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ABSTRACT

A DYNAMIC ATTRIBUTE-BASED LOAD SHEDDING AND DATA RECOVERY

SCHEME FOR DATA STREAM MANAGEMENT SYSTEMS

Amit Ahuja

Department of Computer Science

Master of Science

Data streams being transmitted over a network channel with capacity less than the

data rate of the data streams is very common when using network channels such as

dial-up, low bandwidth wireless links. Not only does this lower capacity creates delays

but also causes sequential network problems such as packet losses, network congestion,

errors in data packets giving rise to other problems and creating a cycle of problems

hard to break out from. In this thesis, we present a new approach for shedding the

less informative attribute data from a data stream with a fixed schema to maintain a

data rate lesser than the network channels capacity. A scheme for shedding attributes,

instead of tuples, becomes imperative in stream data where the data for one of the

attributes remains relatively constant or changes less frequently compared to the

data for the other attributes. In such a data stream management system, shedding



a complete tuple would lead to shedding of some informative-attribute data along

with the less informative-attribute data in the tuple, whereas shedding of the less

informative-attribute data would cause only the less informative data to be dropped.

In this thesis, we deal with two major problems in load shedding: the intra-stream

load shedding and the inter-stream load shedding problems. The intra-stream load

shedding problem deals with shedding of the less informative attributes when a single

data stream with the data rate greater than the channel capacity has to be transmitted

to the destination over the channel. The inter-stream load shedding problem refers to

shedding of attributes among different streams when more than one stream has to be

transferred to the destination over a channel with the channel capacity less than the

combined data rate of all the streams to be transmitted. As a solution to the inter-

stream or intra-stream load shedding problem, we apply our load shedding schema

approach to determine a ranking amongst the attributes on a singe data stream

or multiple data streams with the least informative attribute(s) being ranked the

highest. The amount of data to be shed to maintain the data rate below the capacity

is calculated dynamically, which means that the amount of data to be shed changes

with any change in the channel capacity or any change in the data rate. Using these

two pieces of information, a load shedding schema describing the attributes to be shed

is generated. The load shedding schema is generated dynamically, which means that

the load shedding schema is updated with any change in (i) the rankings of attributes

that capture the rate of change on the values of each attribute, (ii) channel capacity,

and (iii) data rate even after load shedding has been invoked. The load shedding

schema is updated using our load shedding schema re-evaluation algorithm, which

adapts to the data stream characteristics and follows the attribute data variation



curve of the data stream. Since data dropped at the source may be of interest to

the user at the destination, we also propose a recovery module which can be invoked

to recover attribute data already shed. The recovery module maintains the minimal

amount of information about data already shed for recovery purpose. Preliminary

experimental results have shown that recovery accuracy ranges from 90% to 99%,

which requires only 5% to 33% and 4.88% to 50% of the dropped data to be stored

for weather reports and stock exchanges, respectively. Storing of recovery information

imposes storage and processing burden on the source site, and our recovery method

aims at satisfactory recovery accuracy while imposing minimal burden on the source

site.

Our load shedding approach, which achieves a high performance in reducing the

data stream load, (i) handles wide range of data streams in different application

domains (such as weather, stocks, and network performance, etc.), (ii) is dynamic in

nature, which means that the load shedding scheme adjusts the amount of data to be

shed and which attribute data to be shed according to the current load and network

capacity, and (iii) provides a data recovery mechanism that is capable to recover any

shedded attribute data with recovery accuracy up to 90% with very low burden on

the source site and 99% with a higher burden on some stream data. To the best

of our knowledge, the dynamic load shedding scheme we propose is the first one in

the literature to shed attributes, instead of tuples, along with providing a recovery

mechanism in a data stream management system. Our load shedding approach is

unique since it is not a static load shedding schema, which is less appealing in an

ever-changing (sensor) network environment, and is not based on queries, but works

on the general characteristics of the data stream under consideration instead.
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Chapter 1

Introduction

The recent years have seen tremendous change in the way data are transferred over the

Internet on which data streams are defined. A data stream is a large volume of data

transmitting over a network from a source site to a destination site continuously. Since

most of the applications using stream data work in real-time (i.e., data is processed

as it arrives at the destination site, and most of the times current stream data are

not re-processed again at a later time), it is unnecessary to store the entire data

in some form of memory, e.g., seismic changes monitoring applications. Along with

being unnecessary, it is also impractical to store a data stream on the disk at the

destination site, since storing the entire data stream would require infinite amount

of space from a practical as well as theoretical point of view. Since a data stream is

defined [HIT] as a “sequence of digitally encoded signals used to represent information

in transmission,” a data stream represents a sequence of input data that comes at a

very high rate. As the high-rate stresses are introduced in the communication and

computing infrastructure [Mut03], so it may be hard to (i) transmit the entire input

to an application program, (ii) compute sophisticated functions on large pieces of

1



inputs at the rate it is presented, and (iii) store temporarily or archive the entire data

stream.

In many real-world applications today, such as network monitoring, telecommu-

nications data management, web personalization, manufacturing, sensor networks,

data takes the form of continuous data streams rather than finite stored data sets,

and clients require long-running continuous queries as opposed to one-time queries.

For such applications data streams tend to be more appropriate as opposed to simple

databases, since these applications work on continuously flowing infinite data. Tra-

ditional database management systems (DBMS) are ill-equipped to handle numerous

continuous queries over data streams [MWA+03]. The authors of Aurora [ACE+03]

claim that the static model of databases, with dynamically changing queries being

executed over static data, is not designed for handling stream data, which has static

queries being executed over dynamically changing data. In addition, they suggest

that handling data streams in a DBMS would require the DBMS to serve real-time

applications, making it imperative that the DBMS employ intelligent resource man-

agement (e.g., scheduling) and graceful degradation strategies (e.g., load shedding)

during periods of high load, which are not features of a DBMS, as it is designed as a

store-and-query model instead. Also, limited computing power of the destination site

or low channel capacity of the network over which data streams are to be transmitted

lead to long delays on data, which may be acceptable with the static model of DBMS

but inappropriate with data streams applications.

In order to handle the problems imposed by high-speed stream data in data pro-

cessing, load shedding has been proposed as a solution. In dealing with the high data

stream input rates, different load shedding approaches [ABC+05, BDM04, CWY05,

Gol04] have recently been introduced. With load shedding, data from data streams

2



are dropped and a reduced data stream is supplied to any application processing on

it. Most of the load shedding methods [MWA+03, RH05] employ either the naive

approach, static load shedding approach, and dynamic load shedding using delay-

based QoS graphs or value-based approach [Mut03]. Upon detecting an overload, a

data stream management system (DSMS) launches an effort to reduce the volume

of the incoming stream data via load shedding. The naive approach sheds tuples at

random points in the network without having any control over which tuples to be

dropped. This works in a manner similar to dropping overflow packets in packet-

switching networks [ACE+03]. Although being simple, the naive approach has two

potential problems: (i) overall system utility might be degraded more than necessary,

and (ii) application semantics might be arbitrarily affected. Approaches using the

static load shedding scheme employ availability of a priori knowledge of the tuple

delays or frequency distribution of values to determine what tuples to be shed. Static

load shedding, although overcomes the problems of the naive approach, still faces at

least one significant drawback. The data tuples considered to be less important on

the basis of some priori knowledge are shed; however, these tuples may not remain

less important after a while, since the priori knowledge may not always be valid over a

period of time. For example, priori knowledge may project the temperature attribute

in the weather information to be less important, but at a later time the temperature

attribute in the weather information may become important. Load shedding triggered

as a result of dynamic information, instead of priori knowledge about a data stream,

would be able to overcome the drawback of using a static load shedding model. The

load shedding method proposed in this thesis is dynamic and adaptive, which means

that our load shedding approach applies its load shedding scheme re-evaluation mech-

anism in a regular periodic manner to the pattern in which the data stream attribute

3



values vary, and re-configurate the load shedding scheme accordingly. Also, besides

load shedding approach, we present a data recovery method in retrieving shed data,

since data shed at the source site may be of interest to the user at the destination

site, which has not been discussed in the literature. Our recovery method provides

high data recovery accuracy, low information loss, and with a low overhead of storing

recovery information.

We note that all data streams have a static schema, which means that the involved

attributes and their corresponding data types do not change, but have a high dynamic

data rate. Some of the data values of an attribute vary more often than the values

of other attributes, whereas others may remain nearly constant. Many applications

process stream data in which all tuples are important, with some attribute values

being more “informative” than the others. For example, a weather data stream may

contain data for temperature, pressure, wind speed, barometer pressure, humidity,

precipitation, and visibility. Some of these weather attribute values may be more

“informative” than the values of other attributes (for certain geographical locations).

For example, deserts have temperature varying tremendously between day and night

times, whereas precipitation may be constant over weeks. However, around the coastal

areas, temperatures vary slightly over days, whereas the precipitation might change

tremendously within the same day. These scenarios demand a new approach towards

load shedding for stream data by dropping less-informative attribute (values) in tu-

ples, instead of the entire tuples, since a complete tuple may contain informative

attributes with varying attributes values as well as less-informative attributes. As

a result, shedding less-informative attribute values in data stream tuples, instead of

entire tuple in a data stream, does not shed informative-attribute values. In this the-

sis, we propose a dynamic method which would cater to this need. The shedding of
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attribute data equivalent in data size to the amount of tuple data which was needed

to be shed creates the same effect in terms of amount of data shed as when shed-

ding complete tuples. We call our load shedding approach an attribute-based load

shedding approach for data streams.

Differed from existing load shedding approaches, our load shedding approach pre-

processes all data values in a data stream using moving averages, which serves the

purpose of diminishing any rare irregularities in the data values. Consider, for in-

stance, in a weather information data stream, in which it shows one day of heavy

rains in the middle of 100 days of drought. The results of the preprocessing step

are compared with the data before preprocessing using line graphs to show that the

irregularities were diminished and keeping the data after preprocessing close to the

actual data before preprocessing. The data after preprocessing is used to compute

the load shedding scheme of a data stream, which comprises of the designated at-

tributes to be dropped and their data. The number of attributes to be dropped, n, is

computed by using (i) the information on the channel capacity and (ii) the data rate

of the stream. According to the value of n, we compute the standard deviation on

each segment, called the sliding window, of the stream data to be shed, which yields

a ranking of the n lowest informative attributes; with the least-informative attributes

being ranked highest, which generated the load shedding scheme of the segment. The

load shedding scheme that controls the data to be shed is computed and updated dy-

namically, which means it adapts its re-evaluation pattern according to the pattern

in which the ranking changes.

Besides the load shedding scheme of a data stream, we also propose a data recovery

method on the shedded data by maintaining information about the data shed at the

source site. This information is used at a later time when data needs to be recovered,
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which occurs when the destination site needs some attribute data which had been

shed from the stream data sent to the destination site. In such a situation, the source

site uses the recovery information it had stored and sends the best approximation of

the shed to data to the destination site. To measure the accuracy of our data recovery

approach and to show the high accuracy of our data recovery method, we conduct

various experiments on different data streams, and we compare the actual data with

the recovered data. We plots graphs between the actual values and the recovered

values for the comparison purpose.

We proceed to present our results as follows. In Chapter 2, we discuss related

works in load shedding in data streams. In Chapter 3, we (i) introduce our two load

shedding approaches: the intra-stream and inter-stream load shedding approaches,

(ii) present the architectures for both the intra-stream and inter-stream load shedding

approaches, and (iii) include some initial experimental results of our load shedding

approach to verify the correctness and effectiveness of our load shedding approach

along with the proposed data recovery method. In Chapter 4, we include the ex-

perimental results on our load shedding and data recovery approach to measure the

quality of the overall design. In Chapter 5, we give a concluding remark.
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Chapter 2

Related Work

In this chapter, we discuss related work in load shedding in data streams (in Sec-

tion 2.1), as well as video/audio lossy compression (in Section 2.2), that appear in

the literature.

2.1 Existing work in data stream load shedding

Many efforts have been made in the past to handle load shedding mechanisms in

data stream management systems (DSMS). Well known load shedding techniques are

presented in (i) Borealis [ABC+05], which accomplishes load shedding by shedding

tuples using temporarily adding drop operators, (ii) Data Triage [RH05], which deals

with the arrival of bursty data in data streams, (iii) Loadstar [CWY05], which uses a

QoD-based load shedding scheme for load shedding, (iv) [Gol04], which introduces a

technique for load shedding by applying data optimizations on sliding windows, (v)

[BDM04], which discusses load shedders used to shed tuples at various points in a

query plan, and the load shedders can be removed and applied as and when needed,
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and (vi) Aurora [ACE+03], which invokes load shedding by using QoS-based quality

metrics.

Borealis [ABC+05], a data stream management system, accomplishes load shed-

ding by temporarily adding ”drop” operators to the Borealis processing network as a

way to shed tuples. Shedding tuples is either based on the values of the tuples or in a

randomized fashion, which rectifies the overload situation and provides better overall

end-to-end latency at the expense of reduced answer quality. Borealis also presents

a distributed architecture with different load shedding nodes in the query plan in-

dulging in the dropping tuples, and dropping tuples at a node reduce the load on the

downstream nodes. Borealis uses loss-tolerance QoS as a quality metric, which is a

static QOS-based approach, to decide which tuples in a data stream to drop, whereas

our load shedding approach, as proposed in this thesis, uses a dynamic approach to

decide what attributes to in a data stream to drop.

Data Triage [RH05] treats load shedding as a problem to deal with bursty data

arrival that has not been adequately addressed in previous work. In between bursts,

Data Triage generates completely accurate data recovery results. When a crisis situ-

ation causes a burst of unusual data, Data Triage sheds load to maintain low result

latency but keeps enough data to produce a relatively accurate picture of what hap-

pened during the burst. Data Triage has several other important benefits for handling

bursty loads, which include (i) responding quickly to changes in load and (ii) provid-

ing relatively accurate query results across a wide variety of data rates and available

amounts of bandwidth. Data Triage is very close to our approach of handling load

shedding on data streams as it handles the bursty data in an efficient manner, but

misses any design for data recovery. Our load shedding approach overcomes this

limitation with a data recovery design, which imposes only minimal cost in terms of
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storage.

The designers of Loadstar [CWY05] consider a QoD-based load shedding scheme.

They focus on two load shedding problems: (i) the classification of data that are

dropped by the load shedding scheme and (ii) the decision on when to drop data

from a stream. Loadstar classifies the data streams into different application domains

and assigns them CPU resources accordingly. Loadstar employs a QoD measure for

predicting the classification in the next time unit and is able to learn and adapt to

changing data characteristics in stream data. The approach of using QoD, instead

of QoS, by Loadstar is more adaptive than QoS in Borealis. Even though Loadstar

can decide when to apply load shedding to a data stream, it lacks the ability to

control the communication rates of the data streams. (For example, given many

video streams, the frame rate of each stream is proportional to its importance.) Our

load shedding approach, when dealing with multiple streams, sheds a greater number

of attributes from data streams with less-informative attributes than the number of

attributes shed from the data streams with more-informative attributes. Thus, our

load shedding approach overcomes the limitation of Loadstar and is more effective in

controlling the communication rates of stream data.

In another approach [Gol04] towards load shedding on data streams, the researcher

views sliding windows as approximations to infinite data streams and proposes the

application of optimization techniques, like functional dependencies, to these sliding

windows to reduce the amount of data in these sliding windows. The researcher views

the reduction in data in these sliding windows as a form of load shedding and believes

that reducing the amount of data in the sliding windows by employing functional

dependency between various tuples is a way of load shedding by prematurely evicting

tuples from their windows, which is beneficial since premature eviction saves any
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processing time which would have been spent on them before they would have been

evicted later. [Gol04], however, does not address the problem on dynamically scaling

the amount of optimization applied to reduce the window data to be shed. Our load

shedding approach determines the amount of data to be shed dynamically with an

adaptive load shedding scheme, i.e., the data to be shed and the amount of data to

be shed change with any modifications in the ranking amongst the attributes in a

data stream based how informative they are, along with any change in the data rate

of a data stream.

In [BDM04], the authors handle load shedding by introducing load shedder at

various points in a query plan. Every incoming tuple, which serves as an input to a

load shedder, is passed onto the next load shedder with a probability p, called the

sampling rate. The authors propose the usage of aggregate values to compensate for

data lost by load shedding. The decisions about where to introduce load shedders

and how to set the sampling rate for each load shedder, as presented in [BDM04],

are based on statistics about the data streams, which include observed stream arrival

rates and operator selectivities. The major drawback of this approach is its approach

towards data recovery, since it uses aggregate values to compensate for data lost,

whereas our approach uses a synopsis-based intelligent approach and handles data

recovery much more efficiently.

In Aurora [ACE+03, ZCC+02], another data stream management system, an over-

load on a system is detected as a result of static or dynamic analysis on the resources

at the system. Aurora attempts to reduce the volume of tuple processing in a data

stream via load shedding. Aurora relies on QoS information to guide the load shed-

ding process by using a QoS monitor that watches over system performance and

activates the load shedder whenever an overload is detected. If the performance is
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below a specified level, Aurora sheds load till the performance reaches a certain level.

Aurora also uses a router which decides if incoming stream data should be processed

or stored in persistent storage. Aurora, however, uses the QoS information, which

is predefined, and thus lacks the dynamic nature. Our load shedding approach is

dynamic in nature since it uses an adaptive load shedding technique.

Other load shedding approaches adopted by numerous data stream management

systems have also been proposed. STREAM [MWA+03], the data stream management

system developed at Stanford, uses query plans for handling data streams, whereas

CQL [ABW03] is capable of handling relation-to-relation, stream-to-relation, and

relation-to-stream operators. One of the relation-to-stream operators in CQL, the

stream-sample operator, is used only for system-managed load shedding, which drops

a specified fraction of stream tuples from its input queue based on a uniform ran-

dom sample. The designers of STREAM also identify the two primary consumers

of memory in their data stream management system as synopses and queues. They

use approximation techniques to reduce the synopsis and queue sizes, and further

suggest that if the queues grow too large, then simply dropping packets could also

help. Furthermore, STREAM includes an extended SQL language which supports

the processing of both data streams and conventional relations.

Our load shedding approach is different from existing load shedding methods.

None of the existing load shedding approaches considers a dynamic load shedding

system for data streams with focus on dropping attributes in a tuple, but the tuple

itself. Under certain conditions, where the values for some attributes may be of less

interest to the user while other attributes are significantly important, the dropping of

attributes is more feasible than dropping tuples. We discuss in detail in subsequent

chapters our load shedding approach in this thesis, along with the method in deter-
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mining and updating a load shedding scheme. Hereafter, we will present our data

recovery approach on shed data.

2.2 Audio/Video lossy compression

The state of the current research [TRL01, MQ02, AA03, MMdEdT03, CLL+04] also

shows that a lot of works have been done in lossy compression of streaming au-

dio/video data, which can be viewed as consecutive frames of continuous data. Often

portions of audio/video data in two consecutive frames are replicated and thus redun-

dant when they are transmitted with other data in their frames through the network.

For example, a streaming video with men performing on a stage with a constant black

screen in the background would have the video information regarding the positions

of the men on the stage changing between consecutive frames; however, the video

information about the black screen remain constant, which are considered redundant

across multiple frames. Approaches in lossy compression of streaming audio/video

data remove redundant information between multiple frames, which can be viewed

as less informative data in this thesis. We are well aware that streaming audio/video

data are processed as continuous frames of information, and each frame contains pix-

els, each of which is represented in the binary form as 1 or 0. Pixels in a frame for

which the information do not change over consecutive frames would have the same

binary representation, which are treated as redundant. We can adopt our load shed-

ding approach for shedding these redundant information by comparing the binary

representation of the pixels at the same positions in consecutive frames, and only

the portions of audio/video data that vary from one frame to another with a change

greater than a predefined redundant threshold would be retained, whereas other por-

tions with a change less than the redundant threshold would be shed. We proceed to
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discuss works already done in the field of lossy compression of audio/video data and

how to apply our load shedding approach on them below.

[MQ02] propose a method capable of delivering streaming video sequences with

nearly constant perceptual quality. The proposed method classifies video data pack-

ets as premium or regular, depending on the network conditions (such as network

bandwidth and traffic) and the pre-defined desired level of quality of service. Pre-

mium packets are transmitted lossless, with a low delay, whereas regular packets are

delivered as “best-effort packets” with losses. The proposed method demonstrates

higher effectiveness experimentally when compared to the method that “punishes”

each video data packet equally by transmitting them as best-effort packets with losses,

i.e., without classifying them into premium and regular packets. Our load shedding

approach can be modified to take an entirely different approach towards shedding

information from video packets as addressed in [MQ02]. Our load shedding approach

can convert audio/video data to stream data and perform lossy compression on them

by shedding. This conversion can be accomplished by considering the 0s and 1s bits

in the frames of audio/video data as textual stream data, the type of data handled

by our load shedding and data recovery approach. Bits that remain constant at the

same positions between two consecutive frames could be redundant and shed. We call

such a conversion and shedding approach as the audio/video load shedding compres-

sion approach (AVSCOM, for short). Since the proposed streaming video method in

[MQ02] is a pre-defined quality of service-based approach, it lacks dynamic nature

in terms of classifying the packets as premium or regular packets. AVSCOM, on the

other hand, determines the video data which should be shed dynamically by (i) ana-

lyzing each video frame (which plays the role of a sliding window) and (ii) detecting

the amount of informational change in the video frame from the previous video frame
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to decide whether portions of the video frame should be retained or shed.

[MMM+03] propose a change-detection and high-interest, coded-region based ap-

proach for compressing streaming video data in wireless sensor networks. The pro-

posed algorithm considers consecutive frames of video data and analyzes each frame

to determine the regions of frequent changes in the frame, which are considered as

the regions of high interest. After determining the regions of high interest, the al-

gorithm captures and encodes only the changes between the regions of high interest

on consecutive frames before transmitting the video information from the source to

destination. Our AVSCOM can detect the amount of informational change in differ-

ent regions of a frame, i.e., detecting the changes occurred in different groups of bits

on two consecutive frames considered by [MMM+03], with groups of bits containing

higher informational change to be treated as regions of higher interest, which are

treated as more informative than others.

[CLL+04] propose a video encryption technique for face-to-face video conferencing.

