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Choosing a Starting Configuration for Particle 
Swarm Optimization 

Mark Richards 
Department of Computer Science 

Brigham Young University 
Provo, UT 84604 

E-mail: mdr@cs.byu.edu 

Abstract-The performance of Particle Swarm Optimization 
can be improved by strategically selecting the starting positions 
of the particles. This work suggests the use of generators 
from centroidal Voronoi tessellations as the starting points for 
the swarm. The performance of swarms initialized with this 
method is compared with the standard PSO algorithm on several 
standard test functions. Results suggest that CVT initialization 
improves PSO performance in high-dimensional spaces. 

I. INTRODUCTION 

Particle Swarm Optimization (PSO) was introduced in 1995 
by James Kennedy and Russell Eberhart as an optimizer for 
unconstrained continuous functions [7][8]. PSO models the 
search through the problem space as the flight of a swarm of 
particles (points). The goal is to have the particles converge 
on the global minimum or maximum. 

Like many other optimization algorithms, PSO includes 
some stochastic behavior. At each iteration, a particle adjusts 
its position x and velocity U along each dimension d, based 
on the best position bd it has encountered so far in its flight 
and the best position n d  found by any other particle in its 
neighborhood: 

U: = X [U:--’ + @iTi(bd - $’) + @ z T z ( n d  - X:-’)] 
st - t-1 d - x d  +U: 

where x. 41, and 4 2  are constants and TI and T Z  are uniform 
random numbers on [0,1]. A particle’s neighborhood is com- 
prised of the subset of other particles in the swarm with which 
it has direct communication. (This network of communication 
links in the swarm that determines the particles’ neighbor- 
hoods, known as the sociometry of the swarm, is the subject 
of ongoing research [5][6][9][ 101.) Because the magnitudes of 
the attraction to a particle’s own best position and the attraction 
to the best position of its neighbors are determined by two 
random numbers, the performance of the algorithm may vary 
considerably from run to run, even when all of the user- 
defined parameters (swarm size, sociometry, trust coefficients, 
inertia weight, constriction coefficient) are held constant. This 
inconsistency is a necessary evil, as the randomness is critical 
to the success of the algorithm. However, the algorithm would 
be more attractive if its performance was more predictable, so 
the variability should be reduced as much as possible. 

Dan Ventura 
Department of Computer Science 

Brigham Young University 
Provo, UT 84604 

E-mail: ventura@cs.byu.edu 

Additional variability in PSO performance results from the 
use of random starting configurations. The initial position for a 
particle in the swarm is selected by drawing a uniform random 
number along each dimension of the problem space. To ensure 
broad coverage of the search space, the particles should be 
initialized so that they are distributed as evenly as possible 
throughout the space. The standard method of initialization 
fails to accomplish this goal, especially in high-dimensional 
spaces. 

Using a starting configuration based on centroidal Voronoi 
tessellations (CVT) can lead to improved performance. Sec- 
tion I1 explains what centroidal Voronoi tessellations are and 
how they can be computed. Section 111 discusses experimental 
results comparing PSO performance with and without CVT 
initialization. Conclusions and possibilities for future work are 
presented in Section IV. 

11. CENTROIDAL VORONOI TESSELLATIONS 
Voronoi tessellations can be thought of as a way to partition 

a space into compartments. A group of points in the space 
is designated to be the set of generators. The space is then 
partitioned into subsets, based on each point’s proximity to 
the generators. Each subset is associated with one of the 
generators and consists of all of the points that are closer to 
that generator than to any of the other generators, with respect 
to some given distance function (e.g., the Lz norm). Figure 1 
shows a graphical representation of Voronoi tessellations using 
50 generators. The generators are depicted as dots. The lines 
mark the boundaries of the Voronoi cells. In this example, the 
generators were selected the same way initial points would 
he chosen for Particle Swarm Optimization. Note that the 
generators are not very evenly distributed throughout the 
space. By chance, some of the generators are at almost exactly 
the same point in the space. Note also the region near the 
lower righthand corner where there is a fairly large area with 
no generators. The result of this poor distribution is that some 
of the Voronoi cells are much larger than others. 

