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ABSTRACT

DIRECT OBSERVATION OF LASER FILAMENTATION IN

HIGH-ORDER HARMONIC GENERATION

John Painter

Department of Physics and Astronomy

Master of Science

We investigate the spatial evolution of an intense laser pulse as it generates high-order

harmonics in a long gas cell, filled with 80 torr of helium. A thin foil separates the

gas-filled region of the cell from a subsequent evacuated region. The exit plane of

the gas cell can be scanned along the laser axis so that the evolution of the laser

throughout the focus can be observed (full scanning range of 9 cm). We constructed

an apparatus that images the laser radial energy profile as it exits the cell. The high

harmonics, odd orders ranging from 45 to 91, are observed at the same time that

the laser spot is characterized. Re-absorption of the harmonics within the gas cell

restricts the region of harmonic emission to the final centimeter (or less) of the cell.

We present the first direct evidence (to our knowledge) of laser filamentation under

conditions ideal for high-order harmonic generation. The 30 fs, 4 mJ, laser pulses were

observed to undergo double focusing within the gas cell, with about 4 cm separating

the two foci. The region with best harmonic emission occurs midway between the



two foci. The radial profile of the laser focus, 150-200 microns in diameter, evolves

from a Gaussian-like profile to a more square-top profile as it propagates over several

centimeters. The filamentation phenomenon as well as the brightness of the harmonics

improves when an aperture is partially closed on the laser beam before reaching the

focusing mirror.

A spectral sampling of the imaged laser focus revealed a 4 nm blue-shift associated

with the generation of plasma in the gas cell. The blue-shifting occurs primarily in

the center of the laser beam and less at the wider radii. The initial laser pulse had a

spectrum centered at 800 nm with a 35 nm bandwidth. The energy associated with

each of the observed 26 harmonic beams was found to be approximately 1 nJ, yielding

a conversion efficiency of approximately 2×10−7.
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Chapter 1

Introduction

1.1 Extreme Utlraviolet Light

The computer industry has generated strong interest in the Extreme Ultraviolet

(EUV) wavelength range, since elemental circuit sizes can be made no smaller than

the wavelength used in the lithograph process. Currently, the shortest wavelength

used in commercial lithography is 196 nm. There is a push to go to 13.5 nm wave-

length, which should allow circuit elements on computer chips that are ten times

smaller than currently feasible [1]. However, working in the ultraviolet spectrum

poses challenges. Because EUV light is absorbed by all materials, EUV lithography

must rely on reflective imaging optics instead of transmissive optics. Also, the entire

light path must be in vacuum since EUV light is absorbed by air.

Synchrotrons are a valuable source of EUV light, with photon energies from a

few to thousands of electron volts. However, synchrotrons are very expensive with

price tags nearing a hundred million dollars and diameters the size of a football

field [2]. Inside a synchrotron, electrons are accelerated around a large circular path.

In order to achieve the desired wavelengths and brightness, the electron beam must be

1



2 CHAPTER 1. INTRODUCTION

maintained at energies over a GeV. The light produced in a synchrotron is a hundred

million times brighter than that from the most powerful x-ray tube and exhibits

tunability, with good coherence and polarization.

Another source of EUV light is emission from laser produced plasmas. Plasma-

based EUV sources rely on line radiation from highly ionized atoms [3]. Xenon has

a well known emission line at 13.5 nm, which is the targeted wavelength for EUV

lithography. However, the conversion efficiency for xenon is relatively low: less than

1% [4]. There is still a lot of work to be done to achieve higher conversion efficiencies

with lower input powers.

A challenge in producing optics such as mirror coatings for use in the EUV range

is incomplete information on the index of refraction for coating materials. Two pro-

fessors in our department, David Allred and Steve Turley, are currently doing research

on the design and fabrication of multilayer mirrors for the EUV. Their research group

produced mirror coatings that were used on the IMAGE satellite, launched March

25, 2000 [5]. It was the first instrument to take a series of pictures of the Earths

magnetosphere at a photon energy of 41 eV (30 nm) as part of a comprehensive

multi-spectral imaging of the near space around the Earth. The mirror coating that

they designed for this satellite needed high reflectance (greater than 20%) at 30.4 nm,

14-degrees from normal, and low reflectance (less than 2%) at 58.4 nm. Their work

was hampered by the fact that the index of refraction for one or more of the mate-

rials differed from published values. This necessitated many visits to the Berkeley

synchrotron source, located over 500 miles away, in order to make reflectivity mea-

surements. A polarimeter based on EUV light co-located with the sample-preparation

site would allow a more rapid turn-around production and characterization of EUV

optics.
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1.2 High-Order Harmonic Generation

Laser high-order harmonic generation (HHG) is a useful alternative source of EUV

light. Although high-order harmonic pulses have far less energy than the sources

previously mentioned, they are produced as coherent, highly directional, and polar-

ized beams that can be a useful source to aid in the development of EUV optical

components.

In 1987, McPherson et al. observed harmonics of their 248-nm laser with orders as

high as the seventeenth generated in neon and the thirteenth generated in helium [6].

This was the first time that harmonic orders well above the third and fifth had been

generated with a laser, which marked the birth of high-order harmonic research.

Their laser had a pulse energy of 20 mJ and pulse duration of 350 fs, which achieved

1015 − 1016 W/cm2 focused intensity in their focal geometry. A gas jet was used

to spray the gas into the laser focus inside an otherwise evacuated chamber. This

technique is still commonly used today.

Since the initial work of McPherson et al., many groups have studied HHG in an

effort to achieve the highest possible conversion efficiency and the shortest possible

wavelength. Many experiments have been performed using a variety of laser wave-

lengths, pulse durations, focused intensities, and different gas species to generate high

harmonics. In a landmark study, Anne L’Hullier et al. did a broad survey of HHG

using a 1 ps Nd:Glass laser with wavelength 1.054 µm [7]. They observed up to the

29th harmonic in xeon, the 57th in argon, and and up to the 135th in helium. They

also investigated the influence of gas density and focal geometry on the conversion

efficiency, which reached up to 10−6 in the case of xenon.

The laser intensity needed for HHG in helium is near 1015 W/cm2. In the pres-

ence of the strong oscillating electric field of the laser, electrons are torn from the
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Gas Atoms

HarmonicsLaser 

Figure 1.1 Harmonics generated in a laser focus.

helium atoms and accelerated. As the oscillating laser field reverses direction, some

of the electrons return, collide, and recombine with the parent ion, which releases

energetic photons with frequencies that are odd multiples of the laser frequency. A

wide plateau of harmonic orders are simultaneously generated up to a maximum order

associated with a cutoff frequency. The wavelength of a harmonic is λ/q where λ is

the wavelength of the laser and q is the specific harmonic order (odd integer). The

maximum harmonic order that can be generated depends on gas species. The gener-

ated harmonics propagate embedded in the residual laser beam as shown in Fig. 1.1.