The proposed algorithm is based on the assumption that positions of different parts

of a human face are similar between two frames if the frames show similar orientation

of the face. [CLL+04] divide each frame into parts so as to disintegrate the face in the

frame into eyes, nose, ears, and mouth. The information about the eyes, nose, ears,

and mouth in a frame like the color of the eyes, the shape of the nose, lips, ears, etc.,

are not transmitted over the network; instead, the information about the orientation

of the face is. This is done to reduce the amount of information to be transmitted by

not transmitting any detailed information. A set of frames containing a complete face

in different orientations, called a set of reference frames at the destination site, which

are transmitted earlier from the source site, is used for recovering the information

that was not transmitted from the source site. The orientation of each transmitted
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face is compared with the reference frames at the destination site, and the position of

the eyes, nose, ears, and mouth from the reference frames is utilized for regenerating

the complete picture. Our AVSCOM handles the regeneration of video frames in lossy

compression without using any reference frames; instead, it uses recovery information

which has been stored before shedding redundant video information from a frame

at the source site. Also, we have observed a limitation of the proposed method in

[CLL+04], i.e., adequate training is required to obtain the reference frames to be

able to handle data recovery. Our AVSCOM, when applied to lossy compression of

streaming audio/video data, does not require any training to be able to handle data

recovery and thus would not face the limitation of the adequate training requirement

problem in [CLL+04], since the data recovery method in our AVSCOM uses recovery

information captured in real-time for data recovery instead of the reference data

generated in [CLL+04] by the training approach.

[TRL01] propose a content-sensitive video streaming approach for streaming video

over a very low bit-rate lossy wireless network. The authors claim that their algorithm

reduces the video frame rate while preserving the quality of displayed frame. The

algorithm performs content analysis to extract and rank all video frames according to

the amount of informational change in the frames from the preceding frames. Frames

with more informational change from their preceding frames are ranked higher and

have a higher priority of being sent by the server. The authors also present what

is called an efficient, adaptive, and robust streaming protocol (SSP) for transferring

data over varying bandwidth and high lossy networks. Our AVSCOM, however, does

not rank frames; instead, it sheds redundant information between consecutive frames

and retains recovery information needed for data recovery. Our AVSCOM, when

applied to the lossy compression problem for audio/video data, can analyze the bits
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in each frame and decide which data bits are to be shed and which data bits are to

be retained based on the amount of informational change among all the bits in the

current frame from their corresponding bits in the previous frame.

SH-AMBTC, which stands for semi-hexagonal absolute moment block truncation

coding [AA03], adopts a compression method for video conferencing by viewing a

stream of Mpeg video as sequential frames of bitmap images. The authors propose a

predictive scheme which constructs the middle frames in a stream of video data based

on the information from end frames in a stream of video data instead of transmit-

ting the middle frames, since there can be a large amount of redundant information

between the end frames and the middle frames. Adapting a new predictive tech-

nique, the authors try to obtain the bitmap of the middle frames in a sequence of

frames, from the bit-map of the end frames only (i.e., the first and the last frames

in the group), by using an interpolation formula to obtain the bit-map of the middle

frames. Our AVSCOM, however, does not employ interpolation because the textual

data stream from sensor networks that we consider in this thesis may not contain

any continuous pattern. For example, temperature in one tuple could be 40◦F, fol-

lowed by 60◦F in the next tuple, which is then followed by 47◦F in the next tuple.

Patterns, however, exist for audio/video data. For example, the running motion of a

man would always follow a continuous pattern by raising his left leg and putting it

down, followed by raising his right leg and putting it down. Our AVSCOM does not

deal with middle and end frames, instead determines the redundant, i.e., replicated

information, between consecutive frames and sheds the bitmap representation of the

replicated information, which is treated as redundant information. Before shedding

the redundant information, our AVSCOM retains recovery information regarding the

redundant information, and at a later point of time uses this recovery information
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to recover any shed data. Thus, our AVSCOM, unlike [AKA03], does not depend on

detecting or regenerating the middle frames using the end frames by interpolation.

In the above discussion of the potential application of our AVSCOM to the lossy

compression problem in audio/video data, we have seen that our load shedding ap-

proach could be adopted in solving the lossy compression problem in transmitting

audio/video data through the network. Leaving it as a topic of further research and

according to the current state of our load shedding approach, we do not make any

claims regarding the performance of AVSCOM when applied to lossy compression on

audio/video data. Though, we feel that with subsequent work and design, our load

shedding approach could be enhanced to cover the lossy compression problem in trans-

mitting audio/video data, in addition to identifying the less informative attributes in

a data stream, shedding them, and providing a recovery method.
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Chapter 3

Our Load Shedding Approaches

In this chapter, we propose two different strategies for load shedding: the intra-stream

load shedding and the inter-stream load shedding. The intra-stream load shedding

is defined as shedding data of less-informative attributes within a particular data

stream to lower the data transmission rate at the source site to meet the limited

capacity of the data transmission channel, i.e., the channel capacity is lower than

the data transmission rate of the data stream. The uniqueness of our intra-stream

load shedding approach includes (i) minimizing information loss by shedding less-

informative attributes instead of tuples, since tuples may contain less-informative as

well as (more-)informative attributes, and (ii) the ability to recover data shed at the

source site, requiring only minimal recovery data from data streams to be stored at

the source site.

The inter-stream load shedding, on the other hand, deals with shedding on various

data streams when multiple streams have to be transmitted over a single channel with

the channel capacity less than the cumulative data rate of the data streams. The

inter-stream load shedding may have been preceded by intra-stream load shedding
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individually on each of the involved data streams. Our inter-stream load shedding

approach sheds a number (i.e., zero or more) of less-informative attributes and their

data from each involved data stream to bring the cumulative data transmission rate

below the channel capacity. Our inter-stream load shedding is unique, since the

inter-stream load shedder co-ordinates with the central load shedder that obtains

information regarding the data transmission rates of each (shed) data stream being

transmitted over the channel to determine the number of attributes to be further shed

from each data stream.

The two different load shedding processes, i.e., intra-stream and inter-stream load

shedding, can be consolidated into one if the central load shedder can co-ordinate

directly with each data stream source site to perform intra-stream load shedding

without conducting further inter-stream load shedding. In order to determine the

amount of data to be shed for intra-stream load shedding, the central load shedder

would have to gather from each data stream (i) the data transmission rate and (ii)

the capacity of the individual channel (at the source site) on which the data stream is

to be transmitted. Although the central load shedder can sense the data transmission

rate for each data stream, it cannot sense the channel capacity at the source site of

the individual channels, and thus unable to determine the amount of data to be shed

at the source site from each data stream for intra-stream load shedding. As a result,

the central load shedder has to (i) rely on each data stream to perform intra-stream

load shedding independently, which requires the existence of both intra-stream load

shedding and inter-stream load shedding as distinct entities.

We use sliding windows, each of which can be viewed as an approximation of

an infinite data stream [Gol04], to capture the data stream to be processed. The

purpose of capturing data momentarily is to use them for any data processing. In
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load shedding, the data in a sliding window are analyzed to determine which portion

of the data are to be shed.

The rest of this chapter is organized as follows. In Section 3.1, we introduce sliding

windows. In Section 3.2, we propose our intra-stream load shedding approach. In

Section 3.2.2 we define estimated weighted means and explain how they are used as a

preprocessing step of the intra-stream load shedding process for smoothening the data

in the current sliding window. In Section 3.2.3, we present our (intra-stream) load

shedding scheme generation and maintenance approach. In Section 3.2.4, we discuss

the different strategies of recovering data as building blocks of our load shedding and

data recovering system. In Section 3.2.5, we include the architecture for our intra-

stream load shedding sub-system. In Section 3.3, we introduce our inter-stream load

shedding sub-system.

3.1 Sliding Windows

Data stream is a stream of tuples or rows [HIT] continuously flowing over the network

from the source site to a destination site. The properties a data stream exhibited are

very different from those exhibited by a database. Unlike databases, data streams are

unbounded and flowing continuously, and storing a data stream in a static location

is impractical [ACE+03] , since the amount of data flowing in a data stream is in the

order of hundreds of megabytes every hour, and storing such huge amount of data

is not feasible. Furthermore, queries executed on data streams are called continuous

queries. Unlike queries on databases that are executed on data already stored on

disks, continuous queries are executed on stream data online in real time. In reality,

databases generally exhibit dynamic queries on static data, whereas data streams
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exhibit static queries on dynamic data. Since data streams cannot be treated like

static databases, a technology is required to process static queries on unbounded

dynamic data in real time. The most effective way of executing continuous queries

on a data stream is by using sliding windows, since in real-world applications data

streams are processed on excerpts of the data streams rather than the whole streams.

A sliding window slides over the incoming data stream, is continuously updated, and

considers the most recent tuples in the window. With the use of sliding windows,

continuous queries can be executed on a never-ending data stream in real time.

Two different types of sliding windows for stream data processing have been pro-

posed in the literature [MWA+03]: time-based windows and tuple-based windows.

Time-based windows define the window size as a time-frame (e.g., death statistics

over the last 10 minutes), whereas tuple-based windows define the window size as

number of tuples (e.g., the last 100 phone calls during the last hour). The number

of tuples captured in a time-based window increases as the rate of flow of tuples

increases, whereas a tuple-based window has a fixed number of tuples and thus the

window size is not affected by the rate of flow of tuples at all.

3.2 The Intra-Stream Load Shedding Approach

According to each incoming sliding window of a data stream, our intra-stream load

shedding approach first identifies the less-informative attributes, i.e., attributes whose

data vary lesser when compared to the data of other attributes, in the data stream.

We shed less-informative attributes, instead of entire tuples in a data stream, because

when we shed less-informative attributes, all the data we shed is the less-informative

data, whereas when we shed tuples, we shed some informative data, in the form

22



of informative attributes, along with the less-informative attributes as a tuple may

contain data of both informative and less-informative attributes. The major functions

of our intra-stream load shedding strategy, as well as our inter-stream load shedding

approach, include (i) creating the load shedding scheme of a data stream S1, which

enlists data to be shed from S by the load shedder, and (ii) recovering shed data of

S, if needed.

The load shedding scheme generation step is preceded by a preprocessing step

that smoothens out any “irregularities” in the source data. An example of such an ir-

regularity can be imagined as the weather stream data over the last hour for a county

with the precipitation remaining nearly constant except the 13th minute when it rains

heavily. Our preprocessing step would smoothen any such irregularities by replacing

the original data in a sliding window with the exponential weighted mean average

(EWMA) of the data values under consideration. (See Section 3.2.2 for details.) Af-

ter the preprocessing step, the load shedding scheme can be generated according to

the required amount of data and their corresponding attributes to be shed, which

are dictated by the channel capacity of the corresponding data stream. To deter-

mine which attributes to be shed, we use standard deviation to compute the ranking

amongst the attributes of the data stream over the current sliding window with the

least informative attribute to be assigned the highest ranking value. Hereafter, the

data from the source site is shed according to the load shedding scheme, which is

re-evaluated in real-time and enjoys a dynamic nature. Since a complete data stream

S can not be stored at the source site, our load shedding scheme generation algorithm

uses an excerpt of S, i.e., the current sliding window of S to generate the load shed-

1 The load shedding scheme, which is dynamic in nature, meaning that the load shedding scheme
is modified in real-time with changes in (less- or more-) informative attributes of a data stream S,
comprises of (a) the attributes to be shed and (b) the corresponding data in S to be shed.

23



ding scheme of S and subsequent excerpts to update the load shedding scheme of S

continuously. In addition, we also propose a recovery algorithm which can be utilized

at the destination site to recover any shed attribute data with the recovery accuracy

ranging from 90% to 99%, while retaining minimal amount of data for recovery in a

variety of ranges.

3.2.1 Sliding Window Size

Different segments of a data stream S, which convey up-to-the-moment information,

are separated by the cycle identifier (CID, for short), which is defined as either a

single attribute or a combination of attributes, of S. The CID of S serves as a key

in the recovery matrix of our load shedding approach where recovery information of

S are recorded and extracted, and the CID values follow a fixed-length repetitive

cycle in S, which consist of tuples in S such that the order of appearances of various

CID values in the tuples fall in the same cycle, and the number of tuples in each

fixed-length repetitive cycle in S is called the cycle length of S. The cycle length of

S is treated as the size of each tuple-based sliding window of S for load shedding and

data recovery purpose (see Section 3.2.4 for details). Since the CID of S must be

transmitted to the destination site and cannot be shed, the CID should be minimal,

i.e., with the fewest possible attributes that individually come with a cycle length of

repetitive values in each fixed-length cycle of S. In this section, we discuss a method

in determining the CID of S and thus the cycle length of S.

The CID of S is detected during the training phase of S, which is carried out

before our load shedding system actually starts shedding data and retaining recovery

information from S. During the training phase of S, we analyze and evaluate all

the data values for each attribute in the training set of S. All the attributes in S
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that individually follow a repetitive pattern for their values form the set of replicated

attributes (RepAs, for short) of S, and whenever a replicated attribute is detected,

its cycle length is also recorded. The replicated attributes in RepAs are partitioned

into sets S1, S2,. . . , Sn(n ≥ 1) according to the cycle length of each attribute such

that each Si (1 ≤ i ≤ n) contains all the attributes with the same cycle length.

Furthermore, all the attributes in each Si have a one-to-one relationship with each

other, i.e., the value of each of these attribute in a tuple t in Si of S can uniquely

identify the values for all the other attributes in t of Si, and the sets S1, S2,. . . ,

Sn are called one-to-one relationship sets. Since the replicated attributes in each Si

have a one-to-one relationship with all the other attributes in the same set, only one

attribute from each Si is required, to form the chosen attribute to generate the CID

of S, and the cycle length of each chosen attribute is used to compute the fixed-cycle

length of S. The amount of computation required to identify the CID of S is one

time and does not impose a lot of burden on the source data stream site.

In finding RepAs of S, we compare every tuple, starting from the 2nd tuple, in the

training data set of S with the 1st tuple in the training data set, till we have found the

first repeated value of an attribute, which indicates a potential repetition cycle of the

attribute. Assume that there are p (p ≥ 1) distinct tuples in the training set, and p

is sufficiently large, i.e., there are sufficient training data to identify all the replicated

attributes in S. Further assume that the 1st match in the comparison to find the

repetition cycle of the values of an attribute A is found between the jth (1 < j ≤ p)

tuple and the 1st tuple. This discovery will be followed by the comparison on the

values of A between the j+1th tuple and the 2nd tuple to determine whether the two

tuples have the same value on A. If the values of A are the same, the comparison is

followed by yet another comparison between the attribute values of A in the j+2nd
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tuple and the 3rd tuple, and so on till all the tuples in the training set are covered.

If any of these comparisons fail, then A is not replicated. For every attribute A in

S, a total of p comparisons for A would have to be carried out. Assume that there

are q (q ≥ 1) attributes in S, discovering the RepAs of S would require O(p × q)

computations to find all the replicated attributes of S.

We now present an algorithm that finds the CID of a data stream S. To discover

the CID of S, the algorithm first determines each RepAs of S. Hereafter, replicated

attributes in RepAs are partitioned into a number of one-to-one relationship sets

S1, S2,. . . , Sn, as mentioned before. The replicated attributes in each one-to-one

relationship set Si (1 ≤ i ≤ n) may have different bit lengths, i.e., the numbers of

bits occupied by the domain values of different attributes in Si can be differed. The

CID of S is formed by selecting the attribute with the least bit length from each

one of S1, S2,. . . , Sn, which guarantees that the chosen attributes to form the CID

of S have the minimum bit length amongst all the other possible combinations of

replicated attributes to form the CID of S, which is minimal.

Algorithm 1. CID Discovery Algorithm

Input: A set of training tuples T of data stream Swith r attributes and p tuples, with

p being sufficiently large, i.e., there are sufficient training data to identify all

the replicated attributes in S. The ith tuple in T is denoted as Ti

Output: CID and CycleLength, the cycle length, of S

1. Initialize CID = {}; CycleLength (Ai) = 1, 1 ≤ i ≤ r; RepAs = {}.

/* Detect RepAs,the set of replicated attributes of S*/

2. For each attribute A in T

/* Test each attribute in the training set */

For i = 2 to p, j = 1
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/* From the 2nd tuple onwards, start comparing every

tuple with the 1st tuple for a repeated pattern of A*/

If Tj[A] = Ti[A], then

/* The value of attribute A in the ith tuple is

the same as the value for A in the jth tuple */

(a) While i ≤ p /* Verify that all tuples in the training set following

the ith tuple also follow a pattern of repeated values for attribute A */

(i) j = j + 1

(ii) i = i + 1

(iii) If Tj[A] = Ti[A], then Pattern = ‘True’

Else Pattern = ‘False’ and Break

End If

End While

/∗Attribute A follows a repetitive pattern and is included in RepAs;

Cyclen(A) is the cycle length for a replicated attribute A ∗ /

(b) If pattern = ‘True’, then RepAs = RepAs∪ {A} and Cyclen(A) =

j − i

End If

End If

End For

End For

/* Compute the CID of S from RepAs,the set of replicated attributes of S*/

Group the attributes in RepAs according to their cycle lengths by sorting the

(a) /*Partition the sorted attributes in RepAs into the one-to-one relationship

sets*/ S1 = { }, S1 = S1∪ { RepAs [1]}, m= 1
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For i = 2 to | RepAs|

If Cyclen(RepAs [i ]) = Cyclen(RepAs [i - 1])

Sm = Sm∪ { RepAs [i]}

Else

m = m +1

End If

End For

(c) CID = {Min(S1)∪ Min(S2)∪ . . . ∪ Min(Sm)}, where

Min(Si), 1 ≤ i ≤ m, denotes the attribute with the minimum bit length amongst

all the attributes in Si; if there are more than one attribute in Si with the

minimum bit length, then any of these minimum bit length attributes can be

selected as the attribute to represent Si.

(d) CycleLength = 1

(e) For each attribute A ∈ CID

CycleLength = CycleLength × CycleLength (A)

/* CycleLength is the product of cycle lengths for the attributes in CID of S */

End For

Example 1 Consider the training data in Table 3.1 as an example that demonstrates

the discovery of CID for a data stream S with attributes A1, A2,A3, and A4.

In Table 3.1, the attributes A1, A2, and A3 are replicated attributes. Thus, the

set of replicated attributes RepAs is {A1, A2, A3}, with Cyclen(A1) = 3, Cyclen(A2)

= 3, and Cyclen(A3) = 4. Partitioning the attributes in RepAs into sets, with each

set having attributes of the same cycle length, yields sets S1 = {A1, A2} and S2
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A1 A2 A3 A4

a1 aaaa a 29.91
a2 bbbb b 27.96
a3 cccc c 30.09
a1 aaaa d 30.09
a2 bbbb a 29.91
a3 cccc b 29.8
a1 aaaa c 29.77
a2 bbbb d 30.09
a3 cccc a 30.18
a1 aaaa b 29.94
a2 bbbb c 29.91
a3 cccc d 30
a1 aaaa a 30
a2 bbbb b 30.09
a3 cccc c 29.78
: : : :
: : : :

Table 3.1: A sample data stream training data set

= {A3}. Assume that the bit lengths for attributes A1, A2,and A3 are 4, 8, and 2

bytes, respectively. Then the CID of S is {Min(S1)
⋃

Min(S2)} = {Min({A1, A2})
⋃

Min({A3})} = {A1}
⋃ {A3} = {A1, A3}, and the cycle length of S is CycleLength =

Cyclen(A1)× Cyclen(A3) = 3 × 4 = 12.

3.2.1.1 Errors in Training Set Data

The accuracy of our CID discovery method relies on the correctness of training set

data. If the attribute values in a training set data have errors, causing the loss of

information about the repetition of values of an attribute, then the CID of the cor-

responding data stream may not be detected correctly. These errors are sometimes

referred to as bit-errors as the bit(s) in a byte of a data value is (are) changed from a

‘0’ to ‘1’, or vice versa. One widely-used method to detect and correct these errors is

the Hamming Code [Ham50], an error correcting code, which is a commonly accepted
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error detection technique in computer networks. A lot of other error detection and

correction codes have been proposed in the recent years, which include Reed-Solomon

code [RS60], Reed-Muller code [TSZS01], Binary Golay code [Gol49], Convolutional

code [Vit67], Turbo code [Gum98], and others. The simplest error correcting codes

can correct single-bit errors and detect double-bit errors. Different error correcting

codes differ in their computational complexity and error detection/correction over-

head, like parity bits. Having considered these error correcting codes, we adopt the

Hamming code due to (a) its low computational complexity, and (b) low error de-

tection/correction overhead (parity bits, in this case). Even though the Hamming

code can correct only single bit-errors, it detects double bit-errors. The Hamming

code is a good choice for detecting and correcting attribute values, partially due to

the fact that error correction in training data set is not critical for our load shedding

approach, in addition to that we can use more than one training data set for error

correction at very low cost. The same procedure can also detect two flawed bits, for

successful error detection but no correction.

The Hamming code detects errors in data bits of a data value by inserting error-

correcting bits, called parity bits, in the data value. Different parity bits check different

data bits of a data value to be protected against bit-errors, and each parity bit is set

as a ‘1’ if the total number of 1s in the data bits being checked by the parity bit is an

odd number, and is set as a 0, otherwise. The steps involved in using the Hamming

code to insert the parity bits into the data bits are given below, with the following

layout showing how parity bits and data bits are arranged:

Bit position:

1 2 3 4 5 6 7 8 9 10 11. . .

Position occupied by parity or data bit:
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P1P2D1P3D2D3D4P4D5D6D7 . . .

1. All bit positions that are powers of two are used as parity bits, labeled as Pi

(i ≥ 1), i.e., bit positions 1, 2, 4, 8, 16, 32, 64, etc.

2. All other bit positions are for the data to be encoded and are labeled as Di (i ≥
1), i.e., bit positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, etc.

3. Each parity bit Pi (i ≥ 1) calculates the even parity according to only the data

bits with the ith bit (in the binary equivalent) of their position set to ‘1’, and

each Pi checks the combined parity, i.e., the number of bits, n, having their

corresponding value in the data word set to ‘1’ amongst the data bits being

checked by Pi. Pi = 1 if n is odd; otherwise, Pi = 0.

By using the Hamming code, any error is detected and corrected, if possible, at

the receiver site, which calculates the values for the Hamming code parity bits, called

calculated parity bits, according to the data bits in the new (flawed) data word, i.e., the

binary representation of a data word (with some bits flawed). The error is discovered

when the receiver site compares the value of each parity bit in the new (flawed) data

word to the value of the calculated parity bits. For each parity bit in the new (flawed)

data word, the parity bit check flag is set as ‘1’ if the parity bit present in the new

(flawed) data word does not match the calculated parity bit; otherwise, the flag is set

as 0.

