function.

• void setTimerInterval (int newInterval)

Public Function.

• int getTimerInterval (void)

Public Function.

• void setTrigger (int newTrigger)

Public Function.

• int getTrigger (void)

Public Function.

• static voidqotTimerQuery (unsigned long input)

Public Function.

• static intqotEventQuery (unsigned long input)

Public Function.

• int init_module (void)

Module Initialization Function.

• void cleanup_module(void)

Module Destroy Function.

• void regCallbackFunctions(void)

Public Function Register the cross intermodule callback functions, billboard_write and
billboard_read.

• void unregCallbackFunctions(void)

Public Function Unregister the cross intermodule callback functions, billboard_write and
billboard_read.

• int qot_read (char∗name)

Public InterModule Communication Functions.

• void qot_write (char∗name, int value)

Public InterModule Communication Functions.

201

• int readData (char∗name)

Private Function.

• void writeData (const char∗name, int value)

Public Function.

• void insertIntoStack (void)

Private Function.

• void removeFromStack(void)

Private Function.

Variables

• int(∗ originalUDPSend)(struct kiocb∗iocb, struct sock∗sk, struct msghdr∗msg,
size_t size)

• int(∗ originalTCPSend)(struct kiocb∗iocb, struct sock∗sk, struct msghdr∗msg,
size_t size)

• int(∗ originalRecv)(struct kiocb∗iocb, struct sock∗sk, struct msghdr∗msg, size_t
len, int nonblock, int flags, int∗addr_len)

• static intqotDelay
• static intqotTimerRange
• static intqotTrigger
• static intqotQuery
• timer_listqot_timer
• static int(∗ brandxFunc)(char∗name)
• static int(∗ appFunc)(char∗name)
• static int(∗ tcpFunc)(char∗name)
• static int(∗ ipFunc)(char∗name)
• static int(∗ linkFunc)(char∗name)
• static intdebug= 0
• static intqotState= 0
• static intqotMode = 0
• semaphoreqot_sem
• protocol_datadata_store[5]
• const charTRIGGER [] = "trigger"

202

A.27.1 Function Documentation

A.27.1.1 void cleanup_module (void)

Module Destroy Function.

This function removes the module; it simply unregisters the directory entry from
the /proc file system and releases the Brand X callback.

unregister the function from the proc FS

Definition at line 348 of file brandx.c.

References unregCallbackFunctions(), and unregProcFunctions().

A.27.1.2 int getDelay (void)

Public Function.

Return the current QoT simulation delay.

Definition at line 395 of file qotstub.c.

References qotDelay.

A.27.1.3 int getTimerInterval (void)

Public Function.

Return the QoT environment information query interval in milliseconds.

Definition at line 416 of file qotstub.c.

References qotTimerRange.

A.27.1.4 int getTrigger (void)

Public Function.

Return the current trigger mechanism.TIMER(0) (p. 226) orEVENT(1)(p. 226)
are the two trigger mechanisms available.

Definition at line 437 of file qotstub.c.

References qotTrigger.

A.27.1.5 int init_module (void)

Module Initialization Function.

This function is called by the Linux kernel when the module is loaded. It performs
basic setup routines and enters the proc file system hooks.

203

Set the query flag to false (0)

Definition at line 334 of file brandx.c.

References qot_sem, qotCatchProcRead(), qotCatchProcWrite(), qotDelay, qot-
Query, qotTimerRange, qotTrigger, regCallbackFunctions(), regProcFunctions(), and
TIMER.

A.27.1.6 void insertIntoStack (void)

Private Function.

Insert the QoT layer into the existing TCP/IP Linux network protocol stack. This is
accomplished by redirecting the current function pointer structure to reference QoT func-
tions as a pass through system.

Definition at line 719 of file qotstub.c.

References originalTCPSend, originalUDPSend, trafficStation(), and udpTraffic-
Station().

Referenced by qotCatchProcWrite().

A.27.1.7 int qot_read (char∗ name)

Public InterModule Communication Functions.

This function is registered with the Linux Kernel and is utilized to pass data between
network protocol layers, Brand X and the QoT layer. Brand X utilizes this function to read
configuration settings from QoT.

Definition at line 680 of file qotstub.c.

References readData().

Referenced by regCallbackFunctions().

A.27.1.8 void qot_write (char∗ name, int value)

Public InterModule Communication Functions.

This function is registered with the Linux Kernel and is utilized to pass data between
network protocol layers, Brand X and the QoT layer. The network protocol layers and
Brand X utilize this function to pass data to QoT.

Definition at line 668 of file qotstub.c.

References writeData().

Referenced by regCallbackFunctions().

204

A.27.1.9 static int qotCatchProcRead (char∗ buf, char ∗∗ start, off_t offset, int len,
int ∗ unused, void ∗ data) [static]

A public function.

This function is what the /proc FS will call when anything tries to read
/proc/qotstub.

Parameters:
buf a character pointer

start a double character pointer

offset an offset into start

len an integer for the size of buf

unused an integer

A.27.1.10 static int qotCatchProcWrite (struct file∗ file, const char __user∗ buffer,
unsigned longcount, void ∗ data) [static]

Public Function.

