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ABSTRACT

BAYESIAN AND POSITIVE MATRIX FACTORIZATION APPROACHES TO

POLLUTION SOURCE APPORTIONMENT

Jeff W. Lingwall

Department of Statistics

Master of Science

The use of Positive Matrix Factorization (PMF) in pollution source apportion-

ment (PSA) is examined and illustrated. A study of its settings is conducted in order

to optimize them in the context of PSA. The use of a priori information in PMF is

examined, in the form of target factor profiles and pulling profile elements to zero.

A Bayesian model using lognormal prior distributions for source profiles and source

contributions is fit and examined.
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Chapter 1

Introduction

Pollution source apportionment (PSA) is the practice of deriving information

about pollution sources and the amount they emit from ambient air pollution data.

In an industrial society that pollutes its air, a reliable and accurate pollution source

apportionment model would allow regulating agencies to know which sources are con-

tributing to the airshed and in what amounts. Since air pollution has been linked to

mortality (Dockery et al., 1993), knowledge of what is contributing to the problem is

important. In an article on the contribution of statistics to environmental epidemi-

ology, Thomas (2000) discusses PSA and notes that, for epidemiology in general,

“greater attention by statisticians to these problems in particular would certainly

help advance the field.”

Many methods for approaching the PSA problem exist, based on various sta-

tistical techniques and differing amounts of information that can be assumed about

the number of polluting sources and their compositions. The basic model followed is

Y
p×n

= Λ
p×k

F
k×n

+ ε
p×n

(1.1)
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where Λ is a matrix containing pollution source profiles for the k sources and p

chemical species, F is a matrix of the k sources’ contribution to the airshed over

n time periods, and Y is a matrix of measurements on p different chemical species

observed at n times. For example, the concentration of species i observed at time j,

yij, measured at a receptor can be explained as

yij = λifj (1.2)

where fj is the jth column of F and λi is the ith row of Λ (see Christensen and Sain,

2002).

The problem is difficult, for many reasons. For instance, the number of pol-

lution sources is really uncountable, since every car on the road emits chemicals in

differing amounts, every house with a fireplace burns wood on some days and not

on others, etc. When the pollution sources are assumed to be known, they may

change over time as factories change output, close, or as emission standards for ve-

hicles are tightened. Ambient air measurements can be contaminated as wind brings

in pollutants from other areas, making the very thought of an “airshed” difficult.

An additional constraint in all solutions is that all elements must be positive, since

negative source profiles or source contributions are not realistic.

Despite these problems, assumptions can be made that lead PSA to be tractable.

For example, even though we do not know the exact source profile of every car on

the road, we can assume that cars generally emit the same type of profile and that

emissions might be higher on weekdays instead of weekends. Tracer sources can be
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identified that can validate the mathematical model. The number of pollution sources

considered can be limited to “major” sources for reasonable interpretation. These as-

sumptions can lead to results that appear to fit reasonable models for airsheds.

As mentioned above, various statistical methods exist for approaching the PSA

problem. Differing methods have strengths and weaknesses, although some are more

widely used and studied than others. Figure 1.1 shows a range of different techniques

on a scale of little-information to perfect-information. The two methods examined in

this thesis are Positive Matrix Factorization (PMF) and Bayesian methods.

Positive Matrix Factorization is a variant of factor analysis that is becoming

widely used in PSA. In contrast to traditional factor analysis methods which decom-

pose Y based on the correlation matrix, PMF solves the factor analysis equations by

iteratively computing F and Λ via the minimization of the (simplified) equation

Q =
n∑

i=1

p∑
j=1

e2ij/s
2
ij (1.3)

where eij is calculated as yij − λjfi and sij is the standard deviation associated with

each data point (Paatero and Tapper, 1994; Paatero, 1997). PMF constrains the

results to be positive, thus satisfying the non-negativity constraints necessary for

realistic pollution source apportionment models. PMF is essentially a weighted least

squares solution to the equations (Paatero, 1997).

In a Bayesian approach to PSA, the problem can be approached in various

ways. If one assumes knowledge of the pollution source profiles, Λ, then a Bayesian

version of the Chemical Mass Balance model can be fit, using prior distributions on

3



Figure 1.1: Some methods used in pollution source apportionment (Christensen et
al., 2006)
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elements of F, with parameters estimated using Markov chain Monte Carlo methods.

If one assumes less knowledge of the pollution source profiles, prior distributions can

be fit to elements of Λ and both F and Λ may be estimated. The approach taken in

this work lies between these two and assumes some knowledge of Λ while still letting

the algorithm estimate Λ̂.
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Chapter 2

Review of Literature

2.1 Pollution source apportionment

The use of statistical methods in pollution source apportionment dates back to

at least 1967, when factor analysis was applied to pollution data from 30 cities in the

United States measured from 1957 to 1961 on 13 different chemical species. Blifford

and Meeker (1967) identified four different factors using factor analysis, including

Varimax, Quartimax, and Oblimax rotations. The factors they identified were heavy

industry, automobiles, fuel burning, and petroleum refining. They regressed their

factor scores on the 30 cities as a check, and compared the results to known knowledge

about the cities (Blifford and Meeker, 1967).

This multivariate approach was continued, including a paper nine years later

by Hopke et al. (1976), where data collected over five months from Boston were ana-

lyzed using factor analysis and cluster analysis. The researchers made improvements

over Blifford and Meekers’ (1967) method and identified a key problem of the factor

analysis approach: “It will often fall to the judgment of the investigators as to how

many factors to keep.” They also succinctly stated an advantage to the use of factor

6



analysis, that it “requires no a priori assumptions about the compositions or even the

total number of components” (Hopke et al., 1976).

An approach different from the multivariate approach appeared in Miller et

al. (1972). This approach assumed that the “mass of material from source j per unit

mass of aerosol”, summed over j sources must be equal to one. Using tracer elements

identified in each source, the researchers were able to solve equations to estimate the

source contributions. This “chemical element balance” method developed into the

widely used CMB approach.

Many different approaches have been developed over the years to tackle this

problem. One important improvement that new methods have tried to develop is to

reduce the indeterminacy of the factor analysis model, so that less arbitrary models

could be extracted from the data. Some examples of these methods are UNMIX

(Henry, 2003), ICFA (Christensen et al., 2006), iterative TTFA (Henry, 1991), and

PMF (Paatero and Tapper, 1994).

UNMIX, a geometrical approach, finds hyperplanes in n-dimensional space to

fit a receptor model (Henry, 2003). Iterative TTFA “transforms . . . eigenvectors

to minimize the difference between the transformed vector and a target vector.” An

iterative process is used so that knowledge of the source profiles need not be precise

(Henry, 1991).

Iterated Confirmatory Factor Analysis (ICFA) is a variant of factor analysis

that produces a unique solution via a method similar to the EM algorithm. After

initial estimates are obtained, some elements of the source profile matrix are treated

7



as fixed, while others are estimated holding the fixed elements constant. This process

is iterated until convergence is reached (Christensen et al., 2006).

2.2 Positive Matrix Factorization

In 1994, Paatero and Tapper introduced PMF (Paatero and Tapper). As

stated before, they diverged from traditional factor analysis by not using the corre-

lation matrix in their algorithm. Instead, they find Λ and F through a process of

minimization, as shown in Equation (3.3). They chose to use the name “Positive

Matrix Factorization” to avoid the term “Factor Analysis,” which is used in differ-

ent ways by statisticians and non-statisticians, and “Principle Component Analysis,”

since they do not use singular value decomposition to solve the equations.

In PMF, different algorithms can be used to solve the equations. For exam-

ple, an early algorithm used a modification of Alternating Regression (AR). In AR,

in our case, F would be held constant while Λ is estimated, and then Λ would be

held constant while F is estimated. Paatero and Tapper improved on this method

by introducing a third step, one that estimated F and Λ simultaneously. The non-

negativity constraints were handled by setting negative elements to zero and max-

imizing a penalty function associated with each data point (Paatero and Tapper,

1994).

PMF offers several advantages over PCA and exploratory factor analysis. For

example, in traditional exploratory factor analysis the solutions are guaranteed to

be non-unique, since any orthogonal matrix T can be introduced into the equations

8



without changing the results, causing a “rotation”, as shown in Equation (2.1).

Y = ΛT′TF + ε (2.1)

In contrast, the results of PMF may be unique, when a “significant” number of zeros

appear in all the columns of F and Λ (Paatero and Tapper, 1994). Other advantages

include the handling of outliers and the ability to handle missing values.