The final step of the error detection and correction process is to evaluate the

values of the parity bits check flag to correct the bit-errors, if any. The decimal

equivalent of the parity bit check flag (always read in reverse order) is the position of

the data bit with the error in the flawed data word (with parity bits). Flipping the

data bit with the error in the flawed data word (with parity bits), and removing the
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parity bits yields the original data unflawed word. The same procedure can be used

to detect errors in parity bits, when the parity bits are corrupted while no data bits

are corrupted. (See a detailed example on error code detection and correction using

Hamming code in Appendix A)

The Hamming code operates by considering a data item D that has to be provided

with error detection and correction capabilities when transferring D between two

network nodes, referred as the sender and receiver. Using the Hamming code method,

the sender inserts parity bits into the bit string of D, and the receiver compares the

values of the parity bits received to the values of the parity bits that it has calculated

according to the bit string of D and detects and corrects any discovered errors, if

possible, in D. In our load shedding approach, the sender is the sensor node generating

(training) stream data, and the receiver is the site where the CID detection algorithm

has been implemented. The sensor node inserts the parity bits into every tuple, which

is treated as a separate data item D, in the training data set of data stream S. The

error detection check is carried out individually on each training tuple right before

the process of determining the CID of S. If any tuple in the training data set of

S has an error, the receiver will attempt to correct the error; otherwise, the whole

training data set is discarded, since the tuple with the uncorrectable error may cause

the loss of the information about replicated attributes, which could lead to detecting

an incorrect RepAs, and subsequently the CID, of S. If a training data set of S is

discarded, a new training data set of S is used to detect the CID of S and the error

detection and correction process is carried out on the new training data set of S.
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3.2.1.2 Time-based windows versus Tuple-based windows

In this section, we discuss the application of our load shedding approach by consid-

ering time-based windows (at different tuple rates) versus tuple-based windows. The

major advantage of using tuple-based sliding windows is that the number of tuples it

contains can be controlled easily and the number does not change with the alteration

in the number of tuples being generated every second (line rate) at the source site.

The number of tuples in a time-based sliding window, however, is a function of the

line rate. Our load shedding approach is capable of working with both tuple-based

and time-based sliding windows, since a time-based sliding window can be converted

into a tuple-based sliding window, and vice-versa. A tuple-based sliding window can

be constructed from a time-based sliding window by using the product of (i) the time-

based window size and (ii) the line rate of the data stream as the size (i.e., number of

tuples) of the tuple-based sliding window. For using time-based sliding windows, the

data stream system would have to vary the window size with any change in line rate

such that each window captures the number of tuples according to the cycle length

of the data stream. Thus, whenever the line rate decreases, the time-size would have

to be increased, and vice versa. Since it is required the number of tuples in each

sliding window be equal to the cycle length of the data stream for generation of the

rankings amongst the attributes correctly, the use of tuple-based sliding windows can

more advantageous in our load shedding approach.

3.2.2 Exponential Moving Average

Before the load shedding scheme generator can be applied to a data stream S, we first

compute the moving averages (MAs) of data in the current sliding window W of S,
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which smoothens the variations of data in W and forms the core of the preprocessing

step. We discuss how MAs could be used as a preprocessing step in W , with just

one data stream for the intra-stream load shedding problem and more than one data

stream for the inter-stream load shedding problem.

Data in a data stream to be processed at the source site are presented in a se-

quence of sliding windows representing variant characteristics of different attribute

data in the data stream, such as the diversity of data values for each attribute. Occa-

sionally, data in a sliding window are found to have sudden and short-lived changes,

deviating from the data stream variation properties, i.e., the variation of data values

of attributes. For example, the attribute values of precipitation in a desert would

generally remain more constant than other attributes, such as temperature and wind

speed, in the same data stream over a long period of time. Since an attribute which

varies less than another attribute is considered to be less-informative, we can claim

that precipitation in the desert weather data stream is less-informative and is the can-

didate attribute to be shed from the corresponding weather information data stream.

However, due to sudden and abrupt change in weather situations at a particular

minute or two, there may be a lot of rains, causing a significant change in precipita-

tion. The precipitation over the next hour, however, may remain relatively constant,

i.e., low again and nearly constant. Though this abrupt change does not really repre-

sent the weather conditions in the desert on a regular, consistent basis, it may cause

other informative attributes, such as temperature, being treated as less-informative

(false positives) while the real less-informative attributes, i.e., precipitation, being

treated as informative (false negatives). In order to (i) smoothen the data, (ii) sup-

press any short and sudden change in data, and (iii) reduce the false positives and

false negatives, MAs is employed as a preprocessing step for determining less- and
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more-informative attributes in the current sliding window of a data stream, since MAs

attempt to tone down the fluctuations to a smoothened trend so that distortions are

reduced to a minimum in volatile data. Other real-world applications of MAs in-

clude tracking trends and signaling reversals, such as credit card authorization and

monitoring systems, and interstate traffic monitoring systems. We consider the two

most popular types of MAs, the Simple Moving Average (SMA) and the Exponential

Moving Average (EMA), and compare the usability of the two averages and adopt

one of them for preprocessing stream data for load shedding.

As SMA (given in Equation 3.1) applies equal weight to all the values in a list,

EMA of the most recent values of a list are defined (given in Equation 3.2) as the

moving average calculated by weighting recent values more heavily than older values

in the list. The most recent value in a list is the newest value of the list, which is used

along with other values in the list to calculate their EMA, and the older values in

the list are the values which have already been used to calculate the previous EMA.

Equation 3.2 uses a multiplier to decide the weight to be applied to the new value,

unlike SMA where the new value and the old values are equally weighted.

SMA = (a1 + a2 + a3 + . . . an) (3.1)

where an is the most recent value in a list L = {a1, a2, . . . , an} over which the

SMA of L is being calculated.

EMA(an) = (an − EMA(an−1)×Multiplier + EMA(an−1)) (3.2)

where an is the most recent value in a list L = {a1, a2,. . . , an} over which the

EMA of L is being calculated, EMA(an) (n ≥ 1) is the EMA for the most recent

value in L over which EMA is being calculated, and Multiplier is the weight to the

35



most recent value, and statistically proved to be 0.18 for most cases.

We have considered both SMA and EMA as the MA of the data values in the

current sliding window of a data stream in the preprocessing step in our load shedding

approach. Unarguably, the polished or smoothened data is desired to be close, and as

accurate as possible, to the original data. Unlike SMA, EMA have the ability to stay

closer to the actual data than SMA, and thus EMA is an obvious choice as the MA

for our preprocessing step to smoothen the data in a current sliding window. (See an

example in Appendix B, which demonstrates that EMA is a better choice over SMA.)

3.2.3 Load Shedding Scheme Generation and Re-Evaluation

As mentioned earlier, there are two design issues in load shedding scheme generation:

(i) how much data should be shed, and (ii) which attributes should be shed. It should

be noted that there are two load shedding schemes for each data stream, which are

(i) intra-scheme load shedding scheme and (ii) inter-stream load shedding scheme. In

this section, we present an approach that generates the load shedding scheme for a

data stream, which handle the two design issues listed above.

3.2.3.1 Amount of data (Number of attributes) to be shed

Our intra-stream load shedding approach handles the data transmission problem of

data streams when a data stream is to be transmitted over a network with capacity

lower than the data rate of the data stream. We start out by determining a load

shedding scheme, which includes a ranking amongst the attributes, of a data stream

being sent over the network with the most-informative attribute being ranked lowest.

The first load shedding scheme of a data stream is created by using the first sliding

window of a data stream, and for the subsequent updates to the load shedding scheme,
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only the current sliding window is used.

According to various studies in computer networks, it is known that every channel

has a capacity depending on the noise and bandwidth of the channel. If data are

transmitted at a rate higher than the capacity of the channel, then data transmission

errors and collisions occur exponentially. To overcome these problems, the data

transmission rate of a data stream should be regulated and lower than the capacity

of the channel. In transferring stream data, attributes and their corresponding data

are shed at the source site, if needed, to bring down the data transmission rate

according to the channel capacity.

The capacity of a channel is defined by Claude Shannon and Ralph Hartley [Sha49]

as the maximum amount of error-free digital data that can be transmitted over a

communication link with a specified bandwidth in the presence of noise interference.

Claude Shannon and Ralph Hartley provide a theoretical maximum rate of clean data

C that can be transmitted through an analog communication channel subject with

some noise interference as

C = BW × log2(1 + S/N) (3.3)

where C is the channel capacity in bits (for our system we assume that the channel

capacity C is known), BW is the bandwidth of the channel in hertz, S/N ratio is the

signal-to-noise ratio of the communication signal to the Gaussian noise interference

expressed as a straight power ratio (and not as decibels), and S/N decibels = 10 ×
log10(S/N ratio).

Example 2 According to various scientific studies for a telephone communication,

the S/N decibels is often 20 dB and the bandwidth (BW ) available is 4 kHz, where 20
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= 10 × log10(S/N ratio), which implies S/N ratio = 100, and thus C = 4 × log2(1 +

100) = 4 × log2(101) = 26.63 Kbps, which is the theoretical maximum capacity for a

dial-up connection with BW = 4 and S/N = 20 dB. Most of the dial-up connections

claim a data rate up to 56.6 Kbps. Since the theoretical maximum capacity for

telephone communication is 26.63 Kbps, the claim made by the dial-up connections

is untrue. Thus, for most of the dial up network connections and wireless links, the

capacity is lesser than the claim, and the need for load shedding becomes inevitable.

As a solution to the data transmission problem, we consider the other aspects of

Shannon theorem. The Shannon theorem states that given a channel with informa-

tion capacity C and information transmission rate R, if the information capacity is

more than the transmission rate, i.e., R < C, then the probability of error at the

receiver is made very small. This means that theoretically, it is possible to transmit

information with nearly no error. The converse is also important, i.e., if R > C, then

the probability of error at the receiver increases (exponentially) with R, which im-

plies that no useful information can be transmitted beyond the channel capacity. Our

intra-stream (inter-stream) load shedding approach is designed to maintain a transfer

rate R
′
, such that R

′
< C. Whenever R > C, attributes are shed from a data stream

being transmitted over the network, starting with shedding the less-informative at-

tributes such that the transfer rate R falls to R
′
(≤ C). The rate at which data has

to be shed is R – C, such that R falls to R
′
(≤ C), and thus the percentage of data

to be shed is (R– C)/R. Assume that a data stream S has n attributes, then the

number of attributes to be shed from S is

n
′
= d((R− C)/R)× ne (3.4)
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Example 3 Consider a channel with capacity C of 120 Kbps and an attempt to

transmit a data stream with seven attributes at a transmission rate R of 160 Kbps.

Since R > C, the transmission would produce errors. To attain error-free transmis-

sion, the number of attributes should be shed (using Equation 3.4) are d ((160 –

120)/160) × 7 e, i.e., 2. Figure 3.1 shows how the number of attributes to be shed

varies with (i) the capacity of the channel and (ii) the data transmission rate of a

data stream. As shown in Figure 3.1, the number of attributes to be shed increases

linearly with increase in data rate when the channel capacity is kept constant.

Figure 3.1: Variations in the number of attributes to be shed with various channel
capacities and data rates on a data stream with seven attributes

3.2.3.2 Attribute Shedding Using Standard Deviation

Besides determining the number of attributes to be shed from a data stream, the load

shedder also needs to know which attributes of the data stream to shed. Standard
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deviation can be used as a measure to determine a ranking with less-informative at-

tributes being ranked higher amongst the attributes under consideration for shedding,

which applies to each sliding window of a data stream that is updated/replaced on a

continuous basis.

In probability and statistics, standard deviation is the most commonly-used

measure of statistical dispersion2. Simply put, standard deviation measures how

spread out the values in a list of data is. Thus, standard deviation is a measure of the

spread of a list of data values from the mean value. A large standard deviation indi-

cates that the data points are far from the mean, whereas a small standard deviation

indicates that they are clustered closely around the mean. For example, given the

three sample lists of data items <0, 0, 14, 14>, <0, 6, 8, 14>, and <6, 6, 8, 8>, each

has an average of 7. Their standard deviations are 7, 5, and 1, respectively, which

indicate that the third list has a much smaller standard deviation than the other two

because its values are all close to 7. We conjecture that lists of values that are more

closely bound, i.e., having less variation in its data values, are “less-informative,”

whereas lists of valued which are less closely bound, i.e., having more variation in its

data values, are “more-informative.” Since standard deviation is a measure of how

closely bound data values in a list are, we apply standard deviation to the data values

of each attribute A in a data stream to calculate how closely the data values of A are.

After we have computed the standard deviation for all the attributes in the data

stream, the attributes are ranked, with attributes having lower standard deviation

ranked higher and attributes having higher standard deviation ranked lower. The

attributes with lower standard deviation are “less-informative,” and the attributes

with higher standard deviation are “more-informative.′′

2 http://en.wikipedia.org/wiki/Standard deviation
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3.2.3.3 Re-Evaluation of a Load Shedding Scheme

It is required that the load shedding scheme of a data stream S be regularly re-

evaluated as the standard deviations of different attributes in subsequent sliding win-

dows of S may change, causing the load shedding ranking amongst the attributes to

change. A non-adaptive load shedding scheme re-evaluation algorithm re-evaluates

the load shedding scheme at regular intervals. One major problem with using a non-

adaptive re-evaluation algorithm is that if the time interval is too short, the source

site would be re-evaluating the load shedding scheme too often, which imposes the

burden on the source site in terms of computational time required for re-evaluation.

However, if the time interval is too large, the source site would not re-evaluate the

load shedding scheme often enough, creating the risk of an obsolete load shedding

scheme being used for a long time. The proposed re-evaluation algorithm in this

thesis, however, resolves the time-interval problem, since the algorithm is adaptive,

which starts out with a very small re-evaluation time interval, referred as the original

time interval. For the first time, the proposed algorithm re-evaluates an existing load

shedding scheme after waiting for the original time interval, and then checks if the

re-evaluated (i.e., the newly generated) load shedding scheme of the current sliding

window with smoothened data (due to EMA preprocessing) is differed (in terms of at-

tributes to be shed) from the previous load shedding scheme (computed by using the

previous sliding window with smoothened data). If the attributes to be shed are the

same, the time interval is doubled so that the re-evaluation is invoked after a longer

interval. However, if the attributes to be shed are different, then (i) the time interval

is reset to the original time interval, since a change in the load shedding scheme has

just been detected and we anticipate changes in the load shedding scheme in near

future, and (ii) the load shedding scheme is also updated to be the modified load
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shedding scheme with new attribute(s) and data to be shed. The time interval keeps

growing in its usual manner every time the anticipated change in the attributes to be

shed is proved incorrect. Our adaptive load shedding scheme re-evaluation algorithm

is shown in Algorithm 2.

Algorithm 2. Load shedding scheme re-evaluation

Input: (i) Set of tuples S in the current sliding window,

on which load shedding has to be performed, and (ii)

the current load shedding scheme C

Output: The (updated) load shedding scheme

1. Initialize time T , i.e., ∆t := t := 1 sec

2. While the data stream management system is running

If current clock time = T + ∆t, then re-compute

the load shedding scheme using S

(i) If the re-computed load shedding scheme

RS = C, in terms of the attributes to be

dropped, then ∆t := 2 × ∆t

Else

(a) ∆t := t

(b) RS := C

(ii) T := current clock time

End While

The graph in Figure 3.2 shows how the load shedding scheme for a weather in-

formation data stream collected on September 11, 2005 varied when we applied the

load shedding re-evaluation algorithm on the data stream. The graph shows that the
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Figure 3.2: A sample application of our load shedding scheme re-evaluation algorithm
on weather information data of world cities retrieved from www.yahoo.com/weather
on September 11, 2005 at 3:00 PM (MST), where 3 indicates that the load shed-
ding scheme re-evaluation has been invoked and other values indicate that the load
shedding scheme re-evaluation has not been invoked.
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load shedding scheme re-evaluation algorithm is able to detect changes in the load

shedding scheme of weather information occurring even at irregular intervals, i.e.,

according to the frequency of changes in the load shedding scheme.

The adaptive load shedding scheme re-evaluation algorithm enjoys a major advan-

tage over its non-adaptive counterpart, since the adaptive version notices the change

more accurately in the load shedding scheme, whereas the non-adaptive load shedding

scheme may not. Consider a data stream such that attribute A is the least-informative

attribute during the first thirty minutes of every hour and attribute B is the least-

informative attribute during the last thirty minutes of every hour. Assume that one

attribute needs to be shed, and the non-adaptive load shedding scheme re-evaluation

algorithm is invoked every hour, starting five minutes past the starting of the first

hour. Since A is the least-informative attribute during the first thirty minutes of

every hour, every time the load shedding scheme re-evaluation algorithm is invoked,

A is found to be the least-informative attribute and is shed, and the load shedding

scheme never changes. In such a scenario, the non-adaptive re-evaluation algorithm

would fail to notice the change in the load shedding scheme. An adaptive load shed-

ding scheme re-evaluation algorithm, however, adapts dynamic time-interval it follows

regarding when the re-evaluation should be invoked according to the variation trend,

which provides a more accurate mechanism in detecting a change in the load shedding

scheme.

3.2.3.4 Preliminary verification of EMA and Standard Deviation

We have performed a number of preliminary experiments, using the proposed intra-

stream load shedding approach, which have showed consistent and promising results,

even on various data streams. For example, some data streams considered in the
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experiments include weather information stream data for capital cities of different

countries across the globe with weather information stream data varying significantly

from one capital city to another, whereas other weather information stream data

include different cities within the same state with stream data for different cities

varying lesser. The results are promising, since the ranking amongst the attributes is

detected accurately. Shown in Table 3.2 is an extract of the training data retrieved

from www.yahoo.com/weather on September 11, 2005 at 3:00 PM (MST).

Some tuples of the training data in the weather information data stream show

unusually abrupt changes, which are not continual, and thus may not represent the

actual frequency of changes of the corresponding attribute. To make sure that these

abrupt changes do not cause any false positives (or negatives) in the training data,

the training data were preprocessed using EMA on the data set of each attribute.

Shown in Table 3.3 is the same set of training data after preprocessing.

We have compared the values for the temperature attribute, before and after

the preprocessing step, as shown graphically in Figure 3.3, which clearly shows that

the curve for the temperature values after preprocessing is smoother than the values

before preprocessing. It shows that our preprocessing step using EMA was able to

smoothen the data, and at the same time still maintain the smoothened data close

to the original values.

Using the preprocessed weather information stream data as shown in Table 3.3 as the

training data, we calculated the standard deviation value for each of the attributes

to determine the ranking amongst the attributes. The ranking is shown in Table 3.4,

which is generated by calculating the standard deviation on the stream data in Table

3.3.

The ranking amongst the attributes for the training data starting with the less-
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Location Temp- Dew Baro- Wind Humi- Sun Visib- Sun
erature Point meter Speed dity Rise ility Set

New Delhi 84 64 29.91 3 54 6.18 4.51 6.01
Ghurian 55 32 27.96 4 41 6.23 4.01 6
Abovyan 46 43 30.09 4 87 8.04 9.99 7.35
Baku 66 59 30.09 28 78 7.42 9.99 7.12
Al Manama 95 75 29.91 5 70 5.33 9.99 5.18
Brunei 97 73 29.8 7 59 6.07 9.99 6.1
Phnom Pen 96 77 29.77 3 74 5.5 9.99 5.47
Beijing 75 28 30.09 16 18 6.17 9.99 5.48
Gori 57 46 30.18 21 67 7.07 9.99 6.35
Abadan 82 55 29.94 5 39 6.14 9.99 5.55
Al Azamiyah 82 37 29.91 9 19 6.01 9.99 5.39
Acre 78 64 30 5 65 6.38 9.99 6.17
Akita 70 57 30 8 64 5.41 9.99 5.13
Alma Ata 66 34 30.09 4 30 6.56 9.99 6.23
Ch’ongjin 59 58 29.78 8 94 6.24 9.99 5.53
Al Jahrah 82 55 29.94 5 39 5.46 9.99 5.28
Bishkek 70 39 30.03 4 33 7.06 9.99 6.33
Vientiane 99 77 29.88 2 70 6.01 8 5.54
Ash Shuwayfat 81 66 30.06 2 65 6.37 8 6.14
Kuala Lumpur 99 75 29.83 8 62 6.59 9.99 7.03
Male 96 77 29.88 9 74 5.52 9.99 5.55
Rangoon 102 77 29.77 9 66 5.56 8 5.5
As Sib 91 68 29.94 3 52 6.01 9.99 5.49
Islamabad 88 59 29.94 5 38 6.06 5.01 5.44
Angeles 95 75 29.74 3 70 5.48 9.99 5.43
Al Wakrah 102 77 29.94 7 66 5.28 9.99 5.14
Abyar Ali 85 50 30 8 29 6.16 9.99 6.03
Panjang 97 73 29.8 9 59 6.5 9.99 6.56
Colombo 99 77 29.85 5 70 6.28 9.99 6.29
Al Mismiyah 64 54 30.06 6 68 5.33 9.99 5.11
Chang-hua 96 72 29.83 18 55 5.52 9.99 5.39

: : : : : : : : :
: : : : : : : : :

Table 3.2: Extracted weather information stream data with world cities, which
serve as (training) data in a current sliding window, and were retrieved from
www.yahoo.com/weather on September 11, 2005 at 3:00 PM (MST)
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Location Temp- Dew Baro- Wind Humi- Sun Visib- Sun
erature Point meter Speed dity Rise ility Set

New Delhi 84 64 29.91 3 54 6.18 4.51 6.01
Ghurian 63.7 41.6 28.55 3.7 44.9 6.22 4.16 6.01
Abovyan 51.31 42.58 29.63 3.91 74.37 7.5 8.25 6.95
Baku 61.6 54.08 29.96 20.78 76.92 7.45 9.47 7.07
Al Manama 84.98 68.73 29.93 9.74 72.08 5.97 9.84 5.75
Brunei Airport 93.4 71.72 29.84 7.82 62.93 6.04 9.95 6
Phnom Penh 95.22 75.42 29.8 4.45 70.68 5.67 9.98 5.63
Beijing 81.07 42.23 30.01 12.54 33.81 6.02 9.99 5.53
Gori 64.22 44.87 30.13 18.47 57.05 6.76 9.99 6.11
Abadan 76.67 51.97 30 9.04 44.42 6.33 9.99 5.72
Al Azamiyah 80.4 41.49 29.94 9.02 26.63 6.11 9.99 5.49
Acre 78.72 57.25 29.99 6.21 53.49 6.3 9.99 5.97
Akita 72.62 57.08 30 7.47 60.85 5.68 9.99 5.39
Alma Ata 67.99 40.93 30.07 5.04 39.26 6.3 9.99 5.98
Ch’ongjin 61.7 52.88 29.87 7.12 77.58 6.26 9.99 5.67
Al Jahrah 75.91 54.37 29.92 5.64 50.58 5.7 9.99 5.4
Bishkek 71.78 43.61 30 4.5 38.28 6.66 9.99 6.05
Vientiane 90.84 66.99 29.92 2.75 60.49 6.21 8.6 5.7
Ash Shuwayfat 83.95 66.3 30.02 2.23 63.65 6.32 8.18 6.01
Kuala Lumpur 94.49 72.39 29.89 6.27 62.5 6.51 9.45 6.73
Male 95.55 75.62 29.89 8.19 70.55 5.82 9.83 5.91
Rangoon 100.07 76.59 29.81 8.76 67.37 5.64 8.55 5.63
As Sib 93.72 70.58 29.9 4.73 56.61 5.9 9.56 5.53
Islamabad 89.72 62.48 29.93 4.92 43.59 6.02 6.38 5.47
Angeles 93.42 71.25 29.8 3.58 62.08 5.64 8.91 5.45
Al Wakrah 99.43 75.28 29.9 5.98 64.83 5.39 9.67 5.24
Abyar Ali 89.33 57.59 29.97 7.4 39.75 5.93 9.9 5.8
Panjang 94.7 68.38 29.86 8.52 53.23 6.33 9.97 6.33
Colombo 97.71 74.42 29.86 6.06 64.97 6.3 9.99 6.31
Al Mismiyah 74.12 60.13 30 6.02 67.1 5.62 9.99 5.47
Chang-hua 89.44 68.44 29.89 14.41 58.63 5.55 9.99 5.42

: : : : : : : : :
: : : : : : : : :

Table 3.3: Data from Table 3.2 after preprocessing using EMA

Standard deviation for attribute Temperature is 12.07
Standard deviation for attribute Dew Point is 5.48
Standard deviation for attribute Barometer is 0.13
Standard deviation for attribute Wind Speed is 0.99
Standard deviation for attribute Humidity is 12.43
Standard deviation for attribute Sun Rise is 0.43
Standard deviation for attribute Visibility is 1.34
Standard deviation for attribute Sun Set is 0.26

Table 3.4: Ranking for the attributes in Table 3.3
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Figure 3.3: A Temperature stream data, as shown in Tables 3.3 and 3.4, before and af-
ter preprocessing, which were retrieved from www.yahoo.com/weather on September
11, 2005 at 3:00 PM (MST)

informative attributes is Barometer, Sun Set, Sun Rise, Wind Speed, Visibility, Dew

Point, Temperature, and Humidity. These rankings are later used to generate the load

shedding scheme, with Barometer being the first attribute to be chosen for shedding,

and Humidity being the last.

