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Empirical Analysis of Computational and Accuracy Tradeoffs Using Compactly
Supported Radial Basis Functions for Surface Reconstruction

Bryan Morse, Weiming Liu, and Lauralea Otis
Department of Computer Science, Brigham Young University

morse@cs.byu.edu

Abstract

Implicit surfaces can be constructed from scattered sur-
face points using radial basis functions (RBFs) to interpo-
late the surface’s embedding function. Many researchers
have used thin-plate spline RBFs for this because of their
desirable smoothness properties. Others have used com-
pactly supported RBFs, leading to a sparse matrix solution
with lower computational complexity and better condition-
ing. However, the limited radius of support introduces a free
parameter that leads to varying solutions as well as vary-
ing computational requirements: a larger radius of support
leads to smoother and more accurate solutions but requires
more computation. This paper presents an empirical anal-
ysis of this radius of support. The results using compactly
supported RBFs are compared for varying model sizes and
radii of support, exploring the relationship between data
density and the accuracy of the interpolated surface.

1. Introduction and Background

A number of techniques have emerged using radial ba-
sis functions (RBFs) to interpolate implicit surfaces from
scattered surface points and some number of non-surface
constraints [7, 9, 8, 4, 1, 2, 6]. These methods basically
take the same approach: known points on the surface de-
fine where the implicit surface’s embedding function must
have a value of zero, known off-surface constraints de-
fine where the embedding function has nonzero values, and
these (point,value) targets are then interpolated using RBFs.
Though they differ in various ways (the RBFs used, the
means of defining the non-surface constraints, and the toler-
ance of fitting the points), they all share this key idea: rather
than explicitly interpolating the surface, they interpolate the
embedding function implicitly defining the surface.

Fundamental applications of this idea generally use thin-
plate spline RBFs [3] so as to produce the smoothest in-
terpolation possible. However, the direct formulation of this
requires the solving of a large, full, generally ill-conditioned
system of equations and quickly becomes computationally
impractical for large problems.

Various methods have been used to accelerate this, in-
cluding the use of compactly supported basis functions [4,

Figure 1. Surfaces using compactly sup-
ported RBFs with insufficient data density
(left) and sufficient data density (right)

6], approximating a large set of constraints by a well-
selected subset [1, 12], and partitioning the domain [5]. All
of these trade off accuracy in the reconstructed surface for
computational efficiency, recognizing that infinitely precise
computation of the surface is already infeasible given noisy
data and the limitations of finite-precision arithmetic.

The use of compactly supported RBFs (for example [10],
as used in [4]) does not reduce the size of the system of
equations but leads to a sparser and better-conditioned ma-
trix to solve. This reduces the storage requirements and
computational complexity of the problem [4]. However, this
comes at the following costs:

• The solutions, while typically qualitatively similar, are
not generally as accurate as thin-plate splines, and

• The radius of support is a free parameter, leading to
differing solutions as the radius changes (Fig. 1).

Wendland [11] has shown that compactly supported
RBFs of sufficiently high order are qualitatively compara-
ble to thin-plate splines for sufficiently high data density
(the number of points typically within the radius of sup-
port). The reconstructed surface is well-conditioned with
respect to changes in the radius of support, transition-
ing smoothly to more accurate solutions as the radius of
support (and corresponding data density) increases.

Thus, the free radius-of-support parameter is not simply
a source of uncertainty in the solution but a desirable con-
trol parameter for trading off between speed and accuracy.

But what is this nature of this tradeoff? As one varies the
radius of support, what can one reasonably predict about
the effect on the resulting computational efficiency and ac-
curacy? This paper presents the results of an empirical anal-
ysis of this radius of support and the accompanying trade-
offs in speed and accuracy.
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2. Implementation

For these experiments, we follow the compactly sup-
ported approach outlined in [4], which is based on the gen-
eral approach of [9] and only briefly summarized here.

We begin with a set of points known to lie on the de-
sired implicit surface and constrain the interpolated embed-
ding function to have a value of zero at these points. Us-
ing the method of [9], we also place non-zero constraints
at a fixed offset in the direction of the known or desired
normals at these surface points. We thus have a set of con-
straints (ci, hi) such that hi = 0 for all ci on the surface
and hi = 1 for all ci at a fixed offset from that surface. We
then interpolate an embedding function f from these con-
straints such that f(ci) = hi.

We obtain this interpolation using an RBF φ(r) by defin-
ing the embedding function f as a weighted sum of these
basis functions centered at each of the constraints:

f(x) =
n∑

i=1

diφ(‖x − ci‖) (1)

where ci is the position of the constraint and di is the weight
of the radial basis function positioned at that point.1

To solve for the set of weights di that satisfy the
known constraints f(ci) = hi, we substitute each con-
straint (ci, hi) into Eq. 1:

f(ci) =
n∑

j=1

djφ(‖ci − cj‖) = hi (2)

Eq. 2 thus provides a system of equations for solving for
the weights dj , which are then substituted back into Eq. 1
to provide the embedding function.

For thin-plate radial basis functions, the matrix created
by this system of equations has zero values only along the
diagonal. For compactly supported RBFs, the matrix has
zero elements for all i, j such that ‖xi − xj‖ > a, where
a is the radius of support.

3. Experiments and Results

In order to be able to evaluate the accuracy of the solu-
tions, we generated several analytically defined 2- and 3-
D models to serve as “gold standards”. For the 2-D cases,
these included a circle, a square, and an ellipse, all with uni-
formly distributed constraints. For 3-D, we created a sphere
with uniformly distributed constraints. We then interpolated
these shapes using compactly supported RBFs of varying
support, measuring the average number of points within the
radius of support and the time to solve for the RBF weights.

