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Brigham Young University
Provo, UT 84602

847.697.3378 (Voice)
801.422.0201 (Fax)
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Abstract — It is well understood that the performance of noncoherent receivers with multi-symbol

observation intervals approaches that of coherent receivers as the observation interval grows arbi-

trarily large. However, since complexity also grows exponentially with observation length, there

are practical limits to this approach. In this paper we present a noncoherent receiver for continuous

phase modulation (CPM) whose structure is a hybrid between existing coherent and noncoherent

receiver architectures. The presentation is given in the most generalM -ary multi-h terms, with

some emphasis on the special and popular case of single-h CPM. The receiver has a multi-symbol

observation parameter similar to that of existing noncoherent receivers. However, it uses a recur-

sive metric similar to that of the optimal coherent receiver, which allows it to use much smaller

values of the multi-symbol observation parameter thus reducing the required complexity. We ana-

lyze the performance of this receiver over the noncoherent additive white Gaussian noise (AWGN)

channel and derive a union bound on the bit error probability. We confirm the usefulness of the

bound with computer simulations. We also give thorough examples using quaternary raised cosine

(RC) single- and multi-h CPM schemes. With these examples we show that previous noncoherent

CPM techniques extend to the general multi-h case. The simulations also show that the proposed

receiver outperforms these other noncoherent techniques, at a fraction of the complexity.

∗corresponding author
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1 Introduction

Continuous Phase Modulation (CPM) is in wide use for its attractive power and bandwidth prop-

erties. However, CPM detectors often suffer from high implementation complexity in terms of the

required number of correlators (matched filters) and trellis states. Another difficulty with CPM is

receiver synchronization. One means of avoiding some of the burden of synchronization, namely

carrier phase recovery, is the use noncoherent detection techniques, which is the focus of this paper.

There are numerous noncoherent detection techniques that have been proposed, a thorough

summary of these is found in [1, 2]. Of these is the class of detectors with multiple-symbol ob-

servation intervals. Generally speaking, the performance of multi-symbol noncoherent detection

schemes approaches that of coherent detection as the observation interval (and complexity) grows

arbitrarily large. This was first found in [3] for CPM and has been confirmed in [2, 4, 5] to name a

few.

A key assumption in multi-symbol noncoherent detectors is that the carrier phase, while un-

known, varies slowly enough that it can be assumed to remain constant over a multi-symbol ob-

servation interval. This allows receiver metrics to combine constructively over this interval. By

contrast, the optimal coherent receiver removes the carrier phase so that receiver metrics combine

constructively over indefinitely long observation intervals, which leads to an efficient recursive

implementation via the Viterbi algorithm.

In this paper we present a noncoherent receiver that is a hybrid of coherent and noncoherent

architectures. We describe this receiver in the most general terms using the multi-h CPM model,

with equal applicability to the more common special case of single-h CPM. The receiver has a

multi-symbol observation parameter,N , which is similar to that of existing noncoherent receivers.

A key feature of the receiver is that it has a recursive metric which is similar to the optimal coherent

receiver. The difference is that the cumulative metricλ(n) is a “leaky” integral, i.e. λ(n) =

aλ(n − 1) + z(n), wherez(n) is a metric increment and theleakage coefficienta is in the range

0 ≤ a < 1 (by contrast, the cumulative metric in the coherent case hasa = 1 and is not a leaky

integral). This cumulative metric partially achieves the performance gain of an infinitely long
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observation interval without requiring large values ofN . This is significant since the increments

of N come with exponential increases in complexity.

We analyze the performance of this receiver over the noncoherent AWGN channel. We derive

the exact pairwise error probability, which in turn is used to obtain a union bound on the bit error

probability. We also use an approximation to obtain an equivalent minimum Euclidian distance

which gives a convenient single-parameter characterization of error performance.

In the next section we describe the various detection techniques for multi-h CPM, including the

proposed noncoherent technique (in doing so, we also show that these existing techniques extend

to the multi-h case). In Section 3 we derive the pairwise error probability of this new noncoherent

technique and show how to evaluate the overall bit error probability. We give examples in Section 4

using quaternary single- and multi-h RC signaling schemes and offer conclusions in Section 5.