Along with the weather information data stream, the stock exchange data stream

was found to be another data domain in which the data vary more than the data

in other data streams belonging to different applications domains, such as Internet

traffic and road traffic. For this reason, we chose stock exchange, in addition to

weather, information data stream, for conducting preliminary experiments to verify

the performance of our preprocessing strategy on determining the less-informative

attributes. We performed experiments on the stock data retrieved from the Web site

http://quotes.nasdaq.com/quote.dll?page=nasdaq100 on September 13, 2005 at 11:00

AM (MST). An extract of the source data from the raw training data is shown in

Table 3.5:
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Symbol Company Last Net Percent Share NASDAQ
Sale Change Change Volume 100 Index

ADBE Adobe Systems 28.07 0.19 0.68 2878579 0.11
Incorporated

ALTR Altera Corporation 18.68 0.13 0.7 3550201 0.08
AMZN Amazon.com Inc. 42.16 0.08 0.19 2815159 0.03
APCC American Power 25.25 0.25 1 507803 0.06

Conversion Corporation
AMGN Amgen Inc. 83.52 -0.48 -0.57 6421207 -0.34
APOL Apollo Group Inc. 65.86 0.46 0.7 1375244 0.1
AAPL Apple Computer Inc. 53.32 1.42 2.74 18031365 2.03
AMAT Applied Materials Inc. 16.99 0.09 0.53 10651951 0.09
ATYT ATI Technologies Inc. 13.56 0.29 2.19 3107687 0.09
ADSK Autodesk Inc. 42.3 1.05 2.55 1750660 0.31
BEAS BEA Systems Inc. 8.45 -0.11 -1.29 2392399 -0.05
BBBY Bed Bath ; Beyond Inc. 40.02 0.32 0.81 2553449 0.16
BIIB Biogen Idec Inc 38.76 -0.15 -0.39 2368033 -0.07
BMET Biomet Inc. 35.92 0.24 0.67 954275 0.1
BRCM Broadcom Corporation 45.1 0.89 2.01 5142755 0.28
CHRW C.H. Robinson 60.42 -0.67 -1.1 323476 -0.07

Worldwide Inc.
CECO Career Education 36.54 0.5 1.39 1260953 0.06

Corporation
CDWC CDW Corporation 58.2 -0.3 -0.51 523510 -0.03

: : : : : : :
: : : : : : :

Table 3.5: Training data, which served as data in a sliding window, were retrieved
from http://quotes.nasdaq.com/quote.dll? page=nasdaq100, a stock exchange data
stream, on September 13, 2005 at 11:00AM (MST)
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Symbol Company Last Net Percent Share NASDAQ
Sale Change Change Volume 100 Index

ADBE Adobe Systems 5.62 0.04 0.14 575715.8 0.03
Incorporated

ALTR Altera Corporation 8.23 0.06 0.25 1170612.8 0.04
AMZN Amazon.com Inc. 15.02 0.07 0.24 1499522.1 0.04
APCC American Power 17.07 0.1 0.39 1301178.3 0.04

Conversion Corporation
AMGN Amgen Inc. 30.36 -0.02 0.2 2325184 0.04
APOL Apollo Group Inc. 37.46 0.08 0.3 2135196 -0.01
AAPL Apple Computer Inc. 40.63 0.35 0.79 5314429.8 0.4
AMAT Applied Materials Inc. 35.9 0.3 0.74 6381934.1 0.34
ATYT ATI Technologies Inc. 31.44 0.3 1.03 5727084.6 0.29
ADSK Autodesk Inc. 33.61 0.45 1.34 4931799.7 0.3
BEAS BEA Systems Inc. 28.58 0.34 0.81 4423919.6 0.23
BBBY Bed Bath ; Beyond Inc. 30.87 0.34 0.81 4049825.5 0.22
BIIB Biogen Idec Inc 32.45 0.24 0.57 3713467 0.16
BMET Biomet Inc. 33.14 0.24 0.59 3161628.6 0.15
BRCM Broadcom Corporation 35.54 0.37 0.88 3557853.9 0.18
CHRW C.H. Robinson 40.51 0.16 0.48 2910978.3 0.13

Worldwide Inc.
CECO Career Education 39.72 0.23 0.67 2580973.2 0.12

Corporation
CDWC CDW Corporation 43.42 0.13 0.43 2169480.6 0.09

: : : : : : :
: : : : : : :

Table 3.6: Data from Table 3.5 after preprocessing on September 13, 2005 at 11:00
AM (MST)

Table 3.6 shows the sample training set after applying the preprocessing step

on its data. Comparing the values for “Last Sale” attribute in the stock exchange

application domain in Figure 3.4, before and after the preprocessing step, we can

clearly see that the curve for the training data values after preprocessing is smoother

than the values before preprocessing.

Using the data set in Table 3.6 as the training data, we calculated the standard

deviation value for each of the attributes to determine the ranking amongst the at-

tributes. The results generated by the system are shown in Table 3.7. The ranking

amongst the attributes for the stock training data set is NASDAQ 100 Index, Net

change, Percent change, Share Volume, and Last Sale, which are later used to gener-
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Figure 3.4: Data values of the Last sale attribute, as shown in Tables 3.5 and 3.6,
before and after preprocessing, that are used to verify the performance of our prepro-
cessing step on a stock exchange information data stream.
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Standard deviation for attribute Last Sale is 6.92
Standard deviation for attribute Net Change is 0.15
Standard deviation for attribute Percent Change is 0.59
Standard deviation for attribute Share Volume is 5.68
Standard deviation for attribute NASDAQ 100 Index is 0.15

Table 3.7: Ranking for the stock exchange stream data in Table 3.6

ate the load shedding scheme on the corresponding stock exchange information data

stream.

3.2.4 Recovering shed data

As discussed earlier, when needed, less-informative attributes are shed at the source

site to reduce the data transmission rate (from the source site3 to the destination

site4) below the capacity of the transmission channel. It is possible that an end user

at the destination site is interested in some of the attribute data shed at the source

site. We present an approach to recover data at the destination site which was shed

at the source site. In Section 3.2.4.1, we present our first data recovery approach, a

method based on Euclidean distances. Hereafter, we draw the attention of the reader

to the major drawback of using the Euclidean-distance based approach. In Section

3.2.4.2, we present our second data recovery approach, a method based on synopsis

matrices to store information about shed data, which overcomes the drawback of the

Euclidean distances approach.

3An example of a source site at which a data stream is generated is www.yahoo.com/weather.

4 The site to which a data stream is to be transmitted, which is the Website of the data stream
management system we have developed.
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3.2.4.1 Euclidean Distance

In mathematics the Euclidean distance, or Euclidean metric, is the ”ordinary” dis-

tance between any two points that one would measure with a ruler, which can be

proven by repeated application of the Pythagorean Theorem. The Euclidean dis-

tance for any two points x = (x1, ..., xn) and y = (y1, ..., yn) in the Euclidean n-space

is defined as

d(x, y) =

√√√√
n∑

i=1

(x1 − y1)2 (3.5)

To recover any shed data in a shed data stream, we once again make use of the

current sliding window, as discussed earlier in Section 3.1. The current sliding window

contains the most recent unshed data at the source site. When all (or some of) the

data values for a certain attribute A in a set of tuples S, which makes up the content

of the previous sliding window, at the destination site is to be recovered, the Euclidean

distance between each tuple t in S and each tuple in the current sliding window C

for all attributes, except A, is computed. For a tuple t in S, a tuple i ∈ C with the

Euclidean distance between t and i, which is less then the Euclidean distance between

t and every other tuple j in C, is termed as the nearest neighbor of t. (It should be

noted that the CID of the tuple is not used for the Euclidean-distance based method,

it is used in the alternate recovery method we discuss later.) We formally define

nearest neighbor as

NS(t) = r, d(t, i) < d(t, j), t ∈ S, ∀i, j ∈ C (3.6)

where NS(t) is the nearest neighbor of tuplet and S is the set of tuples in the

previous sliding window, and d(t, i) is the Euclidean distance between tuples t ∈ S
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and i ∈ C, the set of tuples in the current sliding window.

The data value of attribute A of the nearest neighbor r(r ∈ C) of a tuple t(t ∈ S)

is the recovered value of A for t. Initial experiments have shown high data recovery

accuracy of our Euclidean distance-based data recovery approach ranging from (i)

93.16% for the test data in a weather information data stream with an error of 6.84%

to (ii) 96.81% for an Internet traffic information data stream with an error of 3.19%,

the statistical data collected from performing a number of preliminary experiments

using the randomly chosen sliding windows for the Yahoo weather and Internet-traffic-

report data streams to compute the initial rankings amongst the attributes.

The experiment of the Internet traffic information and weather information do-

mains showed very high recovered data accuracy. The average recovered data ac-

curacy, which were conducted over 10 experiments, with the Internet traffic condi-

tions varying from high traffic to low traffic, and weather conditions varying between

high temperature and low temperature between each experiment, were 96.81% and

93.16%, respectively. Errors are noticed to increase as the distance between the cur-

rent sliding window and the sliding window for which shed data has to be recovered

increases, which is the reason for the errors noticed in this experiment.

The setup of the experiments included the source and the destination, both were

simulated on the same machine, and the network channel, which was simulated by

creating a pipeline between the two processes, one each for the source and destination

site. The network channel acted as the low capacity channel between the source

and destination sites. We started to shed data at the source site and transfer the

remaining data to the destination. Since Euclidean distances are computed between

(i) the (attribute values of) tuple for which data has to be recovered and (ii) the tuples

in the current sliding window, there is no need to archive any data at the source site
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for the recovery purpose. We have attempted to recover the data, and the results

were consistent, on the basis of which we can claim that the results are reliable. The

experimental results conducted on stream data in an Internet traffic data stream are

shown in Figure 3.5, whereas the experimental results on stream data in a weather

information data stream are shown in Figure 3.6.

Figure 3.5: Original and recovered Response Time (test) attribute data in an Inter-
net traffic information data stream retrieved from www.Internettraffic report.com on
September 13, 2005 at 11:00 AM (MST)

The advantage of using the Euclidean distance-based data recovery approach is

the ability of this method to recover shed data without requiring the source site to

archive any data values that have been shed. This, however, also introduces the

disadvantage of the Euclidean distance-based method, i.e., the requirement for the

current sliding window and the tuple for which data values have to be recovered

to be located at the same site, which is difficult to justify adopting the Euclidean

distance-based method in shedding stream data, since the major design issue of our
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load shedding approach is to handle a low capacity channel between the source site

and the destination site. Since the current sliding window is at the source site and

the tuple for which data to be recovered is at the destination site, we would have to

transport one of the two to the other site, which would add load to an already low

capacity channel, an unacceptable requirement.

Figure 3.6: Original and recovered (test) data of temperature in a weather information
data stream retrieved from www.yahoo.com/weather on September 11, 2005 at 3:00
PM (MST)

3.2.4.2 Synopsis Recovery Algorithm

In this section, we discuss the second data recovery approach which overcomes the

drawback of the Euclidean-distance based approach, which we call the Synopsis Re-

covery approach. The basic idea behind the Synopsis Recovery approach (and its

corresponding algorithm) is to store the shed data values in a matrix at the source
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site. This is carried out at the source site before attribute data are shed. Since stor-

ing all the shed values would require significant amount of memory/disk space and

computational power at the source site, we propose a shed data recovery method that

minimizes the memory/disk storage and computational power requirements.

As discussed in Section 3.2.1, we use the CID of a tuple for the recovery process.

The data recovery process involves into two major modules. The first module, Module

1, maintains a synopsis of the shed data at the corresponding source site S, whereas

the second module, Module 2, is the real recovery process when the destination site

requests some shed data from S, which requires S to look up an (approximate) data

value(s) in the synopsis and send the value(s) to the destination. Here, we intro-

duce the concept of error threshold value, the acceptable error rate in data recovery

(discussed in Section 3.2.4.3.) We do not consider the processing capacities of the

source site and the destination site in determining the error threshold value as we

have assumed in this thesis that the two sites have high computational power and

the bottle-neck is the channel capacity. Furthermore, channel capacity is already

considered indirectly in determining the error threshold value, since channel capacity

influences the determination of the percentage of data should be shed and the num-

ber of attributes to be shed. The error threshold value varies from one application

domain to another. For example, a patient information monitoring system would

require more accuracy in recovered data than a weather information monitoring sys-

tem. The synopsis maintenance module, i.e., Module 1, stores a value to be shed only

when the value has been changed more than the error threshold value from what

its last stored value was. The recovery values are stored in a 3-dimensional synopsis

matrix with one dimension corresponding to each component: (i) the key value for

the current tuple t, i.e., CID(t), (ii) attribute A, i.e., t[A], to be shed, and (iii) the
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timestamp for CID(t). A timestamp is recorded in the synopsis (matrix) whenever

a shed data value is recorded, which could be used to extract shed data values from

the synopsis matrix at a later point in time, which is used in Module 2. Algorithm

3 shows the Synopsis Recovery algorithm for Module 1. The algorithm presents the

procedure used to maintain the synopsis matrix. Every data value before being shed

is compared with the most recent value of the same attribute stored in the matrix. If

the change, i.e., the difference between the most recent value mv stored in the matrix

and the value to be shed sv is more than the error threshold value E(to be discussed

in details later), then sv is stored in the matrix; otherwise, sv is not stored, i.e., sv is

stored in the synopsis recovery matrix only when (|mv – sv |/sv) ×100 > E.

Algorithm 3. Synopsis Recovery Algorithm

Input: (i) Set of tuples S in the current sliding window from where attribute data

are to be shed, (ii) attribute A to be shed, where the value of A for tuple t is

denoted by t[A], (iii) the key attribute value of tuple t, i.e., CID, (iv) the

error threshold value E, and (v) the synopsis matrix, Synopsis.

Output: The (updated) synopsis matrix, Synopsis.

1. For each tuple t ∈ S

mv = Synopsis[CID ] [A] [Timestamp(CID)], sv = t[A]

/* the change in the value to be shed from the most recent value stored in

the matrix is more than the error threshold */

If (|mv – sv |/sv) ×100 > E

/* Increase the timestamp and store the value to be shed in the synopsis */

matrix

Then (i) If Timestamp(CID) = null, Then Timestamp(CID) = 0

Else Timestamp(CID) = Timestamp(CID)+1
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(ii) Synopsis [CID ] [A] [Timestamp(CID)] = t[A]

Else

/* Increase the timestamp by 1 so as to increase the timestamp for the

Timestamp(CID) = Timestamp(CID)+1

The correctness of our shed data recovery approach is verified by experiments

showing the accuracy in recovering shed data using the Synopsis Recovery approach to

store recovery data in the synopsis matrix. Our preliminary experiments showed that

high recovery accuracy can be achieved at the cost of storing very low percentage of

the data shed as recovery data. We performed preliminary experiments on randomly

chosen weather and stock exchange information data streams to verify the gain of

using the Synopsis Recovery approach to maintain recovery data. The average amount

of shed data for the weather information data domain, which had to be stored in

the recovery matrix as (shown in Table 3.8), as recovery data with the recovery

accuracy percentage of 90%, 95%, 98%, and 99% are 0.44%, 1.02%, 1.82%, and 7.77

%, respectively. The average amount of shed data for the stock exchange information

data stream, which had to be stored in the recovery matrix (as shown in Table 3.9)

as recovery data with the recovery accuracy percentage of 90%, 95%, 98%, and 99%

are 4.88%, 18.11%, 42.66%, and 51.11%, respectively.

Storing all the shed data would mean storing 100% of the shed data, whereas

with our Synopsis Recovery approach we store much lesser amount of the shed data

(0.44%-7.77% with 90%-99% data recovery accuracy for a weather information stream

data, and 4.88%-51.11% with 90%-99% data recovery accuracy for a stock exchange

information stream data) in the synopsis recovery matrix as recovery data.

Example 4 Consider the weather information data stream for the capital cities of
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Data Recovery Accuracy
90% 95% 98% 99%

2 2 4 19
1 3 5 21
0 2 6 18

Percentage of shed 2 2 5 16
data to be stored 1 4 4 22
in the synopsis 1 1 7 23
matrix as recovery 0 2 3 17
data for different 1 3 2 19
sliding windows of data 2 4 5 20
Average% 0.44 1.02 1.82 7.77

Table 3.8: The amount of shed data stored in the synopsis matrix for different data
recovery accuracy ratios for a set of weather stream data over nine experiments,
retrieved from www.yahoo.com/weather on September 11, 2005 at 3:00 PM (MST)

Data Recovery Accuracy
90% 95% 98% 99%

4 17 35 47
6 21 50 56
5 18 41 51

Percentage of shed 4 17 38 48
data to be stored 7 19 56 62
in the synopsis 3 15 32 42
matrix as recovery 6 21 52 56
data for different 4 17 37 46
sliding windows of data 5 18 43 52
Average% 4.88 18.11 42.66 51.11

Table 3.9: The amount of shed data stored in the synopsis matrix for different data
recovery accuracy ratios for a set of stock exchange stream data over nine experiments,
retrieved from http://quotes.nasdaq.com/ quote.dll?page=nasdaq100 on September
13, 2005 at 11:00 AM (MST)
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different countries in Table 3.2 that requires the attribute Barometer to be shed,

where the CID for the data stream is location. Assume that the error threshold

value is 10%. In the 1st sliding window, the 1st tuple has location ‘New Delhi,’ and its

Barometer value is 29.91, and the 2nd tuple has location ‘Ghurian,’ and its Barometer

value is 27.96. Since the tuples have the first occurrences of locations New Delhi and

Ghurian, the timestamps for both are 1, and these values are stored before they are

shed from the data stream, which yield

Synopsis [New Delhi ] [Barometer ] [1] = 29.91, and

Synopsis [Ghurian] [Barometer ] [1] = 27.96

In the 2nd sliding window, the 76th tuple has location ‘New Delhi,’ and its Barom-

eter value is 30.08, whereas the 77th tuple has location ‘Ghurian,’ and its Barometer

value is 31.64. (Note that these tuples are not shown in Table 3.2, since Table 3.2 in-

cludes only tuples in the 1st sliding window of the corresponding data stream.) Since

the change in the Barometer for New Delhi, i.e., 0.17, is less than 10% of the previous

stored Barometer value, i.e., 29.91, the new Barometer value for New Delhi is not

stored. However, since the change in Barometer for Ghurian, i.e., 3.68, is more than

10% of the previous stored Barometer value, i.e., 27.96, the new Barometer value for

Ghurian is stored, which yield

Timestamp[New Delhi ] = Timestamp[New Delhi ] + 1 = 2

Timestamp[Ghurian] = Timestamp[Ghurian] + 1 = 2

Synopsis [Ghurian] [Barometer ] [2] = 31.64

Each tuple received by the destination site is marked by the destination site with
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a timestamp in an increasing order, with each tuple assigned a timestamp greater

than one from the timestamp assigned to the previous tuple. In the case of inter-

stream load shedding, with multiple streams flowing to the same destination site, the

destination site maintains separate individual timestamp for each data stream, and

appends the timestamp for each data stream with a unique source site identifier, such

as A for data stream 1, B for data stream 2, and so on. When Module 2 is invoked, the

destination site sends the source site the timestamp(s) and the CID of the tuple(s) for

which the destination is interested in recovering. With each timestamp, the source site

looks up the stored value in the synopsis matrix, which is ordered by the timestamps

and the CIDs, for the value shed at the timestamp and sends the requested value to

the destination. If no value was stored in the synopsis matrix for the given timestamp,

i.e., when the difference between the most recent value stored in the synopsis matrix

and the value to be shed is less than or equal to the error threshold, i.e., ((|mv –

sv |/sv) ×100 ≤ E, as shown in algorithm 3), the source site sends the value stored

for the latest timestamp that is smaller than the timestamp for which the destination

site had requested recovery. If a value for the same timestamp as the one sent by the

destination is found in the synopsis matrix, then the recovered value is exactly the

same value which was shed.