This function catches anything trying to write to /proc/qotstub. This function is
called to handle the input of information from user space.

Parameters:
file a file pointer, To the file to be read

buffer a character buffer, To put the data into (in the user segment)

count unsigned long, The length of the buffer

data void pointer, Offset in the file to store the data at

A.27.1.11 static int qotEventQuery (unsigned longinput) [static]

Public Function.

This method is called from the traffic handling functions based on current traffic
patterns. This function is called from within the semaphore in order to ensure we don’t
reenter the calls to other protocols and overright the return data.

A.27.1.12 static void qotTimerQuery (unsigned longinput) [static]

Public Function.

This method performs periodic environment queries. The queries are based on the
input for the specific experiment. The experiment values are required to be pre-determined
and setup in the QoT environment.

205

A.27.1.13 int readData (char∗ name)

Private Function.

Read a value from the Brand X billboard for use in the QoT internal decision algo-
rithms

Definition at line 633 of file qotstub.c.

References data_store, and debug.

Referenced by qot_read().

A.27.1.14 void regCallbackFunctions (void)

Public Function Register the cross intermodule callback functions, billboard_write
and billboard_read.

Register the cross intermodule callback functions

Definition at line 311 of file brandx.c.

References billboard_read(), billboard_write(), logData(), qot_read(), qot_write(),
and SYSLOG.

A.27.1.15 void removeFromStack (void)

Private Function.

This function restores the original TCP/IP Linux network protocol stack. The QoT
functional layer is removed from any processing.

put the pointer back to tcp’s original message sender

Definition at line 736 of file qotstub.c.

References originalTCPSend, and originalUDPSend.

Referenced by qotCatchProcWrite().

A.27.1.16 void setDelay (intmillisecondDelay)

Public Function.

Set the time, in milliseconds, that QoT will delay a packet in the TCP/IP stack as it
passes through. Initially set to 10 milliseconds.

Definition at line 385 of file qotstub.c.

References qotDelay.

206

A.27.1.17 void setTimerInterval (int newInterval)

Public Function.

Set the time interval, in milliseconds, that QoT will query for environment infor-
mation. This is only used if the Trigger Mechanism is set to TIMER.

Definition at line 407 of file qotstub.c.

References qotTimerRange.

A.27.1.18 void setTrigger (intnewTrigger)

Public Function.

Set the Trigger mechanism for environmental information querying.
TIMER(0) (p. 226) orEVENT(1)(p. 226) are the two trigger mechanisms available.

Definition at line 427 of file qotstub.c.

References qotTrigger.

A.27.1.19 int trafficStation (struct kiocb ∗ iocb, struct sock∗ sk, struct msghdr ∗
msg, size_tsize)

Public Function.

This function intercepts all traffic between the upper protocol layers and the TCP
protocol. Data packets are routed through this function for any cross-layer processing
necessary.

Definition at line 267 of file qotstub.c.

References debug, EVENT, qot_sem, qotDelay, qotEventQuery(), qotQuery, qot-
State, qotTimerRange, and qotTrigger.

Referenced by insertIntoStack().

A.27.1.20 int udpTrafficStation (struct kiocb ∗ iocb, struct sock∗ sk, struct msghdr
∗ msg, size_tsize)

Public Function.

This function intercepts all traffic between the upper protocol layers and the UDP
protocol. Data packets are routed through this function for any cross-layer processing
necessary.

Definition at line 327 of file qotstub.c.

References debug, EVENT, qot_sem, qotDelay, qotEventQuery(), qotQuery, qot-
State, qotTimerRange, and qotTrigger.

207

Referenced by insertIntoStack().

A.27.1.21 void unregCallbackFunctions (void)

Public Function Unregister the cross intermodule callback functions, billboard_-
write and billboard_read.

Unregister the cross intermodule callback functions

Definition at line 320 of file brandx.c.

References logData(), and SYSLOG.

A.27.1.22 void writeData (const char∗ name, int value)

Public Function.

Write a name-value pair to the Brand X billboard for configuration of the network
protocol stack.

Definition at line 565 of file qotstub.c.

References data_store, debug, and qot_sem.

Referenced by qot_write().

A.27.2 Variable Documentation

A.27.2.1 int(∗ appFunc)(char∗name) [static]

Stores the function pointer to the application protocol layer IMC function

Definition at line 38 of file qotstub.h.

Referenced by qotCatchProcWrite(), and qotEventQuery().

A.27.2.2 int(∗ brandxFunc)(char ∗name) [static]

Stores the function pointer to the Brand X IMC function

Definition at line 37 of file qotstub.h.

Referenced by qotCatchProcWrite().

A.27.2.3 struct protocol_data data_store[5]

Stores the current status of the network protocol stack

Definition at line 46 of file qotstub.h.

Referenced by readData(), and writeData().

208

A.27.2.4 int debug = 0 [static]

Stores if the layer is in debug mode

Definition at line 42 of file qotstub.h.