Three years later, Paatero (1997) introduced PMF2, a revised version of PMF

(PMF2 handles two dimensional arrays, while PMF3 handles three dimensional ar-

rays). PMF2 converges faster than PMF, and when studied will be referred to simply

as PMF.

There is a large literature about the application of PMF, in both PSA and

other areas. For example, Hopke et al. (1999) analyzed particulate data from northern

Canada using PMF and another PMF program by Paatero, the Multilinear Engine

(ME) . Lee et al. (1999) analyzed data gathered in Hong Kong from 1992 to 1994.

They used several outputs from PMF (Q, the scaled residual matrix, and rotmat) to

select the number of factors. Recently, Paatero et al. (2003) incorporated tempera-

ture, wind velocity vectors, and other environmental information into an analysis of

pollution in the eastern United States using the ME.

2.3 Bayesian methods

Bayesian statistics began with a paper by Thomas Bayes (1763), An essay

towards solving a problem in the doctrine of chances. The problem he undertook to

9



solve was stated as

Given the number of times in which an unknown event has happened
and failed: Required the chance that the probability of its happening
in a single trial lies somewhere between any two degrees of probability
that can be named.

Bayes saw that one could solve the problem by

estimat[ing] the chance that the probability for the happening of an
event . . . should lie between any two named degrees of probability,
antecedently to any experiments made about it.

By incorporating prior information into the problem, solutions could be found (Dale,

1999).

The practical application of Bayesian statistics was limited for many years

due to the intractability of the mathematics. Calculating normalizing integrals in

high-dimensional space for practical applications simply is not practical. This limited

the practical application of Bayesian statistics until the advent of numerical methods

and the computer. Solutions that were impossible to find analytically could be ap-

proximated to high degree via simulation. With cheap computing and the power of

numerical methods, Bayesian statistics are now widely used and accepted.

Various simulation methods exist, from rejection sampling to the Metropolis

algorithm. Markov chain Monte Carlo algorithms use Monte Carlo integration, where

samples are used to approximate a distribution, and Markov chains, drawing the

samples from a Markov chain with each state dependent on the previous (Gilks et al.,

1996). The Metropolis algorithm, used in this thesis, is one example.

10



The basic Metropolis algorithm seeks a Markov chain that has a stationary

distribution equal to the one we seek. The Metropolis algorithm is a special case of

the Metropolis-Hastings algorithm that uses only symmetric jumping distributions,

which also yields easy interpretation, “the chain moves to higher π-density regions

automatically but only with appropriate probabilities to lower regions” (Billera and

Diaconis, 2001).

Bayesian methods have been applied to subjects as diverse as species loss in the

Amazon (Ferraz et al., 2003), gene expression change in honey bees (Grozinger et al.,

2003), hospital quality (Geweke et al., 2003), three dimensional image reconstruction

(Eppstein et al., 2002), and phylogenetic analysis (Miller et al., 2002). Bayesian

methods apply themselves easily to complex, multi-dimensional problems and often

provide much more useful information than a frequentist approach.

Bayesian methods have began to be applied to pollution problems. In 2000,

researchers from Johns Hopkins University fit a hierarchical model to PM10 data

from 20 cities and found a relationship with mortality. They formed time series of

the mortality and pollutants in the cities and then used regression to find pollution

rates. Next, they regressed these rates on city variables and used Markov chain

Monte Carlo methods to find pollution effects. They found a “consistent association”

between the PM10 rates and daily mortality, and, while they don’t claim to have

established causality, they hint at it (Dominici et al., 2000).

Park et al. (2001) published a Bayesian analysis of data from Atlanta, empha-

sizing the temporal dependence of the data. Their approach is to assume the number

11



of sources and certain identifiability conditions in order to fit a model. Using the

judgment of an environmental engineer and source measurement, they established

zeros in the source profiles and use MCMC to fit a hierarchical model. They assumed

normally distributed errors in their analysis and leave the study of heavy-tailed errors

open. Our current study using lognormal distributions, which have heavy-tails, may

help open this area to study.

12



Chapter 3

The optimization of PMF

3.1 Pollution source apportionment

Pollution source apportionment is the practice of deriving information about

pollution sources and the amount they emit from ambient air pollution data. Various

methods are employed, based on differing amounts of information that can be as-

sumed about the number of polluting sources and their compositions. Factor analysis

techniques can be used when the pollution sources are unknown, using the equation

Y = ΛF + ε (3.1)

where Λ is a k×p matrix containing pollution source profiles for the k sources, F is a

k×n matrix of the sources’ contributions to the airshed, and Y is an p×n matrix of

measurements of p different chemical species observed at n times. Thus, for example,

the concentration of species i observed at time j, yij, measured at a receptor can be

explained as

yij
1×1

= λi
1×k

fj
k×1

(3.2)

13



where fj is the jth column of F and λi is the ith row of Λ (see Christensen and Sain,

2002).

3.2 Positive Matrix Factorization

Traditional factor analysis, however, fails in an important aspect of the pol-

lution source apportionment problem. In traditional factor analysis, there are no

non-negativity constraints on the results. Since in air pollution studies realistic re-

sults must be non-negative, traditional factor analysis fails to provide the optimal

solution. Alternatives exist, one of which is Positive Matrix Factorization.

PMF (Paatero and Tapper, 1994) is a method related to factor analysis. In

contrast to traditional factor analysis methods which decompose Y based on the

correlation matrix, PMF solves the factor analysis equations by iteratively computing

F and Λ via the minimization of

Q =

n∑
i=1

p∑
j=1

e2ij/s
2
ij (3.3)

where eij is calculated as yij − λjfi and sij is the standard deviation associated

with each data point (Paatero and Tapper, 1994). PMF constrains the results to be

positive, thus satisfying the non-negativity constraints necessary for realistic pollution

source apportionment models. In 1997, Paatero introduced a revised PMF algorithm

called PMF2, which is examined in this paper and will be referred to as PMF (Paatero,

1997).

PMF can be daunting for the novice user. Many different settings are available
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to influence the output of the program. This section examines some of these settings,

attempts to optimize each of them, and makes some suggestions for the beginning

user. The PMF settings considered here include:

• The use of T and V in the computation of the array of standard deviations

denoted by S

• The use of EM=-10,-12,-13, and -14 in the computation of S

• The use of C1 and C3 in the computation of S

• Fpeak

• Outlier Threshold Distance

3.3 Research method

Six hundred simulated data sets were created, based on five sources: sea salt,

secondary sulfate, winter secondary, soil, and auto/diesel. Each simulated observation

constituted measurements on 23 different chemical species. The five source profiles

were combined to create an array of source profiles, Λ.

Instead of randomly creating the source contributions, F, data that was re-

flective of the real world was used based on an analysis of an actual data set from

Washington, D.C.. The results from the analysis were treated as if they were actually

the source contributions. Thus, a natural degree of temporal correlation, seasonality,

and daily and weekly fluctuations are built into the data. Although these five source
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contributions represent only one possibility of the wildly varying airsheds that exist in

actual analysis, they allow a starting point that reflects real sources for study. These

source contributions and profiles are shown in Figures 3.1 and 3.2, respectively.

Two different types of simulated data were considered. First, based only on the

five sources listed above, and secondly, with the addition of three minor sources. These

three minor sources, a wood source, lead smelter source, and an additional secondary

source, would serve as unidentified minor sources in the model, or as contamination.

These three minor sources are shown in Table 3.1.

Then, for the uncontaminated simulation, data with three different degrees of

noise was created, where an observation yij was obtained as a draw from a lognormal

distribution with mean λifj and a coefficient of variation (CV) of either 0.2, 0.5, or

1.0.

For the contaminated simulation, each observation yij was obtained as a draw

from a lognormal distribution with mean λ∗
i fj

∗, where λ∗
i is the ith row of Λ∗ which

contains the three minor source profiles in addition to the five major sources, and

f∗j is the jth column from F∗, which contains the three minor source contributions

as well as the five major sources. The three minor sources were down-weighted by

multipliers of 0.2 or 0.5. As with the uncontaminated simulation, three different CV’s

were used: 0.2, 0.5, and 1.0.

