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Abstract-We present an equilibrium selection algorithm for by its countemarts) and (2) they all m; 
reinforcement learning agent; that incrementally adjusts the 
probability of executing each action based on the desirability of 
the outcome obtained in the last time step. The algorithm assumes 
that at least one coordination equilibrium exists and requires that 
the agents have a heuristic for determining whether or not the 
equilibrium was obtained. In deterministic environments with one 
or more strict coordination equilibria, the algorithm will learn to 
play an optimal equilibrium as long as the heuristic is accurate. 
Empirical data demonstrate that the algorithm is also eflective 
in stochastic environments and is able to learn good joint policies 
when the heuristic’s parameters are estimated during learning, 
rather than known in advance. 

I. INTRODUCTION 
Learning to play an optimal equilibrium is a non-trivial task. 

Non-communicating agents must both determine the location 
of equilibria in  the joint action space and learn which equilibria 
are enabled by the other agents’ strategies. Wang and Sand- 
holm describe this task in terms of two interrelated learning 
problems: identifying the game and learning to play [Y]. 

We use the phrase ngenis wirh common inreresis to describe 
agents whose preferences coincide in at least one point in 
the joint action space; that is, there is at least one joint 
action that maximizes expected reward for all agents. We call 
such a joint action a coordination equilibrium. A coordination 
equilibrium is strict if the system contains no joint actions that 
maximize expected reward for one agent without maximizing 
it for all other players. Coordination equilibria are a special 
case of opiimnl equilibria, which are defined as pareto-efficient 
Nash equilibria. An optimal equilibrium does not necessarily 
maximize payoff for all players. A coordination equilibrium 
does. 

Recent algorithms that address equilibrium selection in 
multiagent reinforcement learning systems include Claus and 
Boutilier’s Joint Action Learners [I], Hu and Wellman’s Nash 
Q-learning algorithm [3], Michael Littman’s Friend-or-Foe Q- 
learning [6], and Wang and Sandholm’s Optimal Adaptive 
Learning [Y]. 

The algorithms described above share two characteristics in 
common. ( I )  They all rely on global perception of the joint 
action space (i.e. each agent can perceive the actions executed 

assumptions about 
the motives of the other agents. These two characteristics 
correspond to Wang and Sandholm’s taxonomy: Perception 
of other agents’ actions allows the game structure to be 
identified, while assumptions about other agents’ motives help 
in determining which potential equilibria the other agent is 
willing to play. 

Incremental Policy Learning (IPL) is a novel approach 
to selecting between multiple coordination equilibria. This 
approach uses a weakened form of condition ( I )  above: The 
agents do not need to know the entire structure of the joint 
action space. Instead, they require a heuristic (for example, 
the reward associated with a coordination equilibrium) that 
indicates whether the desired equilibrium was obtained. The 
heuristic information can be inferred from the joint action 
table if it is available, may be provided by an external 
oracle, or can be estimated based on known characteristics 
about the environment and observed individual rewards. One 
of IPL‘s greatest advantages is that, depending on how the 
heuristic information is obtained, optimal solutions may be 
found without learning the complete game structure. 

In its most basic form, Incremental Policy Learning relies 
on condition (2) by assuming that a coordination equilibrium 
exists and by using the reward associated with this equilibrium 
as a parameter for the heuristic. We show in Section IV-C 
that this basic form can be augmented through the use of 
other heuristics so that the algorithm can play optimally un- 
der other assumptions about opponent motivations, including 
Nash-seekers and Minimax players. 

11. RELATED WORK 

One of the simplest reinforcement learning techniques for 
selecting between multiple equilibria is to use a pre-arranged 
coordination mechanism such as that employed by Lauer and 
Riedmiller, in which the agents retain as their optimal policy 
the first action that successfully maximized reward [ 5 ] .  This 
approach is effective in deterministic environments, but ceases 
to be effective when nondeterministic rewards are introduced 
or when the environment is unpredictable. 
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The equilibrium selection problem can also be addressed 
through on-policy learning. The underlying principle is that 
each agent’s individual utilities shift to reflect the frequency 
with which the agent has achieved a desirable reward, causing 
the agents to settle towards complementary policies in which 
both agents benefit [I] .  Unfortunately, agents using this tech- 
nique do not always settle to an optimal equilibrium. Some 
environments particularly those resembling penalty games) 
camoflauge desired equilibria so that the weighted sum of 
received rewards still appears less desirable than some other 
action. 