Traditional low-order laser harmonic generation is done in solid materials such as

crystals, where large fractions of laser pulses can be converted into second or third

harmonic light. In contrast, HHG in crystals is not possible because the generated

EUV light would be absorbed in the crystal. Furthermore, any solid will be severely

damaged by the high intensities required to achieve HHG. Low-density gases, on the

other hand, are less opaque in the EUV and are self healing after each laser shot.

Atoms with high ionization energies are able to produce the highest harmonic orders

because they withstand stronger laser fields before ionizing. Since noble gases have

the highest ionization energies, they are good HHG targets. Helium and neon have the

highest ionization potentials at 24.6 eV and 21.6 eV, respectively, and consequentially

are often employed to produce the highest possible harmonic orders.
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1.2.1 Conversion Efficiency

Conversion efficiency is often used to compare the effectiveness of different schemes

for harmonic generation employed by different research groups. Conversion efficiency

is the ratio of input energy of the generating laser to the output energy contained

within the individual harmonics. The challenge is to achieve the highest possible

conversion efficiencies for the highest possible harmonic orders to make useful sources

of EUV light.

Rundquist et al. observed conversion efficiencies > 10−6 for harmonic orders 23-

31, yielding > 0.2 nJ of energy per harmonic order generated with 150 µJ laser

pulses [8]. In their research they used a hollow capillary tube filled with argon, which

allowed for good phase-matching. The tube guides the laser and allows for good

phase-matching. Tamaki et al. reported a similar conversion efficiency of 10−6 for

higher orders, around the 49th, generated in a neon-filled gas cell [9]. Takahashi et

al. demonstrated a conversion efficiency of 1.5 × 10−5 for the generation of the 27th

harmonic in an argon-filled cell [10]. In this case, a 20 mJ pulse energy produced

0.3 µJ energies for individual harmonics. More recently they demonstrated 5×10−7

conversion efficiency for harmonics up to the 59th order generated in neon, resulting

in 25 nJ of individual harmonic energies from 50 mJ pulse energies [11]. They also

reported record conversion efficiencies above 10−4 for lower order harmonics generated

in xenon [12].

The brightness of high harmonics depends on a complex interplay of several fac-

tors, which include the parameters of the laser, gas species, phase matching, and

re-absorption of the harmonics in the very gas used to generate them. Hence, efforts

are taken to optimize each of these parameters to improve the generated signal.
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1.3 Phase-Matching

In order to have strong harmonic emission, the generating laser light and the created

harmonics must travel in phase for a coherent buildup of energy. The harmonics gen-

erated upstream in the medium need to be in phase with new harmonics generated

downstream. The coherence length, or a single phase zone, is the length over which the

harmonic phases are matched. Outside of a coherence length, new harmonic produc-

tion joins out of phase with previously generated harmonic light, causing destructive

interference and less overall signal.

Phase mismatches can cause severe destructive interference for harmonic light

emerging from different locations in the laser focus. There are at least three sources of

phase mismatch: geometrical phase mismatch due to diffraction, frequency-dependent

index of refraction, and intensity-dependent variations in the phases of the harmonics

as they are emitted.

Geometrical phase mismatch is due primarily to the Gouy shift, which is a phase

change of π that all light beams experience as they go through a focus. The harmonics

are generated with a phase q times that of the laser, where q is the harmonic order.

This means that even though the laser experiences a phase shift of only π as it goes

through the focus, the emission of the qth harmonic is associated with a phase that

ranges through qπ. The phase variation in the emission pattern of the high harmonics

is given by

φHarm = qφGouy = q tan−1(
z

z0

). (1.1)

The Rayleigh range, z0 = πw2
0/λ, is a parameter that depends on the laser beam

waist w0 and wavelength λ [13]. To find the coherence length, we take the derivative

of the harmonic emission phase φHarm with respect to the propagation distance z:

∆φHarm

∆z
=

q

z0[1 + ( z
z0

)2]
. (1.2)
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Figure 1.2 Depiction of how the harmonics(purple) diffract more slowly
than the laser beam(red) as they travel through the focus.

Since we are interested in the region near the focus, we can set z = 0 and solve for

the ∆z that achieves a phase shift of ∆φHarm = π. This gives

∆z =
πz0

q
(1.3)

as an estimate for the coherence length of individual harmonics. For a typical Rayleigh

range of one centimeter, the size of one phase zone ∆z (how far a harmonic can travel

before it is out of phase by π with additional generation) at the focus due to the Gouy

shift varies between 300-700 µm for harmonic orders 49-99. This severe restriction

on the coherence length is most pronounced for the highest harmonic orders. Fig. 1.2

depicts the wave fronts for the laser beam and a particular generated harmonic order.

Because the wavelengths of the harmonics are much shorter than the laser wavelength,

the harmonics can be thought of as plane waves since the rate of diffraction is so slow.

All media have an index of refraction that depend on the frequency of the propa-

gating light. This causes the laser and the generated harmonics to travel at different

speeds, which produces phase mismatches. Generally, this effect is small in compar-

ison to the geometrical mismatch, but the process of HHG partially ionizes the gas,

which creates a plasma. The associated difference in index for the laser versus the

harmonics can lead to serious phase mismatches. The index of refraction in a plasma
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is given by

nplasma =

√
1− Ne2λ2

4ε0mπ2c2
≈ 1− Ne2λ2

8ε0mπ2c2
, (1.4)

where N is the number of free electrons per volume, ε0 is the permittivity of free space,

λ is the wavelength of the light, e is the charge of an electron, and m is the mass of

an electron [13]. The plasma index effectively speeds up the laser pulse relative to

the harmonic light, which because of much shorter wavelengths, has an index equal

to vacuum for practical purposes. This gives rise to a coherence length (due to the

plasma) of

∆z =
λ

2q(nplasma − 1)
. (1.5)

We find that phase zones due to plasma index for the 49th harmonic are about 100 µm

long, assuming 1% ionization and 80 torr gas pressure. This phase mismatch has the

same sign as that arising from the Gouy shift, which compounds the problem.

Another source of phase differences in generated harmonics arises due to spatial

variations in laser intensity. Atoms located at different positions can emit harmonics

with different phases, depending on the intensity they experience. The laser intensity

can vary significantly both axially and radially within the gas medium.

1.4 Phase Matching Techniques

Much effort has been made to achieve favorable phase matching conditions for HHG.