Referenced by appCatchProcWrite(), appEnvironmentUpdate(), appQueryData(),
appQueryRead(), billboard_write(), catchProcWrite(), ip_output(), ip_queue_xmit(), ip-
CatchProcWrite(), ipEnvironmentUpdate(), ipQueryData(), ipQueryRead(), linkQuery-
Read(), loCatchProcWrite(), loEnvironmentUpdate(), loQueryData(), main_hook(), qot-
CatchProcWrite(), qotEventQuery(), qotTimerQuery(), readData(), readFromBillboard(),
tcpCatchProcWrite(), tcpEnvironmentUpdate(), tcpQueryData(), tcpQueryRead(), traffic-
Station(), udpCatchProcWrite(), udpEnvironmentUpdate(), udpQueryData(), udpTraffic-
Station(), writeData(), and writeOnBillboard().

A.27.2.5 int(∗ ipFunc)(char ∗name) [static]

Stores the function pointer to the IP protocol layer IMC function

Definition at line 40 of file qotstub.h.

Referenced by qotCatchProcWrite(), and qotEventQuery().

A.27.2.6 int(∗ linkFunc)(char ∗name) [static]

Stores the function pointer to the MAC protocol layer IMC function

Definition at line 41 of file qotstub.h.

Referenced by qotCatchProcWrite(), and qotEventQuery().

A.27.2.7 int(∗ originalRecv)(struct kiocb ∗iocb, struct sock∗sk, struct msghdr
∗msg, size_t len, int nonblock, int flags, int∗addr_len)

Stores the original TCP function pointer for receiving data from the network proto-
col stack

Definition at line 29 of file qotstub.h.

A.27.2.8 int(∗ originalTCPSend)(struct kiocb ∗iocb, struct sock∗sk, struct msghdr
∗msg, size_t size)

Stores the original TCP function pointer for sending data down the network protocol
stack

Definition at line 28 of file qotstub.h.

Referenced by insertIntoStack(), and removeFromStack().

209

A.27.2.9 int(∗ originalUDPSend)(struct kiocb∗iocb, struct sock∗sk, struct msghdr
∗msg, size_t size)

Stores the original UDP function pointer for the network protocol stack

Definition at line 27 of file qotstub.h.

Referenced by insertIntoStack(), and removeFromStack().

A.27.2.10 struct semaphore qot_sem

Stores the semaphore to protect against overwriting data

Definition at line 45 of file qotstub.h.

Referenced by init_module(), qotTimerQuery(), trafficStation(), udpTraffic-
Station(), and writeData().

A.27.2.11 struct timer_list qot_timer

Stores the timer object to register with the Linux Kernel timer mechanism

Definition at line 36 of file qotstub.h.

Referenced by qotCatchProcWrite(), and qotTimerQuery().

A.27.2.12 int qotDelay [static]

Stores the delay time in microseconds for a network workload packet to pass
through the QoT layer

Definition at line 32 of file qotstub.h.

Referenced by getDelay(), init_module(), qotCatchProcWrite(), setDelay(), traffic-
Station(), and udpTrafficStation().

A.27.2.13 int qotMode = 0 [static]

Stores the mode for the current experiment

Definition at line 44 of file qotstub.h.

Referenced by qotCatchProcWrite(), and qotTimerQuery().

A.27.2.14 int qotQuery [static]

Stores if the protocol is currently in the process of querying for environment infor-
mation

Definition at line 35 of file qotstub.h.

210

Referenced by init_module(), qotCatchProcWrite(), qotEventQuery(), qotTimer-
Query(), trafficStation(), and udpTrafficStation().

A.27.2.15 int qotState = 0 [static]

Stores the current state of the environment information query

Definition at line 43 of file qotstub.h.

Referenced by trafficStation(), and udpTrafficStation().

A.27.2.16 int qotTimerRange [static]

Stores the timer range for a Timer activation mechanism experiment

Definition at line 33 of file qotstub.h.

Referenced by getTimerInterval(), init_module(), qotCatchProcWrite(), qotEvent-
Query(), qotTimerQuery(), setTimerInterval(), trafficStation(), and udpTrafficStation().

A.27.2.17 int qotTrigger [static]

Stores the Activation trigger to be utilized, event or timer

Definition at line 34 of file qotstub.h.

Referenced by getTrigger(), init_module(), qotCatchProcRead(), qotCatchProc-
Write(), qotTimerQuery(), setTrigger(), trafficStation(), and udpTrafficStation().

A.27.2.18 int(∗ tcpFunc)(char ∗name) [static]

Stores the function pointer to the TCP protocol layer IMC function

Definition at line 39 of file qotstub.h.

Referenced by qotCatchProcWrite(), and qotEventQuery().

A.27.2.19 const char TRIGGER[] = "trigger"

Definition at line 114 of file qotstub.h.

Referenced by qotCatchProcWrite().

211

A.28 ServerSocket.cpp File Reference

#include "ServerSocket.h"

#include "SocketException.h"

212

A.29 ServerSocket.h File Reference

#include "Socket.h"

Data Structures

• classServerSocket

Public Class.