3.2.4.3 Error Threshold Value

Our data recovery method applied to a data stream S must satisfy two criteria in

order to perform well: (i) the amount of data in S to be stored in its synopsis matrix

should be low, since we do not have infinite disk space for the synopsis matrix, and
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(ii) the error in recovered data of S should also be low, i.e., the recovery error rate

of S should be sufficiently low. Considering the two tasks closely, these two measures

are inversely proportional to each other. When we attempt to decrease the amount of

synopsis data to be stored, the recovery error rate increases and thus suffers, whereas

when we attempt to improve the recovery error rate by decreasing it, the amount of

synopsis data to be stored would increase proportionally. The optimal performance

can be achieved by maintaining a balance between these two tradeoffs, which vary

from one data stream application domain to another. For example, in critical data

stream domains (such as medical information), a recovery error rate of 10% may be

inadequate and the balance may be derived at a point with extremely low recovery

error rate at the cost of larger amount of synopsis data to be stored. On the other

hand, in a less critical data stream domain (such as weather information), a balance

with higher recovery error rate at the benefit of lesser amount of data to be stored in

the synopsis matrix is acceptable. In this section, we introduce (i) the fixed point for a

data stream, (ii) the various categories that define the criticality of stream data, and

(iii) the category recovery error rate. The two, (i) the fixed point for a data stream

S and (ii) the category recovery error rate for the category to where S is assigned,

are used to determine the error threshold value of S.

We first consider the size of the synopsis matrix of a data stream S in determining

the potential error threshold value of S in our data recovery approach. Based on our

observation, as the recovery error rate of S increases from 0% to 100%, the amount

of synopsis data of S decreases to a point P beyond which any further increase in the

recovery error rate does not affect the amount of synopsis data, i.e., the amount of

synopsis data remains constant beyond P , which is referred as the fixed point. The

existence of such a fixed point for S can be justified by the virtue of the fact that the
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variation in the values of an attribute A in S (to be shed) is finite, which is further

strengthened by the fact that A is the least-informative attribute of S and thus least

varying amongst the other attributes of S, i.e., the variation between most of the

values of Awould be between 0% and x%, where x% is the percentage difference

between the minimum and the maximum value of A. The amount of data to be

stored in the synopsis matrix ceases to decrease as the recovery error rate is greater

than or equal to x%. We determine the fixed point for a data stream by plotting

a graph using the stream data of S, which captures the amount of synopsis data at

each recovery error rate of S, starting out by increasing the recovery error rate of S

from 0% to 100%.

Figures 3.7(a), 3.7(b), and 3.7 (c), show the average amount of data to be stored

in the synopsis matrix at different recovery error rates using 10 experiments on each

of the three different data streams, i.e., the weather information, stock informa-

tion, and Internet traffic report from www.weather.yahoo.com, www.nasdaq.com, and

www.internettrafficreport.com, respectively. The set of data used to construct each

graph was collected over a 2-hour period on October 25, 2005 at 2:00PM (MST),

which were split into 10 sets to conduct the 10 experiments on each of the data

streams, and the results from the 10 experiments were then averaged. The averages

of the fixed point values (i.e., the potential recovery error rates) for the 10 sets of data

for the three data streams are 9.5%, 9.2%, and 20%, respectively. The graphs plotted

in Figures 3.7(a), 3.7(b), and 3.7(c) show that the amount of data to be stored in each

of the synopsis matrices becomes constant beyond the fixed point, as anticipated.

Although the fixed point approach can be adopted to determine the error thresh-

old value of a data stream S automatically, it lacks the ability to incorporate the

criticality of the data in S. We propose an automated recovery error rate detection
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(a) Average amount of data to be stored in the synopsis matrix at different
recovery error rates for the weather information data stream extracted from
http://weather.yahoo.com on October 25, 2005 at 2:00PM (MST)

(b) Average amount of data to be stored in the synopsis matrix at different recovery
error rates for the stock exchange information data stream extracted from http :
//quotes.nasdaq.com/quote.dll? page = nasdaq100 on October 25, 2005 at 2:00PM
(MST)

(c) Average amount of data to be stored in the synopsis matrix at different re-
covery error rates for the Internet traffic information data stream extracted from
http://www.internettrafficreport.com on October 25, 2005 at 2:00PM (MST)

Figure 3.7: Amount of data to be stored for recovery
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mechanism on any newly arrived data stream S in our DSMS, which determines an-

other potential error threshold value of S based on the attribute names of S, which is

done only once, i.e., prior to processing any data from S that is incorporated into our

DSMS. For each new data stream S, the attribute names of S are analyzed and au-

tomatically matched with the attribute names of a data stream application domain

in each of the predefined categories, which include the ‘Extremely Critical,’ ‘Very

Critical,’ ‘Moderately Critical,’ ‘Low Critical,’ and ‘Not Critical ’ categories. Each

of these categories is assigned a number of data stream application domains, such

as the medical information data stream and emergency response data stream in the

‘Extremely Critical ’ category, and each data stream assigned to its corresponding

category is associated with a predefined list of attribute names commonly found in

the data streams of the same nature that best defines the corresponding application

domain. We have predefined some of the commonly used data stream application

domains in each category, e.g., medical information, stock exchange information, In-

ternet traffic information, weather information, and population information in the

‘Extremely Critical ’, ‘Very Critical ’, ‘Moderately Critical ’, ‘Low Critical ’, and ‘Not

Critical ’ categories, respectively. If the attribute names in a new data stream do

not “match” any predefined list of attribute names of any one of the data stream

application domains in any predefined categories, the new data stream is assigned to

the category ‘others,’ which has a category recovery error rate of “infinite”, i.e., ∞,

since it has no upper bound.

The matching of the list of attribute names for a new data stream with the pre-

defined lists of attributes names is carried out by using the Fuzzy-Set IR model [YN05]

and the distance matrix [Gar06]. We adopt the fuzzy-set IR model to compute the

degree of similarity between (i) a predefined list of attribute names belonged to a
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particular category and (ii) the list of attribute names for a new data stream using

the distance matrix [Gar06], in which row and column headings are words appearing

in commonly used dictionaries. The distance matrix captures the degrees of similarity

(i.e., correlation factors) among different words, which was generated using a set of

Wikipedia [WIK] documents to compute the frequency of co-occurrence and relative

distance of each pair of words in each Wikipedia document [Gar06]. Furthermore, we

adopt the EQ function5 [YN05], which is formally defined in Equation 3.7, to decide

if any two lists of attribute names should be treated as the same using the correlation

factors among the attribute names as defined in the distance matrix.

EQ(Si, Sj) =





1 if MIN(Sim(Si, Sj), Sim(Sj , Si)) ≥ Permission Threshold, ∧

|Sim(Si, Sj) - Sim(Sj , Si)| ≤ Variation Threshold

0 otherwise

(3.7)

After detecting the category that contains a list of attribute names that should

be treated as equal to the list of attribute names in a new data stream S, S is then

assigned to the category. We conducted 10 experiments in total for three different

data stream application domains, i.e., the stock information, weather information,

and Internet traffic information, using different randomly chosen data stream Web

sites to demonstrate the accuracy of the Fuzzy-Set IR model approach in assigning

data streams to categories, and the results showed 90% accuracy. The 10% inaccuracy

was due to the false positives and false negatives in matching the attribute names

between two lists of attribute names.

The accuracy in assigning a new data stream S correctly to one of the categories

5 The EQ function uses two threshold values, the permission threshold value and the variation
threshold value, along with the correlation values of words. These threshold values are adjusted by
us empirically for the purpose of computing the equality between any two lists of attribute names,
and are presented in details in Chapter 4.
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depends on the correct matching between the list of attribute names of S and the

predefined list of attribute names in a data stream application domain, including

synonyms or closely related words appeared in the two lists. Note that the list of at-

tribute names in a data stream is quite “narrow,” which means that two data streams

belonged to the same application domain contain almost the same set of attribute

names. For example, almost all data streams in the weather information domain

contain the attributes location, temperature, humidity, precipitation, sunrise, sunset,

and wind. Furthermore, two different lists of attribute names with synonymous or

closely related names can still be accurately matched by using the Fuzzy-IR model

[YN05]. For example, the attribute names ‘precipitation’ and ‘rain’ have very high

correlation factor and are treated as the same attribute by the Fuzzy-IR model.

Example 5 Consider the predefined list of attribute names L = {Location, Precip-

itation, Humidity, Temperature, Visibility, Sunrise, Sunset, Barometer, Dew Point,

Wind} for the weather information application domain in the ‘Low Critical ’ category,

where V = {Symbol, Company Name, Last Sale, Net, Percent Change, Volume, Mar-

ket Cap, Weight, Stock, Buy, Sell} for the stock information application domain in the

‘Very Critical ’ category. Consider the new data stream at http://www.bbc.co.uk/weat

her/5day.shtml?world=0100 with a list of attribute names S = {Location, Max Day,

Min Night, Wind, Visibility, Pressure, Relative Humidity, Sun Index, Pollution}. The

similarity values between V and S are Sim(V , S) = 1.53E-6 and Sim(S, V ) = 1.41E-6

using the fuzzy set IR approach [YN05]. Applying the EQ function on these similar-

ity values, using the threshold values of 0.173 for permission and 0.15 for variation

threshold values, the EQ value is 0. Thus, the lists are treated as different, which is
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correct. However, Sim(L, S) = 0.4 and Sim(S, L) = 0.3076, and applying the EQ

function with these similarity values, and using the same threshold values as given

earlier, the EQ value is 1. Thus, the lists are treated as similar, which is correct.

Predefined with each of the first 5 categories is a category recovery error rate,

and the 6th category, i.e., ‘others ’, has the category recovery error rate of infinite.

Each category recovery error rate of the first five categories is computed empirically

during the design of our load shedding system, using the average fixed points of data

streams in each category. The average of the fixed points of different data streams in

a category is assigned as the category recovery error rate. The empirically determined

category recovery error rates (see details in Chapter 4) of the first five categories are

1.67%, 4.7%, 4.81%, 13.5%, and 20.33% for the ‘Extremely Critical ’, ‘Very Critical ’,

‘Moderately Critical ’, ‘Low Critical ’, and ‘Not Critical ’ categories, respectively. Given

the fixed point of the new data stream S that has been automatically detected and

the category recovery error rate of S, our data recovery system assigns the error

threshold value of S as the lower of the two, since the fixed point and the category

recovery error rate are the maximum acceptable error rates in the recovered data for

S. If the data stream S belongs to the ‘others’ category, the fixed point value of the

new data stream is used as the error threshold value of S. Note that the fixed point

value of a new data stream S is quite often different from the category recovery error

rate of S because the fixed point value for S is computed for each new data stream

when it is included in our DSMS, whereas the recovery error rate for S is the average

of the fixed point values for a number of data streams belonging to that category.

Consider the categories for the data streams as shown in Figures 3.7(a), 3.7(b),

and 3.7(c), which are ‘Low Critical ’, ‘Very Critical ’, and ‘Moderately Critical ’, re-

spectively, with category recovery error rates 13.5%, 4.7%, and 4.81%. Comparing
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the category recovery error rates with the fixed point values, i.e., 9.5%, 9.2%, and

20%, respectively for the data streams shown in Figures 3.7(a), 3.7(b), and 3.7(c),

respectively, the error threshold values for these data streams are 9.5%, 4.7%, and

4.81%, respectively, the lower of their respective fixed points and category recovery

error rates.

3.2.5 The Architecture of the Intra-Stream Load Shedding

Approach

Figure 3.8 shows the intra-stream load shedding architecture of our DSMS. The cur-

rent sliding window of a data stream Sis fed into the (intra-stream) load shedding

scheme generation and re-evaluation sub-system, denoted LSS-RES (as in Section

3.2.3), which (i) preprocesses the data in the current sliding window, (ii) computes

the rankings of the attributes of S, (iii) determines the number of attributes (and

their corresponding stream data) to be shed, and (iv) generates the (intra-stream)

load shedding scheme on a regular basis. The LSS-RES also re-evaluates the load

shedding scheme on a regular basis. After generating (or updating) the load shedding

scheme for S, the current sliding window is fed into the data stream recovery data

retainer, denoted DS-RDR (as discussed in Section 3.2.4.2). Hereafter, the unshed

current sliding window from the data stream is shed by the shedder, if needed. A data

stream with or without undergone shedding by the shedder is referred as an ‘intra

stream’.
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Figure 3.8: The architecture of the intra-stream load shedding and data recovery
sub-system in our DSMS
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3.3 The Inter-Stream Load Shedding Approach

Our inter-stream load shedding management system, denoted Inter-LSMS, which

consists of (i) multiple inter-stream load shedding sub-systems, denoted Inter-sub,

one for each intra stream, and (ii) a central load shedder, manages the transmission

of multiple intra streams over a single multiplexed channel where the cumulative

data rate of all the intra streams is sometimes more than the channel capacity. The

central load shedder notifies each Inter-sub with the amount of data to be shed from

its intra stream. To determine the amount of data to be shed from each intra stream,

the central load shedder determines (i) the data transmission rates of all the intra

streams, and (ii) the channel capacity of the single multiplex channel, and uses these

information to calculate the amount of data to be (further) shed from each intra

stream.

The basic architecture of our Inter-LSMS is shown in Figure 3.9. Each Inter-sub

consists of the same basic components as in the intra-stream load shedding sub-

system. Unshed source data streams, labeled S1, S2, . . . , Sn in Figure 3.9, are origi-

nated from different sources and transmitted through different channels, called sim-

plex channels, with a single stream transmitted over a single simplex channel, to reach

the Inter-LSMS, as intra streams, i.e., S ′1, S ′2, . . . , S ′n, where they are transmitted on

the same channel, called the multiplexed channel.

Even though DS-RDR and the shedder in the Inter-sub and each intra-stream

load shedding sub-system behave the same, the LSS-RESs in the two sub-systems

are different, since the former is notified by the central load shedder the amount

of data to be (further) shed from its intra stream. Each LSS-RES of an Inter-sub

individually determines the less-informative attribute values in its intra stream to be

shed. LSS-RESs in other Inter-subs reduce the combined data rate to be less than the
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Figure 3.9: Load shedding sub-system architecture in our DSMS

multiplexed channel capacity. After generating (or updating) the inter-stream load

shedding scheme at each Inter-sub, the current sliding window for each intra stream

is fed into its data stream recovery synopsis generator, which is a separate synopsis

recovery matrix compared with the one used at the corresponding intra-stream load

shedding sub-system. Hereafter, the current sliding window of an intra stream is

processed by its corresponding inter-stream shedder that sheds the data, if needed,

according to the inter-stream load shedding scheme. The current (shedded) sliding

windows from all the streams are then transmitted over the multiplexed channel to

the destination asynchronously, in parallel.
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3.3.1 Amount of Data to be shed for Inter-Stream Load Shed-

ding

In our Inter-LSMS, since each LSS-RESs of an Inter-sub cannot directly sense the

capacity of the multiplexed channel, the central load shedder must inform the indi-

vidual LSS-RESs about the amount of data to shed from their intra streams. The

central load shedder, with two pieces of information, i.e., (i) the data transmission

rates of each intra streams and (ii) the channel capacity of the multiplexed channel,

computes the amount of data to be shed from each intra stream, and forward this

information to its corresponding LSS-RES. Consider R as the cumulative data rate

of all the data streams, which is computed by the central load shedder and let C be

the channel capacity of the multiplexed channel, the data transmission rate at which

data has to be shed from the accumulation of all intra streams is R – C. R must fall

to R
′
(≤ C), if R > C, and the cumulative percentage of data to be shed from all the

data streams is (R– C)/R. If an intra stream n(n ≥ 1) has data tranmission rate Rn,

the amount of data to be shed from n, i.e., Rn’, is computed as

R
′
n = ((R− C)/R)×Rn (3.8)

where (R - C)/R is the drop rate.

The number of attributes to be shed from an individual intra stream by the

corresponding inter-stream shedder is defined as:

N
′
= d(R′

n/Rn)×Ne (3.9)

where N
′

is the number of attributes to be shed from the intra stream n, N is

the number of attributes in n, Rn is the data transmission rate of n, and Rn
′
is the
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amount of data to be shed on n.

3.3.2 An Example of Inter-Stream Load Shedding

Example 6 Consider a multiplexed channel with capacity C of 256.6 Kbps with

an attempt to transmit four intra streams with 6, 8, 10, and 9 attributes at data

transmission rates 64.4 Kbps, 80.6 Kbps, 76.6 Kbps, and 72.2 Kbps, respectively

by the Inter-LSMS. Thus, the cumulative data transmission rate R is 293.8 Kbps.

Since 293.8 Kbps > 256.6 Kbps, the data transmission would generate errors. To

attain error-free transmission, our Inter-LSMS calculates the overall drop rate of the

combined intra streams, which is (293.8 - 256.6) / 293.8) = 12.66%. To attain this

drop rate, the data transmission rates at which the amount of data has to be shed

from the first, second, third, and fourth intra streams (according to Equation 3.8) are

0.1266 × R1 = 8.153 Kbps, 0.1266 x R2 = 10.2 Kbps, 0.1266 × R3 = 9.69 Kbps, and

0.1266 × R4 = 9.14 Kbps. The number of attributes to be shed by the inter-stream

LSMS from the first, second, third, and fourth data stream according to Equation

3.9 is d[(8.153 / 64.4) × 6]e = 1,d(10.2 / 80.6) × 8]e = 2, d(9.69 / 76.6) × 10]e = 2,

and d(9.14 / 72.2) × 9]e = 2.
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Chapter 4

Experimental Results

In order to verify the correctness of the design and justify the merits of the proposed

load shedding and data recovery approach, we have conducted experiments using

various sets of (test and/or training) data extracted from data streams of different

application domains: weather information, stock Exchange information, and Internet

traffic information, as shown in Table 4.1. Some data sets are used as training data

as needed, details of which are discussed in subsequent sections of this chapter. We

performed our experiments in real-time with data sets of the data streams in the three

application domains varying in sizes, i.e., 15.6 GB, 21 GB, and 12 GB, respectively.

Test and/or training data for each application domain were split into three sets of

the same size, with each of the three sets used at the data transmission rates of 60

Kbps, 90 Kbps, and 120 Kbps.

Our load shedding and data recovery design was implemented in Java and tested

on a Windows/Linux PC with a 3.2 GHz processor, 3.25 GB RAM memory, and

150 GB of hard disk space with Linux shell scripts running test scripts, whereas

the experiments were conducted for our load shedding and data recovery system
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On Each Data Set
Number

Attributes Number Sliding of
of the Size of Window Sliding

Data Stream Source Data Stream (GB) Tuples Size Windows
Weather Information 15.6

http://weather.yahoo.com Location, Temperature, 2 28036790 75 373823
- Sets 1, 2, 3 Dew Point,

Humidity, Sun Rise,
Visibility, Sun Set,
Barometer, Wind

http://www.wunderground Location, Temperature, 1.2 37063068 500 74126
.com/ - Sets 1, 2, 3 Humidity, Wind,

Pressure, Precipitation,
Dew Point

http://www.weather.com Location, UV Index, 2 32819280 250 131277
- Sets 1, 2, 3 Pressure, Dew Point,

Wind, Humidity,
Visibility
Stock Exchange Information 21

http://quotes.nasdaq.com Symbol, Company 3 52516326 100 525163
/quote.dll?page= Name, Last Sale,
nasdaq100 - Sets 1, 2, 3 Net Change, Share

Volume, Nasdaq100 ,
Index, Percentage
Change

http://finance.indiamart.com Company Name, Last 3 64860370 488 132910
/markets/bse/ - Sets 1, 2, 3 Price, Change,

Percentage Change,
Market Cap, Weight

http://www.channelnewsasia Stock, Buy, 1 33288126 1235 26953
.com/cna/finance Sell, Last Done,
/sg/stockmonitor.htm - Volume
Sets 1, 2, 3

Internet Traffic Information 12
http://www.Internettraffic Router Name, Current 2 16332958 96 170134
report.com - sets 1, 2, 3 Index, Response

Time, Packet Loss,
Maximum Delay,
Minimum Delay,
Average Delay

http://average.miq.net Router, Response Time, 1 11689810 50 233796
/index.html - Packet Loss, Minimum
Sets 1, 2, 3 Delay, Average Delay,

Maximum Delay
http://watt.nlanr.net/ Site Name, Min, 1 10866072 86 126349
ampmap active.php Mean, Max,
- Sets 1, 2, 3 StdDev, Loss

Table 4.1: Data sources of test/training stream data collected on March 1,2006 (ex-
cept for http://www.channelnewsasia.com/cna/finance/sg/ stockmonitor.htm, which
was collected on March 29, 2006)
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using various data transmission rates and channel capacities. To set various channel

capacities of the system, we hard-coded into the load shedders of our implementation

various channel capacities, i.e., 72, 98, and 132 Kbps to be tested at various data

transmission rates, i.e., 60, 90, and 120 Kbps. These hard-coded values were used to

determine the number of attribute to be shed, which directly affect the amount of

shed data to be stored for data recovery purpose.

We performed experiments to verify the correctness of the four major modules

of our load shedding and data recovery approach: the (i) CID detection, which also

verified our approach on configuring the sliding window size of a data stream, in

Section 4.1, (ii) error threshold value generation, for which we verified the accuracy

in predicting the error threshold value of a data stream, in Section 4.2, (iii) load

shedding scheme (re-evaluation) and ranking generation approach, which tested the

accuracy of choosing the least-informative attributes in a data stream to be shed,

in Section 4.3, and (iv) shed data recovery, for which we verified the accuracy of

recovering shed data, in Section 4.4. Since the design of these modules is common to

both intra-stream and inter-stream load shedding, verification of the design of these

four modules verifies the design of both.

4.1 Experimental results on CID detection

If the attribute(s) of a training data stream S chosen as the CID of S has (have) the

same replicated values (in the same sequence) within each sliding window of S, then

the accuracy of our CID detection approach is confirmed. We used (i) various sets

of training data from each of the three data stream application domains (as shown

in Table 4.1) to detect the CID of the corresponding data stream and (ii) different
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sets of test data from the same source to verify the correctness of each detected CID.

Note that the sliding window size of each data stream S used in the experiments

was also verified along with the detection of the CID of S, since the cycle length of

each detected CID yields the corresponding window size. The experimental results

of detecting CIDs using the training data in Table 4.1 are partially shown in Figures

4.1(a), 4.1(b), and 4.1(c), whereas the verification results using the test data of the

same data sources are shown in Table 4.2. Note that in each figure we have assigned a

distinct numerical value to each alphanumerical or alphabetical attribute value (such

as company name, location, router name, etc.) for simplicity on representation in a

graph.