Biased exploration techniques have been utilized to en- 
courage convergence to an optimal equilibrium. For example, 
Kapetanakis and Kudenko’s FQM heuristic biases exploration 
based on the maximum reward received for a given action 
and the frequency with which that reward has been observed 
[4]. This approach increases the likelihood of convergence to 
an optimal equilibrium in cooperative games, but does not 
guarantee it. 

Another option is to allow the agents to percieve the actions 
selected by al l  other agents. However, this augmentation 
destroys the power of on-policy learning as an equilibrium 
selection technique. Unlike typical reinforcement learners, 
whose utility estimates change in response to the biased 
exploration of their counterparts, agents who perceive the joint 
action space learn the same joint utilities regardless of the 
behavior of the other agents. The frequency with which each 
joint utility is updated is affected, but not the value to which 
the utilities converge. To remedy this problem, researchers 
have again resorted to biased-exploration techniques such as 
Fictitious Play and Optimistic Boltzmann [I] .  This results in 
improved performance hut does not guarantee convergence to 
an optimal solution. 

Incremental Policy Learning resembles the biased explo- 
ration techniques described above, with the critical distinction 
that IPL uses information about the optimal equilibrium to 
guide the search. This results i n  guaranteed convergence to 
an optimal joint policy if at least one strict coordination 
equilibrium exists. 

111. INCREMENTAL POL.lCY LEARNING 
A. Terminology 

Let A = { a 1 ,  ..., a,} be the action selections available to 
an agent, and let P = { p ( a l ) ,  ...,p( a,)} be a probability 
distribution over those actions Then 0 5 p ( a t )  5 1 and 

We assume that the agents are repeatedly playing a single- 
stage game in which the (external) state of the agent never 
changes. In any time step t, each reinforcement learning agenl 
executes an action a( t )  E A and receives an information vector 
I ( t )  back from the environment. This information includes the 
agent’s reward r( t )  and may also include the action selections 
of other agents, the payoffs received by other agents, or othet 
information about the environment. 

The IPL algorithm uses a binary heuristic H(t) that returns 
a value of 0 or 1. This heuristic may use as parameters the 

C , p ( a , )  = 1. 

information vector I ( t ) ,  the agent’s utilities (if i t  is maintaining 
them), or any other information accessible to the agent. 

One of the simplest heuristics a reinforcement learning 
agent can use returns 1 if and only if the reward received by 
the agent matches or exceeds the expected ‘reward associated 
with a coordination equilibrium, that is, if r ( t )  2 T, ,~.  

An inequality is used in addition to the equality because 
the maximum expected reward may he exceeded due noisy 
payoffs. This heuristic is used for the basic form of IPL 
because of its simple nature and because of the potential for 
inferring T~~~ from observations or from a priori information 
about the environment. 

E .  Algorirhnr 
The basic principle of IPL is that, if the heuristic indicates 

that the agent’s objectives were successfully obtained, then 
the agent increases the probability of repeating the action just 
executed while slightly decreasing the probability of executing 
any other action. This algorithm is purely policy-based; the 
agent’s utilities have no influence on the agent’s behavior 
unless they are used by the heuristic function. 

The basic form Incremental Policy Learning Algorithm 
functions as follows: 

. Initialization 
V i , p ( a i )  = wi, where w is an arbitrarily chosen 
initialization vector that satisfies Cy=owi = 1 and 
Vi, wi > 0. 

Action Selection 
In each time step t ,  the agent selects an action a ( t )  E A 
such that pTob(a(t)  = ai) = p ( a i ) .  The agent executes 
this action, receives an information vector I ( t ) ,  and 
updates P as described below. 

. Probability Updates 
Let H ( t )  = 1 if r ( t )  2 rmar. 0 othemise. 
Let 0 < a 5 1. 
If H ( t )  = 1 then V i :  

if (a( t )  = a i )  then p’(ai) = p ( a i )  + a(1 - p ( a ; ) )  
if (a( t )  # a i )  then p’(ai) = p ( a i )  - ap(a , )  

The update rule used preserves the probability distribution 
P. Hence C i p ’ ( a i )  = 1 and for all $(a ; ) ,  0 5 p’(a,) 5 1. 

The general form of the algorithm differs from the basic 
form in that the heuristic H ( t )  is not specified. It is intended 
that the general algorithm can he adapted to suit varied 
situations by selecting an appropriate heuristic. 