2 Detection of CPM

2.1 Signal Model

The complex-baseband representation of the multi-h CPM signal, following standard notation [6],

is given by

s(t,α) =

√

E
T

exp
(

jψ(t,α)
)

(1)

ψ(t,α) = 2π
n

∑

i=−∞

αihiq(t − iT ), nT ≤ t < (n + 1)T (2)

whereE is the symbol energy,T is the symbol duration,{hi} is the set ofNh modulation indexes,

α = {αi} are the information symbols in theM -ary alphabet{±1,±3, · · · ,±(M − 1)}, andq(t)

is the phase pulse. In this paper, the underlined subscript notation in (2) is defined as modulo-Nh,

i.e. i , i modNh. We assume the modulation indexes are rational numbers of the form

hi = 2ki/p (3)
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whereki andp are relatively prime integers. The phase pulseq(t) and the frequency pulsef(t) are

related by

q(t) =

∫ t

0

f(τ) dτ. (4)

The frequency pulse is supported over the time interval(0, LT ) (it is zero otherwise) and is subject

to the constraint
∫ LT

0

f(τ) dτ = q(LT ) =
1

2
. (5)

In light of the constraints onf(t) andq(t), Equation (2) can be written as

ψ(t,α) = 2π
n

∑

i=n−L+1

αihiq(t − iT ) +

(

π

n−L
∑

k=−∞

αkhk

)

mod2π.

= θ(t,αn) + θn (6)

The termθ(t,αn) is a function of thecorrelative state vectorαn = (αn−L+1, αn−L+2, · · · , αn),

which contains theL symbols being modulated by the phase pulse. Due to (3), thephase stateθn

takes onp distinct values0, 2π/p, 2 · 2π/p, . . . , (p − 1)2π/p.

The model for the received complex-baseband signal is

r(t) = s(t,α)ejφ(t) + n(t) (7)

wheren(t) = x(t) + jy(t) is complex-valued additive white Gaussian noise with zero-mean and

single-sided power spectral densityN0. The phase shiftφ(t) introduced by the channel is unknown

in general.

2.2 Coherent Detection

For coherent detection, the receiver has perfect knowledge ofφ(t), where we assumeφ(t) = 0

with no loss in generality. The objective of the coherent receiver is to maximize the likelihood

function [6]

Λ(α) ∼ −
∫

(

r(t) − s(t,α)
)2

dt (8)
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which comes from the AWGN assumption. Maximizing (8) is equivalent to using the decision rule

α̂ = arg max
α̃

Re
∫

r(t)s∗(t, α̃) dt (9)

whereα̂ is the receiver output and̃α is a hypothesized data sequence. Using (6) we can partition

the hypothesis into a correlative state vector and a phase state. We refer to thel-th possible value

of the correlative state vector as

α̃l
n = (α̃l

n−L+1, α̃
l
n−L+2, · · · , α̃l

n), 0 ≤ l < ML (10)

where the indexl enumerates all theML possible combinations of values that the coordinatesαl
n

etc. can assume. Them-th value of the phase state is given by

θ̃m
n =

(

π

n−L
∑

k=−∞

α̃m
k hk

)

mod2π =
2π

p
m, 0 ≤ m < p. (11)

The trellis for this receiver hasS = pML−1 states, withM branches at each state. Each branch in

the trellis is associated with an(l,m) pair which specifies the hypothesis along that branch. We

note that the phase state allows the receiver to maintain an infinitely long hypothesis with only a

finite number of states. We can compute (9) recursively using the metric

λl,m(n) = λl,m(n − 1) + Re
{

zl(n)e−jθ̃m
n

}

(12)

where the sampled matched filter outputzl(n) is defined as

zl(n) =

√

1

T

∫ (n+1)T

nT

r(τ)e−jθ(τ,α̃l
n) dτ. (13)

The computation of (12) is efficiently performed using the Viterbi algorithm. Each of the branch

metrics are computed and the surviving path at each merging node is the one with the largest metric.