One hundred data sets of each combination of CV and contamination were

created, as illustrated in Table 3.2, resulting in 600 simulated data sets representing

a wide range of potential airsheds.
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Element Wood Secondary Lead smelter
Al 0.00113 0.0087 0.00174
As 0 0.00273 0.02905
Br 0 0.00063 0.00157
Ca 0.00113 0.02161 0.01337
Cl 0.0133 0.03419 0.0164
Cu 0 0.00467 0.05425
EC 0.39645 0.18306 0.55505
Fe 0 0.00907 0.02222
K 0.03389 0.00269 0.00343

Mn 0 0.00033 0.00026
Na 0.00452 0.07802 0
Ni 0 0.01011 0.00156

NO3 0.02259 0.18306 0
OC 0.50837 0.18306 0

P 0 0.00059 0.00013
Pb 0 0.02338 0.24938
Se 0 0.00011 0.00026
Si 0.00339 0.05063 0.01908

SO4 0.01356 0.18306 0
Sr 0 0 0.00053
Ti 0 0.00156 0.00021
V 0 0.01216 0

Zn 0.00167 0.0066 0.0315

Table 3.1: Minor sources introduced as contamination and not identified in the model.

Contamination CV
uncontaminated 0.2 0.5 1.0
contaminated 0.2 0.5 1.0

Table 3.2: Combinations of CV and contamination used to create simulated data
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After the creation of the simulated data, PMF was used to estimate Λ and F

for each data set. Since PMF’s output does not necessarily match the researcher’s

ordering of the profiles and contributions, the resulting rows of F̂ and columns of Λ̂

were then sorted. Factor elements were sorted based on a minimization of the MSE

between rows of F̂ and rows of F.

After PMF’s results had been sorted, the average absolute error (AAE) was

calculated between PMF’s results and the original matrices. AAE is a metric used

in source apportionment, using the absolute value of the error instead of the squared

error (see Javitz, Robinson, and Watson, 1988, and Christensen and Gunst, 2004).

The AAE for Λ̂ was calculated as

AAE =
1

p

p∑
i=1

k∑
h=1

|λ̂ih − λih| (3.4)

where p = 23 is the number of chemical species in the source profile, and k = 5 is the

number of profiles in Λ. AAE is thus simply taking an average of the absolute error

|λ̂ih − λih| over i for each of the k sources and summing them over k. The AAE of F̂

was calculated in a similar manner for the source contributions.

3.4 Default settings

Under the default settings, PMF succeeds in converging with the simulated

data. One small change was made, to scale the sum of the source profile columns

to one. This assumes that we have all the essential chemical species in the model

captured, so that we are accounting for 100% of the pollution source. Additionally,
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Figure 3.1: True source contributions for simulated data (F)
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Figure 3.2: True source profiles for simulated data (Λ)
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this allows for better comparison with the true source profiles, which have columns

that sum to one.

Figures 3.3 and 3.4 show the results over the default settings. As can be seen,

PMF performs almost as one would expect. The AAE for F̂ increases as we increase

the CV, which we expect because as we increase the CV we introduce more noise into

the data. The AAE for Λ̂ similarly increases as we increase the CV. In the CV = 0.2

and 0.5 results, the contaminated data, where we have introduced minor sources not

included in the model, is clearly differentiated from the uncontaminated data, much

more for the estimates of the source profiles, Λ, than the source contributions, F. This

indicates that if we do not account for all of the sources in our model, our estimates

of the profiles will be more erroneous than our estimates of their contributions.

Interestingly, when we increase the CV to 1.0, there is little difference between

the results for the contaminated data and the results for the uncontaminated data. It

seems that when the data is quite noisy, it matters less to identify all the sources, since

the high noise blurs out precise identifiability, or that with high noise the influence

of minor sources simply disappears.

3.5 Optimizing settings

As mentioned earlier, PMF offers many settings that may be changed to in-

fluence the performance of the algorithm. This section addresses whether certain

settings are better as applied to our ambient particulate data. In practice, it seems

that these settings are used in a haphazard manner, so this simulation study sheds
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Figure 3.3: Kernel density estimates of AAE for F̂ over PMF’s default settings.
Contaminated data shown in dashed lines.
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Figure 3.4: Kernel density estimates of AAE for Λ̂ over PMF’s default settings.
Contaminated data shown in dashed lines.
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light on whether the settings actually change results, and, if so, how the settings

might be optimized in the context of pollution source apportionment.

3.5.1 Outlier threshold distance

PMF uses the outlier threshold distance to control what it processes as an

outlier. The default value provided by the program is 4. The PMF manual gives this

information about the outlier threshold distance (Paatero, 2004b)

The “processing as an outlier” means that the std-dev value sij

or sijk is increased so that the “pull” or influence of the outlying
value xij or xijk is no more than the pull of a value which is on the
limit of being classified as an outlier. This corresponds to the Huber
estimation principle. —We suggest that the following values should
be used as outlier threshold distance: α= 2.0, 4.0, or 8.0. By adhering
to these standard values one makes it easier to compare PMF results
obtained by different researchers.

Values of 2, 4, 6 and 8 were used on the simulated data, with the results shown

in Figure 3.5. As can be seen, there is not a large difference between different settings.

On average, using a value of 2 performs slightly better than the others; however, in

practice this might be adjusted for the more important aim of convergence.

3.5.2 Fpeak

Another setting the researcher can change is Fpeak, a value that introduces

rotations into PMF’s computations. It is used based on trial and error by the re-

searcher, and in environmental work “is not guaranteed to find the best solution.”

Positive values of Fpeak subtract rows from F̂ and add columns to Λ̂, while negative
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Figure 3.5: Kernel density estimates for the AAE of F̂ under different outlier threshold
distances. Results for the default value of 4 are shown by the solid line, 2 by the dashed
line, 6 by the dotted line, and 8 by the dash-dot line.
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values do the opposite (Paatero, 2004a).

An example of the use of Fpeak in practice is found in Hopke et al. (2004).

Here, researchers use different values of Fpeak that leave Q (see Equation (3.3)) stable

to explore rotational freedom in an analysis of data from Seattle, Washington. They

use use these different results to gain an idea of the distribution of factor elements

from PMF.

The simulation study results can be found in Figures 3.6, and 3.7. As can be

seen, no value of Fpeak greatly improves estimation of Λ over the default value of 0,

while large positive and negative values can worsen estimation. In the estimation of F,

however, some values do lead to a marked improvement. With very clean data, (here,

CV = 0.2, no extra sources), small negative values slightly improve estimation, while

for data with more noise (CV = 1.0), large positive values can improve estimation.

For the practitioner, using a large positive value of Fpeak could lead to im-

proved estimation of source contributions, as long as the source profiles remain iden-

tifiable. A helpful step would be to calibrate actual airsheds with this study, to see

if some can be identified as “cleaner” or “messier.” As long as no method of calibra-

tion exists, using the default value of 0 seems to be the best alternative, since using

these large positive values for Fpeak sometimes improves estimation, but sometimes

worsens it.
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Figure 3.6: Kernel density estimates for the AAE of Λ̂ under different values of
Fpeak. Results for the default value of 0.0 are shown by the solid black line, results
for negative values by dashed lines, and positive values by solid colored lines.
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3.5.3 Standard deviation computation

Four methods PMF uses to compute the standard deviations used in Equation

(3.3) were compared. Each method uses a slightly different formula as shown below.

In general, t represents a measurement error, and v represents “relative error.” These

equations and more details can be found in the PMF User’s Guide, Part 2: Reference,

pages 19-21 (2004).

EM=-10 With the EM=-10 setting, PMF computes the standard deviations

according to the formula

sij =
√
t2ij + .5v2

ij|ŷij|(|ŷij| + |yij|) (3.5)

where sij is the standard deviation used in Equation (3.3), tij is the standard deviation

of the measurement error, and vij is the log-error standard deviation. The values ŷij

and yij represent the individual data points and their estimates, where ŷij is the fitted

value obtained from Ŷ = Λ̂F̂ , and yij is the ijth observation from the data matrix

Y. PMF updates sij as it recomputes its estimates, ŷij, of yij. One can think of sij as

a modified version of the receptor measurement error, that is sij = tij when vij = 0.

EM=-12 Under the setting EM=-12, the standard deviations are computed

in a simpler manner, according to Equation (3.6).

sij = tij + vij |yij| (3.6)

The standard deviations are computed once and not changed as the program iter-

ates. Again, when vij = 0, the standard deviation value sij becomes the receptor

measurement error.
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EM=-13 This setting iteratively computes sij during fitting, but never uses

the original data values.

EM=-14 The final setting, EM=-14, that was evaluated computes the stan-

dard deviations in a manner similar to Equation (3.6), but instead of using |yij|, the

program uses the maximum of |yij| or |ŷij|. This is the setting recommended for

general environmental work.