C. Convergence 
Figure 1 shows a generalized payoff matrix for a deter- 

minstic two player game. We will assume that the game is 
constrained such that it contains at least one coordination 
equilibrium and that all coordination equilibria are strict. This 
means that there exist values x* and y* such that Vi,j,x* 2 
xij,y* 2 yij, and xij = x* iff y,j = y’. 
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Suppose that we have two IPL agents, a and b, repeatedly 
playing a single-stage game with this payoff matrix using 
x* and y* as their respective T,,,~= values. Under these 
conditions, the agents' heuristics will always be positively 
correlated. Hence, if (a,, b j )  is a coordination equilibrium, 
then x-. '3  = x*, yij = y'. and H ( t )  = 1 for both agents. 
If (U, ,  b j )  is not a coordination equilibrium, then xij < XI, 
yij < y'. and H ( t )  = 0 for both agents. 

We wish to determine whether the agents will l e a n  to 
play an optimal equilibrium. We begin by noting that the 
combination of the agents' IPL probability distributions creates 
a probability distribution over the joint action space such that 

p(a, ,bj)  = p ( a i ) p ( b j )  (1) 

Each time a coordination equilibrium is played, the heuristic 
of both agents is satisfied and each joint action takes on a new 
probability 

p'(ai ,bj)  = p ( a i , b j )  + A p ( a i , b j )  ( 2 )  

The value to which p(a; ,  b j )  can increase is bounded for all 
joint actions that are not coordination equilibria, as shown in 
Theorem 3.1. 

Theorem 3.1: If (a ; ,  b j )  is not a coordination equilibrium 
and if p(a i ,  b j )  > 0.5, then A p ( a i ,  b j )  5 0. 

Pro08 We, wish to establish the conditions under which 
A p ( a i ,  b j )  5 0. Using equation (2) to  derive A p ( a i ,  b j )  and 
substituting, we obtain p'(ai ,  b j )  - p(a i ,  b j )  2 0, which by 
equation ( I )  is equivalent to 

p'(ai)p'(bj)  - p(a i )p (b j )  I 0 (3) 

The values of p'(a,) and p'(bj)  depend on the nature of the 
action executed by the system at time t. Let ( a s ,  b,) he this 
joint action. If ( a s ,  b,) is not a coordination equilibrium, then 
the IPL probabilities are not adjusted. In this case, p'(ai)  = 
p(a,) ,  p ' (bj)  = p ( b j )  and A ( a , ,  b j )  = 0. 

If ( a s ,  b,) is a coordination equilibrium then joint action 
(a , , b j )  can be related to it in three ways: They can share 
a row (i = k , j  # z ) ,  share a column (i # k , j  = z), or 
be completely disjoint (i # k , j  # 2). They cannot share 
both a row and a column because ( a s ,  b,) is a coordination 
equilibrium and (a i ,  b j )  is not. 

If the two actions are disjoint then p'(ai)  = p ( a i )  - a p ( a i )  
and p'(b3) = p ( b j )  - a p ( b j ) .  This means that p'(a,, b j )  < 
p(a; ,  bj) .  so A p ( a i ,  b j )  < 0. 

If the actions share a row or a column the situation is less 
clear because one term of p'(ai)p ' (bj)  is increasing while the 
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other is decreasing. Without loss of generality, assume (i = 
k,j # z) .  Then p'(a;) = p ( a i )  + a ( 1  - p ( a , ) )  and p'(bj)  = 
P V J j )  - ap(b,). 

Substituting into equation (3) we get 

( p ( a i ) + a ( l  - p ( a i ) ) ) ( p ( b j ) - a p ( b j ) )  -p (a i )p (b j )  5 0 (4) 

which resolves to 

p ( a , ) ( a  - 2) 5 (a - 1 )  ( 5 )  

Dividing by a - 2, a negative quantity, we find that 
A p ( a i ,  b j )  2 0 whenever p ( a ; )  > s. The right side of the 
equation is maximized when a = 0, so as long as p ( a i )  > 0.5, 
A ( a i ,  b j )  5 0. 

The above proof demonstrates that the system can never 
converge to a solution that is not a coordination equilibrium: 
whenever the probability of a suboptimal joint action is greater 
than 0.5, it will decrease on the next update. We also notice an 
interesting phenomenon. In equation 4, the value p ( b j )  exists 
in all multiplicative terms and factors out of the calculation. 
Thus, if a suboptimal joint action ( a i ,  b j )  shares a column with 
a coordination equilibrium, the sign of A p ( a ; ,  b j )  depends 
only on the value of p(a i ) .  

Let us now consider the case where ( a i ,  b j )  is a coordination 
equilibrium. In this case we find that there is some critical 
value of p ( a i ,  b j )  beyond which A p ( a i ,  b j )  is always positive. 

Theorem 3.2: If a system contains at least one strict coor- 
dination equilibrium and at least one joint action that is not a 
coordination equilibrium, then 3p* such that if p ( a i ,  b j )  > p' 
then p(a, ,bj)  is more likely to increase over time than to 
decrease. 