At each time step, the receiver traces back along the path with the largest overall metric to some
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traceback lengthD and outputs the symbol̂αn−D. The information required to forceφ(t) = 0 is

provided by a carrier phase estimator (see [7] and references therein).

2.3 Noncoherent Detection

For noncoherent detection, the receiver requires no knowledge ofφ(t) and thus avoids the ad-

ditional complexity needed to estimate the carrier phase; however, most noncoherent techniques

(including the one presented here) assumeφ(t) is slowly varying such that it is assumed to be

constant (i.e.φ(t) = φ) over a brief period of time and is uniformly distributed over the interval

[0, 2π). Unfortunately, this assumption does not always hold in a practical setting. Thus, as the

conclusion in [3] states, noncoherent receivers must have a means of “forgetting” or otherwise

coping with past observations that inevitably become inconsistent with present observations.

The likelihood function for the received signal in (7), averaged overφ, is given by [8]

Λ(α) ∼ I0

(

1

σ2

∣

∣

∣

∣

∫

r(t)s∗(t,α) dt

∣

∣

∣

∣

)

(14)

whereI0(·) is the zeroth order modified Bessel function of the first kind. This likelihood function

is much simplified from its full form in [8] due to the constant envelope of (1). Maximizing (14)

is equivalent to maximizing the argument ofI0(·), which suggests the decision rule

α̂ = arg max
α̃

∣

∣

∣

∣

∫

r(t)s∗(t, α̃) dt

∣

∣

∣

∣

2

. (15)

We note that the decision rules in (9) and (15) are identical except that the coherent receiver takes

the real part of the correlation and the noncoherent receiver takes the magnitude-squared of the

correlation.

For noncoherent receivers, we consider a hypothesis containing the correlative state vector

in (10), and therotational state vectorβm
n , defined as

β̃
r

n = (α̃r
n−L−N+2, α̃

r
n−L−N+3, · · · , α̃r

n−L), 0 ≤ r < MN−1 (16)
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where the length of the rotational state vector is parameterized by the integerN > 0. The rotational

state vector is associated with abranch phaseΩ(β̃
r

n) which is given by

Ω(β̃
r

n) =

(

π

n−L
∑

k=n−L−N+2

α̃r
khk

)

mod2π. (17)

The trellis associated with this hypothesis hasS = ML+N−2 states, where each branch in the trellis

is associated with an(l, r) pair that specifies the branch hypothesis. We note that this trellis has only

a finite hypothesis, since we have removed the phase state and replaced it with theN − 1 symbol

coordinates iñβ
r

n. We also observe that asN increases, the branch phase in (17) approximates

the phase state in (11), at the expense of exponentially increasing complexity. We consider three

receiver schemes that use this noncoherent trellis.

In terms of the above quantities, the noncoherent receiver in [3] uses the complex-valued metric

λl,r(n) =

n+N2
∑

k=n−N1+1

zl(k)e−jΩ(β̃
r

k) (18)

= λl,r(n − 1) + zl(n + N2)e
−jΩ(β̃

r

n+N2
) − zl(n − N1)e

−jΩ(β̃
r

n−N1
) (19)

whereN1 + N2 − 1 = N . There is no traceback operation in this receiver; the receiver simply

computes the metrics for each branch, selects the survivor at each merging node with the largest

metric (in the magnitude-squared sense), and outputs the symbolα̂n corresponding to the hypoth-

esis which maximizes (19) over all the states. There is an implied delay ofN2 needed in order to

compute these metrics. From (19) it is obvious how this receiver forgets past observations, since

the newest observation in the length-N window is added in and the oldest observation is subtracted

out. A drawback with this receiver is that a large value ofN (sayN ≈ 10) is often required to

achieve signal distances which are comparable to that of the coherent receiver [3]. This is particu-

larly true for more complex CPM schemes, such as nonbinary and partial response schemes.