3.5.3.1 Input of tij and vij

PMF can read tij and vij as arrays specified by the user, T or V, or as constants

C1 and C3 read in from the “ini” file. If the array input is used the equivalent constant

is ignored.

If the user specifies no arrays for the input of standard deviations, PMF com-

putes the standard errors according to an ad hoc formula Paatero (2004b). Also, one

can see that when vij is set equal to zero, the equations for EM=-10, -12, and -14

become equivalent.

3.5.3.2 Study over wide range of settings

First, a study was performed on the contaminated data with CV = 0.2. A

wide range of combinations of EM and values for C1 and C2 were tested. With regard

to the AAE of F̂, PMF performed best when the array of standard deviations was

read in as T, using the values as tij in the equations above. With vij set equal to

zero, all three methods returned the same results, an AAE of 4.84 for F̂ and an AAE
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of 0.117 for Λ̂. Values were computed as the mean of the data sets that ran. If PMF

did not converge the results associated with each data set were not used, possibly

leading to bias in the results. When a small value for vij was introduced, the AAE

for F̂ improved slightly, to 4.80, 4.70, and 4.78 for EM=-10, -12, -14, respectively.

Not specifying an array of standard deviations, that is using neither T or V

as input, resulted in poor performance, with the AAE of F̂ ranging from 6.45 to 9.30.

From the performance of PMF when analyzing these data sets, the ideal setting

seems to be either of the three methods of error computation, using T as the input

array of standard deviations, and either 0 or a small value for vij (read in from the

“ini” file as C3). Partial results are shown in Table 3.3.

3.5.3.3 Results

After the previous study, a smaller combination of EM and C3 was tested over

the entire range of simulated data, using T as the input of standard deviations. The

results for this study are shown in Table 3.4 and Figure 3.8, which show the means,

missing values omitted, of the results over 100 data sets for each combination. The

most notable result is that using a large value for C3 leads to significant increases in

AAE for some data. However, with messy data (CV = 1.0), using a large value for

C3 leads to better results.

It seems that if the data is clean (all sources identified with a low CV), then the

choice of EM and C3 does not really matter— PMF succeeds in finding the correct

results. With regard to F, as we increase the noise in the data, using a large value of
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sij computation T or V C1 (T) C3 (V) Λ̂ AAE F̂ AAE
10 T 0 0 0.1165 4.8416
10 T 0 0.01 0.1177 4.7994
10 T 0 0.5 0.1067 7.0882
10 V 0.01 0 0.1678 7.5677
10 V 0.5 0 0.0856 7.3974
10 Neither 0.01 0 0.1638 8.8734
10 Neither 0.5 0 0.1638 9.2952
12 T 0 0 0.1165 4.8416
12 T 0 0.01 0.1162 4.6944
12 T 0 0.5 0.1090 6.3143
12 V 0.01 0 0.1676 7.2687
12 V 0.5 0 0.0860 7.3004
14 T 0 0 0.1165 4.8416
14 T 0 0.01 0.1168 4.7772
14 T 0 0.5 0.1146 6.8874
14 Neither 0 0.01 0.0833 7.0162
14 Neither 0 0.5 0.0843 7.1850

Table 3.3: Methods of standard deviation computation, study using CV = 0.2, con-
taminated data
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C3 seems to work as well or better than any other settings tested on the noisy data.

To achieve optimal results, it appears that the researcher needs to have a sense of the

amount of noise in the data and adjust the value of C3 accordingly, when using T as

the input array of standard deviations.

For estimation of Λ, again with data where all sources are identified and the

CV is 0.2 or 0.5, the different choices of EM and C3 do not seem to matter— the

noise in the data is low enough relative to the structure that PMF performs well

in estimation regardless of the choice of settings. However, as the noise in the data

increases, PMF performs significantly better using a large value of C3, allowing the

program to better fit the large amount of error in the data. There seems to be some

trade-off between estimation of F and Λ, that as one improves the other might worsen.

If the researcher is more concerned with estimating source profiles instead of

contributions, using a large value of C3 seems to help, perhaps with some trade-off

with estimating the contributions.

3.6 Conclusions

Positive Matrix Factorization is a valuable tool in the study of air pollution

data. Once the mechanics of the program are mastered, good estimates are possible

to find both quickly and easily.

In an analysis of real pollution data, the recommendation to the novice user

would be to use the default settings, with adjustment of C3 if they have a sense of the

amount of noise in the data or are more interested in the source profiles. The outlier
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Source contributions
CV = 0.2 0.2, cont 0.5 0.5, cont 1.0 1.0, cont

10, .01 4.314 4.674 6.672 8.652 11.350 10.805
10, .1 4.207 4.956 6.644 7.896 11.313 10.876
10, .5 4.421 7.261 6.720 8.825 10.566 10.575
12, 0.0 4.259 4.833 6.655 8.654 11.449 10.821
12, .01 4.266 4.730 6.600 8.263 11.261 10.648
12, 0.1 4.348 4.839 6.402 7.260 10.333 9.772
12, 0.5 4.521 6.811 6.971 8.091 9.799 10.079
13, 0.01 4.312 4.727 6.663 8.491 11.487 11.011
13, 0.1 3.928 5.377 6.731 7.981 11.451 10.673
13, 0.5 4.622 7.950 6.848 8.927 11.613 11.730
14, .01 4.304 4.678 6.651 8.449 11.142 10.885
14, .1 4.305 4.989 6.473 7.602 10.238 10.178
14, .5 4.303 7.122 6.747 8.249 9.840 9.854

Source profiles
CV = 0.2 0.2, cont 0.5 0.5, cont 1.0 1.0, cont

10, .01 0.046 0.118 0.062 0.206 0.219 0.249
10, .1 0.044 0.122 0.062 0.164 0.203 0.242
10, .5 0.048 0.104 0.063 0.130 0.132 0.204
12, 0.0 0.045 0.117 0.061 0.210 0.213 0.252
12, .01 0.045 0.118 0.061 0.194 0.215 0.248
12, 0.1 0.046 0.122 0.058 0.131 0.205 0.238
12, 0.5 0.047 0.101 0.062 0.136 0.177 0.222
13, 0.01 0.046 0.118 0.061 0.197 0.209 0.249
13, 0.1 0.040 0.127 0.062 0.152 0.188 0.226
13, 0.5 0.051 0.113 0.062 0.147 0.179 0.213
14, .01 0.045 0.118 0.061 0.198 0.210 0.252
14, .1 0.045 0.122 0.058 0.148 0.194 0.237
14, .5 0.047 0.106 0.061 0.137 0.191 0.217

Table 3.4: AAE for F̂ and Λ̂, using different combinations of EM and C3
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Figure 3.8: AAE for Λ̂ and F̂, using different combinations of EM and C3.
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threshold distance might be adjusted to 2, if performance is not adversely affected in

some other manner, and Fpeak is best left at zero.
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Chapter 4

The use of a priori information in PMF

4.1 A priori information

In addition to the settings examined in Chapter 3 that modify its performance,

PMF allows the user to introduce prior information into the algorithm. In this manner

researchers can incorporate into the program knowledge from previous studies or facts

known about a source believed to be present in the airshed. In theory, the introduction

of correct information should improve the pollution source estimates. PMF offers the

user two different ways to introduce this information, by pulling factor elements to

zero and by using target factors. Both of these techniques in PMF use a “key” matrix,

which give an integer value to each element of Λ or F, and pulls that element to zero

based on the integer value.

4.2 Pulling factor elements to zero (“Fkey”)

Pulling factor elements to zero refers to the use of a matrix of a priori infor-

mation for the zeros in source profiles or contributions. Since here we are concerned

with the profiles, this information is given in the form of integer values in an Fkey (in
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Species Al As Br Ca Cl Cu EC Fe
Profile 0.00495 0.00032 0 0.03108 0.00735 0 0.17706 0.01616
Fkey 0 0 8 0 0 6 0 0

Species K Mn Na Ni NO3 OC P Pb
Profile 0.0076 0.00022 0 0.01422 0.00102 0.06379 0.00047 0.00163
Fkey 0 0 10 0 0 0 0 0

Species Se Si SO4 Sr Ti V Zn
Profile 0 0.01342 0.63788 0 0.00057 0.01714 0.0051
Fkey 7 0 0 8 0 0 0

Table 4.1: Hypothetical elements of an Fkey for secondary sulfate.

the language of PMF, F is equivalent to our Λ and G is equivalent to our F). The

more sure the researcher is that a certain element of a source profile is zero, the larger

the integer value that is specified. For example, in the profile for secondary sulfate

used in the study, the elements of a hypothetical Fkey are shown in Table 4.1. The

researcher in this example is quite sure that the concentration of Cu in the source is

zero, and less sure about Br, Na, Se, and Sr.