The most straight-forward method of minimizing geometrical phase mismatches is to

use a narrow gas jet. The gas distribution produced by a typical gas jet can be as

small as 300 µm [14].

Milchberg et al. at the University of Maryland, [15] proposed that a plasma fiber

waveguide can achieve phase matching of HHG over extended interaction lengths be-

cause the plasma waveguide mode structure is independent of wavelength. They re-
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ported guided pulses for distances 2.2 cm (∼70 Rayleigh ranges) at intensities greater

than 1014 W/cm2, which are sufficient to generate HHG.

Durfee et al. investigated the phase matching of HHG in a gas-filled capillary

waveguide [16]. A three-segmented capillary tube was used for their experiments,

which allowed them to produce a constant pressure region within the center section

(3 cm), while the end sections (1.6 cm) exited to vacuum. Intensities as high as

1014 W/cm2 were achieved in the center capillary section. They reported that the

more dispersive the gas, the lower the optimum pressure necessary for phase matching.

By controlling the gas species, ionization level, and gas pressure, phase matching was

achieved over several centimeters in xeon, krypton, argon, and hydrogen gases.

Tamaki et al. also used a gas-filled hollow fiber for HHG [17]. The guided region

was filled with 20 torr of argon. The high-order harmonic spectrum emitted from the

fiber showed an intensity distribution significantly different from that in free space. By

comparing the two harmonic distributions, they observed more than a hundred times

enhancement around the 25th harmonic with the hollow fiber. This enhancement is

attributed to macroscopic phase matching achieved in the hollow fiber.

Tamaki et al. demonstrated HHG in a neon-filled gas cell at 50 torr [9]. They

observed a narrowing of the divergence angle of the transmitted beam, which they

cited as evidence for laser filamentation. This was associated with enhancements of

harmonic production up to 40 times for the 49th harmonic, corresponding to con-

version efficiencies of 10−6. Their laser pulses were generated by a Ti:sapphire laser,

producing 100 fs pulses with 5 mJ energies at a 10 Hz repetition rate. They used a gas

cell with two 300 µm diameter pinholes, isolating the gas from the vacuum chamber.

Pinholes were used to transmit the focusing laser beam into and out of the cell. The

propagation distance of the beam through the gas cell could be varied from 1-7 mm.

Tosa et al. [18] focused a 35 fs, 10-20 mJ pulsed laser into a xenon-filled gas
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cell which had a 1.5 mm pinhole on each end surface, isolating the vacuum and

gas-filled regions. They calculated the radial profile of the intensity, which they

predicted should become nearly top-hat with a 250 µm radius based on their model.

Their modeling suggested that the intensity of the laser remained nearly constant

throughout the cell, a characteristic of filamentation [19].

Kim et al. subsequently reported enhancements to harmonic generation associated

with radial-flattening of the intensity and the existence of a long plasma streak [20].

A neon gas jet was used to generate harmonics up to the 61st order in neon. The

position of the gas jet was moved along the beam path in the focal region. The

observed plasma streak was longest and maintained a uniform column shape when

the gas jet was positioned 18 mm before the focus. The intensity profile at this

position exhibited the top-hat profile.

1.5 Filamentation

The principal effects responsible for laser filamentation are well understood. Fila-

mentation results predominantly from a dynamic competition between the optical

Kerr effect and multiphoton ionization. The optical Kerr effect is responsible for self-

focusing, while multiphoton ionization causes defocusing through dispersion. Multi-

photon ionization occurs when the beam intensity reaches a sufficiently high value.

The index of refraction for a nonlinear medium can be written as:

n = n0 + n2I, (1.6)

where n2 is the optical Kerr constant. The Kerr constant for an atmosphere of helium

is 3.5 × 10−21 cm2/W compared to the value of air of 5.0 × 10−19 cm2/W [21]. The

Kerr effect is only observed at high intensities, similar to those required for harmonic

generation. Our laser beam setup can achieve intensities up to 1016 W/cm2. Filaments
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in air have been observed to maintain a beam radius of 100 µm for distances of over

a hundred meters, well beyond the Rayleigh range [22] . Intensity-dependent losses

eventually deplete the energy in the channel and destabilize the process.

The interplay between self-focusing and ionization is a highly dynamic process,

with spikes of ionization occurring whenever the beam starts collapsing again [23].

Energy losses during filamentation are minimal for two reasons: (a) the intensity is

always maintained at or below the value corresponding to ionization and (b) the short

pulse duration prevents significant pulse attenuation through its interaction with the

generated plasma [24].

Braun et al. in 1995, reported the first observation of femtosecond lasers generat-

ing filaments in air with intensities of 7× 1013 W/cm2 propagating distances greater

than 20 m [25]. They used a Ti:sapphire laser with pulse duration of 200 fs and pulse

energies as high as 50 mJ. As the pulse energies were increased from 5 mJ to 20 mJ the

measured beam diameter (FWHM) decreased from 6 mm to 80 µm, showing direct

evidence of filamentation. Although the distances involved in high harmonic genera-

tion are much shorter than for traditional filamentation experiments, the fundamental

dynamics may well be similar.

1.6 Previous High-Harmonic Work at BYU

Harmonic generation has been studied here at BYU for the past decade in the group

of Dr. Peatross. Recently, a masters student (Julia Sutherland) probed the focal

region with counter-propagating pulses to determine where harmonics are produced

[26]. Sutherland’s work revealed that harmonics are phase matched over a much

greater distance than expected, so much so that in most cases, only a single phase

zone near the exit foil was found. The harmonics were phase matched well enough
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Figure 1.3 A counter-propagating pulse was able to disrupt phase matching
in neon(left) when it collided with the generating pulse near the exit foil. No
effect was observed in helium(right) [26].

that the re-absorption limit was reached in the case of neon, but not helium, see

Fig. 1.3. The re-absorption limit is a point where increasing the interaction length

or increasing the gas pressure in the generating medium gives diminishing returns.

This was quite unexpected, since geometrical phase mismatches alone were expected

to have produced many opposing phase zones within the HHG region.

Sutherland’s work provided strong evidence for the existence of filamentation, as

suggested by Tamaki et al. [9]. Filamentation might give much longer phase zones due

to prevention of natural diffraction. In this thesis, we report on direct measurements

of laser-beam evolution near the focus inside the gas cell under conditions ideal for

harmonic generation.

It is well known that harmonic output can be severely limited by re-absorption in

the generating medium. Eric Christensen, a previous undergraduate student in our

group, and Julia Sutherland studied the effect of re-absorption in HHG [27]. They

showed that the re-absorption limit was reached in neon but not in helium. In neon
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the gas pressure was optimized at 55 torr, meaning that the re-absorption depth was

only about 2 mm. On the other hand, they showed that in helium the harmonics

would need to be phase-matched over a distance of 10 mm in order to reach the

re-absorption limit for a gas pressure of 120 torr. Indeed, this is consistent with

Fig. 1.3 which shows that the coherence length in helium is far longer than 2 mm

(the distance over which it was possible to suppress harmonic production with the

counter-propagating light).