213

A.30 Socket.cpp File Reference

#include "Socket.h"

#include "string.h"

#include <errno.h >

#include <fcntl.h >

#include <iostream >

214

A.31 Socket.h File Reference

#include <sys/types.h >

#include <sys/socket.h >

#include <netinet/in.h >

#include <netinet/tcp.h >

#include <netdb.h >

#include <unistd.h >

#include <string >

#include <arpa/inet.h >

Data Structures

• classSocket

PublicSocket(p. 130)Class.

Variables

• const intMAXHOSTNAME = 200
• const intMAXCONNECTIONS = 5
• const intMAXRECV = 66000

A.31.1 Variable Documentation

A.31.1.1 const int MAXCONNECTIONS = 5

Definition at line 18 of file Socket.h.

Referenced by Socket::listen().

A.31.1.2 const int MAXHOSTNAME = 200

Definition at line 17 of file Socket.h.

A.31.1.3 const int MAXRECV = 66000

Definition at line 19 of file Socket.h.

Referenced by Socket::recv().

215

A.32 SocketException.h File Reference

#include <string >

Data Structures

• classSocketException

Public Class.

216

A.33 tabdialog.cpp File Reference

#include <QtGui >

#include "tabdialog.h"

217

A.34 tabdialog.h File Reference

Data Structures

• classmodel

Public Model Class.

• classTabDialog

Public Class.

• classprocTab

Public Class.

• classconfigureTab

Public Class.

218

A.35 tcp.c File Reference

#include <linux/timer.h >

#include <linux/proc_fs.h >

Data Structures

• structpacketData

Private Data Structure.

Defines

• #defineTIMER 0
• #defineEVENT 1
• #defineNAMESIZE 512
• #defineTHRESHOLD 25

Functions

• static voidtcpQueryData (unsigned long input)

Private Function.

• int tcpCatchProcRead(char∗buf, char∗∗start, off_t offset, int len, int∗unused,
void ∗data)

Public Function.

• int tcpQueryRead(char∗name)

Public Function.

• int tcpCatchProcWrite (struct file∗file, const char __user∗buffer, unsigned long
count, void∗data)

Public Function.

• static inttcpEnvironmentUpdate (struct sk_buff∗skb)

Variables

• static struct timer_listtcp_timer
• static int(∗ tcp_func)(char∗name, int value)
• static struct proc_dir_entry∗ tcp_test_entry

219

• static inttcpTimerInterval = 1000
• static inttcpTimerRange= 100
• static inttcpQuery = 0
• static inttcpTrigger = 0
• static chartcpQueryName[NAMESIZE]
• static inttcpRegistered= 0
• static intdebug= 0
• static inttcpState= 0
• semaphoretcp_sem
• packetData tcpData

A.35.1 Define Documentation

A.35.1.1 #define EVENT 1

EVENT defines the Event Activation Mechanism

Definition at line 309 of file tcp.c.

A.35.1.2 #define NAMESIZE 512

NAMESIZE defines the maximim length of a name in a name-value pair

Definition at line 310 of file tcp.c.

A.35.1.3 #define THRESHOLD 25

THRESHOLD defines the change in environment status before a Information Query
is initiated with an Event Activation Mechanism

Definition at line 311 of file tcp.c.

A.35.1.4 #define TIMER 0

TIMER defines the Timer Activation Mechanism

Definition at line 308 of file tcp.c.

A.35.2 Function Documentation

A.35.2.1 int tcpCatchProcRead (char∗ buf, char ∗∗ start, off_t offset, int len, int ∗
unused, void ∗ data)

Public Function.

220

This function catches anything trying to read from /proc/brandxtcp. This function
is called to handle the output of information to user space.

Parameters:
buf character pointer, The buffer where the data is to be inserted

start double character pointer, If you don’t want to use the buffer allocated by the
kernel

len int, Current position in the file

unused int, Size of the buffer in the first argument

data void pointer, For future use

Definition at line 412 of file tcp.c.

References tcpQuery, tcpRegistered, tcpTimerInterval, tcpTimerRange, and tcp-
Trigger.

A.35.2.2 int tcpCatchProcWrite (struct file ∗ file, const char __user∗ buffer,
unsigned longcount, void ∗ data)

Public Function.

This function catches anything trying to write to /proc/brandxtcp. This function is
called to handle the input of information from user space.

Parameters:
file a file pointer, To the file to be read

buffer a character buffer, To put the data into (in the user segment)

count unsigned long, The length of the buffer

data void pointer, Offset in the file to store the data at

Set tcpQuery flag to false. Query will stop on next cycle

Definition at line 464 of file tcp.c.

References debug, NAMESIZE, tcp_timer, tcpQuery, tcpQueryData(), tcpQuery-
Name, tcpQueryRead(), tcpRegistered, tcpTimerInterval, tcpTimerRange, and tcpTrigger.

A.35.2.3 static int tcpEnvironmentUpdate (struct sk_buff∗ skb) [static]

/brief Public Function

This function updates the internal cache stored in the local protocol layer. This is
utilized in decreasing response time with a Synchronized Pull architecture.

Definition at line 646 of file tcp.c.