Four different types of Fkey were used to examine the performance of this

technique. First, 5 elements of the sea salt factor that are actually zero were pulled

to zero with a value of 9, a “medium strong” pull. This represents a case where

a researcher has knowledge about one of the factors, but not the others. Next, 10

elements chosen from the actual zeros scattered throughout Λ were pulled to zero

with a value of 9, representing a case where the researcher has some knowledge about

most of the sources. Third, 10 elements were again pulled to zero, this time with

five pulled correctly to zero and five mistakenly pulled to zero, including one major

element in the auto-diesel factor, as shown in Table 4.2. The fourth type of Fkey,

like the second, again pulled 10 elements correctly to zero, this time with varying

37



degrees of strength, from 5 to 14, to examine the effect of the Fkey as we change the

degree of certainty.

The AAE calculated using the first three Fkeys is shown in Figures 4.1 (F̂)

and 4.2 (Λ̂). As in Chapter 3, the resulting columns of F̂ and rows of Λ̂ were sorted

based on a minimization of the MSE between columns of F̂ and columns of F. As can

be seen in Figures 4.1 and 4.2, when we correctly identify 5 zeros in the sea salt factor,

we improve the overall estimation slightly in the clean data (CV = 0.2, and CV =

0.5 uncontaminated). When we correctly specify 10 profile zeros, we again improve

estimation in the cleaner data. In the data that contains more noise, however, none

of these three Fkeys greatly change estimability. Perhaps estimation is so poor that

correctly specifying zeros does little to change the results.

When we correctly specify five profile zeros, but incorrectly specify five others,

as seen in the dotted line in Figures 4.1 and 4.2, we can dramatically worsen estima-

tion in the cleaner data, while again leaving the noisier data estimates unchanged.

Correctly pulling zero elements to zero can improve estimation, but if we misspecify

the zeros, there might be a high price to pay.

Finally, the results from the fourth Fkey are shown in Figure 4.3. Generally,

for the cleaner data, increasing our level of certainty about the zeros improves es-

timation, while with noisier data the results are less certain, appearing to improve

estimation in some situations and to worsen others. Interestingly, it appears that for

source contributions, using a low degree of certainty may actually worsen estimation,

even when correctly specifying profile zeros.
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Sea salt Secondary Sulfate Winter Secondary Soil Auto-diesel
Al 0 9 0.00495 0 0.03773 0 0.11493 0 0.00448 0
As 0 0 0.00032 0 0.00336 0 0 0 0 0
Br 0 0 0 0 0.00089 0 0 0 0.00006 0
Ca 0.009 0 0.03108 0 0.01546 0 0.00599 0 0.0075 0
Cl 0.265 0 0.00735 0 0.01921 0 0 0 0.00142 0
Cu 0 9 0 0 0.00658 0 0 0 0.00038 0
EC 0 0 0.17706 0 0 0 0.04891 0 0.3606 0
Fe 0 0 0.01616 0 0.04907 0 0.08181 0 0.00517 0
K 0.037 0 0.0076 0 0.00979 0 0.06708 0 0.00146 0

Mn 0 0 0.00022 0 0.0007 0 0.00125 9 0.00045 0
Na 0.689 0 0 0 0.05882 0 0.01565 0 0 0
Ni 0 0 0.01422 0 0.00605 0 0.00005 0 0 0

NO3 0 0 0.00102 0 0.28525 0 0 0 0.03768 0
OC 0 0 0.06379 0 0.02224 0 0.19562 0 0.52138 9

P 0 0 0.00047 0 0.00024 0 0 0 0.00069 0
Pb 0 0 0.00163 0 0.02884 0 0 0 0.00057 0
Se 0 0 0 9 0.00028 0 0 0 0 0
Si 0 0 0.01342 9 0.15755 0 0.45046 0 0.02284 0

SO4 0 0 0.63788 0 0.2767 0 0 0 0.03368 0
Sr 0 0 0 0 0.00083 0 0.00186 0 0.00006 0
Ti 0 0 0.00057 0 0.00608 9 0.01622 0 0.00026 0
V 0 9 0.01714 0 0.00758 0 0.00017 0 0 9

Zn 0 0 0.0051 9 0.00676 0 0 0 0.00131 0

Table 4.2: Third Fkey, representing correct and erroneous information about source
profile zeros.
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Figure 4.1: Kernel density estimates of the AAE for F̂, using three different Fkeys.
The thick black line represents PMF’s default results, the thin black line represents
correctly pulling 5 elements of one factor to zero, the dashed line represents pulling
10 elements of multiple factors correctly to zero, and the dotted line represents a
mixture of correct and incorrect pulling.
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Figure 4.2: Kernel density estimates of the AAE for Λ̂, using three different Fkeys.
The thick black line represents PMF’s default results, the thin black line represents
correctly pulling 5 elements of one factor to zero, the dashed line represents pulling
10 elements of multiple factors correctly to zero, and the dotted line represents a
mixture of correct and incorrect pulling.
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4.3 Target source profiles (“Gkey”)

The second method available for introducing prior information into the pro-

gram is the use of target source profiles. This method introduces a priori information

about one or more of the profiles in the form of a matrix of target profiles, Λ̃. Each

element of Λ̃ is given a specified amount of uncertainty.

A matrix of estimated factor profiles was used as Λ̃, obtained in the following

manner. Let λih be the proportion contribution of the ith species to the hth profile,

and let λ̃ih be its assumed value. We obtain λ̃ih as a draw from a lognormal distribu-

tion with a mean equal to λih and a coefficient of variation equal to either 100%, 50%,

or 20%. Additionally, with each different CV, an array of uncertainties was passed

to PMF. This array was obtained by multiplying Λ̃ by 0.2.

As in the study of pulling elements to zero, once PMF had computed Λ̂ and

F̂, the results were again sorted based on minimization of the MSE between F̂ and

F. If PMF failed to converge using the target profiles, the results from runs using the

default values of PMF were substituted, where PMF had basically the same settings

except for the lack of the Gkey. This corrects for the possibility that PMF is not

converging on poorer data sets, although in practice the settings might be changed

for a particular data set so that PMF converges even with the target profiles.

To use this a priori information with PMF, the following steps are used. First,

Λ̃ is appended to the beginning of the data matrix, and the p× k matrix containing

the uncertainties associated with Λ̃ is appended to the beginning of the matrix of
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receptor measurement uncertainties, so that now Y is p× (n + k), and our resulting

F̂ will be k× (n+ k). Next, a Gkey is made, which is constructed to pull these extra

k×k elements of F̂ to zero. For details of the construction of this Gkey, see the PMF

User’s Guide, Part 1: Tutorial, page 16 (Paatero, 2004a).

Next, starting values are obtained from running PMF without the use of the

target profile, and the results are used as starting points for the algorithm, after

appending a k × k matrix of zeros to the beginning of the F̂ obtained from the run.

4.3.1 Starting values

Since the use of starting values complicates the process, it is desirable to see

if the use of starting values actually improves the results. To test this, PMF was run

over the 600 simulated data sets, using target profile information, with and without

starting values. For this study, the true source profiles were used as Λ̃, with the

uncertainties associated with them obtained by simply multiplying the true source

profiles by 0.2.

Figures 4.4 and 4.5 show the results from this simulation study, giving kernel

density estimates of the distribution of the AAE associated with F̂ and Λ̂, respectively.

Generally, the use of starting values improves results, more so for the data with a low

CV.

Regardless of using starting values or not, except in the case of very clean data

(CV = 0.2, all sources identified), the use of target source profiles for contaminated

data does not dramatically improve estimation. It seems that unless we can correctly
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identify all the sources contributing to the particulate matter in the airshed, the use

of target source profiles does not greatly improve our estimation.

4.3.2 Differing amounts of information in Λ̃

We next consider how the use of target source profiles improves estimation

when we have varying amounts of a priori information. This section examines the

issue by using approximate profiles with varying degrees of uncertainty, specifically the

Λ̃’s are obtained as draws from lognormal distributions as described in the previous

section. The degree of our knowledge is reflected by the level of the CV used to obtain

Λ̃. Thus, a CV of 0.2 reflects greater information than the CV of 1.0.