The noncoherent receiver metrics in [2] are obtained by expanding the magnitude-squared ex-

pression in (15) and keeping only those terms which are relevant to the hypothesis, yielding the
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recursive metric

λl,r(n) = λl,r(n − 1) + Re
N−1
∑

k=1

zl(n)e−jΩ(β̃
r

n)
[

zl(n − k)e−jΩ(β̃
r

n−k)
]∗

. (20)

We note that the presentation in [2] uses matched filters which are based on the pulse amplitude

modulation (PAM) representation of CPM [9, 10] and are not the same as (13). For the purposes of

our discussion, the metric in (20) is still valid; however the PAM representation does result in ad-

ditional complexity savings. The metric increment in (20) is simply the most recent matched filter

output correlated against theN−1 previous matched filter outputs (all of the matched filter outputs

are phase-rotated by the branch phase in order to be consistent with the particular hypothesis). By

correlating past observations with the most recent one, these metrics “adjust” themselves accord-

ing to the present value of the channel phase in the event thatφ(t) is changing. This receiver uses

a traditional traceback operation. Also, since (20) is real-valued, there is no magnitude-squared

operation required in determining the survivors at each merging node. There is no analysis that

describes the performance of this receiver; however, the simulations in [2] show that near-optimal

performance can be achieved withN ≤ 5.

Using (15) as motivation, we propose the complex-valued recursive metric

λl,r(n) = aλl,r(n − 1) + zl(n)e−j(Ω(β̃
r

n)+θ̂l,r
n ) (21)

which is similar to the recursive metric of the optimal coherent receiver in (12). The branch metric

increments are simply the sampled matched filter output rotated by a certain phase such that it is

consistent with the ongoing hypothesis of the particular trellis path. However, theleakage factora,

where0 ≤ a < 1, causes the cumulative metricλl,r(n) to be a leaky integral with limited memory,

which is the means by which this receiver “forgets” past observations. The phase rotation in (21)

is divided into two parts, the branch phase in (17) and thecumulative phasêθl,r
n , which is given by

θ̂l,r
n =

(

π

n−L−N+1
∑

k=−∞

α̂l,r
k hk

)

mod2π. (22)
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This cumulative phase is not composed ofhypothesizeddata symbols; instead, it is the phase

contribution of the history of pastdecisions, α̂l,r
k , that have been made in the trellis. Each state

in the trellis maintains a value for the cumulative phase (just as they also maintain a cumulative

metric) and it is updated recursively and propagated with the surviving metric at each merging

node. Similar applications using decision feedback have been successfully applied to CPM [11].

The branch metrics in (21) propagate from state to state as complex numbers; however, when

competing metrics are compared to each other at merges, the survivor is the one with the largest

magnitude squared, as indicated by (15).

In summary, this receiver is similar to the optimal coherent CPM receiver. For the coherent

case, the phase state in (11) fills the role that is here shared by the branch and cumulative phases.

Also, since the coherent receiver forcesφ = 0, only the real part of the cumulative metric is needed

in that case. As time unfolds, the metric for the correct path in the coherent receiver grows without

bound along the positive real axis. Here, the metric of the correct path lies in the complex plane

and grows away from the origin at an unknown angle ofφ and reaches a magnitude, in the limit,

of
√
E/(1 − a).

Like the two other multi-symbol noncoherent receivers we have summarized, there is a means

(via the parameter N) of increasing the number of symbols in the receiver hypothesis to an arbi-

trarily large number. This approximates the role of the phase state in the coherent receiver, which

cannot be used here since the magnitude-squared comparison of the metrics destroys the informa-

tion that distinguishes the different phase states from each other.

As we shall see in later sections, the role of the leakage factor is to strike a balance between

helping the correct path maintain distance from competing paths, while at the same time allowing

a way for the negative impact of previous incorrect decisions and channel phase variations to fade

away. The receivercomplexityis not linked to the presence of the cumulative metric (or the leakage

factor) in any way, since the number of states is simplyS = ML+N−2; however, in the following

sections we shall see that the leakage factor does play a role in receiverperformance, by way of

the equivalent signal distance which we derive next.
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3 Performance Analysis

3.1 Pairwise Error Probability

We seek the quantityP (αi → αj), which is the probability of the receiver choosing the sequence