In the training data of Indiamart, a stock Exchange information data stream, the

detected CID is ‘Company Name,’ as shown in Figure 4.1(a), since it is the attribute

having a repetitive curve, whereas ‘Router Name’ is the detected CID of Internet Traf-

fic Report, an Internet traffic information data stream, as shown in Figure 4.1(b), in

addition to the detected CID ‘Location’ of Yahoo, a weather information data stream,

as shown in Figure 4.1(c). Table 4.2 shows the verification of the CIDs detected by

using the training and test data. The first 10MB of each data set in Table 4.1 were

used as training data and the remaining data were used as test data as shown in Table

4.2. Since each test data set was large in size, which made manual examination on

the (correctly) detected CIDs infeasible, we verified that the detected CIDs are in fact

the CIDs of the corresponding data streams using scripts; in addition, we manually

examined a few randomly selected CIDs that were detected automatically. Based on

the results as presented in Table 4.2, we conclude that the CID detection approach

is 100% accurate.
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(a) Experimental results generated by using the training data extracted from
http://finance.indiamart.com/markets/bse/, a stock Exchange information data
stream, on March 1, 2006 for testing the CID of the data stream

(b) Experimental results generated by using the training data extracted from
http://www.Internettrafficreport.com, an Internet traffic information data stream,
on March 1, 2006 for testing the CID of the data stream

(c) Experimental results generated by using the training data extracted from
http://weather.yahoo.com/, a weather information data stream, on March 1, 2006
for testing the CID of the data stream

Figure 4.1: Experimental results for CID detection
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Data Stream Source Training Data Test Data
on Each Set on Each Set

Size Detected Size Detected
(MB) CID (GB) CID

Weather Information 30 15.57
http://weather.yahoo.com/
- Set 1, Set 2, Set 3 10 Location 1.99 Location
http://www.wunderground.com/
- Set 1, Set 2, Set 3 . . . . . . 1.19 . . .
http://www.weather.com/
- Set 1, Set 2, Set 3 . . . . . . 1.99 . . .
Stock Exchange Information 30 20.97
http://quotes.nasdaq.com/
quote.dll?page
=nasdaq100 - Set 1, Set 2, Set 3 . . . Company Name 2.99 Company Name
http://finance.india
mart.com/markets/bse/
- Set 1, Set 2, Set 3 . . . . . . . . . . . .
http://www.channelnewsasia.com/
cna/finance/sg/stock
monitor.htm - Set 1, Set 2, Set 3 . . . Stock 0.99 Stock
Internet Traffic Information 30 11.97
http://www.Internettrafficreport.com
- Set 1, Set 2, Set 3 . . . Router Name 1.99 Router Name
http://average.miq.net/index.html
- Set 1, Set 2, Set 3 . . . . . . 0.99 . . .
http://watt.nlanr.net/active/maps/
ampmap active.php - Set 1, Set 2, Set 3 . . . . . . . . . . . .

*For each Set i(i = 1, 2, 3), the training data and test data are disjoint

Table 4.2: Training and test data results for CID detection
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4.2 Experimental results on error threshold value

detection

In this section, we present the verification of the correctness of our error threshold

value detection approach, which include the (i) verification of the permissible and

variation threshold values used in the EQ function that assigns a new data stream

S to a criticality category, and (ii) the determination of the fixed point of S. In

Section 4.2.1, we show how to determine the permissible and variation threshold

values and introduce the pre-defined lists of attribute names for the three application

domains, i.e., weather information, Internet traffic information, and stock Exchange

information. According to the threshold values detected in Section 4.2.1, we verified

the accuracy of our fixed point detection approach and the correctness of our approach

in determining the category recovery error rate, which dictates the error threshold

value, of a data stream S for assigning the criticality category to S in Section 4.2.2.

4.2.1 Verification of the permissible and variation threshold

values in the EQ function

In defining the threshold values in the EQ function, we empirically adjust the per-

missible threshold value, which defines the minimum similarity between two lists of

attribute names S1 and S2, i.e., MIN (Sim(S1, S2), Sim(S2, S1)), and the variation

threshold value, which defines the maximum dissimilarity betweenS1 and S2, i.e.,

|Sim(S1, S2) - Sim(S2, S1)|. The threshold values, along with the similarity values

among the attribute names of S1 and S2, are used by the EQ function, which decides if

S1 and S2 should be treated as equal. The EQ function determines to which category
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C a new data stream S2 should be assigned, which in turn determines the category

recovery error rate CR for S2, using the list of attribute names S1 for C. The smaller

of the CR and the fixed-point value of S2 yields the error threshold value of S2 (see

Section 3.2.4.3 for details).

Using forty randomly chosen training data stream Websites with the Internet traf-

fic, weather, and stock Exchange information application domains in mind (as shown

in Table C.1), which were collected on April 8, 2006 and included data streams in the

Internet traffic information (8), weather information (12), stock Exchange information

(10), financial information (3), network data loss information (3), and chemical prop-

erties information (4), we determined the permissible and variation threshold values

of the EQ function. The last three application domains in Table C.1, i.e., financial in-

formation, network data loss information, and chemical properties information, have

attributes closely related to, but not the same as, stock Exchange information, Inter-

net traffic information, and weather information, respectively, and were included in

training our category assignment approach to demonstrate its precision in distinguish-

ing the correct categories against categories that have closely related, but different,

attribute names.

Suppose L1 is a set of lists of attribute names, with one list of attribute names

for each randomly selected data stream Website in Table C.1. Further assume that

L2 is a set containing three pre-defined lists of attribute names, one for each of the

three application domains, i.e., weather information, stock Exchange information,

and Internet traffic information. Each list in L1was compared with each list in L2

to determine the permissible and variation threshold values that yield the least to-

tal number of false positives and false negatives in matching the lists1. The false

1 A false positive (false negative, respectively) occurs when two lists of attribute names that are
different but are termed as equal (are equal but are termed as different, respectively).
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positives and false negatives were determined manually for each enumerated pair of

lists of attribute names, with one list from L1 and another one from L2, which is in

turn categorized as equal or different according to the EQ function computed auto-

matically. The total number of detected false positives and false negatives according

to various permissible threshold values are plotted in the graph as shown in Figure

4.2(a), which indicates that the ideal permissible threshold value is 0.29, which is the

point with the least total number of false positives and false negatives2, instead of

0.28, which although is the “intersected” point, but has a greater number of total

false positives and false negatives.

To obtain the variation threshold value of the EQ function, we manually cate-

gorized each pair of lists of attribute names from S1 and S2 as equal or different,

where S1 is the set of attribute names of a new data streams and S2 is the set of at-

tribute names of a pre-defined data stream. The manual categorization was followed

by automatically categorizing S1 and S2 as equal or different according to different

variation threshold values in the EQ function. The detected number of false positives

and false negatives for the variation threshold value are plotted in the graph as shown

in Figure 4.2(b), which indicates that the ideal variation threshold is 0.65, which is

the point with the least total number of false positives and false negatives, instead

of 0.49, which although is the “intersected” point, but has a greater number of total

false positives and false negatives.

The list of pre-defined attribute names for each of the three application domains,

i.e., weather information, stock Exchange information, and Internet traffic, were gen-

erated by including all the attribute names that occur in more than 80% of the at-

2 As the permissible threshold value increases, the total number of attribute names in two different
data stream treated as equal decreases, since more attribute names are treated as different in their
corresponding data streams, and as a result, the false negatives increase, which is opposite in the
case of false positives [YN05].
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(a) Permissible threshold values

(b) Variation threshold values

Figure 4.2: Determining the permissible and variation threshold values in the EQ
function using (training) data in forty randomly chosen data stream Websites in
Table C.1
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tribute lists of the data streams in the same application domain in Table C.1. The list

of pre-defined attribute names for weather information are {Location, Temperature,

Humidity, Wind, Barometer}, for stock Exchange information {Company, Change,

Volume, Percentage, High, Low}, and for Internet traffic information {Router, Packet,

Loss, Delay, Average}. We verified the accuracy of the permissible and variation

threshold values detected in Figure 4.2(a) and 4.2(b) using a new set of forty randomly

chosen Websites, with the three application domains that we have been considering in

mind. The results on adopting the chosen threshold values (i.e., 0.29 for permissible,

and 0.65 for variation) and the three pre-defined attribute lists for determining the

application domain of a data stream are shown in Table C.2.

As shown in Table C.2, out of the forty randomly selected test Websites, thirty-

seven were correctly categorized with 0 false positive and 3 false negatives, an accu-

racy rate of 92.5%, which justifies the accuracy of the EQ threshold values and the

comprehensiveness of the lists of pre-defined attribute names for their corresponding

attribute domains. Although we consider only three application domains for gen-

erating our pre-defined lists of attribute names and the EQ threshold values, our

application domain detection method can be applied to any application domain D by

determining the pre-defined list of attribute names of D by choosing the most com-

monly used attribute names for D from multiple data streams of D. Furthermore,

the threshold value generation approach is applicable to other application domains

as well.

We observed that the attributes that often cause false negatives are the attribute

names that are not in any pre-defined list of attribute names, and are not closely

related or synonymous to any of the attribute names in the pre-defined lists. For

example, the attribute name ‘StdDev ’, an attribute in the second test data stream
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belonged to the Internet traffic information shown in Table C.2, is not in any list of

pre-defined attribute names.

4.2.2 Verification of the error threshold value generation

method

To verify our error threshold value generation module using the permissible and

variation threshold values computed for the data streams in Table C.1 and set in

Section 4.2.1, we conducted experiments using (i) training data, which were used to

determine the fixed point values of the three different application domains considered

in this thesis, along with the new population information application domain, which

were collected on May 12, 2006, and (ii) the randomly chosen consecutive sliding

windows from the test data, which evaluated the accuracy of the fixed point values

of the corresponding data streams generated by the training data. The training data

shown in Table 4.3 for each data stream was extracted from the corresponding data in

Table 4.1 (and the remaining data from Table 4.1 were used as the test data as shown

in Table 4.3), excluding the population information data. Since we use the population

information data stream only for the error threshold generation experiments, it is only

presented in Table 4.3, and no where else. The experimental results from the three

sets of training data for each source data stream, which are followed by the results

from the three sets of test data for the corresponding data stream, are shown in Table

4.3, which verified the accuracy of our fixed points generation method.
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Training Randomly Chosen
Data Test Data

Data Stream Source Data Fixed Number Fixed Actual Devi-
Size Point of Point Devia- ation
(MB) (F)% Windows (F)% tion = ( %

Sliding Ftestdata

in the -Ftraining

Randomly data)
Chosen
Data

Stock Exchange Information 4.7 (average)
http://quotes.nasdaq.com/quote 100 1.3 25000 1.2 0.1 8.32
.dll?page=nasdaq100 - Set 1
Set 2 . . . 1.25 . . . 1.29 0.04 3.10
Set 3 . . . 1.35 . . . 1.45 0.1 6.88
http://finance.indiamart . . . 5.6 . . . 5.8 0.2 3.44
.com/markets/bse/ - Set 1
Set 2 . . . 5.25 . . . 5.34 0.09 1.68
Set 3 . . . 5.5 . . . 5.75 0.25 4.34
http://www.channelnewsasia . . . 7.5 . . . 7.57 0.07 0.92
.com/cna/finance/sg/
stockmonitor.htm - Set 1
Set 2 . . . 7.65 . . . 7.73 0.08 1.02
Set 3 . . . 7.43 . . . 7.57 0.14 1.84
Weather Information 4.81 (average)
http://weather.yahoo.com/ - Set 1 200 4.5 . . . 4.55 0.05 1.08
Set 2 . . . 4.67 . . . 4.72 0.05 1.04
Set 3 . . . 4.4 . . . 4.61 0.21 4.54
http://www.wunder . . . 4.8 . . . 4.95 0.15 3.02
ground.com/ - Set 1
Set 2 . . . 4.85 . . . 4.67 0.18 3.84
Set 3 . . . 4.75 . . . 4.58 0.17 3.70
http://www.weather.com/ - Set 1 . . . 5 . . . 5.2 0.2 3.84
Set 2 . . . 5.2 . . . 5.05 0.15 2.96
Set 3 . . . 5.15 . . . 5.3 0.15 2.82
Internet Traffic Information 13.5 (average)
http://www.Internet 200 20 . . . 21.2 1.2 5.66
trafficreport.com - Set 1
Set 2 . . . 20.4 . . . 19.6 0.8 4.08
Set 3 . . . 21.2 . . . 20.5 0.7 3.40
http://average.miq. . . . 11.4 . . . 12.5 1.1 8.80
net/index.html - Set 1
Set 2 . . . 11.2 . . . 12.3 1.1 8.94
Set 3 . . . 11.9 . . . 11.5 0.4 3.46
http://watt.nlanr.net/active/maps/ . . . 8 . . . 7.4 0.6 8.10
ampmap active.php - Set 1
Set 2 . . . 8.5 . . . 9.2 0.7 7.60
Set 3 . . . 8.9 . . . 9.1 0.2 2.18
Population Information 20.33 (average)
http://www.mnsu.edu/emuseum/ 100 20 . . . 20.5 0.5 2.44
country.php?FILE=INNAME
Continued on Next Page. . .
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Table 4.3 – Continued
=India3C2Foptn3E - Set 1
Set 2 . . . 21 . . . 21 0 0
Set 3 . . . 20 . . . 19.6 0.4 2.04
Average 7.69 7.8 0.34 3.84

Table 4.3: Experimental results of detecting various fixed points in data streams using training and
test data in Table 4.1, in addition to the new population information stream data

We observed from Table 4.3 that the fixed points determined by using the training

data set are very close to the fixed points determined by using the test data sets. The

deviation, which determines the differences between the fixed point values computed

by using the training data and the randomly chosen test data, calculated as |(fixed

pointtestdata – fixed pointtrainingdata)|/fixed pointtestdata, ranges from 0% to 8.94%, as

shown in Table 4.3. We explain the differences below.

Different sliding windows of a data stream S may contain different values for the

same attributes. For some (current) sliding windows, if the value for an attribute

is the same or its difference does not exceed error threshold compared with as the

attribute value in the previous sliding window, then such a value is not stored in the

synopsis recovery matrix of S; otherwise, an error occurs. Recall that the fixed point

value of data stream S achieves the balance between the data recovery accuracy and

the amount of recovery information to be stored in the synopsis matrix of S. On

the basis of the low deviation, i.e., between 0% to 8.94%, with an average of 3.84%,

as shown in Table 4.3, we draw the conclusion that our fixed point value detection

approach works adequately.

Recall that the minimal of the fixed point value of a data stream S and the cate-

gory recovery error rate of S yields the error threshold value of S. As the last step of

verifying our error threshold value generation process, we empirically determined the

category recovery error rate for the category of a new data stream. We set the values
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for the category recovery error rates for the stock Exchange information, weather

information, Internet traffic information, and population application domains using

the average of the fixed point values of the corresponding test and training data

streams, as shown in Table 4.3, and used them to interpolate the category recovery

error rate for the ‘Extremely Critical ’3. The average of the fixed point values in the

randomly chosen data streams for stock Exchange information, weather information,

Internet traffic, and population information data domains are 4.7%, 4.81%, 13.5%,

and 20.33%, as shown in Table 4.3, which are set as the category recovery error rates

for the corresponding ‘Very Critical ’, ‘Moderately Critical ’, ‘Low Critical ’, and ‘Not

Critical ’ predefined categories. The average fixed point value of each of these applica-

tion domains turns out to be in the ascending order because of the nature (i.e., values)

of the data. Using interpolation and considering the ratios of the category error rates

of every other category as equal, a pattern that holds for the four categories, the

category recovery error rate for the ‘Extremely Critical ’ category, denoted CRER(1),

is calculated by using the formula CRER(1)/CRER(3) = CRER(2)/CRER(4). Using

this formula, we interpolated the values for the ‘Extremely Critical ’ category, which

is 1.67%. Thus, the category recovery error rates are 1.67%, 4.7%, 4.81%, 13.5%,

and 20.33% for the ‘Extremely Critical ’, ‘Very Critical ’, ‘Moderately Critical ’, ‘Low

Critical ’, and ‘Not Critical ’ categories, respectively. A new data stream S is assigned

its error threshold value using its category recovery error rate if S belongs to one of

the five pre-defined categories, assuming that at least one data stream is available

in the ‘Extremely Critical ’ category; otherwise, it belongs to the ‘others ’ category,

which has a category recovery error rate of “infinite”, i.e., ∞ (as discussed in Section

3 The category recovery error rate for the ‘Extremely Critical ’ category is interpolated due to
the unavailability of any training or test data of the corresponding data stream, such as medical
information, which includes private data that are unavailable on the Internet.
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3.2.4.3), and the fixed point value of S is used as the error threshold value of S.

4.3 Experimental results on the load shedding

scheme generation approach

In this section, we evaluate our load shedding scheme generation and re-evaluation

approach. In Section 4.3.1, we justify the accuracy of our least-informative attribute

detection approach, whereas in Section 4.3.2, we assert the correctness of our load

shedding scheme generation and re-evaluation approach. The least-informative at-

tribute detection approach determines the attribute(s) to be shed, i.e., the attribute(s)

composing the load shedding scheme, whereas the re-evaluation approach reconsiders

the load shedding scheme for necessary modification.

4.3.1 Verifying the accuracy of detecting least-informative
attributes

To verify the accuracy of our approach in determining the informativeness of an at-

tribute, i.e., the ranking of attributes in each sliding window, of a data stream, which

determines the attributes to be shed, we performed experiments on the test data of

various data streams using standard deviations (since the informativeness is always

computed in real-time using real stream data, and not once using training data). We

captured the standard deviations of different attributes in a data stream using bar

charts and verified that the attributes detected as least-informative are indeed less

varying as compared to the attributes detected as more-informative. Figure 4.3(a)

shows the variations in the values for different attributes of a stock Exchange infor-

mation data stream, except the CID attribute, i.e., ‘Company Name’, which cannot
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(a) Experimental results generated by using test data retrieved from
http://finance.indiamart.com/markets/bse/, a stock Exchange information data
stream, on March 1, 2006 for detecting the least-informative attribute(s) in the
data stream

(b) Bar chart representation of the experimental results in Figure 4.3(a)

Figure 4.3: Least-informative attribute detection for Stock Exchange information
data stream

be shed for data recovery purpose, whereas Figure 4.3(b) shows the standard devi-

ation (rankings) for different attributes of the test data in Figure 4.3(a). According

to Figure 4.3(b), the attribute with the highest ranking (i.e., the lowest standard

deviation) is ‘weight ’, which is also the attribute with the least varying curve for its

values as shown in Figure 4.3(a).

Figure 4.3(c) shows the variations in the values of different weather information

data stream attributes extracted from Yahoo, except the CID attribute, i.e., ‘Loca-
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(c) Experimental results generated by using test data retrieved from
http://weather.yahoo.com/, a weather information data stream, on March 1, 2006
for detecting the least-informative attribute(s) in the data stream

(d) Bar chart representation of the experimental results in Figure 4.3(c)

Figure 4.3: Least-informative attribute detection for Weather information data
stream

tion’, and Figure 4.3(d) shows the standard deviation (rankings) of the attributes.

According to Figure 4.3(d), the attribute with the lowest standard deviation is ‘Sun

Set ’, which is also observed in Figure 4.3(c) to be the attribute with the least varying

curve for its values.

Figure 4.3(e) shows the variations in the values of different attributes of the Inter-

net traffic information data stream extracted from Internet Traffic Report, except the

CID attribute, i.e., ‘Router Name’, whereas Figure 4.3(f) shows the standard devia-

tion (rankings) of the attributes. According to Figure 4.3(f), the attribute with the

lowest standard deviation is ‘minimum delay ’, which is also observed in Figure 4.3(e)
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(e) Experimental results generated by using test data retrieved from http://www.
internettrafficreport.com, a Internet traffic information data stream, on March 1,
2006 for detecting the least-informative attribute(s) in the data stream

(f) Bar chart representation of the experimental results in Figure 4.3(e)

Figure 4.3: Least-informative attribute detection for Internet traffic information data
stream

to be the attribute with the least varying curve for its values. Note that ‘minimum

delay ’, ‘average delay ’, and ‘maximum delay ’ are indistinguishable in Figure 4.3(e)

due to their extremely small and overlapping values.

According to the experimental results on the three different data stream appli-

cation domains, we conclude that our least-informative attribute detection approach

determines the least-informative attribute(s) in a data stream with 100% accuracy.

Such high accuracy is achieved because our least-informative attribute detection ap-

proach is based on calculating standard deviation on attribute values, which is a
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simple, mathematically sound, and widely accepted concept in statistics for detecting

the variations in the values of a data set.

4.3.2 Verification of the correctness of the load shedding

scheme generation and re-evaluation approach

As discussed in Section 3.2.3.3, our load shedding approach utilizes an adaptive load

shedding scheme (which is re-evaluated at various time intervals) that defines the

least-informative attribute(s) to be shed, and the load shedding scheme is generated

in real-time on real stream data, and not on training data. The verification of the

load shedding scheme involves verifying the correctness of the re-evaluation of the load

shedding scheme in between the pre-defined time intervals. We manually computed

each least-informative attribute A for each randomly chosen sliding window of a data

stream (100 sliding windows for each application domain chosen from the data shown

in Table 4.1) and compare A to the automatically detected least-informative attribute

of various sliding windows of the same data stream generated by our load shedding

approach. Each match of the manually determined least-informative attribute and the

automatically generated least-informative attribute in each sliding window is called

a hit, whereas each mismatch is called a miss, as shown in Table 4.4, with the same

test data used in Table 4.1. The misses occur when the ranking of the attributes of a

data stream changes in between two consecutive re-evaluations of the load shedding

scheme, which is not reflected in (i.e., integrated into) the currently adopted load

shedding scheme after the change has occurred and before the load shedding scheme

is re-evaluated. This scenario occurs when the time interval between two subsequent

re-evaluations of the load shedding scheme is sometimes larger than the time interval
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Data Stream Source # Hits # Misses
(Sets S1, S2, S3) S1 S2 S3 S1 S2 S3

Weather Information
weather.yahoo.com/ 94 94 93 6 6 7
www.wunderground.com/ 95 94 95 5 6 5
www.weather.com 96 96 96 4 4 4

Stock Exchange Information
quotes.nasdaq.com/quote.dll? 94 95 95 6 5 5

page=nasdaq100
finance.indiamart. 95 95 95 5 5 5

com/markets/bse/
www.channelnewsasia.com/cna/ 93 94 93 7 6 7

finance/sg/stockmonitor.htm
Internet Traffic Information

www.Internettrafficreport.com 94 95 95 6 5 5
average.miq.net/index.html 92 93 93 8 7 7
watt.nlanr.net/active/maps/ 95 94 94 5 6 6

ampmap active.php
Average 94.3 5.7

Hit: a match of manually & automatically generated least-informative attribute(s).
Miss: a mismatch. Number of Randomly Chosen Sliding Windows for each test data

set: 100

Table 4.4: Experimental results of test data for load shedding scheme generation
and re-evaluation approach with an average number of hits of 94.3% and an average
number of misses of 5.7%

between changes in the ranking of the attributes of a data stream. These misses could

be minimized by decreasing the time interval between two subsequent re-evaluations of

the load shedding scheme, which would in turn increase the workload on the system.

The decrease in the time interval can be achieved by replacing ‘2’ in step 2(i) of

Algorithm 2 (as given in Section 3.2.3.3) with ‘x’, where x < 2.