Three hundred different Λ̃’s were thus created, one hundred each at CV =

0.25, 0.5, and 1.0. Each of these was used as prior information for six data sets, one

for each different type of data (see Table 3.2 on page 17).

The AAE for Λ̂ and F̂ are shown in Figures 4.6 and 4.7, respectively, where

kernel density estimates for the AAE associated with Λ̃CV =0.2, Λ̃CV =0.5, Λ̃CV =1.0 are

shown in red, blue, and green, respectively. The default values, obtained without

using a priori information, are shown by the solid black line, and the dashed black

line shows the kernel density estimates obtained by using exact a priori information

for comparison.

As can be seen in these figures, using the less informative Λ̃ still improves the

results, much in the same way as using exactly correct information. When we have

uncontaminated data, or have correctly identified all the pollution sources, use of the
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Figure 4.4: Kernel density estimates of the AAE for F̂, using target profiles in PMF.
The solid black lines are the densities without target profiles, the dotted lines are the
results from the use of target profiles with starting values, and the dashed lines show
the results from the use of target profiles without starting values.
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Figure 4.5: Kernel density estimates of the AAE for Λ̂, using target profiles in PMF.
The solid black lines are the densities without target profiles, the dotted lines are the
results from the use of target profiles with starting values obtained from an initial run
of PMF, and the dashed lines show the results from the use of target profiles without
starting values.
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a priori source profiles improves estimation, less so for the least informative Λ̃ (CV

= 1.0). When we have not correctly identified all of the pollution sources, use of the

a priori source profiles may slightly improve results for F̂. However, even when we

have contaminated data, use of the a priori information can improve estimation of Λ,

even dramatically so when the data is clean (CV = 0.2, contaminated).

It appears that source profiles need not be exact for use of the Gkey to im-

prove estimation. In fact, the use of exact information and good information behave

similarly. The data seem to have enough structure that good estimates can be found

with help that is less than exact. On the other hand, if we fail to correctly identify all

the sources in the airshed, when the airshed is contaminated by unidentified sources,

giving PMF good information about the sources we do know does not dramatically

improve estimation.

In practice, the use of Q from Equation (3.3) can give some indication as to

when our a priori information has distorted the true shapes of factors, but since in this

simulation study we know the true factors, AAE was used as the judge of estimation.

4.4 Illustration of use on the St. Louis airshed

In practice, the use of a priori information can be used to identify and constrain

a model as we try to form a interpretable model of the airshed. We might have little

idea, initially, of what sources are present, or how many. We can fit different numbers

of sources in PMF, attempt to identify them, and then constrain those identifiable

sources to be in the model, resulting in a model with a parsimonious number of
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Figure 4.6: Kernel density estimates of the AAE for F̂, using target profiles in PMF.
Colored lines represent results from Λ̃’s obtained as draws from lognormal distribu-
tions with CV = 0.2 (red), CV = 0.5 (blue), and CV = 1.0 (green).
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Figure 4.7: Kernel density estimates of the AAE for Λ̂, using target profiles in PMF.
Colored lines represent results from Λ̃’s obtained as draws from lognormal distribu-
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sources where each can be identified.

Data from the St. Louis - Midwest Supersite in 2001 - 2003 was fit in PMF,

using 44 chemical species. Different numbers of sources were fit and labeled. One

source appeared in more than one model that spiked on July 4th in both 2001 and

2002. The source was high in potassium and identified as a fireworks source. Since

this source was easily identifiable, we sought to include it in the model. Other sources,

such as summer secondary, were also identifiable, some to a greater degree than others.

An additional tool that was employed in identifying the sources was the use of

weekday plots, plotting the level of the source contribution over the days of the week.

For example, the vehicular sources peak during the middle of the week and decrease

over the weekend, which is what one might expect as people go to work during the

week. Sources that are not man-made, like the secondary sources, exhibited less

day-to-day predictability and more seasonal predictability.

We used a Λ̃ constructed from the estimates of source profiles we could identify

to constrain these sources to appear in the model. In this manner, we could help PMF

identify sources that we knew should be included in the model. In the end, we fit a

six source model, with a source for fireworks, summer secondary, winter secondary,

a smelter, and two vehicular sources. This model is shown in Figure 4.8, with plots

of the source contributions by days of the week in Figure 4.9. The use of the Gkey

proved to be very important and useful in the process of model fitting.

Although the use of the Gkey and a priori information is complex, it is a

valuable tool that can aid researchers working in pollution source apportionment.
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Without the ability to constrain sources to be in the model as they are identified, the

researcher using PMF would possibly have to accept sources they cannot identify in

order to include sources in the model that they can identify. For example, a 10 source

model might contain a known source but has other sources that cannot be labeled,

while PMF’s output for a five source model does not contain the known source. Using

the Gkey, one can constrain the known source that appeared in the 10 source model

to appear in the five source model, giving a model that has a parsimonious number

of sources, all of which can be identified.
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Figure 4.8: Six source model of the St. Louis airshed, using a priori information in
PMF.
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Figure 4.9: Six source model of the St. Louis airshed, using a priori information in
PMF, by days of week.
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Chapter 5

A Bayesian model for pollution source apportionment

This chapter proposes a Bayesian approach to pollution source apportion-

ment, implemented in MATLAB and fitted using a Gibbs-Metropolis algorithm. The

Bayesian model is desirable for multiple reasons. First, we obtain densities instead

of point estimates for both source profiles and contributions, as in PMF. There are

many advantages of having a density instead of a point estimate: we have an intrinsic

measure of the uncertainty associated with the estimate and we can easily derive other

quantities of interest such as credible intervals. PMF does afford some capability of

finding distributional properties through multiple runs (Hopke et al., 2004), but not

in the intrinsic manner that Bayesian methods give.

Second, the incorporation of a priori information is natural in the Bayesian

paradigm; we can simply use the knowledge we have about source profiles as the prior

distributions on elements of Λ. We can also use prior distributions on the elements

of F reflecting our knowledge, if any, of the source contributions. In this chapter, the

use of lognormal prior distributions is illustrated, building on the research of Park et

al. (2001).
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Third, the type of a priori information we can use in the estimation process

is different from PMF. In PMF we give target profiles as points, each with a corre-

sponding measure of certainty. In the Bayesian framework we specify distributions

as the prior information, allowing us to incorporate more knowledge than a point

estimate and measure of uncertainty.

Fourth, compared to PMF, the researcher has complete control over the process

of estimation, instead of relying on the comparatively cryptic implementation of the

PMF algorithm found in PMF2 (Paatero, 2004a) or the EPA implementation of PMF

(Eberly, 2005). Some of the multiple settings of PMF were examined in Chapter 3,

but even more remain. Although the PMF algorithm is explained, the complete

process remains in the compiled program. In contrast, with this Bayesian framework

the estimation process become much more open.

Fifth, posterior distributions have established statistical properties, which

PMF lacks. We can look at results from a Bayesian model in terms of probabil-

ity, whereas the results from PMF are harder to examine statistically. On the other

hand, PMF is much quicker and easier to use. A PMF analysis can run in less than

a minute on a normal computer, whereas fitting a high- dimensional Bayesian model

may take days and require intense coding.

As compared to the Effective Variance solution, a Bayesian model allows source

profiles that have been erroneously specified to correct themselves during the process

of fitting the model. Additionally, allowing for non-Gaussian distributions in the

model gives the researcher increased flexibility and the ability to incorporate more
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specific knowledge into the model.

5.1 Model

The model assumes that the interaction between pollution sources is additive,

that μj = Λfj , where μj = (μj1, μj2, . . . , μjp) is a p × 1 vector of the true ambient

measurements on p chemical species at time j, Λ is the p×k matrix of k true profiles,

and fj is the k × 1 vector of true source contributions of k sources at time j.

Next, we assume that each of the p ambient measurements at time j, yij, i =

1, . . . , p, j = 1, . . . , n, has a lognormal distribution with mean μij and some coef-

ficient of variation (CV) v, which may easily be allowed to vary between chemical

species. The lognormal distribution is convenient since it keeps all values greater

than zero, while allowing for large positive values in the tail. This distribution makes

sense scientifically, since we expect unusually large values due to the complex na-

ture of an airshed. The lognormal density function is denoted by ψ in ψ(yij|μ∗
ij, τ

∗
ij) =

1
τ∗
ijyij

√
2π
e

−(ln(yij )−μ∗
ij )2

2τ∗
ij

2

, where μ∗
ij and τ ∗ij represent the parameters of the lognormal dis-

tribution in terms of the mean and CV (μ∗
ij = log(μij)−.5log(v2+1), τ ∗ij = log(v2+1)),

and i = 1, . . . , p ;j = 1, . . . , n.