1.7 Outline of Experiments

In order to directly observe and measure possible filamentation in our laser focus, we

designed and built an apparatus to image the laser focus (at full power) onto a CCD

camera. The optimal conditions (i.e. laser power, gas pressure, aperture diameter,

etc.) for HHG were used for the experiment. The exit foil of the gas cell was moved

many centimeters as the evolution of the beam was recorded. Similar images were

taken with an evacuated gas cell for comparison.

The end of a small fiber optic coupled to a spectrometer was swept through the

imaged focus to measure any radial variations in the focal spectrum as well as overall

shifts in the spectrum compared to vacuum. Only minor radial variations were seen in

the focus. The spectrum for the helium-filled cell in the center of the beam was blue-

shifted by about 4 nm compared to no shift in the evacuated cell. This is a modest

shift compared to the spectral width of the laser which is approximately 35 nm wide.

Additionally, the absolute energy of the individual harmonics was determined

for harmonics ranging from the 41st to the 91st. The measured energy per individual

harmonic order is ∼1 nJ, which corresponds to a conversion efficiency of 2×10−7. This

is comparable to what other groups have reported. The higher conversion efficiencies
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reported by Takahashi et al. mentioned earlier are for lower harmonic orders than we

characterized.

1.8 Thesis Overview

The experimental setup used for this work is discussed in detail in chapter 2. Sec-

tion 2.1 describes the laser system, including how the laser pulses are delivered to

the gas cell. Section 2.2 provides an overview of how the high harmonics are gener-

ated and detected. Section 2.3 describes the imaging apparatus used to measure the

laser focus during the harmonic generation process. Section 2.4 explains the process

of ensuring proper alignment of the imaging apparatus. The final section lists the

parameters that are varied to optimize harmonic generation.

Chapter 3 reports the experimental results that characterize the evolution of the

laser in the focus. The first section presents scans of the focal images for various exit-

foil positions. Corresponding images were also recorded with the gas cell evacuated

for comparison. Section 3.2 presents scans of the focal images for the same exit foil

positions but with an aperture located 145 cm upstream of the focusing mirror being

partially closed . Section 3.3 shows comparisons between the beam profile obtained

for propagation in helium and propagation in vacuum. The final section in chapter

three contains the beam width (FWHM) measurements of our beam in helium and

vacuum.

Chapter 4 presents auxiliary measurements performed on the laser beam and

generated harmonics. The first section discusses pulse-duration measurements. Sec-

tion 4.2 reports measurements of the spectral content and the influence of the in-

teraction with the gas cell on the spectrum. Section 4.3 outlines the method used

to measure the energy of individual harmonic beams as well as gives the conversion
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efficiency for our semi-infinite gas cell configuration. Chapter 5 discusses the results

and offers an outlook for future work.
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Chapter 2

Experimental Setup and

Procedures

2.1 Laser System

For the experiments presented in this thesis we used a Ti:sapphire laser which delivers

about 10 mJ of energy per shot at a repetition rate of 10 Hz. The laser pulses are

centered around 800 nm with bandwidth of 35 nm (FWHM). After amplification, the

laser beam is expanded in a Galilean telescope to a diameter of 11 mm. Fig. 2.1

shows a near-field image of the laser beam 35 cm before the focus, which shows non-

uniform structure, which is characteristic of many high-power laser systems. The

laser is focused using a concave mirror (f = 100 cm). The f/91 focusing predicts a

focal-spot radius of w0 = 46 µm, compared to the measured value of w0 = 58µm, as

shown in Fig. 2.2. This indicates that the laser focuses to 1.25 times the diffraction

limit, owing to imperfections in the beam.

Prior to the focusing mirror, the laser pulses are temporally compressed using par-

allel gold-coated gratings (1200 lines per millimeter). The pulse duration, measured

17
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Figure 2.1 Direct measurement of laser beam 35 cm before focus with
aperture open showing non-uniformity of the structure.

Figure 2.2 Laser-beam profile at the beam focus, which has a measured
focal-spot radius of 58 µm, 1.25 times the diffraction limit.
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Figure 2.3 Auto-correlation trace of the 30 fs laser pulse. The trace is
√

2
wider than an individual pulse, assuming a Gaussian profile.

by autocorrelation, was determined to be about 30 fs. The autocorrelation trace is

shown in Fig. 2.3, which is produced by splitting a pulse into to identical ones and

mixing them in a nonlinear crystal. The interaction of the two beams in the crys-

tal maps the temporal profile onto a spatial image. The width of the autocorrelation

trace is
√

2 times wider than the original pulse, assuming a Guassian temporal profile.

The intensity of the focused laser pulse is estimated to be Io ' E(πw2
o

2
TFWHM)−1,

where E is the pulse energy, ω0 is the laser oscillation frequency, and TFWHM is

the FWHM of the time duration for the pulse. Our measured parameters gives

6× 1015 W/cm2. This is more than sufficient to ionize helium, which readily ionizes

at 1.5× 1015 W/cm2. As will be further described, the intensity of our laser will drop

from the measured value as it interacts with helium gas. A partially closed aperture

used on the laser beam during the experiment also attenuates the peak intensity.



20 CHAPTER 2. EXPERIMENTAL SETUP AND PROCEDURES

Concave
Mirror Grating

MCPHarmonics

Temporal Pulse 

Compression

Diffraction Gratings

Gate Valve

Compression Chamber

Harmonic Chamber
Pickoff Chamber Detection Chamber

Mechanical 
Aperture

T
ur

bo

T
ur

bo

T
ur

bo

Figure 2.4 Experimental setup of chambers and laser pulse delivery.

2.2 Experimental Setup

The compression gratings and focusing mirror for the laser are contained in a large

vacuum chamber that can be backfilled with helium or other gases. A schematic

of the entire experimental setup is shown in Fig. 2.4. The gas-filled region extends

to the laser focus where it abruptly ends as the laser passes through a pinhole into

vacuum. The pinhole is created before each experimental run by using the laser to

drill a hole through a 100-µm-thick molybdenum foil. This automatically ensures

that the pinhole is aligned to the laser beam.

We refer to the gas-filled region as a semi-infinite gas cell. High-order harmonics

are generated in the focus of the laser beam, just before it exits into vacuum. The

generated harmonics emerge embedded in the residual laser beam. The laser and the

harmonic beams proceed together to the final chamber about one meter away. Small
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Figure 2.5 Harmonic orders 51 - 89 generated in 85 torr helium.

holes between the chambers allow the light to pass through from one to the next.