The number of calculated hits and misses show the accuracy of the load shedding

scheme at any moment. According to Table 4.4, the load shedding scheme has an

average accuracy, or average number of hits, of 94.3%, whereas the average number

of misses is 5.7%, which achieve a relatively high accuracy. In Table 4.5, we show

some of the hits and misses presented in Table 4.4.

We have also conducted experiments to verify the ability of our load shedding

approach in calculating the number of attributes to be shed at each of the different
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Data Stream Detected Attribute Attribute
Source to be Shed Should be Shed

weather.yahoo.com Sunrise Sunset
Sunset Sunset

finance.indiamart. Percentage Change Weight
com/markets/bse Weight Weight

www.internettraffic- Average Delay Minimum Delay
report.com/ Minimum Delay Minimum Delay

Table 4.5: Some of the hits and misses generated by the test data presented in
Table 4.4

data rates, i.e., 60, 90, and 120 Kbps, with three different channel capacities, i.e.,

72, 98, and 132 Kbps. According to Table 4.64, the number of attributes to be shed

decreases with an increase in the channel capacity, and vice versa, when the data

(transmission) rate remains constant. Also, we notice that no attributes are dropped

when the data (transmission) rate is lower than the channel capacity, as expected.

4.4 Experimental results on recovering shed data

The purpose of verifying the design of our data recovery approach is to measure the

accuracy in recovering shed data. Recall that in our shed data recovery approach, the

value of an attribute A in a sliding window of a data stream S to be shed is stored in

the synopsis recovery matrix of S whenever the difference in the value of A to be shed

and a previously stored value of A in the synopsis recovery matrix exceeds the error

threshold value of S. We have verified the correctness of our data recovery approach

by (i) shedding data from test data (since data recovery is carried out in real-time on

stream data), (ii) recovering the shed data values, and (iii) graphically comparing the

recovered data values to the original data values. The results of the experiments on

data recovery applied to the Internet traffic information data stream retrieved from

4 The test data used in Table 4.6 are the same as the test data shown in Table 4.1, and no
training data is used for this experiment, since this experiment does not require any training data.
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Data Stream Source D C N C N C N
Weather Information

http://weather.yahoo.com/ - Set 1 60 72 0 98 0 132 0
Set 2 90 . . . 2 . . . 0 . . . . . .
Set 3 120 . . . 4 . . . 2 . . . . . .
http://www.wunderground.com/ - Set 1 60 . . . 0 . . . 0 . . . . . .
Set 2 90 . . . 2 . . . 0 . . . . . .
Set 3 120 . . . 3 . . . 2 . . . . . .
http://www.weather.com/ - Set 1 60 . . . 0 . . . 0 . . . . . .
Set 2 90 . . . 2 . . . 0 . . . . . .
Set 3 120 . . . 3 . . . 2 . . . . . .

Stock Exchange Information
http://quotes.nasdaq.com/quote.dll?page= 60 . . . 0 . . . 0 . . . . . .
nasdaq100 - Set 1
Set 2 90 . . . 2 . . . 0 . . . . . .
Set 3 120 . . . 3 . . . 2 . . . . . .
http://finance.indiamart.com/markets/bse/ - Set 1 60 . . . 0 . . . 0 . . . . . .
Set 2 90 . . . 2 . . . 0 . . . . . .
Set 3 120 . . . 3 . . . 2 . . . . . .
http://www.channelnewsasia.com/ 60 . . . 0 . . . 0 . . . . . .
cna/finance/sg/stockmonitor.htm - Set 1
Set 2 90 . . . 1 . . . 0 . . . . . .
Set 3 120 . . . 2 . . . 1 . . . . . .

Internet Traffic Information
http://www.Internettrafficreport.com/ - Set 1 60 . . . 0 . . . 0 . . . . . .
Set 2 90 . . . 2 . . . 0 . . . . . .
Set 3 120 . . . 3 . . . 2 . . . . . .
http://average.miq.net/index.html - Set 1 60 . . . 0 . . . 0 . . . . . .
Set 2 90 . . . 2 . . . 0 . . . . . .
Set 3 120 . . . 3 . . . 2 . . . . . .
http://watt.nlanr.net/active/ 60 . . . 0 . . . 0 . . . . . .
maps/ampmapactive.php - Set 1
Set 2 90 . . . 2 . . . 0 . . . . . .
Set 3 120 . . . 3 . . . 2 . . . . . .

N : Number of Attributes to be Shed
C : Channel Capacity (Kbps) D : Data Rate (Kbps)

Table 4.6: Experimental results for the number of attributes to be shed with changes
in data (transmission) rate and channel capacity
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(a) Experimental results for the test data extracted from http://www. Internettrafficreport.com ,
an Internet traffic information data stream, on March 1, 2006 with error threshold value 13.5%,
data recovery accuracy 90.17%, and error percentage 9.83%

Figure 4.4: Shed data recovery for Internet traffic information data stream

Internet Traffic Report, the stock Exchange information data stream retrieved from

NASDAQ, and the weather information data stream retrieved from Yahoo using 2

GB, 3 GB, and 2 GB of data, respectively, which are portions of the data in Table

4.1 as shown in Figures 4.4(a), 4.4(b), and 4.4(c), respectively. The error threshold

values used in Figure 4.4(a), 4.4(b), and 4.4(c) is the lower of the category recovery

error rate and the fixed point for the data stream, as discussed in Section 3.2.4.3.

An extract of the values that were not recovered from the synopsis matrix of the

three data streams are shown in Tables 4.7, 4.9, and 4.10, respectively. The shedding

schemes for the three source Websites are {Minimum Delay}, {Percentage Change},

and {Sun Set}5, respectively. Shown in Table 4.10 is the summary of the experiments

conducted on our shed data recovery approach.

5 Note that there is very high degree of overlapping between the original percentage change and
the recovered percentage change in Figure 4.4(b), due to high data recovery accuracy.
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Original Values Recovered Values
3.979 4.761
2.666 2.382
2.659 3.148
2.648 3
2.663 2.97
2.655 3.123
2.65 2.757
2.663 2.871
2.648 3.002
2.662 2.9
2.649 2.386
2.641 2.402

Table 4.7: Shed data values that were not stored in the synopsis matrix for the data
stream shown in Figure 4.4(a)

(b) Experimental results for the test data extracted from http://quotes. nas-
daq.com/quote.dll?page=nasdaq100 , a stock Exchange information data stream, on March
1, 2006 with error threshold value 1.3%, data recovery accuracy 99.63%, and error percentage
0.37%

Figure 4.4: Shed data recovery for Stock exchange information data stream
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Original Values Recovered Values
0.3 0.297
0.71 0.716
-0.04 -0.04
0.02 0.02
0.14 0.141
0.04 0.04
-0.1 -0.101
0.45 0.452
0.37 0.372
0.18 0.181
1.19 1.202
-0.06 -0.061

Table 4.8: Shed data values that were not stored in the synopsis matrix for the data
stream shown in Figure 4.4(b)

(c) Experimental results for test data extracted from http://weather. yahoo.com/, a weather in-
formation data stream, on March 1, 2006 with error threshold value 4.5%, data recovery accuracy
97.12%, and error percentage 2.88%

Figure 4.4: Shed data recovery for Weather information data stream
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Original Values Recovered Values
7.06 6.991
6.79 7.004
7.06 7.243
7.32 7.539
6.22 6.398
7.22 7.187
6.49 6.595
6.41 6.373
7.16 7.435
6.22 6.476
6.03 5.927
6.24 6.366

Table 4.9: Shed data values that were not stored in the synopsis matrix for the data
stream shown in Figure 4.4(c)

Error
Data Threshold Data
Size Value recovery Error % of Shed

Data Stream Source (GB) Accuracy (%) (%) data Stored
http://www.internet 2 20 90.17 9.93 1.7110−4

trafficreport.com 2 20 90.17 9.93 1.7110−4

http://quotes.nasdaq 3 1.3 99.63 0.37 1.7310−4

.com/quote.dll?page=nasdaq100 3 1.3 99.63 0.37 1.7310−4

http://weather. 2 4.5 97.12 2.88 3.210−4

yahoo.com/ 2 4.5 97.12 2.88 3.210−4

Average 2.3 8.6 95.64 4.36 2.210−4

Table 4.10: Summary of the experiments conducted on the shed data recovery ap-
proach
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Recall that when there is an attempt to recover a shed value that was stored in the

corresponding synopsis recovery matrix, the recovered value has no error; otherwise,

an error occurs, which has the error rate value less than the error threshold value,

since if this is not the case, then the shed value would have been stored in the synopsis

recovery matrix. Hence, the shed data recovery module would have low error value

in the recovered data if the corresponding error threshold value is low. According to

the experimental results as shown in Table 4.10, we claim that our shed data recovery

method achieves high accuracy in recovering shed data, i.e., low error percentage in

the recovered data, which is in the range of 0.37% and 9.93% with an average of

4.36%6, at low information storage cost, i.e., percentage of the shed data to be stored

in the synopsis matrix, which is in the range of 1.71×10−4% and 3.2×10−4% with

an average of 2.2×10−4%. The processing times and memory usage for the synopsis

matrix have been found to be insignificant.

6 Note that the error in recovered data is the complement of recovery accuracy.
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Chapter 5

Conclusions

In this thesis, we propose a dynamic load shedding and data recovery approach for

solving the network channel overload problem in transmitting stream data with high

data transmission rates over low capacity channels. Our load shedding and data re-

covery approach (i) detects and sheds least-informative attribute(s) of a data stream,

which reduces the information loss by retaining more-informative attributes in the

data stream, i.e., intra-stream load shedding, the first attribute-based load shedding

approach in the literature, (ii) simultaneously sheds data from multiple data streams

according to their data transmission rates and the channel capacity of the single

channel over where multiple data streams are to be transmitted, i.e., inter-stream

load shedding, and (iii) includes a unique data recovery method with low storage

overhead and high accuracy in recovering shed stream data.

The uniqueness of our load shedding approach, as compared with existing load

shedding approaches, is its ability in (i) detecting the least-informative attribute(s)

of a data stream S to form the load shedding scheme of S, and (ii) updating the load

shedding scheme in real-time according to the patterns in which rankings amongst
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attributes of a data stream change. The advantage of re-evaluating load shedding

schemes in real-time is that it minimizes the chances of using an obsolete load shed-

ding scheme. Furthermore, our shed data recovery approach is also unique, since it

considers the category recovery error rate of a data stream, which is based on the

criticality of the data in a data stream, in determining the error threshold, which is

in turn used for deciding when shed data has to be stored in the synopsis matrix

depending on the degree of changes in the shed attribute values.

We have conducted experiments to verify (i) the correctness of our least-informative

attribute load shedding approach, with a 100% accuracy in choosing the least-informative

attributes of a data stream to be shed, (ii) the correctness of our load shedding scheme

generation and re-evaluation with 94.3% accuracy rate in generating and re-evaluating

a load shedding scheme, and (iii) the accuracy of our shed data recovery approach

with 90.2%, 99.6%, and 97.1% success rates in recovering shed data in Internet traf-

fic information, stock exchange information, and weather information data streams,

respectively, with an average shed data recovery accuracy of 95.6%.

Our load shedding approach is dynamic in nature, since it is re-evaluated in real-

time, and is adoptive, since it selects the least-informative attributes in a data stream

to be shed based on the standard deviations of various attributes of the data stream,

which is applicable to any kinds of data streams. Our load shedding approach also

considers the criticality of the data in a data stream and sets lower error threshold

value for critical data streams, such as the medical monitoring data stream, which

reduces the error in recovering shed data that require a high degree of accuracy in

their stream data. Furthermore, our data recovery approach is also adoptive, since it

stores shed data in a synopsis matrix of a data stream S whenever the change in the

value to be shed and the previous value stored in the synopsis matrix is greater than
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the pre-defined recovery error threshold, irrespective of the application domain of S.

In order to evaluate the correctness of the category assignment module of our load

shedding and data recovery approach, we have verified the correctness in assigning a

new data stream to its corresponding category, which is either ‘Extremely Critical ’,

‘Very Critical ’, ‘Moderately Critical ’, ‘Low Critical ’, ‘Not Critical ’, or ‘Others ’, with

93% accuracy, using the Fuzzy set IR model, which calculates the similarity between

the lists of pre-defined attribute names and the list of attribute names for the new

data stream to determine the criticality category of the new data stream.

Our shed data recovery method achieves high accuracy in recovering shed data

at low information storage cost, i.e., percentage of the shed data to be stored in the

synopsis matrix, which is in the range of 0.000171% and 0.00032% with an average

of 0.00022%. The processing times and memory usage for the synopsis matrix have

been found to be insignificant.
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Appendix A

An example on the use of

Hamming code

Consider the 7-bit data word ”0110101”. We demonstrate using Table A.1 how the

Hamming code of the 7-bit data word ”0110101” is calculated and used to detect an

error, where D i (1 ≤ i ≤ 7) denotes a data bit and P j (1 ≤ j ≤ 4) denotes

a parity bit in Table A.1.

First of all, all the data bits of the data word “0110101” are inserted into their

corresponding positions in the bit string and the parity bits are calculated in each

case using even parity.

According to the steps in the Hamming code formation, P1 considers all the data

bits at positions having the 1st bit (in their binary representation) being a ‘1’, which

are D1, D2, D4, D5, and D7 in this example. Amongst these data bits in the data

word, three of them, i.e., D2, D5, and D7, are set as ‘1’, thus the parity bit P1 ofD1,

D2, D4, D5, and D7 is set as ‘1’ to ensure even parity. P2 considers all the data bits

at positions having the 2nd bit (in their binary representation) being a ‘1’, which are
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Parity/Data P1 P2 D1 P3 D2 D3 D4 P4 D5 D6 D7

Bit Position 1 2 3 4 5 6 7 8 9 10 11
Bit Position
in Binary 1 10 11 100 101 110 111 1000 1001 1010 1011

Data Word
without
Parity: 0 1 1 0 1 0 1

P1 1 0 1 0 1 1
P2 0 0 1 0 0 1
P3 0 1 1 0
P4 0 1 0 1

Data Word
with

Parity: 1 0 0 0 1 1 0 0 1 0 1

Table A.1: Calculation of Hamming code parity bits for the data word “0110101”

D1, D3, D4, D6, and D7. Amongst these data bits in the data word, two of them,

i.e., D3, and D7, are set as ‘1’, thus the parity bit P2 of D1, D3, D4, D6, and D7 is

set to 0. P3 considers all the data bits at positions having the 3rd bit (in their binary

representation) being a ‘1’, which are D2, D3, and D4. Amongst these bits in the

data word, two of them, i.e. D2, and D3, are set as ‘1’, thus the parity bit P3 of D2,

D3, and D4 is unset, i.e., set to 0. P4 considers all the data bits at positions having

the 4th bit (in their binary representation) being a ‘1’, which are D5, D6, and D7.

Amongst these bits in the data word, two of them, i.e., D5, and D7, are set as ‘1’,

thus the parity bit P4 of D5, D6, and D7 is unset.

The new data word (with the inserted parity bits) is now ”10001100101”. We

assume the last bit is corrupted during transmission and is changed from ‘1’ to ‘0’,

which yields the new (flawed) data word ”10001100100”, as shown in Table A.2, which

demonstrates the checking of parity bits to detect and correct errors.

According to the Hamming code formation, the algorithm checks the data bits

arrived at the receiver site at positions having the 1st bit (in their binary representa-

tion) being set, which are D1, D2, D4, D5, and D7 in this example. Amongst these
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data bits in the flawed data word, two of them, i.e., D2 and D5 are set as ‘1’, and thus

the calculated parity bit ofD1, D2, D4, D5, and D7 is set as ‘0’ to ensure even parity.

Since this calculated parity bit does not match the value of parity bit P1 in the new

flawed data word, which is a ‘1’, the parity check is set to fail, and the corresponding

parity bit check flag is set to ‘1’. Next, the algorithm checks the data bits at positions

having the 2nd bit (in their binary representation) being set, which are D1, D3, D4,

D6, and D7. Amongst these data bits in the flawed data word, only one bit, i.e., D3

is set as ‘1’, and thus the calculated parity bit P2 is set to ‘1’. Since this calculated

parity bit does not match the parity bit P2 in the new flawed data word, which is a

‘0’, the parity check is set to fail, and the corresponding parity bit check flag is set

to ‘1’. Hereafter, the algorithm checks the data bits at positions having the 3rd bit

(in their binary representation) being set, which are D2, D3, and D4. Amongst these

data bits in the flawed data word, two of them, i.e. D2, and D3, are set as ‘1’, and

thus the calculated parity bit P3 is unset, i.e., set to 0. Since this calculated parity

bit matches the parity bit P3 in the new flawed data word, which is a ‘0’, the parity

check is set to pass, and the corresponding parity bit check flag is set to 0. Last,

the algorithm checks the data bits at positions having the 4th bit (in their binary

representation) being set, which are D5, D6, and D7. Amongst these data bits in the

flawed data word, only one bit, i.e., D5, is set as ‘1’, and thus the calculated parity

bit P4 is set to ‘1’. Since this calculated parity bit does not match the parity bit P4

in the new flawed data word, which is a ‘0’, the parity check is set to fail, and the

corresponding parity bit check flag is set to ‘1’.

The parity bit check flag (read in the reverse order) is 1011 for the flawed data

word (with parity bits), which is “10001100100”. The decimal value of the parity bit

check flag is 11, which signifies that the 11th bit, which is D7, in the flawed data word
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Calcu-
lated
Parity

Bit
Based

on
Trans-

Parity/ mitted Original
Data Data Parity Parity
Bit P1 P2 D1 P3 D2 D3 D4 P4 D5 D6 D7 Bits Bits Check F

Received
Data
Word: 1 0 0 0 1 1 0 0 1 0 0

P1 1 0 1 0 1 0 0 1 Fail 1
P2 0 0 1 0 0 0 1 0 Fail 1
P3 0 1 1 0 0 0 Pass 0
P4 0 1 0 0 1 0 Fail 1

F: Parity Bit Check Flag

Table A.2: Checking of parity bits for the flawed data word “0110101”

(including the parity bits and the error bit) is incorrect and must be flipped.

Flipping the 11th bit, which is ‘0’, in the flawed data word (with parity bits), which

is “10001100100”, causes the binary representation of the flawed word to change back

into “10001100101”, which is the unflawed data word with parity bits, and removing

the parity bits from the unflawed data word “10001100101” yields the original data

word “0110101”.

Consider the 7-bit data word “0110101” again and assume that the second bit,

which is the parity bit P2, is corrupted during transmission and is changed from ‘0’

to ‘1’, which yields the new flawed data word ”11001100101”, as shown in Table A.2,

which demonstrates yet another checking of parity bits to detect and correct errors.

According to the Hamming code formation, the algorithm checks the data bits at

positions having the 1st bit (in their binary representation) being set, which are D1,

D2, D4, D5, and D7. Amongst these data bits in the flawed data word, three of them,

i.e., D2, D5, and D7, are set as ‘1’, and thus the calculated parity bit ofD1, D2, D4,
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D5, and D7 is set as ‘1’ to ensure even parity. Since this calculated parity bit matches

the value of parity bit P1 in the new flawed data word, which is also a ‘1’, the parity

check is set to pass, and the corresponding parity bit check flag is set to ‘0’. The

algorithm next checks the data bits at positions having the 2nd bit (in their binary

representation) being set, which are D1, D3, D4, D6, and D7. Amongst these data

bits in the flawed data word, two of them, i.e., D3, and D7 are set as ‘1’, and thus the

calculated parity bit P2 is set to ‘0’. Since this calculated parity bit does not match

the parity bit P2 in the new flawed data word, which is a ‘1’, the parity check is set to

fail, and the corresponding parity bit check flag is set to ‘1’. Hereafter, the algorithm

checks the data bits at positions having the 3rd bit (in their binary representation)

being set, which are D2, D3, and D4. Amongst these data bits in the flawed data

word, two of them, i.e. D2, and D3, are set as ‘1’, and thus the calculated parity bit

P3 is unset, i.e., set to 0. Since this calculated parity bit matches the parity bit P3

in the new (flawed) data word, which is a ‘0’, the parity check is set to pass, and the

corresponding parity bit check flag is set to 0. As the last step, the algorithmchecks

the data bits at positions having the 4th bit (in their binary representation) being set,

which are D5, D6, and D7. Amongst these data bits in the flawed data word, two of

them, i.e., D5, and D7 are set as ‘1’, and thus the calculated parity bit P4 is set to

‘0’. Since this calculated parity bit matches the parity bit P4 in the new flawed data

word, the parity check is set to pass, and the corresponding parity bit check flag is

set to ‘0’.

As the parity bit check flag (read in the reverse order) is 0010 for the flawed data

word (with parity bits), which is “11001100101”, the decimal value of the parity bit

check flag is 2, which signifies that the 2nd bit in the flawed data word (including the

parity bits and the error bit), that turns out to be the parity bit P2 is incorrect and
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Calcu-
lated
Parity

Bit
Based

on
Trans-

Parity/ mitted Original
Data Data Parity Parity
Bit P1 P2 D1 P3 D2 D3 D4 P4 D5 D6 D7 Bits Bits Check F

Received
Data
Word: 1 1 0 0 1 1 0 0 1 0 1

P1 1 0 1 0 1 1 1 1 Pass 0
P2 1 0 1 0 0 1 0 1 Fail 1
P3 0 1 1 0 0 0 Pass 0
P4 0 1 0 1 0 0 Pass 0

F: Parity Bit Check Flag

Table A.3: Checking of parity bits for the flawed data word “0110101”

must be flipped.

Flipping the 2nd bit, which is ‘1’, in the flawed data word (with parity bits), which

is “11001100101,” causes the binary representation of the flawed word to change back

into “10001100101” (which is the unflawed data word with parity bits), and removing

the parity bits from the unflawed data word “10001100101” yields the original data

word “0110101”.
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Appendix B

An example on movings averages

We consider arbitrary stock data to demonstrate the usage of the two most popular

types of MA, i.e., SMA and EMA, to tone down the fluctuations. A SMA for the

most recent values in a period is formed by computing the average (mean) of the data

over a specified number of periods. For example, a 10-day simple moving average for

a particular stock is calculated by adding the closing prices for the last 10 days and

dividing the total by 10. To explain the concept even better, we quote examples

hosted by [HST].