We wish to determine under what conditions 
A p ( a i ,  b j )  > 0. In order to do so, we examine two types of 
update situations. Since (a, ,  b j )  is a coordination equilibrium, 
p ( a i )  and p ( b j )  will increase each time it is executed. When 
some other coordination equilibrium (as+, b,+j) is executed, 
p ( a i )  and p ( b j )  both decrease. To reflect these situations, we 
define 

Pro08 

p - ( a i , b j )  = ( p ( a i )  - a p ( a ; ) ) ( p ( b j )  - 4 b j ) )  (7) 
Let p ( c )  represent the probability that the executed action 

is some coordination equilibrium other than (a;,b,). Then 
the value of p'(a,, b j )  can be probabilistically described as 
a weighted average of the above possibilities, using p ( a i ,  b j )  
and p ( c )  as weighting factors. When p'(ai,  b j )  -p(a; ,  b j )  > 0, 
A p ( a i ,  b j )  is positive. We therefore seek the conditions that 
satisfy 
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We note that the term p ( c ) p - ( a i , b j )  is somewhat pes- 
simistic, since the executed coordination equilibrium might 
share a row or column with ( a i , b j ) .  In this case, either 
p ( a i )  or p ( b j )  would increase, rather than decrease. However, 
these cases only improve the chance that the inequality in 
equation (8) will be satisfied. We therefore assume the worst- 
case scenario that the executed coordination equilibrium shares 
neither a row nor a column with (a , ,  b j ) .  

After substituting from equations (6) and (7), equation (8) 
can be reduced to 

j 

In the worst-case scenario, p ( c )  = 1 - p(a,)p(b,) .  In this 
case, equation (9) can be simplified to p(a , )  +p(b,) > 2;  an 
impossible condition. However, p ( c )  = 1 - p ( a i ) p ( b j )  only if 
all joint actions are coordination equilibria, which defies the 
premises of the theorem. We quickly see that for any value of 
p ( c )  = 1 -p(a;)p(b,)  - E ,  where 0 < E < 1 -p(a i )p(b , ) ,  then 
equation (9) resolves to 

: 

which is not an impossible condition. There are values of 
p ( a ; )  and p(b,)  that will satisfy it, even though they may be 
high. Thus there exist critical values for p(ai )  and p ( b j )  (and 
correspondingly, for p ( a i ,  b , ) ,  beyond which A p ( a ; ,  b j )  tends 
to he positive. 

We can now proceed to examine the overall system behavior. 
By Theorem 3.2, there exists some critical value p’ beybnd 
which p ( a ; ,  b i )  tends to be continually increasing. The greater 
the amount by which p(a,,  b j )  exceeds this threshhold, the less 
likely it becomes that p(ai, b j )  will decrease. The threshhold 
effectively represents the point at which a single coordination 
equilibrium dominates all other possibilities and begins to be 
executed with steadily increasing frequency. 

With continued positive updates, p ( a i )  and p ( b j )  converge 
towards 1 (because the iterative series z’ = z + cy(1 - z )  
converges to 1 for 0 < a 5 1). Consequently, p(ai ,  b j )  also 
converges to 1. 

Getting the ball rolling on this convergence issue may take a 
while. If p’ is relatively high, then it may take many iterations 
before the probability of one of the coordination equilibria 
happens to reach it. Fortunately, we have a guarantee from 
Theorem 3.1 that no suboptimal equilibrium can maintain a 
probability greater than 0.5, so there is no risk of converging 
suboptimally while waiting for a coordination equilibrium to 
dominate. In the degenerate case where all joint actions are 
optimal, the agents will, of course, also play optimally, even 
if their probabilities never converge. 

IV. ALGORITHM BEHAVIOR 
Most environments are not conveniently deterministic, and 

most heuristics are not 100% accurate. How does the IPL 
algorithm perform in the face of such uncertainties? 
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Fig. 2. IPL performance as a function of noise 

A. Noisy Rewards 

Figure 2 shows algorithm performance as a function of 
noise. Two IPL agents, each having five actions, repeatedly 
played a single-stage game until they executed the same joint 
action 50 times in succession. Each cell of the payoff matrix 
was randomly initialized to an. integer between 0 and 24 
(different random payoffs were assigned to each agent), with 
the exception of 5 randomly placed coordination equilibria 
whose payoff was 25 for both agents. 

Gaussian noise was simulated using Peitgen et. al’s equa- 
tion [2]: 

Using values A = 100 and n = 50. The result D was 
multipled by a scaling factor of S to provide different degrees 
of noise. The value SD was added to the agents’ reward 
signals. 