For the prior distributions on elements of Λ, we again use lognormal distri-

butions, which will ensure non-negativity. Specifically, we assume that λih has a

lognormal distribution with mean λ̃ih and coefficient of variation uih, where λ̃ih is the

ihth element of a matrix of a priori source profiles, Λ̃
p×k

which has

p∑
i=1

λ̃ih = 1. We

obtain uih in the following manner: if λ̃ih is greater than 0.4, set uih equal to 0.02. If
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λ̃ih is greater than 0.1 and less than 0.4, set uih equal to 0.05. If λ̃ih is greater than

0.01 and less than 0.1, set uih equal to 0.1. If λ̃ih is greater than 0.001 and less than

0.01, set uih equal to 0.2. and, finally, if λ̃ih is less than 0.001, set uih equal to 0.5. In

this manner we reflect relatively greater certainty about the larger profile elements

and relatively less certainty about those close to zero. The prior distributions for

some elements of the winter secondary source are shown in Figure 5.1.

For the prior distribution on elements of F, we take each element fhj ∼ ψ(γ, δ),

using the same prior distribution for each element, reflecting a low level of knowledge

about the source contributions. The lognormal distribution again keeps elements of

F positive while allowing for large contributions of source h to the airshed. Using

γ = 2 and δ = 1, we obtain the relatively diffuse distribution shown in Figure 5.2.

Equation (5.1) shows the un-normalized posterior distribution for Λ and F

given Y, where λ
′
i is the ith row of Λ, and fj is the jth column of F, corresponding

to time j. We obtain draws from the normalized posterior by using Markov chain

Monte Carlo methods. For interpretability, we force the columns of Λ to sum to

one, assuming that the p chemical species account for 100% of the emissions from

the source. This is accomplished in computation by drawing candidate value λ∗ih as

usual in the Metropolis algorithm, updating λh with this new ith element, and then

scaling λh to sum to one. The proposed λh is then accepted or rejected by regular

Metropolis steps.
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Figure 5.1: Lognormal prior distributions for the five largest elements of the winter
secondary source
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Figure 5.2: Lognormal prior distribution for the elements of F
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p(Λ,F|Y) ∝
n∏

j=1

p∏
i=1

k∏
h=1

ψ(yij|λifj , CV = v) ψ(fhj|γ, δ) ψ(λih|λ̃ih, CV = uih) (5.1)

5.2 Computation

The data used in the study were simulated as described in Chapter 3, using

contaminated data (i.e. minor sources were included in the airshed but not in the

model) and a coefficient of variation of 0.2. Draws from the normalized posterior

were obtained by using an adaptive Gibbs-Metropolis algorithm, where normal dis-

tributions were used as the candidate distributions. Candidate distributions are the

distributions from which updates of the parameters are drawn (proposed) to be ac-

cepted or rejected by the algorithm. In part, the success of the Metropolis algorithm

depends on the candidate distributions chosen. If the candidate distributions are too

diffuse, few points will be generated that are accepted by the algorithm and the pa-

rameter space will not be explored efficiently. Similarly, if the candidate distributions

are too narrow, too many points will be accepted all in a small range, leading to slow

exploration of the parameter space. Gelman et al. (2004) state rough guidelines.

Increase or decrease the scale of the jumping distribution if the ac-
ceptance rate of the simulations is much too high or low, respectively.
The goal is to bring the jumping rule toward the approximate optimal
value of 0.44 (in one dimension) or 0.23 (when many parameters are
being updated at once using vector jumping).

When dealing with a small number of parameters, the researcher may change

the candidate distributions until good mixing is achieved. However, in this problem
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we are trying to estimate 788 × 5 + 23 × 5 = 4055 parameters, so adjusting each

by hand is difficult. Instead, the algorithm keeps track of acceptance ratios as the

iterations advance during the burn-in phase. If too many proposed points are being

accepted, the standard deviation of the candidate distribution for that element is

raised, or if too few proposed points are being accepted, the standard deviation of the

candidate distribution for that element is lowered so that more points in high-density

areas are generated and accepted. Specifically, elements of F where acceptance ratios

fell below 0.25 and elements of Λ where acceptance ratios fell below 0.20 had the

standard deviations of their corresponding candidate distributions lowered by a tenth.

The elements of F where acceptance ratios exceeded 0.55 and the elements of Λ where

acceptance ratios exceeded 0.60 had the standard deviations of their corresponding

candidate distributions increased by a tenth. This updating was performed every 100

iterations during the burn-in phase of the algorithm. This technique resulted in quite

good simulation of the elements of the posterior density.

The simulations are performed in MATLAB, which is well-suited for fitting

Bayesian models. MATLAB has a powerful matrix language, similar to that of R,

but performs much faster. The ability to vectorize loops and perform computations

simultaneously speeds the algorithm. A crucial element of speed is also to elimi-

nate redundant calculations, which can be achieved by examining the algorithm and

identifying elements of the density that are identical as we compare an update to its

previous value. Since these identical values will cancel as we compare the density

under the update and the current value, they need not be performed.
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5.3 Results

A run of 100,000 iterations was performed, with the last 10,000 iterations

being kept for examination. The final acceptance ratios for F̂ and the final adjusted

candidate sigmas are shown in Figure 5.3. A similar plot for the elements of Λ̂ is

shown in Figure 5.4. As can be seen, our acceptance ratios are all in a reasonable

range, indicating that our algorithm to adjust the standard deviations of the candidate

distributions worked and we achieved reasonably good mixing.

The trace plots for Λ̂ are shown in Figures 5.5 through 5.9. The solid red lines

indicate the true values of Λ from which the data were simulated, the solid blue lines

indicate the means of the prior distributions. The trace plots show reasonably well

mixing. As can be seen, in many cases where the algorithm moves away from the

prior distribution, the algorithm succeeds in finding the correct value, or in finding a

point between the mean of the prior distribution and the correct value. In other cases,

as in Figure 5.8, the algorithm moves away from the mean of the prior distribution

in the wrong direction.

As examples of the trace plots for F̂. Figure 5.10 shows the trace plot and

density estimates for f̂200 and Figure 5.11 shows the trace plots and density estimates

for f̂400. The red lines indicate the values of F from which the data were simulated.

The AAE associated with Λ̂ (Λ̂ obtained from the posterior means) is 0.041,

which is slightly worse than the AAE for the means of the prior distributions, 0.037.

The AAE associated with F̂ (F̂ obtained from the posterior means) is 6.316.
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Figure 5.3: Final candidate sigmas and acceptance ratios for F̂
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Figure 5.5: Trace plots for sea salt
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Figure 5.6: Trace plots for secondary sulfate
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Figure 5.7: Trace plots for winter secondary
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Figure 5.8: Trace plots for soil
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Figure 5.9: Trace plots for auto-diesel
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Figure 5.10: Trace plots and density estimates for the elements of F̂ on day 200.
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Figure 5.11: Trace plots and density estimates for the elements of F̂ on day 400.
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For PMF without using any a priori information, the AAE for F̂ is 4.34, better

than the results for the Bayesian method, and the AAE for Λ̂ is 0.127. For PMF

using a priori information, with the prior means given as the target profiles and the

prior variances given as the uncertainties, the AAE for F̂ is 5.521, and the AAE for

Λ̂ is 0.122. The third lims value was changed from 0.003 to 0.3 so that PMF would

converge.

The Effective Variance (EV) solution, another standard in the field that as-

sumes knowledge of source profiles with some uncertainty (see Christensen et al.,

2006), gives estimation of F but not the source profiles. The AAE for the EV solu-

tion is 4.219.

A more suitable metric than the AAE for these Bayesian methods might be

Total Median Absolute Error (TMAE), obtained in the following manner. Let Λ̂ be

obtained from the posterior medians, instead of the posterior means. Let TMAE be

the sum of the median absolute error of the k sources in the model, where the median

absolute error for the hth source is calculated as the median of |λ̂ih − λih| over i for

the hth source.

The TMAE for Λ̂ obtained as the posterior medians is 0.00348, while the

TMAE for the means of the prior distributions on Λ is 0.00419. The TMAE for F̂

obtained as the posterior medians is 5.5202. In comparison, the TMAE for PMF

without a priori information is 0.03257 for Λ̂ and 3.2407 for F̂. The TMAE for PMF

using target profiles is 0.027563 for Λ̂ and 4.15999 for F̂. The TMAE for the EV

solution is 2.95159.