With centroidal Voronoi tessellations, the generators lie at 
the center of their corresponding cells. Computation of CVTs 
can be expensive. Two of the most well-known algorithms 
for computing CVTs are MacQueen’s method [3] and Lloyd’s 
method [l]. MacQueen’s method is probabilistic and requires 
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many iterations to converge, but each iteration is relatively 
simple. Conversely, Lloyd's algorithm is deterministic and 
requires only a few iterations, but each one is computation- 
ally expensive. Ju, Du, and Gunzburger have developed an 
algorithm that combines elements of both methods [4]. Their 
algorithm produces computationally feasible approximations 
of CVTs. The only motivation for using CVTs in the present 
research is to have the particles' initial positions more evenly 
distributed in the search space. Thus, it is unnecessary to 
require that the CVTs are completely accurate. A reasonable 
approximation will do. Pseudo-code for the Ju-Du-Gunzburger 
(JDG) algorithm is shown below. 

function CVT(integer k) E t u r n s  set of k CVT generators 
Choose k random points 
do 

as initial generators 

Choose q, random points 
for i = 1 to k 

Gather into G, the subset of the q points that are closer 
to gi than to any of the other generlors 

Compute the average a; of the points in  Gi 
Move g; some percentage of the distance closer to a; 

next i 
until stopping criterion met 

k 
return {gi}i=l 

When the algorithm starts, k random points are chosen as 
the generators. These generators are incrementally updated to 
improve the spacing between them. At each iteration, a set of 
q random points is chosen. Each of these random points is 
assigned to the current generator that it is closest to. Then, 
each generator's position is updated so that it moves closer to 
the average location of the random points that are associated 
with it. Figure 2 shows an example of generators found after 
five iterations of the algorithm. Note that although the Voronoi 
cells are still not exactly the same size, the generator points 
are much more evenly distributed than in Figure 1. 

Fig. 1. 
created by drawing uniform random numbers along each dimension. 

Voronoi tessellations for 50 random points. The generaton were 
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Fig. 2. 
generators were found by the IDG algo"1hm. 

Approximate cenvoidal Voranoi lessellations for 50 points. The 

Fig. 3. The Rastrigin function. 

111. EXPERIMENTAL RESULTS 
The use of perfect CVT generators as the initial points for 

the particles in PSO would minimize the maximum distance 
that the global optimum could be from one of the starting 
points, which should improve the algorithm's performance. 
The JDG algorithm does not produce perfect CVTs, but it 
does create a good approximation in a feasible amount of 
computation time. 

PSO with CVT initialization was compared against the 
standard PSO algorithm on several well-known test functions 
(Table I). In all of the CVT experiments, the JDG algorithm 
was run for 5 iterations, using 50,000 sample points at 
each time step. Adding more sample points or allowing the 
algorithm to run for more iterations did not appear to improve 
the CVTs appreciably. On a modern desktop computer, the 
generation of the CVTs takes only a few seconds or less. If a 
large number of generators was required, the algorithm could 
of course take much longer, but PSO is usually implemented 
with only a few particles, perhaps 20-50. 

CVT initialization did not appear to produce any improve- 
ment in performance for problems with few dimensions. A vi- 
sual analysis helps explain why this is the case. Figure 3 shows 
the well-known Rastrigin test function in two dimensions. 
Figure 4 shows the 30 initial starting points and the locations 
of the function evaluations for the first IO iterations of a typical 
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Fig. 5. Ten iterations of PSO on lhe two-dimensional Rastrigin function. 
with CVT initialization. The circles show the staning positions. Subsequent 
function evaluations are designated by +. 

.. Nndld "- mr 

Fig. 6. Progress of the PSO algorithm over 25,ooO function evaluations, with 
and without CVT initialization. 

run of standard PSO on the Rastrigin function. Figure 5 shows 
similar information for PSO with CVT initialization. There 
does not appear to be much difference in the coverage of 
the space. For all of the test problems studied, there was no 
significant difference in the mean best solution found by the 
two versions of PSO over 30 runs of each algorithm. At least 
for the two-dimensional case,'the randomness of PSO seems to 
produce good coverage of the space, even when the particles' 
starting positions are not carefully selected. 