The agents used T~~~ = 25 and a = 0.1, and the results 
of 100 trials were averaged for each data point. 

We found that even for very large values of S with respect 
to the range of possible rewards, the IPL algorithm was able to 
focus in on a near-optimal solution with reasonable frequency. 

B. Estimation of T,,,~= 

A critical question for IPL is ‘how the algorithm performs 
when the value of T~~~ is not known in advance, but must 
instead be inferred from known information. 

We implemented a set of Q-leaming agents who were each 
able to observe the action selections of the other agents. The 
agents used an initial utility value of 0, a learning rate 9 = 0.1, 
and a simplified joint Q-value update equation 

&’(ai, b j )  = (1 - q)Q(ai>bj )  + q ( ~ )  (121 

where &(ai, bi) is the estimated utility of performing joint 
action (a; ,  b,) and T is the reward received for executing joint 
action (a,, b j ) .  
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Fig. 3. IPL performance as a function of a with rmor estimation. Scaling 
factor S = 0 was used for the deterministic environment, S = 5 for the 
stochastic environment. 

In each time step, each agent estimated 
T , , , ~ ~  = max;,j Q(a,,bj)  and exceuted the IPL update 
equation. Payoff matrix generation and noise generation were 
carried out as described in the previous sub-section, and the 
results of 100 trials were averaged. 

The results are shown in Figure 3. As one might expect, 
IPL performance was better with lower values of a. This is 
not surprising, since a high value for cy might cause the IPL 
algorithm to converge before the joint Q-values accurately 
reflected the relative magnitude of the expected rewards. 

C. Extensions of the Algorithm 
The IPL algorithm lends itself naturally to several possi- 

ble heuristics. Here, we discuss only a few of those which 
intuitively appear most useful and which seem to reflect 
other results obtained in the field of multiagent reinforcement 
learning. 

If agents have access to the full payoff matrix of the game 
being played (either because it was provided a priori or 
because they have inferred it by watching the action selections 
and rewards of other actions), then they can determine whether 
a given joint action represents a Nash equilibrium. By letting 
H ( t )  = 1 if the executed action was a Nash equilibrium and 
H ( t )  = 0 otherwise, the agents can select between multiple 
Nash equilibria. 

Similarly, agents interacting in strictly adversarial envi- 
ronments can learn to play a Minimax strategy byletting 
H ( t )  = 1 if the executed joint action is a Minimax solution 
and H ( t )  = 0 otherwise. Naturally, both of these approaches 
require that the agents be able to see the action selections of 
their counterparts, and also rely on the assumption that all 
agents in the system are using the same heuristic. 

One potentially interesting application of the IPL algorithm 
is in satisficing environments. In satisficing, agents seek ac- 
tions that are “good enough” rather than seeking actions that 
are optimal 171, [SI. A satisficing criterion could be chosen 
(such as a threshhold value for T,,,) such that H ( t )  = 1 

whenever the criterion is satisfied. In this way, the agents could 
select between multiple satisficing solutions. 

v. CONCLUSIONS A N D  FUTURE WORK 
We have presented an equilibrium selection method for 

agents that are able to determine with reasonable accuracy 
whether or not an optimal equilibrium was obtained in the 
last time step. When heuristic information is provided by 
an external source, the algorithm is able to search through 
policy space directly, without learning ut 
the actions of other agents. When the heuristic information 

rred or approximated based on observed rewards, 
and observation of the complete action space may 

be useful tools for the acquisition of good heuristic data. 
Incremental Policy Learning provably learns to play an 

optimal solution if the heuristic is accurate, the environment is 
deterministic, and at least one coordination equilibrium exists. 

Empirical studies indicate that IPL performs well in the 
presence of noise and when the heuristic information is 
approximated rather than precisely known. Future work should 
concentrate on theoretical bounds on the effectiveness of such 
methods, as well as on an analysis of the effect of the joint 
action space size on convergence speed. 

Because IPL updates only when the heuristic’s requirements 
are satisfied, convergence may take a very long time in large 
joint action spaces with sparse equilibria. Compounding this 
problem, if the environment is noisy and the joint action space 
has several near-optimal solutions, the agents may learn IO play 
one of these before a true optimum is discovered. Both of these 
problems might be alleviated by adding a decay factor such 
that the probability of an action’s execution decreases each 
time an optimal solution is not found. This would encourage 
more uniform exploration of the joint action space. 

Finally, other possible heuristics and methods for approx- 
imating them should be developed so that the algorithm’s 
usefulness can he expanded to new situations. 
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