αj givenαi is transmitted. We begin by writing (21) as

Zi(n) =
n

∑

k=−∞

an−kzi(k) (23)

where we redefine the matched filter output in (13) as

zi(k) =

∫ (k+1)T

kT

r(τ)e−jψ(τ,αi) dτ (24)

having absorbed the branch and cumulative phases back intoψ(τ, α) as they are in (2). A similar

definition can be made forZj. In this analysis we do not account for any additional errors intro-

duced by the decision feedback in (22). The effects of decision feedback will be evaluated in the

simulations, as was also done in [11]. With these definitions and assumptions in place, the pairwise

error probability is simply

P (αi → αj) = Pr
{

|Zi(n)|2 < |Zj(n)|2
)

= Pr
{

|Zi(n)| < |Zj(n)|
)

. (25)

For the complex Gaussian random variablesZi(n) and Zj(n), whose variances are equal, this

probability has been shown to be [12]

P (αi → αj) =
1

2

[

1 − Q(
√

B,
√

A) + Q(
√

A,
√

B)
]

(26)

whereQ(x, y) is Marcum’sQ-function [13] and

B =
1

σ2

[ |Mi|2 + |Mj|2 − 2|ρ||Mi||Mj| cos(θi − θj + θρ)

1 − |ρ|2 +
|Mi|2 − |Mj|2

√

1 − |ρ|2

]

A =
1

σ2

[ |Mi|2 + |Mj|2 − 2|ρ||Mi||Mj| cos(θi − θj + θρ)

1 − |ρ|2 − |Mi|2 − |Mj|2
√

1 − |ρ|2

] (27)
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The quantities in the above expressions are defined as

Mi = E{Zi}, Mj = E{Zj} (28)

σ2 = E{Z∗
i Zi} = E{Z∗

j Zj} (29)

ρ =
1

σ2
E{(Zi − Mi)

∗(Zj − Mj)} (30)

θi = ∠Mi, θj = ∠Mj, θρ = ∠ρ. (31)

Our task is to evaluate these quantities based on (23). From (7) and (24) we have

Mi =

√
E

T

n
∑

k=−∞

an−k

∫ (k+1)T

kT

ej(ψ(τ,αi)+φ)e−jψ(τ,αi) dτ =

√
Eejφ

1 − a
(32)

Mj =

√
E

T

n
∑

k=−∞

an−k

∫ (k+1)T

kT

ej(ψ(τ,αi)+φ)e−jψ(τ,αj) dτ =
√
Eejφδa (33)

where

δx =
1

T

n
∑

k=−∞

xn−k

∫ (k+1)T

kT

ejψ(τ,γ) dτ (34)

which is a function only of the difference between the two data sequencesγ = αi − αj. For the

variance we have

σ2 = E

{

1

T

∣

∣

∣

∣

n
∑

k=−∞

an−k

∫ (k+1)T

kT

n(τ)e−jψ(τ,αi) dτ

∣

∣

∣

∣

2}

=
N0

1 − a2
(35)

and for the covariance

ρ =
1

σ2T

n
∑

k=−∞

n
∑

m=−∞

a2n−k−m

×
∫ (k+1)T

kT

∫ (m+1)T

mT

E{n(τ1)n(τ2)}e−jψ(τ1,αi)e−jψ(τ2,αj) dτ1 dτ2 = δa2(1 − a2).

(36)

Inserting the above quantities into (27) yields the parametersA andB which are necessary to

compute the exact pairwise error probability in (26). We follow the approach used in [6] and apply
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the approximation [14]

P (αi → αj) ≈ Q

(

√

Eb

N0

d′2

)

(37)

whereEb is the energy per bit, which satisfiesE = Eb log2 M , and

Q(x) =
1√
2π

∫ ∞

x

e−u2/2 du. (38)

The quantityd′2 is a normalized equivalent squared Euclidian distance given by

d′2 =
log2 M

E/N0

(
√

B −
√

A
)2

(39)

which is analogous to the squared Euclidian distanced2 discussed in detail in [6]. This approxi-

mation is valid under the conditionsA À 1, B À 1, which are satisfied whenEb/N0 is large.

Unfortunately, the expressions in (27) do not simplify into a form where the behavior ofd′2 is

readily apparent. We point out that the leakage factor is present inMi, Mj, σ2, andρ, and that the

difference between the two data sequences,γ, is present in (34). The connection between these

terms andd′2 will be demonstrated in the examples in Section 4.