References debug, packetData::dropped, packetData::packets, packetData::rx-
Bytes, packetData::rxErrors, tcpData, packetData::txBytes, and packetData::txErrors.

221

A.35.2.4 static void tcpQueryData (unsigned longinput) [static]

Private Function.

Timer activated information update mechanism. This function is utilized during
information updates based on a Timer activation mechanism. Special care must be taken
to remove the registered tcp_timer value before this function is removed or is will cause a
segmenation fault.

Make a call to brand X to retrieve data

Definition at line 356 of file tcp.c.

References debug, tcp_sem, tcp_timer, tcpQuery, tcpQueryName, tcpTimer-
Interval, tcpTrigger, and TIMER.

Referenced by tcpCatchProcWrite().

A.35.2.5 int tcpQueryRead (char∗ name)

Public Function.

Intermodule Communication function, calls the registered callback function with
updated environment information. This is utilized during the Synchronous Pull architec-
ture.

Make a call to brand X to retrieve data

Definition at line 434 of file tcp.c.

References debug, and tcpQueryName.

Referenced by tcpCatchProcWrite().

A.35.3 Variable Documentation

A.35.3.1 int debug = 0 [static]

Stores the current DEBUG level

Definition at line 322 of file tcp.c.

A.35.3.2 int(∗ tcp_func)(char ∗name, int value) [static]

Stores the pointer to the function launched with the timer object

Definition at line 314 of file tcp.c.

A.35.3.3 struct semaphore tcp_sem

Stores the semaphore for the local layer race condition control

222

Definition at line 324 of file tcp.c.

Referenced by tcpQueryData().

A.35.3.4 struct proc_dir_entry∗ tcp_test_entry [static]

Stores the entry for the proc file system in the Linux Kernel

Definition at line 315 of file tcp.c.

A.35.3.5 struct timer_list tcp_timer [static]

Stores the Linux kernel timer object utilized with a Timer Activation Mechanism

Definition at line 313 of file tcp.c.

Referenced by tcpCatchProcWrite(), and tcpQueryData().

A.35.3.6 struct packetData tcpData

Referenced by readFromBillboard(), tcpEnvironmentUpdate(), and writeOn-
Billboard().

A.35.3.7 int tcpQuery = 0 [static]

Stores if the protocol layer is actively performing information queries

Definition at line 318 of file tcp.c.

Referenced by tcpCatchProcRead(), tcpCatchProcWrite(), and tcpQueryData().

A.35.3.8 char tcpQueryName[NAMESIZE] [static]

Stores the names of the different architectures utilized in the experiments

Definition at line 320 of file tcp.c.

Referenced by tcpCatchProcWrite(), tcpQueryData(), and tcpQueryRead().

A.35.3.9 int tcpRegistered = 0 [static]

Stores if the protocol layer IMC functions have been registered with the Linux
Kernel

Definition at line 321 of file tcp.c.

Referenced by tcpCatchProcRead(), and tcpCatchProcWrite().

223

A.35.3.10 int tcpState = 0 [static]

Stores the current state of the information query

Definition at line 323 of file tcp.c.

A.35.3.11 int tcpTimerInterval = 1000 [static]

Defines the timer interval for Timer driven information querys

Definition at line 316 of file tcp.c.

Referenced by tcpCatchProcRead(), tcpCatchProcWrite(), and tcpQueryData().

A.35.3.12 int tcpTimerRange = 100 [static]

Defines the timer range for Event driven information querys

Definition at line 317 of file tcp.c.

Referenced by tcpCatchProcRead(), and tcpCatchProcWrite().

A.35.3.13 int tcpTrigger = 0 [static]

Defines the activation mechanims utilized in the current experiment

Definition at line 319 of file tcp.c.

Referenced by tcpCatchProcRead(), tcpCatchProcWrite(), and tcpQueryData().

224

A.36 udp.c File Reference

#include <linux/timer.h >

#include <linux/proc_fs.h >

#include <linux/random.h >

Data Structures

• structpacketData

Private Data Structure.

Defines

• #defineTIMER 0
• #defineEVENT 1
• #defineNAMESIZE 512
• #defineTHRESHOLD 25

Functions

• static voidudpQueryData (unsigned long input)

Private Function.

• int udpCatchProcRead(char∗buf, char∗∗start, off_t offset, int len, int∗unused,
void ∗data)

Public Function.

• static intlinkQueryRead (char∗name)

Public Function.

• int udpCatchProcWrite (struct file∗file, const char __user∗buffer, unsigned long
count, void∗data)

Public Function.

• static intudpEnvironmentUpdate (struct sock∗sk)

225

Variables

• static struct timer_listudp_timer
• static int(∗ udp_func)(char∗name, int value)
• static struct proc_dir_entry∗ udp_test_entry
• static intudpTimerInterval = 1000
• static intudpTimerRange= 100
• static intudpQuery = 0
• static intudpTrigger = 0
• static charudpQueryName[NAMESIZE]
• static intudpRegistered= 0
• static intdebug= 0
• static intudpState= 0
• semaphoreudp_sem
• packetData udpData

A.36.1 Define Documentation

A.36.1.1 #define EVENT 1

EVENT defines the Event Activation Mechanism

Definition at line 141 of file udp.c.