The various chambers are connected to turbo pumps for differential pumping. This

allows the pressure in the final chamber to be kept at ∼ 10−6 torr, which is necessary

for proper function of the Micro-Channel-Plate (MCP) EUV detector.

A grazing-incidence diffraction grating (1200 lines/mm , 2 m radius of curvature)

intercepts the beams of harmonics approximately 26 cm before the MCP. The grating

separates each harmonic according to wavelength and focuses them onto the MCP.

The harmonics are separated horizontally into sharp lines, which preserve their spatial

profile in the vertical dimension. The MCP is coupled to a 30 mm-diameter phosphor

screen on which individual harmonic orders appear as vertical stripes. The harmonic

images are captured with a CCD camera. Fig. 2.5 shows a typical image of harmonics,

displayed in false color, which indicates intensity.

Earlier work by Julia Sutherland [26] showed that harmonic generation was de-

pendent on the position of the gas-cell exit (molybdenum foil) relative to the laser



22 CHAPTER 2. EXPERIMENTAL SETUP AND PROCEDURES

beam focus. Foils are glued to glass tubes that can be inserted into a sealed sleeve.

The sleeve is connected to the gas-filled chamber via a flexible bellows. The whole

assembly sits on top of a translation stage that allows for movement along the axis

of the laser (with an automated scan range of 5 cm). The translation stage sits on

tilt and rotation stages (for pitch and yaw adjustment) to ensure that the translation

occurs parallel to the beam path. The alignment of the translation axis is discussed

in the next section.

Sutherland also found that placing an aperture in the beam path before the fo-

cusing mirror enhances harmonic output. We placed a motorized aperture in the

laser beam path 145 cm before the focusing mirror. A remote camera allows adjust-

ment of the aperture diameter during experiments. Figs. 2.6 and 2.7 show images

of the laser beam taken 36 cm before and at the laser focus, respectively, with the

aperture partially closed to form a 9-mm-diameter circular hole. An Airy pattern

appears at the focus with radius of 110 µm to the dark ring, which agrees with pre-

diction: r = 1.22λf
D

= 108 µm, where f is the mirror focal length and D is the aperture

diameter.

During experiments, the large vacuum chamber is filled with approximately 80 torr

of helium. This requires approximately 30 minutes, in order to pump out the large

chamber and introduce the helium. A gate valve is used to isolate the gas-filled

chamber from the subsequent chamber that houses the cell exit foil. This allows the

foil to be changed without needing to re-pump down the large chamber.

2.3 Imaging Apparatus

A beam pick-off chamber is located between the harmonic-production chamber and

the harmonic detection chamber as seen in Figure 2.8. The beam pick-off chamber



2.3. IMAGING APPARATUS 23

Figure 2.6 Near field image of laser beam 36 cm before focus with aperture
diameter at 9 mm.

Figure 2.7 Near field image of laser beam at the focus with aperture diam-
eter at 9 mm.
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Figure 2.8 The apparatus used to image the laser focus onto a CCD camera.

accommodates an uncoated glass substrate attached to a vertically mounted trans-

lation stage. The uncoated glass surface (oriented at 45 degrees) reflects 2% of the

p-polarized laser light. This attenuation saves a focusing lens (which also serves as a

window for the laser to exit the chamber) from laser damage. The vertical translation

stage can raise and lower the glass reflector in only a few seconds, without breaking

vacuum, to allow harmonics to pass to the detection chamber, or to send the laser

beam out to a camera for imaging of the laser focus. The deflected beam goes through

a plano-convex lens (f = 75.5 cm) as it exits the chamber. The laser beam is further

attenuated with neutral-density filters and then reflected off two silver mirrors and

onto a CCD camera as shown in Figure 2.8.

The distance from the typical gas-cell-foil position to the imaging lens is about

98 cm. This produces an image of the foil position at 350 cm after the imaging lens,

for a magnification of 3.5×. The magnification varies as the foil position is varied
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Figure 2.9 Direct measurement of the laser focus compared to the corre-
sponding measurement using the imaging system (in vacuum).

and the camera is moved to keep it in focus. The appropriate imaging distance is

determined via

1

f
=

1

p
+

1

q
, (2.1)

where f is the focal length of the imaging lens, p is the distance from the exit foil to

the imaging lens, and q is the distance from the imaging lens to the CCD camera.

An aluminum rail is bolted to the table to guide alignment of the CCD camera. The

filters placed in the beam path protect the CCD camera from damage and allow for

correct energy exposure.

To ensure the validity of the imaging apparatus we compare the beam focus in

the near field to the imaged beam focus in vacuum, see Fig. 2.9. In both cases the

aperture diameter is 9 mm and the focus diameters agree to within 5%.

2.4 Alignment of the Imaging Apparatus

We depended on the imaging system to verify that the laser was aligned parallel to

the gas-cell translation stage. Therefore, it was necessary to verify that the laser

propagated parallel to the axis of the imaging lens. To ensure this, we first used a

HeNe laser to mark the imaging-lens axis. Two apertures were placed outside of the
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Figure 2.10 Image of the pinhole used for alignment of the gas cell trans-
lation stage.

pick-off chamber as seen in Fig. 2.8. We relied on ghost reflections from the front and

back surfaces of the lens.

The Ti:sapphire laser was carefully aligned such that it passed through the two

apertures. A molybdenum foil with a pre-drilled pinhole was then installed. A diffuser

(scotch tape) was placed in the laser beam upstream from the foil to back-illuminate

the pinhole. The tape also attenuated the laser beam, so very few filters were needed

for appropriate camera exposure.

At the image plane of the foil, the camera sees a sharp image of the back-

illuminated pinhole as shown in Fig. 2.10. This allowed us to confirm that we were

at the focus. This is crucial for our experiments, which require the capture of laser

images at the foil plane as the foil is scanned.

To ensure that the translation stage under the foil moved parallel to the beam,

we watched on the CCD camera to see if the image of the pinhole moved laterally as

the stage was scanned. Adjustments were made to yaw and pitch until the pinhole

image shifted laterally no more than about 40 µm through the entire translation

range (5 cm). This is small compared to the typical pinhole size of 400 µm as seen

in Fig. 2.10.
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2.5 Optimizing Parameters for High Harmonic Pro-

duction

Previous work in our research group by Julia Sutherland showed that the diameter

of the aperture placed upstream in the laserpath drastically affects the harmonic

output [26]. We have since observed that the location of the aperture relative to the

focusing mirror also affects the harmonic output signal. An optimal location was

identified to be 1.5 m or more before the focusing mirror.