1 For some RBFs, including the thin-plate spline RBFs, an additional
polynomial may also be required.

We then used the interpolated shapes to measure the aver-
age error (distance between the curves in the direction of
the true curve’s normal) at various points on the shape. For
the 2-D shapes, these points were generated uniformly at a
density much greater than the original constraints. For the
3-D shapes, these points were generated randomly but again
with a much greater density than the original constraints. As
with [11], we consider the models not only in terms of ra-
dius of support and total number of constraints but in terms
of the effective data density, the number of points typically
within the radius of support.

3.1. Timing

As the radius of support varies, the timing should also
vary accordingly. Figure 2 shows the time required to solve
the system of equations for varying radii of support and
varying model sizes for a 2-D circle. As expected, the time
required to perform the interpolation increases as the radius
of support (and thus the number of non-zero elements of the
matrix) increases. The linear relations on this log-log plot
suggest a power relationship O(pk) where p is the number
of support points and k ranges from 0.7 for smaller models
to around 2.0 (1.9 to 2.1) for larger models.

3.2. Accuracy

As one increases the radius of support, one would also
expect to reduce the error in the interpolation. Figs. 3–
6 show the average error for reconstruction of the circle,
square, ellipse, and sphere models respectively. For each,
we measure the average error for varying radii of support
and for varying model sizes.

The overlapping results in Fig. 3 agree with the intuition
that the primary independent variable is the data density, in-
dependent of the actual model size or radius of support. In
other words, that the accuracy of the interpolation depends
on the number of points used to interpolate each unknown

Figure 2. Timing comparisons for varying
radii of support and varying model sizes for
a reconstructed circle
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Figure 3. Average error vs. data density for a
circle with varying numbers of points

Figure 4. Average error vs. data density for a
square with varying numbers of points

point, not the actual radius of support or other (more dis-
tant) points in the model.

These results also demonstrate a linear relationship when
plotted on a log-log scale, again suggesting a (negative)
power relationship between the data density and the aver-
age error, approximately O(p−2) until asymptotically tail-
ing off as the limits of finite-precision numerics are reached.

However, the results for the square (Fig. 4) tell a dif-
ferent story. The error again reduces quadratically with the
data density, but the error rates are different for different
absolute radii of support. Specifically, for comparable data
densities, smaller radii of support produce less error.

This result is best explained by the sharp corners of the
square. Because they are not affected by as many points on
the other side of the high-curvature point, compactly sup-
ported RBFs are able to more accurately interpolate the
square near a corner. This is illustrated in a simple 1-D case
in Figure 7, where a compactly-supported RBF of relatively
small radius interpolates near the high-curvature point more
closely than a thin-plate spline RBF, though obviously per-
forming less well in smoother areas.

This behavior is also present, though less pronounced,
in the case of the ellipse, whose curvature varies less ex-
tremely than the square. The error is primarily driven by the

Figure 5. Average error vs. of data density for
an ellipse with varying numbers of points

Figure 6. Average error vs. of data density for
a sphere with varying numbers of points
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Figure 7. Thin-plate (dotted curve) and com-
pactly supported (dashed curve) fitting at a
high-curvature point

data density, but given comparable data densities, smaller
radii of support perform better than larger ones because of
their ability to better handle higher-curvature areas.

The results for the 3-D sphere are similar qualitatively to
those for the 2-D circle.

3.3. Accuracy as a Function of Shape Curvature

To test this idea that the accuracy depends not only on
the data density but on the curvature of the model, we used
the ellipse to plot the accuracy at each point as a function of
the local curvature (Figure 8). For comparison, we repeated
this experiment with thin-plate splines.
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Figure 8. Average error vs. shape curvature
for an ellipse with varying numbers of points

As intuition suggests, thin-plate splines are more ac-
curate with greater data density but less accurate with
higher curvature. Compactly supported RBFs like-
wise perform better for higher data densities, but un-
like thin-plate splines, compactly supported RBFs per-
form better in higher-curvature segments and more
poorly in smoother segments. This agrees with intu-
ition that the limited-region nature of compactly sup-
ported RBFs should perform well in smaller-feature areas
and more poorly in broader, smoother areas. Perhaps coun-
terintuitive is that compactly supported RBFs eventually
outperform the thin-plate RBFs for higher-curvature seg-
ments, though this was hinted at in Figs 4, 5, and 7.

4. Conclusions

The results of these experiments suggest the following:
• The error accrued through using compactly supported

radial basis functions for curve or surface reconstruc-
tion diminishes steadily as the radius of support in-
creases, though this improvement asymptotically di-
minishes near the limits of finite-precision numerics.2

• The relationship between the error and the radius of
support is driven primarily by the scale-independent
data density rather than the absolute radius of support.
However, this is also affected to a lesser degree by the
relationship between the radius of support and the fea-
ture size (curvature) of the shape.

• The relationship between the error and the data den-
sity appears to follow a power law with an exponent of
approximately -2.

• The relationship between the computational time and
the data density appears, for a fixed number of total
points, to also follow a power law relationship, with an
exponent of approximately 2 for larger models.

2 For larger radii, the error may again increase as the data density be-
comes so high that the matrix becomes poorly conditioned, but we
experienced this only for radii that more than encompass the entire
model, which defeats the purpose of using compactly supported RBFs.

Taken together, these show that as the number of points in
the model (and hence the data density) increases, one can
commensurately reduce the radius of support in order to
maintain the same data density. This results in compara-
ble error while “buying back” some of the computational
time required for the larger model. This agrees with anec-
dotal evidence suggested in earlier work [4], which tried to
maintain a relatively constant data density as the size of the
model increased.
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