A.36.1.2 #define NAMESIZE 512

NAMESIZE defines the maximim length of a name in a name-value pair

Definition at line 142 of file udp.c.

A.36.1.3 #define THRESHOLD 25

THRESHOLD defines the change in environment status before a Information Query
is initiated with an Event Activation Mechanism

Definition at line 143 of file udp.c.

A.36.1.4 #define TIMER 0

TIMER defines the Timer Activation Mechanism

Definition at line 140 of file udp.c.

226

A.36.2 Function Documentation

A.36.2.1 static int linkQueryRead (char∗ name) [static]

Public Function.

Intermodule Communication function, calls the registered callback function with
updated environment information. This is utilized during the Synchronous Pull architec-
ture.

Definition at line 268 of file udp.c.

References debug, udp_func, and udpQueryName.

A.36.2.2 int udpCatchProcRead (char∗ buf, char ∗∗ start, off_t offset, int len, int ∗
unused, void ∗ data)

Public Function.

This function catches anything trying to read from /proc/brandxudp. This function
is called to handle the output of information to user space.

Parameters:
buf character pointer, The buffer where the data is to be inserted

start double character pointer, If you don’t want to use the buffer allocated by the
kernel

len int, Current position in the file

unused int, Size of the buffer in the first argument

data void pointer, For future use

Definition at line 247 of file udp.c.

References udpQuery, udpRegistered, udpTimerInterval, udpTimerRange, and udp-
Trigger.

A.36.2.3 int udpCatchProcWrite (struct file ∗ file, const char __user∗ buffer,
unsigned longcount, void ∗ data)

Public Function.

This function catches anything trying to write to /proc/brandxudp. This function is
called to handle the input of information from user space.

Parameters:
file a file pointer, To the file to be read

buffer a character buffer, To put the data into (in the user segment)

227

count unsigned long, The length of the buffer

data void pointer, Offset in the file to store the data at

Definition at line 299 of file udp.c.

References debug, linkQueryRead(), NAMESIZE, udp_timer, udpQuery, udp-
QueryData(), udpQueryName, udpRegistered, udpTimerInterval, udpTimerRange, and
udpTrigger.

A.36.2.4 static int udpEnvironmentUpdate (struct sock∗ sk) [static]

/brief Public Function

This function updates the internal cache stored in the local protocol layer. This is
utilized in decreasing response time with a Synchronized Pull architecture.

Definition at line 475 of file udp.c.

References debug, packetData::dropped, packetData::packets, packetData::rx-
Bytes, packetData::rxErrors, packetData::txBytes, packetData::txErrors, and udpData.

A.36.2.5 static void udpQueryData (unsigned longinput) [static]

Private Function.

Timer activated information update mechanism. This function is utilized during
information updates based on a Timer activation mechanism. Special care must be taken
to remove the registered tcp_timer value before this function is removed or is will cause a
segmenation fault.

Definition at line 187 of file udp.c.

References debug, TIMER, udp_func, udp_sem, udp_timer, udpQuery, udpQuery-
Name, udpTimerInterval, and udpTrigger.

Referenced by udpCatchProcWrite().

A.36.3 Variable Documentation

A.36.3.1 int debug = 0 [static]

Stores the current DEBUG level

Definition at line 154 of file udp.c.

A.36.3.2 int(∗ udp_func)(char ∗name, int value) [static]

Stores the pointer to the function launched with the timer object

228

Definition at line 146 of file udp.c.

Referenced by linkQueryRead(), and udpQueryData().

A.36.3.3 struct semaphore udp_sem

Stores the semaphore for the local layer race condition control

Definition at line 156 of file udp.c.

Referenced by udpQueryData().

A.36.3.4 struct proc_dir_entry∗ udp_test_entry [static]

Stores the entry for the proc file system in the Linux Kernel

Definition at line 147 of file udp.c.

A.36.3.5 struct timer_list udp_timer [static]

Stores the Linux kernel timer object utilized with a Timer Activation Mechanism

Definition at line 145 of file udp.c.

Referenced by udpCatchProcWrite(), and udpQueryData().

A.36.3.6 struct packetData udpData

Referenced by readFromBillboard(), udpEnvironmentUpdate(), and writeOn-
Billboard().

A.36.3.7 int udpQuery = 0 [static]

Stores if the protocol layer is actively performing information queries

Definition at line 150 of file udp.c.

Referenced by udpCatchProcRead(), udpCatchProcWrite(), and udpQueryData().

A.36.3.8 char udpQueryName[NAMESIZE] [static]

Stores the names of the different architectures utilized in the experiments

Definition at line 152 of file udp.c.

Referenced by linkQueryRead(), udpCatchProcWrite(), and udpQueryData().

229

A.36.3.9 int udpRegistered = 0 [static]

Stores if the protocol layer IMC functions have been registered with the Linux
Kernel

Definition at line 153 of file udp.c.

Referenced by udpCatchProcRead(), and udpCatchProcWrite().