We investigated the relationship between foil location relative to the beam focus.

Sutherland reported that the optimal location for the gas-cell exit foil in the presence

of 100 torr helium is 9 mm before the focus [26]. We found the optimal position of the

foil to be at best focus (i.e. where the laser focuses best under vacuum conditions).

We also adjusted gas pressure and pulse compression to optimize high harmon-

ics. We found that 80 torr was the best gas pressure. Before the experiment, the

compression gratings were optimized in air. Once the helium was introduced into the

chamber the compression gratings could be adjusted to enhance the harmonics, but

this is most likely just to get back to optimal compression, taking into account the

difference of index of refraction between air and helium inside the pulse compression

system. This is discussed more in section 4.1.
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Chapter 3

Evolution of Laser Spatial Profile

3.1 Harmonic Generation at Different Gas-Cell Po-

sitions

As an intense laser pulse focuses within the gas cell, the interaction with the gas

influences its propagation. The focus evolves through a complicated interplay between

diffraction, nonlinear self-focusing, and dispersion through the rapid production of free

electrons. Using the laser-beam imaging system described in section 2.3 together with

the harmonic detection system described in section 2.2, we recorded the evolution of

the laser beam and the associated harmonic emission as we scanned the position of the

gas-cell exit foil along the laser axis. The structure of the beam constantly changes

as it propagates in the gas cell. For each foil position, the imaging system recorded

the spatial profile of the laser in the plane of the exit foil.

Images of harmonic production for each of the exit foil positions were saved on the

computer. The deflection mirror was then lowered and the beam was sent through

the f = 75.5 cm focusing lens and onto the imaging CCD camera. The exit foil was

scanned through the focus region by moving the translation stage beneath the gas

29
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cell. The CCD camera was placed at the predetermined position so that the foil plane

was in focus at the camera.

Figs. 3.1 and 3.2 show the harmonic emission and the measured laser profile for

a range of foil-exit positions. The foil positions are referenced to the mirror focus

(100 cm), which is where the laser focuses in the absence of gas. Negative numbers

labeled in the figures correspond to positions before the focus, or closer to the fo-

cusing mirror. The gas cell (which includes the large first chamber) was backfilled

with 80 torr helium. The removal of air and its replacement with helium affects the

pulse compression by the grating pair, effectively changing the separation between

the gratings. During the experiment, the grating was adjusted to optimize pulse

temporal compression for harmonic production, which as shown in the next chapter,

which takes place close to the shortest pulse duration available (30 fs).

The images, which show the laser-beam profile over a scan distance of 5 cm, reveal

significant irregularity and structure. As is seen in the figures, the harmonics that

are produced are relatively weak. In the next section, we demonstrate that partially

closing an aperture on the laser beam upstream from the focusing mirror causes the

harmonics to increase in brightness dramatically. At the same time the focal spot of

the laser grows in size and becomes more regular.

3.2 Apertured Laser Beam

By partially closing the aperture positioned 145 cm before the focusing mirror, the

harmonic output was enhanced and the laser beam profile became smoother than in

the open aperture case. A comparison of the intensity of the harmonics for the open

aperture and partially closed aperture is shown in Fig. 3.3.

It was determined that a 9 mm diameter aperture opening resulted in the brightest
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Figure 3.1 Harmonics generated at various foil positions with the laser-
beam aperture open, along with beam profile images.
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Figure 3.2 Harmonics generated at various foil positions with the laser-
beam aperture open, along with beam profile images.



3.2. APERTURED LASER BEAM 33

Figure 3.3 The intensity of harmonics with a slightly apertured beam was
increased by almost a factor of 3 over the open aperture case.
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harmonics. When the beam is apertured to 9 mm the intensity at the focus decreases

by a factor of 5. This attenuates the peak intensity to 1.08 × 1015W/cm2, which is

just below the value at which helium readily ionizes, 1.5 × 1015W/cm2. Images of

the generated harmonics along with measured beam profiles are seen in Figs. 3.4, 3.5,

3.6, and 3.7.

It was possible to perform a scan over 9 cm by putting the original gas cell near

one end of its range, after we scanned through the 5 cm, the vacuum chamber was

opened and a new gas cell was placed 4 cm earlier upstream. This gives a total range

of 9 cm, with a 1 cm overlap between measurements. When a new gas cell is used, the

laser must self drill a new exit hole in the molybdenum foil. The centimeter overlap

ensured consistency between the two cells.

The images reveal that best harmonics occur when the beam profile is nearly a

‘top-hat’ shape. For foil positions further away, either upstream or downstream, the

harmonics gradually drop off, as does the ‘top-hat’ shape. Because the ‘top-hat’ shape

is associated with filamentation, this suggests that harmonics are improved when a

filament is present in the focus. When the harmonics are brightest the beam has a

plateau shaped profile. This profile gradually becomes Gaussian as the harmonics

decrease, regardless of whether upstream or downstream of the focus. The filament is

centered at 0.5 cm (upstream from best focus in vacuum.) The filament is discussed

more in Section 3.4.

3.3 Laser Propagation in Gas Versus in Vacuum

In this section images of the laser focus taken with the cell evacuated are compared

to those taken in helium. Of course, no harmonics are generated in vacuum so they

are not shown. In these figures the image on the left corresponds to the beam in
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Figure 3.4 Harmonics generated at various foil positions along with beam
profile images.
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Figure 3.5 Harmonics generated at various foil positions along with beam
profile images.



3.3. LASER PROPAGATION IN GAS VERSUS IN VACUUM 37

Figure 3.6 Harmonics generated at various foil positions along with beam
profile images.
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Figure 3.7 Harmonics generated at various foil positions along with beam
profile images.
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helium with an accompanying line-out profile that shows the spatial shape of the

beam and the image on the right corresponds to the beam focused in vacuum with

its accompanying line-out. For vacuum scans, the gas-cell tube and foil were removed

from the vacuum chamber since they were not needed. The camera positions for

the vacuum scan were the same as they were in helium. In Figs. 3.8, 3.9, 3.10, and

3.11 negative numbers correspond to foil positions upstream of the laser focus, while

positive numbers correspond to foil positions downstream of the laser focus, located

100 cm from the concave mirror.

The key difference between the two beams is the profile shape. In vacuum the

shape of the beam profile is Gaussian and reaches its peak intensity at the focus.

The beam focused in helium begins Gaussian and looks similar to the vacuum beam,

but the two beams differ in a 5 cm range centered at the focus. The beam in helium

becomes wider with a ‘top-hat’ profile. A comparison of the widths of the two beams

is given in the next section. This ‘top-hat’ profile goes away as the imaged plane gets

further than ∼ 2.5 cm from the focus. The presence of this ‘top-hat’ feature has been

reported to be one of the evidences of filamentation [18], [19],and [20].