Table B.1 shows the closing prices for stocks of East man Kodak (EK), which

are used for calculating a 10-day SMA, for which Day 10 is the first day possible to

calculate a SMA. As the closing price for a new day is added, it is included in the

SMA calculation and the closing price for the oldest day is excluded. For example, the

10-day SMA for Day 11 is calculated by adding the closing prices of Day 2 through

Day 11 and dividing the sum by 10. The averaging process is then moved on to the

next day where the 10-day SMA for Day 12 is calculated by adding the prices of Day

3 through Day 12 and dividing the sum by 10.
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SMA EMA Period (N): 10

Close 10-Day
Period Date ( C ) EMA (X)

1 09-Nov-99 $ 64.75
2 10-Nov-99 $ 63.79
3 11-Nov-99 $ 63.73
4 12-Nov-99 $ 63.73
5 15-Nov-99 $ 63.55
6 16-Nov-99 $ 63.19
7 17-Nov-99 $ 63.91
8 18-Nov-99 $ 63.85
9 19-Nov-99 $ 62.95

10 22-Nov-99 $ 63.37 $ 63.682
11 23-Nov-99 $ 61.33 $ 63.340
12 24-Nov-99 $ 61.51 $ 63.112
13 26-Nov-99 $ 61.87 $ 62.926
14 29-Nov-99 $ 60.25 $ 62.578
15 30-Nov-99 $ 59.35 $ 62.158
16 01-Dec-99 $ 59.95 $ 61.834
17 02-Dec-99 $ 58.93 $ 61.336
18 03-Dec-99 $ 57.68 $ 60.719
19 06-Dec-99 $ 58.82 $ 60.306
20 07-Dec-99 $ 58.87 $ 59.856

Table B.1: The sample closing prices for stocks of East man Kodak (EK) for 20 days

Figure B.1: SMAs and EMAs for the data from Table B.1 and Table B.2
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The chart in Figure B.1 shows the SMAs (along with the EMAs) for the data from

Table B.1. The SMAs are calculated starting on Day 10 and continue from there as

explained before. The simple illustration highlights the fact that all moving averages

are lagging indicators and will always be ”behind” the closing price, i.e., stay above

the original value when the value curve is curving down (i.e., when the values are

decreasing) and stay below the original value when the value curve is curving up (i.e.,

when the values are increasing).

Clearly, SMA lacks the ability of controlling the lag according to the user’s need.

This problem can be overcome by using EMA, which is also called Exponential

Weighted Moving Averages (EWMAs)1 [HIN]. EMA reduces the lag by applying

more weight to recent values relative to older values2. Since EMA puts more weight

on recent values, which allows the EMA to react quicker to recent changes in values

than the SMA.

Table B.2 includes the EMAs for the same set of closing prices of East man Kodak

at the end of different days as shown in Table B.1. For the EMA of the first period,

the SMA over the first period was used as the EMA, which is shown as darkened in

Table B.2. From the 2nd period onwards, to calculate the EMA of nth period, i.e.,

EMA(an), n ≥ 1, the EMA of the previous period, i.e., EMA(an−1) was used. Assume

that C in Table B.2 denotes the current price, P denotes the EMA at the close of the

previous day, and K, which is the multiplier used to control the impact of older data

points, is 0.18 (refer to Equation 2 in chapter 3). Using Equation 2 (in chapter 3),

the 11th period is calculated as:

(61.33 - 63.68) x 0.18 + 63.68 = 63.25

1 http://www.stockcharts.com/education/IndicatorAnalysis/indic movingAvg.html
2 The recent (older, respectively) value of the closing price is the value which has not been (has

been, respectively) used to calculate the EMA.
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EMA Period (N): 10
Smoothing Constant (K): 0.181818

Previous
Close Period’s 10-Day

Period Date ( C ) EMA (P) EMA (X)
1 09-Nov-99 $ 64.75
2 10-Nov-99 $ 63.79
3 11-Nov-99 $ 63.73
4 12-Nov-99 $ 63.73
5 15-Nov-99 $ 63.55
6 16-Nov-99 $ 63.19
7 17-Nov-99 $ 63.91
8 18-Nov-99 $ 63.85
9 19-Nov-99 $ 62.95

10 22-Nov-99 $ 63.37 $ 63.682 - *
11 23-Nov-99 $ 61.33 $ 63.682 $ 63.254
12 24-Nov-99 $ 61.51 $ 63.254 $ 62.937
13 26-Nov-99 $ 61.87 $ 62.937 $ 62.743
14 29-Nov-99 $ 60.25 $ 62.743 $ 62.290
15 30-Nov-99 $ 59.35 $ 62.290 $ 61.755
16 01-Dec-99 $ 59.95 $ 61.755 $ 61.427
17 02-Dec-99 $ 58.93 $ 61.427 $ 60.973
18 03-Dec-99 $ 57.68 $ 60.973 $ 60.374
19 06-Dec-99 $ 58.82 $ 60.374 $ 60.092
20 07-Dec-99 $ 58.87 $ 60.092 $ 59.870

Table B.2: EMAs for the closing prices of East man Kodak at the end of different
days
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The chart in Figure B.1 also shows the EMAs (along with SMAs) for the data

from Table B.2, which shows that the EMA curve is always closer to the East man

Kodak curve than the SMA curve.
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Appendix C

Data sets used for EQ Threshold

values detection and verification

The data set used to detect the EQ threshold values used in this thesis is shown in

Table C.1.

Data Stream Source (i) List of Sim Sim EQ Detected
Attribute (i,j) (j,i) Category
Names

Internet Traffic Information (j)
http://www.internet Router Name, 0.5 1 1 Internet
trafficreport.com Current Index, Traffic

Response Information
Time, Packet
Loss,
Minimum Delay,
Average Delay,
Maximum Delay

http://average.miq. Router, Time, 0.63 1 1 Internet
net/index.html Response Traffic

Packet Loss, Information
Minimum Delay,
Average Delay,
Maximum Delay,

http://watt.nlanr.net Site Name, 0.166 0.2 0 Others
/active/maps/amp Min, Mean, (False
mapi active.php Max, StdDev, Negative)
Continued on Next Page. . .
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Table C.1 – Continued
Loss

http://www.jisctau.ac. Router Name, 0.666 0.8 1 Internet
uk/usa-access.html Average delay, Traffic

Max Delay, Information
Min delay, Loss

http://www.ratings Router, 0.777 0.8 1 Internet
.matrix.net/ Packet Loss, Traffic

Min Loss, Information
Max Loss,
Average Loss

http://www.cns.ucla Router Name, 0.5 1 1 Internet
.edu/traffic.html Current Index, Traffic

Response Time, Information
Packet Loss,
Minimum Delay,
Average Delay,
Maximum Delay

http://www1.world Router Name, 0.6 0.6 1 Internet
com.com/global/ Latency, Packet Traffic
about/network/latency/ Loss Information
http://stats.dante.org. Router Name, 0.666 0.8 1 Internet
uk/nep/routermap.html Average Delay, Traffic

Max Delay, Min Information
delay, Loss

Weather Information (j)
http://www.metservice. Location, 0.55 0.8 1 Weather
co.nz/default/ index.php Temperature, Information
?alias=Auckland Humidity, Wind

Direction, Wind
Speed, Pressure,
Rainfall

http://wwwa.accuweather. Location, 0.47 0.8 1 Weather
com/worldforecastcurrent Temperature, Information
conditions.asp?partner=a Humidity, Visibilty
ccuweather&myadc=0&tr Ceiling, DewPoint
aveler=0&zipcode=SAM— Apparent
AR—AR002—SAN%20FRA Temperature
NCISCO—&metric=1 Wind Chill,

Wind Direction,
Wind Speed,
Pressure, Wind
Gusts

http://wwwagwx.ca. Location, Air 0.5 1 1 Weather
uky.edu/ Temperature, Information

Relative Humidity,
Dewpoint, Wind
Direction, Barometer
Pressure

http://weather.msn.com/lo Location, Temperature, 0.45 1 1 Weather
cal.aspx?wealocations=w Humidity, Visibility, Information
c:USAZ0105 Dewpoint, Wind,
Continued on Next Page. . .
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Table C.1 – Continued
UV Index, Sunrise,
Sunset, Barometer

http://autofeed.msn.co.in/ Location, Temperature, 0.625 1 1 Weather
weather/details/Delhi.asp Wind, Relative Information

Humidity, Barometer,
Sunrise, Sunset

http://www.bbc.co.uk/we Location, Temperature, 0.57 0.8 1 Weather
ather/5day.shtml?world=0 Wind, Relative Information
151 Humidity, Pressure,

Visibility
http://www.findlocalweat Location, Humidity, 0.312 0.8 1 Weather
her.com/forecast.php?icao Wind Speed, Information
#NAME? Barometer, Dewpoint,

Heat Index, Wind
Chill, Civil
Twilight,
Sunrise, Sunset,
Civil Twilight

http://www.news8austin.c Location, High 0.25 0.8 0 Weather
om/content/Weather/weat Today, Low Information
her%5Fstations/Station1/ Today, Humidity, (False

Wind Speed, Negative)
Barometer, DewPoint
Heat Index,
Gust, Daily Rain,
Weekly Rain,
Monthly Rain

http://weather.yahoo.com/ Location, Temperature 0.45 1 1 Weather
Humidity, Information
Wind, Visibility
Barometer, DewPoint
Heat Index,
Sun Rise, Sun Set

http://www.wundergroun Location, Temperature 0.57 0.8 1 Weather
d.com Humidity, Information

Wind, Visibility
Pressure, DewPoint
Precipitation

http://www.weather.com Location, UV Index 0.375 0.6 1 Weather
Humidity, Information
Wind, Visibility
Pressure, DewPoint

http://weather.boston.com Location, Temperature 0.54 1 1 Weather
Humidity, Information
Wind Direction, Visibility
Precipitation, Barometer
Wind Speed
Tanning Index

Stock Exchange Information (j)
http://quotes.nasdaq.com/ Company Name, Last 0.5 0.8 1 Stock
quote.dll? Sale, Net Change Exchange
Continued on Next Page. . .
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Table C.1 – Continued
Share Volume, Nasdaq Information
100 Index, Percentage
Change

http://finance.indiamart. Company Name, 0.44 0.6 1 Stock
com/markets/bse/ Last Price, Change, Exchange

Percentage Change, Information
Market Cap, Weight

http://www.channelnews Stock, Buy, Sell, 0.33 0.2 1 Stock
asia.com/cna/finance/ Last Done, Volume Exchange

Information
http://www.ihs.com/Inves Company Name, Last 0.44 0.6 1 Stock
tor-Relations/stock- Price, Change, Exchange
information.htm Percentage Information

Change, Market
Cap, Weight

http://www.stockwatch.co Symbol, Company 0.66 0.6 1 Stock
m/swnet/utilit/utilit snaps Name, Price, Last Exchange
h result.aspx?action=go& Change, Volume, Open Information
symbol=AM&regionn=C High, Year High, Low,
&lookup=symbol&snapsh Percentage Change
ot=default
http://www.newsx.com.au Symbol, Company 0.55 1 1 Stock
/prices alpha.asp?nsxcod Name, Last Price, Exchange
e=APO Offer, Volume, Open, Information

High, Low,
Percentage Change

http://www.tsx.com/Http Symbol, Price, 0.57 0.6 1 Stock
Controller?GetPage=Quot Change, Exchange
esViewPage&DetailedVie Percentage Information
w=DetailedPrices&Marke Change, Volume,
t=T&Language=en&Quot Exchange
eSymbol 1=am&x=29&y=1
http://phx.corporateir.net/ Company Name, Price, 0.388 1 1 Stock
phoenix.zhtml?c=84204& Volume, Intraday High, Exchange
p=irol-stockquotechart Intraday Low, Todays Information

Open, Previous Close,
Change, Percentage Change,
52 Week High, 52 Week
Low, Currency, Exchange

http://www.google.com/ Company Name, Open, 0.5 0.6 1 Stock
help/features.html#stock High, Low, Volume, Exchange

Average Volume, Information
Market Cap

http://moneycentral.msn. Company Name, Average 0.3 0.6 1 Stock
com/detail/stock quote? Daily Volume, High, Exchange
Symbol=MSFT Low, Previous Close, Information

52 Week High, 52 Week
Low, Market Cap

Others (j)
Financial Information

http://www.deloitte.com/d Revenues, Year, 0 0 0 Others
Continued on Next Page. . .
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Table C.1 – Continued
tt/leadership/0,1045,sid% Tax, US Offices,
253D2282,00.html CPA, Others
https://online.wellsfargo. Date, Description, 0 0 0 Others
com/mn1 ea4 on/cgibin/ Amount, Balance
session.cgi?sessargs=H s
GNvbD35koY 7IUSgvM
ni9RZ5kVJqN
https://securekeypointcu. Date, Num, 0 0 0 Others
com/Common/Register/ Description,
Register.asp?Account=1 Amount, Clear,
&Pending=1 Balance Action

Network Data Loss Information
http://members.toast.net/l Line Rate, 0 0 0 Others
eslie/testpage/testinfo.htm Compression Off,

Compression On
http://members.toast.net/ Line Rate, Transfer
leslie/testpage/testinfo.htm Rate, Estimated 0 0 0 Others

download, Typical download
http://www.cisco.com/en/ Throughput, Transfer 0 0 0 Others
US/tech/tk39/tk51/packt Rate, Bit Rate, Drops
drops.shtml

Chemical Properties Information
http://chemlab.pc.maricop Atomic number, 0 0 0 Others
a.edu/PERIODIC/Pb.html Atomic weight,

Melting point,
Bonding radius,
Boiling point,
Atomic radius,
Heat of vaporization,
Specific heat

http://en.wikipedia.org/ Name, Symbol, Discoverer, 0 0 0 Others
wiki/Table of chemical Period Group,
elements Mass, Density,

Melting, Boiling,
Year of discovery

http://ecophys.biology.utah Leaf temperature, 0.28 0.4 0 Others
.edu/Labfolks/domingues/ Relative Humidity, CO2

Concentration,
Staurating level

http://72.14.207.104/searc Temperature, 0.2 0.2 0 Others
h?q=cache:LeSc6K0sZ0k Pressure, O2 Sub
J:www.freepatentsonline. Flow Rate
com/4956582.html+temp
erature+%22conditions+i
nside+chamber%22+moni
toring&hl=en&gl=us&ct=
clnk&cd=4

Table C.1: Test data used for detecting the permissible and variation threshold values detected in
Figure 4.2(a) and 4.2(b)
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The data set used to verify the EQ threshold values used in this thesis is shown

in Table C.2.

Data Stream Source (i) List of Sim Sim EQ Detected
Attribute (i,j) (j,i) Category
Names (j)

Internet Traffic Information (j)
http://www.cyberlynk.net/ Max in, Average 0.33 0.2 0 Others
customercare techsupport in, Current in, (False
/traffic/ Max out, Average Negative)

out, Current out
http://watt.nlanr.net Site Name, Min, 0.166 0.2 0 Others
/active/amp-apantyo/ Mean, Max, (False
international/body.html StdDev, Loss Negative)
http://www.nlanr.net/ Router, Packet Loss, 0.66 0.8 1 Internet
Presentations/ Min Loss, Max Traffic
Montreal.jun96/ Loss, Average Loss information
http://plumeria.vmth. Router, Delay, 0.75 0.6 1 Internet
ucdavis.edu/ java/ Loss, Latency Traffic
cgi-bin/netstat.cgi information
http://ipnetwork.bgtmo. Destination, 0.5 0.4 1 Internet
ip.att.net/pws/current Latency, Traffic
network performance.shtml Packet Loss 1 information

http://traffic. Name, Average 0.625 0.6 1 Internet
cwix.com/ Delay, Max Delay, Traffic

Min delay, Loss information
Weather Information (j)

http://www.bbc.co Location, Max Day, 0.3 0.6 1 Weather
uk/weather/5day Min Night, Wind, information
.shtml?world=0100 Visibility, Pressure,

Relative Humidity, Sun
Index, Pollution

http://asp.usatoday.com/ Location, Temperature, 0.45 1 1 Weather
weather/CityForecast. Sunrise, Sunset, Heat information
t.aspx?LocationID=USCA Index, Humidity, Wind,
0993&ps=L1 Visibility, Dewpoint,

Barometer
http://www.theweather Location, Temperature, 0.4 0.8 1 Weather
network.com/weath Wind Gusts, Relative information
er/cities/can/Pages/ Humidity, Dewpoint,
CAAB0049.htm Pressure, Visibility,

Ceiling
http://www.washington Condition, Temperature, 0.57 0.8 1 Weather
post.com/ac2/wpdyn/ Wind, Barometer, information
weather?local=true& Humidity, Sunrise,
zipcode=95111&go.x=0 Sunset
http://www.weather Location, Temperature, 0.8 0.44 1 Weather
online.co.uk/North Humidity, Visibility, information
Continued on Next Page. . .
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Table C.2 – Continued
America.htm Precipitation, Clouds,

Wind, Pressure, Snow
http://www.weather Location, Temperature, 0.37 0.6 1 Weather
reports.com/United Wind, Direction, information
States/CA/ Pressure, Dewpoint,
Los Angeles Visibility, Feelslike
http://www.chicago Location, Temperature, 0.62 1 1 Weather
tribune.com/news/ Windchill, Wind, Dewpoint, information
weather/ Humidity, Visibility,

Barometer
http://weather.cbs2. Location, Wind, 0.66 0.8 1 Weather
com/auto/kcbsV2/CA/ Humidity, Dewpoint, information
Sun Valley.html Visibility, Barometer
http://www.thunder Location, Temperature, 0.45 1 1 Weather
headtech.com/Taunton2W/ Dewpoint, Humidity, Wind information
Current.html Gusts, Wind, SunShine,

Precipitation, Barometer,
Heat Index

http://weather.philly Location, Temperature, 0.57 0.8 1 Weather
.com/auto/philly/PA/ Wind, Dewpoint, information
Philadelphia.html?map Pressure, humidity,
=Temperature Visibility
http://weather.wcco.com/ Location, Wind, 0.66 0.8 1 Weather
US/MN/Minneapolis.html Humidity, Dewpoint, information
US/MN/Minneapolis.html Visibility, Barometer
http://weather.calendar Location, Temperature, 0.66 0.8 1 Weather
live.com/US/CA/ Wind, Dewpoint, humidity information
KBUR.html Visibility

Stock Exchange Information (j)
http://www.nyse.com/about/ Name, Symbol, Last 0.4 0.4 1 Stock
listed/lc C.html?Listed Trade, Volume, Change exchange
Comp=All&start=121& information
startlist=1&itemNAME?
http://www.amex.com/ Product, Symbol, 0.833 0.8 1 Stock

Last Sale, Volume exchange
information

http://www.londonstock Name, Price, 0.75 1 1 Stock
exchange.com/en- GB High, Low, exchange
/pricesnews/prices/ Last Close, Volume, information
system/detailed Offer
prices.htm?ti=ANTO
http://www.asx.com.au Code, Last Change, 0.5 0.4 1 Stock
/asx/research/CompanyInfo Offer, Open, exchange
SearchResults.jsp?search High, Low, Volume information
By=asxCode&allinfo=on&
asxCode=ANZ&company
Name=&principalActivity
=&industryGroup=NO
http://www.tsx.com/Http Company Name, Last 0.375 0.6 1 Stock
Controller?GetPage= Value, Net Change, exchange
ListedCompaniesView Percentage Change information
Continued on Next Page. . .
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Table C.2 – Continued
Page&Page=1&Search
IsMarket=Yes&Market=
T&Language=en&Search
Criteria=Name&Search
Type=Contain&Search
Keyword=cisco+systems
&SUBMIT=Submit
http://www.swx.com/ Company Name, Last 0.6 0.6 1 Stock
market/quote chart Trade, Change, Market, exchange
en.html?id=CH Previous Close, Open information

0012138605CHF1
http://www.set.or.th Company Name, Last 0.75 1 1 Stock
/set/stockquotation. Change, Percentage exchange
do?languageNAME? Change, High, information

Low, Volume, Value
http://www.jamstockex Company Name, Volume, 0.295 0.4 1 Stock
.com/controller.php? Last Sale, Change exchange
action=view summary information
http://www.kse.com.pk/ Company Name, Symbol, Stock

Volume, High Rate, exchange
Price Change, Shares information

http://www.nyse.com/ Symbol, Volume, 0.6 0.6 1 Stock
home.html Value, Change exchange

information
http://esite.sgx.com/ Company Name, Last, 0.333 0.4 1 Stock
live/st/STTop20. Change, Percentage, Volume, exchange
asp?top=Gain&cnt=20 Buy, Sell, Volume, information

High, Low
http://www.stockhouse. Company Name, Last 0.255 0.2 0 Others
ca/quote/index.asp Change, Percentage Change, (False

High, Low, Open Negative)
Others (j)

Financial Information
https://cards.chase. Trans Date, Post 0 0 0 Others
com/Account/Account Date, Type, Description,
Activity.aspx?AI=1 Transaction Number, Amount
https://www99.american Date, Description, 0 0 0 Others
express.com/myca/ Amount
estatement/us/action?
https://www4.usbank.com/ Date, Description, 0 1 0 Others
internetBanking/ Credit, Charge
RequestRouter?reques
tCmdId=AccountDetails
&ACCOUNTLISTITEM
=IB7rtb8XZhcCl7f
7n5JKRQmD%2FKUy
rWm%2BtxExx%2
BivOALj6P5f2lz
UcJNIHHa1i3Kg
kV8%2FzHVFhIlRdY
zEPwgtIwwOJ%2BLb0
Continued on Next Page. . .
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Table C.2 – Continued
8WYtd6XYEDyncrrxH
h%2BDKW36%2FtSJw
6mMQ%2Bk6%2B
k8DZgUncD1%
2BiprIFaUjQ%3D%3D

Network Data Loss Information
http://www.nlanr. Source, Min, Avg, 0 0 0 Others
net/Viz/End2end/ Max, Throughput,

Destination, Timestamp
http://www.cisco.com/en/US Source, Packet drop, 0 0 0 Others
/products/hw/routers/ps3 Througphut, Destination
41/products data
sheet09186a00801.html

Chemical Properties Information
http://www.chemical Name, Symbol, Atomic 0 0 0 Others
elements.com/ Number, Mass, Melting
elements/fe.html Point, Boiling Point,

Density, Number
Protons, Electrons

http://www.lenntech. Atomic Number, Atomic 0 0 0 Others
com/Periodic-chart- Mass, Electrnegativity,
elements/H-en.htm Density, Melting Point,

Boiling Point,
Vanderwalls Radius,
Ionic Radius

http://www.ieer.org/ Color, Melting Point, 0 0 0 Others
fctsheet/pu-props.html Boiling Point, Density
http://www.chemistry Symbol, Atomic Number, 0 0 0 Others
explained.com/ Atomic Mass,
elements/C-K/Indium.html Family, Pronumciation
http://www.chemsoc.org/ Atomic Number, Relative 0 0 0 Others
visElements/pages/data/ Atomic Mass,
intro groupii data.html Melting Point, Density
Table C.2: Test data used for verifying the permissible and variation threshold values detected in
Figure 4.2(a) and 4.2(b)
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