3.2 Probability of Error

To arrive at the probability of error, we begin from the familiar standpoint of the union bound

where

Pe ≤
∑

i

P (αi)Pe(αi) (40)

andP (αi) is the probability that the data sequenceαi is transmitted. The termPe(αi) is the

probability of error givenαi was transmitted, which is overbounded by

Pe(αi) ≤
∑

j 6=i

Pe(αi → αj) (41)

which uses the pairwise error probability derived above.

Due to the nature of (38), asEb/N0 increases, the sum in (41) is dominated by the terms with
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the smallest values ofd′(γ). Our task is to find the sequence

γmin = arg min
γ

d′(γ) (42)

which in general has a limited number of non-zero coordinates, sayR, and we arbitrarily assign

the first of these coordinates to beγ0. For multi-h CPM, the search in (42) must be repeatedNh

times to allow each modulation index to coincide withγ0. The obvious candidates for the search

in (42) are the sequences that cause two paths to deviate in the trellis for a limited interval and then

merge back together. For the optimal coherent trellis, which has a phase state, the requirement for

a merge is
(R−1

∑

l=0

klγl

)

modp=0 (43)

which is to say that all the difference coordinates must sum to zero, modulo-2π, when properly

scaled by the modulation indexes in (3). For this noncoherent trellis, which does not have a phase

state in its(L + N − 1)-tuple, a merge occurs simply when the coordinates ofγ are zero for a

long enough interval. In general, the duration in which paths are different in this noncoherent

trellis is L + N + R − 2 symbol times. For example, consider a4-ary 2RC CPM scheme with

γex = · · · , 0, 2,−2, 0, · · · which hasR = 2. The trellis paths taken by the two data sequences will

be different for a span of2 + N symbol times. WithM = 4, there are18 such pairs of length-2

sequences (αi,αj) that differ by±γex. In general, this number is given by

N(γ) = 2
R−1
∏

l=0

(

M − |γl|
2

)

. (44)

With the search in (42) complete, we convert the probability of error in (40) to a bit error

probability via

Pb≈
N(γmin)W (γmin)

Nh · MR · log2 M
Q

(

√

Eb

N0

d′2
min

)

(45)

whereW (γmin) is the difference, in bits, between the(αi,αj) pairs (i.e. the bit error weight),

which is a function of the mapping from bits to symbols (typically a Gray code). We assume

P (αi) = 1/(NhM
R) which is the uniform distribution of all length-R sequences with a particular
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alignment to the modulation indexes.

4 Examples

Quaternary2RC withh = 1/4

The first scheme we consider isM = 4, 2RC with h = 1/4. This CPM scheme was also

examined in [2]. The optimal trellis hasS = 16 states and a minimum squared distance ofd2
min =

1.33, which corresponds toγmin = [· · · , 0, 2,−2, 0, · · · ] whereR = 2. There areN(γmin) = 18

(αi, αj) pairs of this type, each with an error weight of2 bits. The bit error probability of the

optimal coherent receiver is given by (45) withd2
min substituted ford′2

min.

For the noncoherent receiver, we selectN = 1 anda = 0.9, which yields aS = 4 state trellis.

We find that the same difference sequence corresponds to the minimum distance; however, for the

purposes of computingA andB we useγmin = [· · · , 0, 2,−2, 0]. This γmin is infinitely long on

the left-hand side and ends with one zero coordinate on the right hand side, which corresponds to

the trellis paths being different for a total ofL + N + R− 2 = 3 symbol times. For the parameters

required to computeA andB we have

Mi = 10
√
E , Mj = (9.40 + j1.20)

√
E (46)