The ‘top-hat’ profile is explained by the same two effects that cause filamentation.

In the outer radius of the beam there are no free electrons, which would disperse the

beam, therefore the laser beam tries to focus due to the nonlinear self focusing in the

gas. However, the generation of free electrons in the inner radius tends to disperse

the beam, acting like a negative lens.

3.4 Beam-Width Measurements

The full-width-at-half-maximum (FWHM) diameters of the laser beam in helium and

vacuum are compared in Fig. 3.12. The aperture for both beams is set at 9 mm. The
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Figure 3.8 Laser beam profile for helium and vacuum at various foil posi-
tions relative to the beam focus.
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Figure 3.9 Laser beam profile for helium and vacuum at various foil posi-
tions relative to the beam focus.
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Figure 3.10 Laser beam profile for helium and vacuum at various foil
positions relative to the beam focus.
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Figure 3.11 Laser beam profile for helium and vacuum at various foil
positions relative to the beam focus.
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Figure 3.12 A graph of FWHM for both helium and vacuum for various
foil positions.

FWHM value for the beam focused in vacuum reaches a smaller value than it does

for helium. This is due to the interaction with helium. The dispersion due to ionized

electrons limits how tightly the beam can focus in helium.

In Fig. 3.12 a double focus is observed. The laser beam initially begins to fo-

cus, but the intensity becomes high enough that it defocuses due to ionization.

It is through the region where the beam has grown and held relatively constant

(FWHM ∼ 150µm) for several centimeters that we achieve best harmonics. Even-

tually intensity-dependent losses deplete the energy in the channel and the process

becomes unbalanced. The length of the plasma generated in the focus is approxi-

mately 4-6 cm. If the distance between the two lowest FWHM points for helium in

Fig. 3.12 are indicative of the length of the filament then it would extend over a region

of 7 cm.

Kosareva et al. [22] report having seen multiple foci in their ultra short laser



3.4. BEAM-WIDTH MEASUREMENTS 45

pulses in air. These foci extended the focus of their beam to several meters in air

while maintaining a beam radius less than 100 µm. Although the scaling is different

for our situation, the formation of multiple foci resembles what we see in our helium

data in Fig. 3.12.
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Chapter 4

Auxiliary Measurements

We characterized the laser pulse duration, the spectral content of the laser before

and after interaction with the gas, as well as the energy converted into high-harmonic

beams.

4.1 Pulse Duration

In addition to looking at the imaged focus when the aperture was optimized at 9 mm,

we compared the temporal duration of the pulse optimized for best harmonic pro-

duction to the shortest attainable temporal duration. Fig. 4.1 shows a comparison

between the two auto-correlation traces. The temporal duration of the pulse that

was best for harmonics is wider by about 16/
√

2 fs. However, the pulse that we use

for auto-correlation travels through a 1/4 in thick piece of fused silica on its way to

the nonlinear crystal. Going through the fused silica introduces a chirp on the pulse

that is about right to account for the pulse duration seen. Thus, it appears that the

pulse is likely optimally compressed as it approaches the laser focus. On the other

hand, it is possible that it is negatively chirped by double the amount of positive

47
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Figure 4.1 Comparison of the temporal pulse duration optimized in air(left)
versus best harmonic compression(right).

chirp introduced by the fused silica before the auto-correlation measurement. Since

the amount of chirp in dispute is small, it is fair to say that the pulse used in optimal

harmonic production is close to a well-compressed pulse.

4.2 Laser Focus Spectral Content

The spectral characteristics of the laser focused in vacuum and in helium were mea-

sured. An Ocean Optics spectrometer (model number USB2000) with a 50-µm-core

fiber optic was used to capture spectral information at different locations in the laser

focus. Neutral-density filters were used to attenuate the laser beam for optimal instru-

ment exposure. The fiber was attached to two linear translation stages to accurately

control its position in the imaged focus. One stage allows for horizontal movement

and the other for vertical movement.

We observed spatial chirp in our laser beam through the use of the spectrometer.

As the fiber was horizontally swept through the focus, one side of the spectrum was
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Figure 4.2 Spectral content of imaged laser focus in both helium and vac-
uum at outer radius of beam and in center of beam.

blue shifted while the opposite side was red-shifted. We were able to minimize the

spatial chirp by appropriately adjusting the compression gratings. Because slight

spatial chirp is observed as the fiber is swept horizontally through the focus, for

capturing the radial spectral content of the laser focus, the fiber was swept vertically

through the focus.

Two things that we look for in the focus of the laser beam is radial variations in

the spectrum due to ionization as well as an overall shift of the spectrum compared to

vacuum. To have a reference of our laser spectrum in the absence of any unexplained

nonlinear effects, we first swept a spectrometer vertically through the imaged laser

focus. A similar spectral scan was performed of the imaged beam under optimal

harmonic generation conditions (i.e. aperture diameter, gas pressure and exit foil

location). Fig. 4.2 shows the results from the spectral scans. The data has been

normalized so that the helium blue-shift can easily be seen. The fiber optic position,

y = 120 µm, refers to the radial position in the actual focus rather than the imaged

one.

The laser beam is centered around 800 nm with a FWHM of 35 nm. The vacuum
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spectrum exhibits no shift in its spectrum as the fiber is scanned vertically through

the focus. However, the helium spectrum exhibits a shift of around 4 nm for the

center of the focus compared to vacuum. The profile of the beam at this position

is ‘top hat’, it is the flattened portion of the beam that exhibits the blue-shift, see

Fig. 3.5. The blue-shifting is due to the time-dependent index of refraction with the

creation of the plasma, which occurs most in the laser center.

4.3 Harmonic Energy Measurement

Conversion efficiency is the ratio of the output energy of the individual harmonics to

the input energy of the generating laser. We used an AXUV-100 photodiode from

International Radiation Detectors Inc.(IRD) to determine the energy of the generated

high-order harmonics (orders 41 - 91). For more information see the senior thesis of

Mark Adams [28]. This is a similar setup to that used by Takahashi et al. [12].

Because the efficiency of our EUV diffraction grating is not known, we eliminate

the grating and measure the total energy of all harmonics present in the beam (that

cause a response on the detector). Because the harmonics are embedded in the

residual laser beam, we use a 0.2 µm-thick Zr filter to block the laser light. It also

blocks the low-order harmonics. The photodiode was positioned inside a cylindrical

housing made of aluminum, directly behind the filter and axially aligned with it,

see Fig. 4.3. A coaxial cable, which reduces electrical noise, is used to connect the

photodiode to the oscilloscope.