A.36.3.10 int udpState = 0 [static]

Stores the current state of the information query

Definition at line 155 of file udp.c.

A.36.3.11 int udpTimerInterval = 1000 [static]

Defines the timer interval for Timer driven information querys

Definition at line 148 of file udp.c.

Referenced by udpCatchProcRead(), udpCatchProcWrite(), and udpQueryData().

A.36.3.12 int udpTimerRange = 100 [static]

Defines the timer range for Event driven information querys

Definition at line 149 of file udp.c.

Referenced by udpCatchProcRead(), and udpCatchProcWrite().

A.36.3.13 int udpTrigger = 0 [static]

Defines the activation mechanims utilized in the current experiment

Definition at line 151 of file udp.c.

Referenced by udpCatchProcRead(), udpCatchProcWrite(), and udpQueryData().

230

Bibliography

[1] H. Balakrishnan, “Challenges to reliable data transport over heterogeneous wireless

networks.” Ph.D. dissertation, University of California at Berkeley, 1998.

[2] R. W. Woodings, S. B. Barnes, and C. D. Knutson, “Quality of transport (qot) pro-

tocol specification v1.0,” Mobile Computing Laboratory, Brigham Young University,

Provo, UT, Provo, Utah, August 2002.

[3] G. Montenegro and S. Drach, “System isolation and network fast fail capability

in Solaris,” Proceedings of the 2nd USENIX Symposium on Mobile and Location-

Independent Computing, pp. 67–78, April 1995.

[4] J. Postel, “Internet control message protocol,” RFC 792, DARPA Internet Program

Protocol Specification, September 1981.

[5] P. Sudame and B. R. Badrinath, “On providing support for protocol adaptation in

mobile wireless networks,”Mobile Networks and Applications, vol. 6, no. 1, pp. 43–

55, 2001.

[6] G. Wu, Y. Bai, J. Lai, and A. Ogielski, “Interactions between tcp and rlp in wireless

internet,” IEEE GlobeCom‘99, Rio de Janeiro, pp. 661–666, December 1999.

[7] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The anatomy of a

context-aware application,” inMobile Computing and Networking, 1999, pp. 59–68.

[Online]. Available: citeseer.ist.psu.edu/article/harter02anatomy.html

231

[8] K. Chen, S. H. Shah, and K. Nahrstedt, “Cross-layer design for data accessibility

in mobile ad hoc networks,”Wireless Personal Communications, vol. 21, no. 1, pp.

49–76, April 2002.

[9] D. D. Clark and D. L. Tennenhouse, “Architectural considerations for a new genera-

tion of protocols,” inSIGCOMM ’90: Proceedings of the ACM symposium on Com-

munications architectures & protocols. New York, NY, USA: ACM Press, 1990, pp.

200–208.

[10] M. A. A.-R. Qi Wang, “Cross-layer signalling for next-generation wireless sys-

tems,” in Proc. IEEE Wireless Communications and Networking Conference 2003

(WCNC’03), vol. 2, New Orleans, Louisiana, USA, March 2003, pp. 1084–1089.

[11] V. T. Raisinghani and S. Iyer, “Cross-layer design optimizations in wireless

protocol stacks,”Elsevier Computer Communications, 2003. [Online]. Available:

citeseer.ist.psu.edu/658477.html

[12] Y. Koucheryavy, D. Moltchanov, J. Harju, and G. Giambene, “Cross-layer black-

box approach to performance evaluation of next generation mobile networks,”IEEE

International, 2004.

[13] V. T. Raisinghani, A. K. Singh, and S. Iyer, “Improving tcp performance over mobile

wireless environments using cross layer feedback,”IEEE International Conference

on Personal Wireless Communications, New Delhi, India, 2002.

[14] Y. Fang and A. B. McDonald, “Cross-layer performance effects of path coupling in

wireless ad hoc networks: Power and throughput implications of ieee 802.11 mac,”

IEEE International, vol. 21, pp. 281–290, 2002.

[15] H. R. Duffin, C. D. Knutson, and M. A. Goodrich, “Prioritized soft constraint satisfac-

tion: A qualitative method for dynamic transport selection in heterogeneous wireless

232

environments,” inProceedings of the IEEE Wireless Communication and Networking

Conference (WCNC 2004), Atlanta, Georgia, March 2004, pp. 2527–2532.

[16] S. B. Barnes, R. W. Woodings, and C. D. Knutson, “Transport discovery in wireless

multi-transport environments,” inProceedings of the IEEE Wireless Communications

and Networking Conference. New Orleans, Louisiana: IEEE, March 2003, pp. 1328–

1333.

[17] C. D. Knutson, R. W. Woodings, S. B. Barnes, H. R. Duffin, and J. M. Brown,

“Dynamic autonomous transport selection in heterogeneous wireless environments,”

in Proceedings of the IEEE Wireless Communication and Networking Conference

(WCNC 2004). Atlanta, Georgia: IEEE, March 2004, pp. 689–694.

[18] R. Jain,The Art of Computer Systems Performance Analysis. John Wiley and Sons,

Inc., 1991.