σ2 = 5.26, ρ = 0.90 + j0.21 (47)

where we set the unknown and irrelevant channel phase toφ = 0 for convenience. These pa-

rameters yieldA = 7.62E andB = 12.58E and an equivalent squared distance ofd′2
min = 1.24,

which is0.31 dB inferior to that of the optimal coherent receiver. Figure 1 showsPb for both the

coherent and noncoherent receivers, where the0.31 dB difference in performance is visible. The

figure also shows computer simulation data for the noncoherent receiver. The first conclusion we

draw from the figure is that the analytical bound and the simulated data show strong agreement

asEb/N0 increases. In the figure we also show simulations which are based on the noncoher-

ent receivers from Colavolpe and Raheli [2] and Aulin and Sundberg [3] that were discussed in
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Figure 1: Performance of4-ary 2RC with h = 1/4. The noncoherent receiver withS = 4 states
is within 0.31 dB of the optimal coherent receiver which hasS = 16. The performance bound for
the noncoherent receiver also shows strong agreement with data from computer simulations. This
noncoherent receiver outperforms three other noncoherent schemes (also shown) at a fraction of
the complexity of these.

Section 2.3. Also shown are simulations using a simple FM demodulator technique which uses a

limiter-discriminator followed by a sequence detector [15]. The second conclusion from Figure 1

is that the noncoherent receiver presented here outperforms the other noncoherent techniques. The

S = 64 receiver from [2] is the closest in performance with a1 dB loss with respect to the opti-

mal coherent receiver (this value ofS = 64 is as presented in [2] using the PAM representation).

The0.31 dB loss of ourS = 4 receiver is an improvement in both performance and complexity

reduction over these other techniques.

It is also interesting to note that if we selecta = 0.99 we haved′2
min = 1.32, which is within

0.03 dB of the optimal value ofd2
min = 1.33. This behavior confirms the intuition which suggests

that asa → 1, the circle in the complex plane in which the correct metric lies has a radius that

approaches infinity (
√
E/(1 − a)). Since a circle with an infinite radius has no curvature, a com-

peting metric can have a larger magnitude only if the additive noise moves it beyond the correct

metric in the outward direction along the line at angleφ. These are exactly the conditions in which

errors occur in the coherent receiver, whereφ = 0 and metrics are compared on the real line. For

a circle of smaller radius, the curvature of the circle allows competing metrics to attain a larger
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magnitude with additive noise at other angles in addition toφ. This corresponds to a less than

optimal equivalent distance whena is not very close to1. For this CPM scheme, both the coherent

and noncoherent receivers have the same minimum distance mergeγmin and have trellis paths that

differ for 3 symbol times in both cases. With these characteristics in common, it is not surprising

that the two distance values converge.

Quaternary3RC withh = {4/16, 5/16}

The second scheme we consider isM = 4, 3RC, h = {4/16, 5/16}. This is the Ad-

vanced Range Telemetry (ARTM) Tier II proposed waveform [16]. The optimal receiver has

S = 512 states and a minimum squared distance ofd2
min = 1.29. This distance is forγ1 =

[· · · , 0, 2,−4, 6,−4, 2, 0, · · · ] (R = 5) whenh0 = 4/16 coincides withγ0. There areN(γ1) = 72

signal pairs of this type, each with an error weight of7 bits. There is an additional merge

γ2 = [· · · , 0, 2,−2, 0, 2,−2, 0, · · · ], with a squared distance ofd2(γ2) = 1.66, which is much

more likely to be transmitted (N(γ2) = 648) and makes a meaningful contribution to the perfor-

mance bound for practical values ofEb/N0. Both of these merges satisfy the condition in (43).

For the noncoherent receiver, we again selectN = 1 anda = 0.9, which this time yields

a S = 16 state trellis. Here we find that the minimum distance is associated withγmin =

[· · · , 0, 2,−2, 0, 0], which is not itself a merge in the coherent receiver since it does not satisfy (43)

(note that we have padded two zeros on the right-hand side ofγmin sinceL = 3 in this case). With

this merge we haveR = 2, N(γmin) = 18, and an error weight of2 bits. For the parameters

required to computeA andB we have

Mi = 10
√
E , Mj = (9.61 + j0.72)

√
E (48)