As the number of dimensions in the search space increases, 
the number of particles in the swarm quickly becomes sparse 
with respect to the total size of the space. (The size of the 
swarm may be increased, but large swarms are often inefficient 
with respect to the number of function evaluations needed 
for the optimization.) Because of this sparseness, the choice 
of starting positions also becomes more important. Figure 6 
shows a comparison of the two versions of PSO on the 
Rastrigin function in 50 dimensions. The graph shows the 
intermediate best fitness of the swarm over 25,000 function 
evaluations. The lines trace the median best fitness of 30 
runs at each time step. On average, the swarms with CVT 
initialization find good points in the space much earlier than 
their standard PSO counterparts. The gap does not narrow as 
the optimization continues. 

Table I1 shows the mean performance for both algorithms on 
the test functions in 50 dimensions. CVT initialization leads 
to significantly better results in all cases. Table I11 reports the 
results of significance tests comparing the algorithms on each 
problem in 20, 30, and 50 dimensions. 

The one-sided p-values shown were obtained using random 
permutation tests [21. For each test, the results for 30 runs of 
each algorithm were compiled and averaged. The difference 
between the two means was recorded. Then the 60 values 
were randomly shuffled and reassigned to two groups. The 
new difference in group means was compared to the actual 
difference. This process was repeated one million times. The 
p-value reported in the table is the proportion of the one 
million trials that produced a difference in group means that 
was more extreme than the one that was actually observed. 
This gives an estimate of the likelihood that a difference that 
extreme would be observed by chance, if there were in fact no 
difference between the two algorithms. A p-value of zero in 
the table means that none of the one million trials produced a 
difference more extreme than the observed one. This is strong 
evidence that there is a difference in the performance of the 
two algorithms. 

The permutation tests are attractive because they make it 
possible to obtain a highly accurate p-value without having to 
use a two-sample t-test. The r-test assumes that the two popu- 
lations being sampled are normally distributed and have equal 
spreads. These assumptions are often egregiously violated for 
PSO tests. 

Table I11 shows how the importance of initial position 
increases with the dimensionality of the problem. In 20 dimen- 
sions, the CVT-initialized swarms perform significantly better 
(at the cy = .05 level) on only four of the eight problems. In 
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30 dimensions, the differences are significant for six problems. 
In 50 dimensions, there is a highly significant difference for 
all eight problems. 

Function 

Ackley 

IV. CONCLUSIONS AND FUTURE WORK 

The starting configuration of PSO can be critical to its 
performance, especially on high-dimensional problems. By 
using the generators of centroidal Voronoi tessellations as the 
starting points, the particles can be more evenly distributed 
throughout the problem space. Perfect CVTs can be computi- 
tionally expensive to compute, but the JDG algorithm can be 
used to generate approximate CVTs in a reasonable amount 
of time. 

The present research involved trials of PSO on several 
popular test functions, but all of the functions have their global 
optimum at the origin and do not have complex interactions 
among their variables. Future research will address more 
challenging optimization problems. 

Future work will also address additional issues related to the 
use of PSO in high-dimensional spaces, including the selection 
of swarm size. 

Formula Range 

f(x) = -20ezp -0.02 n-1C.t - 
f 3 0  

+ 20 + e  1 

TABLE I 
TEST FUNCTION DEFINITIONS 

n 

Delong f(x) = Xi. sf 
;=I 

I f 2 O  

Rosenbrwk f(x) = [ 1 0 0 ( ~ ~ + ~  - sf)’ + (si - I)*] f10 I ;I7 

TABLE II 
AVERAGE PERFORMANCE OVER 30 RUNS FOR STANDARD P s o  VS. P s o  

WITH CVT lNlTlALlZATlON FOR FUNCTIONS IN 50 DIMENSIONS 

Ackleys 
ae1one 

TABLE 111 

P-VALUES COMPARING AVERAGES OF 30 RUNS FOR BOTH STANDARD AND 

CVT-INITIALIZED PSO 

. -1 
Sphere .06 8.0e-6 
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