[19] J. Joyce, G. Lomow, K. Slind, and B. Unger, “Monitoring distributed systems,”ACM

Transactions on Computer Systems, pp. 151–150, May 1987. [Online]. Available:

citeseer.ist.psu.edu/article/mansouri-samani93monitoring.html

[20] M. Mansouri-Samani and M. Sloman, “Monitoring distributed systems,” Imerial Col-

lege, Dept. of Computing, pp. 20–30, April 1993.

[21] M. L. Sichitiu, “Cross-layer scheduling for power efficiency in wireless sensor

networks.” Hong Kong, China: IEEE INFOCOM 2004, March 2004, pp.

1740–1750. [Online]. Available: citeseer.ist.psu.edu/article/sichitiu04crosslayer.html

[22] V. Kawadia and P. R. Kumar, “A cautionary perspective on cross layer design,” IEEE

Wireless Communications, vol. 12, no. 1, pp. 3–11, February 2005.

[23] A. J. Goldsmith and S. B. Wicker, “Design challenges for energy-constrained ad hoc

wireless networks,”IEEE Wireless Communications, vol. vol. 9, no. 4, pp. 8–27, 2002.

233

[24] S. Toumpis and A. J. Goldsmith, “Performance, optimization, and cross-layer design

of media access protocols for wireless ad hoc networks,” inProceedings of the Inter-

national Conference Communications, Anchorage, AK, May 2003, pp. 2234 – 2240.

[25] I. Akyildiz, Y. Altunbasak, F. Fekri, and R. Sivakumar, “Adaptnet: An adaptive proto-

col suite for the next-generation wireless internet,”IEEE Communications Magazine,

pp. 128–136, March 2004.

[26] T. M. Steinfatt, “The alpha percentage and experimentwise error rates in communica-

tion research,” inHuman Communication Research, vol. 5, no. 4, June 1979, pp. 366

– 374.

[27] Specifications of the Bluetooth System, Vol 1, v1.2 ed., Bluetooth Special Interest

Group, November 2003.

234

	Brand X, A Cross-Layer Architecture for Quality of Transport (QoT)
	BYU ScholarsArchive Citation

	Title Page
	Copyright Page
	Department Approval Page
	University Approval Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1
	1.1 Thesis Statement
	1.2 Thesis Layout

	Chapter 2
	2.1 Introduction
	2.2 Related Work
	2.2.1 Cross-Layer Designs for Specific Environments
	2.2.1.2 Data Store
	2.2.1.3 Inter-Layer Signaling
	2.2.1.1 Piped Message

	2.2.2 Cross-Layer Analysis
	2.2.3 Quality of Transport (QoT)

	2.3 Cross-Layer Taxonomy
	2.3.1 Attributes of Cross-Layer Architectures
	2.3.1.1 Information Discovery
	2.3.1.2 Data Elicitation Method
	2.3.1.3 Activation Mechanism
	2.3.1.4 Information Requirements
	2.3.1.5 Motivation
	2.3.1.6 Network Environment
	2.3.1.7 Protocol Compatibility
	2.3.1.8 System Definition

	2.3.2 Taxonomic Relationships
	2.3.2.1 Evolution versus Revolution
	2.3.2.2 Self-contained versus Multi-layer

	2.3.3 Brand X Taxonomy Classification:

	2.4 Brand X, Cross-Layer Architecture for QoT
	2.4.1 Brand X Features
	2.4.1.1 Cross-Layer Configuration
	2.4.1.2 Protocol Integration
	2.4.1.3 Information Update Frequency

	2.4.2 Brand X Implementation
	2.4.2.1 Brand X Core
	2.4.2.2 Brand X Brain
	2.4.2.3 Brand X Interface
	2.4.2.4 Protocol Layer Modules
	2.4.2.5 QoT Interface Module
	2.4.2.6 Communication Mechanism

	2.4.3 Test Harness Design
	2.4.3.1 Brand X – Asynchronous Billboard
	2.4.3.2 Synchronous Push
	2.4.3.3 Synchronous Pull

	2.5 Performance Analysis of Cross-Layer Architectures in a QoT Environment
	2.5.1 Cross-Layer Performance Analysis Goals
	2.5.2 Performance Analysis Factors
	2.5.2.1 Architecture
	2.5.2.2 Activation Mechanism
	2.5.2.3 Workload
	2.5.2.4 Volatility

	2.5.3 Evaluation Techniques
	2.5.3.1 Experimental Design
	2.5.3.2 Experimental Model
	2.5.3.3 ANOVA Terms

	2.5.4 Evaluation Metrics
	2.5.5 Experiment Setup and Configuration
	2.5.5.1 Steady State Calculation

	2.5.6 Results and Analysis
	2.5.6.1 Computation of Effects
	2.5.6.2 Computation of Interactions
	2.5.6.3 Computation of Errors
	2.5.6.4 Allocation of Variation
	2.5.6.5 Analysis of Variance

	2.6 Conclusions and Future Work
	2.6.1 Performance Analysis
	2.6.2 Timer versus Event Activation Mechanisms
	2.6.3 Future Work

	Chapter 3
	Appendix A