σ2 = 5.26, ρ = 0.94 + j0.11 (49)

which yieldA = 7.66E andB = 11.67E and an equivalent squared distance ofd′2
min = 0.84. This

is 1.85 dB inferior to the optimal coherent receiver. If we selectN = 2 the distance improves to

d′2
min = 1.02, which is only1 dB inferior but increases the number of states toS = 64 (to compute
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Figure 2: Performance of4-ary 3RC with h = {4/16, 4/16}. The noncoherent receiver is simu-
lated withN = 1 (S = 16) andN = 2 (S = 64). A performance gain is obtained with the increase
in N . There is a slight disparity between the predicted and simulated bit error probabilities from
error propagation due to decision feedback. These proposed receivers again outperform existing
noncoherent receivers both in complexity and probability of error.

the distance withN = 2 we must pad an another zero on the right-hand side ofγmin). The fact that

the performance improves with increasingN is expected since we add another symbol coordinate

to the receiver hypothesis and allow more distance to accumulate between competing paths before

survivors are declared.

Figure 2 showsPb for the coherent and for both of these noncoherent configurations (N = 1

andN = 2) along with simulated data points. The first observation is that the simulated data do

not line up exactly with the predicted bound for this scheme. An examination of the actual error

events that were encountered in the simulation yields some insight. The error events themselves

occur with the expected probability,Q(
√

d′2
minEb/N0)18/(2 · 42), but in many instances they do

not resembleγmin or they occur as aγmin sequence that is immediately followed by some other

error sequence. The likely cause of this unexpected behavior is error propagation due to decision

feedback, which is used to compute (22). In some instances the occurrence of the first error event

γmin results in surviving metrics that are “weakened” and are more prone to additional errors in

the immediate term. A second and more subtle explanation is linked to the fact that this particular

merge is an artifact of the noncoherent trellis and is not a true merge of two CPM signals. Thus,
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when this merge defeats the correct path, the metric begins to grow at a different phase angle in the

complex plane. In transitioning to the steady-state value at this new angle, the metric passes closer

to the origin and opens the possibility that yet another incorrect sequence will defeatγmin and be

output by the receiver at traceback time. In such a case the root cause of the error event isγmin

but the resulting bit error weight is different than2 bits. Regardless of the cause, the simulations

suggest that the resulting bit error weight is approximately6 instead of2. In simulating other CPM

schemes (not presented here), similar disparities appear between the predicted and observed bit

error probabilities in those cases where the merge in the noncoherent trellis is not a true merge.

Unlike the previous example, increasinga does little to improved′2
min (in fact, simulations show

that the error propagation worsens since the metrics do not “leak” out any of the previous incorrect

decisions). This comes as no surprise since the minimum distance merges in the two receivers are

entirely different and the trellis paths are separate for7 symbol times in the coherent receiver and

a mere3+N times in the noncoherent receiver. The only means of improving the distance for this

CPM scheme is to increaseN , which comes with anM -fold increase in the number of states for

each increment. At some point, these increments inN would result inγ1 becoming the minimum

distance merge, as is the case with the coherent receiver.

Figure 2 also shows simulations for the same lineup of existing noncoherent receivers as the

previous example. As before, the receiver in [2] performs the best of these, but requiresS = 1024

to achieve performance comparable to theS = 16 andS = 64 receivers proposed here. We again

note that the PAM approximation [17] is available to reduce complexity to some degree; but since

this approximation is available to all these noncoherent schemes there still remains an inherent

complexity and performance advantage for the noncoherent receiver presented here.

5 Conclusion

We have presented a noncoherent receiver for CPM that has characteristics of existing coherent and

noncoherent receiver architectures. The receiver achieves some performance gains from its con-

trolled use of a cumulative metric. It also has a parameter analogous to a multi-symbol observation
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interval which, when increased, can bring additional performance gains. We have derived an exact

expression for the pairwise error probability for this receiver. This expression, or an equivalent

Euclidian distance, can be used in a union bound on the bit error probability with strong agreement

with computer simulations. There are instances where error propagation, due to the use of deci-

sion feedback in the receiver, causes additional errors that are not accounted for in the performance

bound. These cases appear to be limited to those where the error merges in the trellis are not true

signal merges. This receiver also appears to be robust in phase noise conditions. Overall, the re-

ceiver shows promise in providing both performance gains and complexity reduction over existing

noncoherent receivers.
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