For our energy measurement, the diode is placed in the path of the harmonics

before the grating. The high-harmonic photons that make it through the filter excite

electrons to the conduction band of the diode, which results in a voltage governed by

the intrinsic capacitance of the photodiode and the cabling to the oscilloscope. As
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Figure 4.3 Filter and photodiode assembly. Harmonic light enters the cylin-
der through a zirconium filter. The aluminum cylindrical housing prevents
stray light from reaching the diode [28].

seen in Fig. 4.4, we saw approximately 29 mV peak voltage for our measurement. The

charge in the device immediately begins to discharge through the 50 Ω termination

of the oscilloscope. The capacitance is found via τ = RC, where R represents the

internal resistance of the oscilloscope, which was set to 50 Ω. The time constant τ

is defined as the time for the diode to discharge to 1/e of the peak voltage. From

Fig. 4.4, we see this voltage decay is about 0.6 µs. We calculate the capacitance to

be 1.2× 10−8 F.

We also took a measurement of the photodiode with the gas cell evacuated but

with the laser light hitting the filter directly. Fig. 4.5 shows the case, which indicates

that the electrical noise was about 1 mV, which we ignore in our calculations.

The filter/photodiode combination is sensitive only to harmonics in the range from

41st to 91st harmonic, the highest produced. We make the simplifying assumption that

the energy Et held in each harmonic is approximately the same. This is reasonable,

given the uniform brightness of the harmonics seen in Fig. 2.5. The zirconium filter is
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Figure 4.4 Voltage induced in the photodiode.

Figure 4.5 Voltage induced in the photodiode due to electrical noise.
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Figure 4.6 Zirconium filter transmission curve for short wavelength light
[29].

wavelength-dependent, however, which must be taken into account when calculating

transmitted energies. The spectral response of the filter is seen in Fig. 4.6.

The energy of each harmonic arriving to the detector E ′
n is affected by the filter

transmission according to E ′
n = TnEn, where En is the energy in the nth harmonic and

Tn is the transmission through the filter. The number of photons in each harmonic

pulse arriving to the photodiode is determined by dividing the energy of each harmonic

by the energy of a single photon:

Nn = λLEn/nhc. (4.1)

Here h is Planck’s constant, c is the speed of light, and λL is the laser wavelength.

The average number of electrons that are promoted to the conduction band per

photon depends on the harmonic order through the quantum efficiency qn. The quan-

tum efficiency is taken from a graph provided by the manufacturer of the photodiode,

(see Fig. 4.7).

The total charge resulting from all harmonic orders is found from summing the

quantum efficiency of the photodiode for each harmonic order times the number of
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Figure 4.7 Quantum efficiency of photodiode provided by IRD Inc. [?].

photons for that particular order (as well as the charge of an electron):

Q = e
∑

qnNn. (4.2)

Combining this equation with the number of photons arriving to the photodiode and

the energy of each harmonic yields

Q =
eλLEn

hc

∑ qnTn

n
. (4.3)

We bring the harmonic energy En outside the sum in accordance with our assumption

that it is the same for all relevant orders. The sum is over odd integers from 41 to

91.

The charge is related to the capacitance of the diode through Q = CV , where

V is the peak voltage seen on the oscilloscope, in our case 29 mV. The charge on

the capacitor is calculated to be 3.48× 10−10 C. From this result and from applying

transmission values and quantum efficiencies, we calculate an energy En of individual

harmonics to be approximately 1 nJ for orders between 41 and 91. This gives a total

energy of about 26 nJ in the 26 orders present (odd). The conversion efficiency of the

4 mJ laser energy into individual harmonics is about 2× 10−7.
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The conversion efficiencies reported earlier in section 1.2.1 were for lower-order

harmonics. We are achieving comparable efficiencies for higher ordered harmonics.

This gives us confidence in the effectiveness of our gas cell configuration as a compet-

itive method of HHG.
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Chapter 5

Conclusions

In summary, we have constructed an imaging apparatus that allows us to explore the

laser beam spatial profile as it evolves at full power while interacting with gas during

production of high-order harmonics. We adjusted parameters such as gas pressure

and aperture diameter to optimize harmonic production. We measured the conversion

efficiency for our semi-infinite-gas-cell geometry to be approximately 2× 10−7, which

is similar to those reported by other groups, although we have focused our attention

on higher orders than those for which conversion-efficiency has been measured.

Images of the laser focus revealed the presence of filamentation when the con-

ditions for optimal harmonic generation where present, namely the gas pressure at

80 torr and the beam aperture closed to 9 mm. The images of the laser beam at

80 torr helium show the formation of a double focus, neither of which is as tightly

focused as the beam in vacuum. This is direct evidence of filamentation. Kim et

al. [20] present an image of their laser beam at one position when harmonic genera-

tion is optimized. However, we perform an extensive scan of the laser beam showing

the clear formation of a filament. Best harmonics are attained when the exit foil of

the gas cell is positioned near the middle of the filament where the beam diameter is

57
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greater. We also observe the ‘top-hat’ beam profile in this same region over a distance

of several centimeters. This is in agreement with what Tosa et al. predicted [18] and

Kim et al. reported [20].

A spectral measurement in the imaged laser focus revealed a minor blue-shift of

the laser spectrum when 80 torr of helium was present in the gas cell, compared to

vacuum. A blue-shift was observed in the focus of the harmonic generating beam in

helium. The vacuum beam remained mostly centered around 800 nm through the

entire focus. The helium beam was slightly blue-shifted by about 5 nm. A slight

blue-shift is expected in the focus due to the time-dependent index of refraction of

the generated plasma, which changes the frequency while keeping the wavelength the

same.

Record conversion efficiencies of 10−4 have been reported by Takahashi et al. [12]

for harmonics generated in xenon. These were much lower orders than what we have

characterized. For our high ordered harmonics (41-91), we calculate a conversion

efficiency of 2×10−7 for individual harmonics being generated by 4 mJ pulses. Higher

ordered harmonics typically have lower conversion efficiencies which currently limits

their applications.

As was mentioned in section 1.1, Professors Allred and Turley design and fabricate

multilayer coatings for EUV optics. Because our high-order harmonics are polarized

and have sufficiently high energy, they will be used as a EUV source for determining

optical constants of Allred’s and Turley’s EUV optics. Given the dynamic range of

our setup, the high-order harmonics are capable of measuring reflectances as low as

0.5% [30]. Niki Brimhall, a current graduate student who has contributed signifi-

cantly to the work presented here, will construct and test a polarimeter based on the

harmonics generated in the regime outlined in this thesis. This polarimeter will be a

valuable asset to BYU by providing a local and less-expensive alternative to visiting
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a synchrotron source.
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