72



Our Bayesian algorithm performs comparably to PMF and the EV solution.

PMF and the EV solution estimate F better, but our algorithm does better than PMF

in estimating Λ, even when PMF uses target profiles. It is possible that changing

uncertainties or settings of PMF could bring different results, but these at least give

a rough idea of PMF’s performance in comparison.

73



Appendix A

R code for studying PMF

A.1 Generating data

setwd(’c:/work/pmf_research’)

prof<-as.matrix(read.table("trueprofiles.txt"))

names(prof) <- c(’salt’,’sec_sulf’,’sec_1’,’soil’,’autod’)

fac<-as.matrix(read.table("truesources.txt"))

fprof <- (read.table("wfcnewsourceprofiles.csv",sep=",",header=T))

ffac <- (read.table("wfcnewsourcecontributions.csv",sep=",",header=T))

fullprof <- as.matrix(fprof[,-1])

fullfac <- as.matrix(ffac[,-1])

srcnums <- c(7,2,3,4,6)

newwts <- diag(c(.2,.5,.5))

CCV <- .5
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truedat <- t(prof %*% t(fac))

gendat(.5,"c:/work/pmf_research/true_.5/",F)

gendat(.5,"c:/work/pmf_research/miss_.5/",T)

gendat(1,"c:/work/pmf_research/true_1/",F)

gendat(1,"c:/work/pmf_research/miss_1/",T)

uncertainties <- round( fullprof[,srcnums] %*% t(fullfac[,srcnums]) * .5 , 8)

write(uncertainties, file="miss_.5/uncertainties.txt", ncol=nrow(uncertainties))

uncertainties <- round( fullprof[,srcnums] %*% t(fullfac[,srcnums]) * .5 , 8)

write(uncertainties, file="true_.5/uncertainties.txt", ncol=nrow(uncertainties))

uncertainties <- round( fullprof[,srcnums] %*% t(fullfac[,srcnums]) * 1 , 8)

write(uncertainties, file="miss_1/uncertainties.txt", ncol=nrow(uncertainties))

uncertainties <- round( fullprof[,srcnums] %*% t(fullfac[,srcnums]) * 1 , 8)

write(uncertainties, file="true_1/uncertainties.txt", ncol=nrow(uncertainties))

mywrite.table <- function(x,path){

write.table(x,path,col.names=F,row.names=F,quote=F)

}

gendat <- function(CCV,path,plussource){

fprof <- (read.table("wfcnewsourceprofiles.csv",sep=",",header=T))

ffac <- (read.table("wfcnewsourcecontributions.csv",sep=",",header=T))
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fullprof <- as.matrix(fprof[,-1])

fullfac <- as.matrix(ffac[,-1])

srcnums <- c(7,2,3,4,6)

newwts <- diag(c(.2,.5,.5))

truedat <- t(prof %*% t(fac))

n<-788;p<-23;

for(i in 1:100){

ydat <- array(dim=c(n,p))

if (plussource == F)

ydat <- exp( log(truedat) - .5*log(CCV^2 +1) +

sqrt(log(CCV^2+1)) * matrix(rnorm(n*p),n,p) )

if (plussource==T) {

ydat <- exp( log(fullprof[,srcnums] %*% t(fullfac[,srcnums]) +

fullprof[,-srcnums] %*% t(fullfac[,-srcnums] %*% newwts))

- .5*log(CCV^2 +1) + sqrt(log(CCV^2+1)) * matrix(rnorm(p*n),p,n) )

ydat <- t(ydat)}

mywrite.table(round(ydat,6),paste(path,’ydat’,i,’.txt’,sep=""))}}

###########################generate Ahat matrices

ACV <- .25

A <- fullprof[,srcnums]

Aplus <- A

Aplus[A < .0001] <- .0001

p <- 23

for(k in 1:100){

Ahat <- exp( log(Aplus) -.5*log(ACV^2 +1) +
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sqrt(log(ACV^2+1)) * ( matrix(rnorm(p*5),p,5) ) )

for (i in 1:5) if (sum(Ahat[,i]) > 1) Ahat[,i] <- Ahat[,i]/sum(Ahat[,i])

mywrite.table(round(Ahat,6),paste(’Ahats/Ahat_25_’,k,’.txt’,sep=""))

}

ACV <- 1.0

for(k in 1:100){

Ahat <- exp( log(Aplus) -.5*log(ACV^2 +1) +

sqrt(log(ACV^2+1)) * ( matrix(rnorm(p*5),p,5) ) )

for (i in 1:5) if (sum(Ahat[,i]) > 1) Ahat[,i] <- Ahat[,i]/sum(Ahat[,i])

mywrite.table(round(Ahat,6),paste(’Ahats/Ahat_1_’,k,’.txt’,sep=""))

}

A.2 Example of R documentation for package pmf

runpmf package:pmf R Documentation

Run PMF

Description:

Runs PMF. May use target profiles ("Gkey"). Target profiles are

appended to the data matrix and their uncertainties appended to

the matrix of ambient error measurements. The ’Gkey’ is the

matrix of integer values used by PMF to pull these to zero (see

the PMF documentation). If target profiles are used, the .ini

file must be set up to do so.
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Usage:

runpmf(inifilename, data, F, Lambda, Q, sources = 5,

rows = 788, cols = 23, otd = 4, fpeak = 0, c1 = 0,

c2 = 0, c3 = 0.01, em = 12, startval = TRUE, gnot,

fnot, stdevs = "uncertainties.txt", fkey = FALSE, fkeyname)

Arguments:

inifilename: Name of the .ini file

data: Name of the data file

F: Name of output file for F

Lambda: Name of output file for Lambda

Q: Name of output file for Q

sources: Number of sources

rows: Number of rows in data matrix

cols: Number of columns in data matrix
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otd: Outlier Threshold Distance

fpeak: Fpeak

c1: C1

c2: C2

c3: C3

em: Errormodel

startval: Logical: use starting values?

gnot: Starting values for F

fnot: Starting values for Lambda

stdevs: Uncertainties of the data

fkey: Logical: use fkey? (Pull elements to zero)

fkeyname: If an fkey is used, name of the file

Details:
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The .ini file should have the gkey read in as file option 4, with

the Gkey appended. This function modifies some BUT NOT ALL of the

PMF settings. Other settings can be changed by modifying the .ini

file. Some settings may need to be changed for PMF to converge

using target profiles.

Note:

Make sure starting values are appropriately sorted! .ini filename

cannot contain periods. Note that PMF will stick an extra k rows

on top of the output F matrix. These rows need to be deleted

before analysis takes place!

Author(s):

Jeff Lingwall

References:

See PMF documentation

Examples:

#you need pmf2wtst.exe in the current directory

##Example without target profiles

data(default_ini)
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write(default,file="default.ini") #writes

the .ini file in the current directory

data(uncertainties)

cwrite.table(uncertainties,"uncertainties.txt")

data(ydat)

cwrite.table(ydat,"ydat.txt")

runpmf("default.ini", "ydat.txt", "myF.txt", "myLambda.txt",

"myQ.txt", sources = 5,

rows = 788, cols = 23, startval = FALSE, stdevs = "uncertainties.txt")

data(truesources)

data(trueprofiles)

sort <- msesort(t(read.table("myLambda.txt")),

read.table("myF.txt"),truesources)

AAE(sort$fac,truesources)

AAE(sort$lam,trueprofiles)

##Target profile example

data(gkeyini)

write(gkeyinifile,file="myinifile.ini") #writes the

.ini file in the current directory

data(uncertainties)

cwrite.table(uncertainties,"uncertainties.txt")

data(ydat)

cwrite.table(ydat,"ydat.txt")

data(Ahat)

tfprep(Ahat,Ahat*.2,p=23,k=5,"ydat.txt",keyname="keydat.txt",
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uncname="uncertainties.txt",

keyuncname="keyuncertainties.txt")

runpmf("myinifile.ini", "keydat.txt", "myF.txt",

"myLambda.txt", "myQ.txt",

sources = 5, rows = 788+5, cols = 23, startval = FALSE,

stdevs = "keyuncertainties.txt")

data(truesources)

data(trueprofiles)

sort <- msesort(t(read.table("myLambda.txt")),

read.table("myF.txt")[-c(1:5),],

truesources)

AAE(sort$fac,truesources)

AAE(sort$lam,trueprofiles)
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Appendix B

MATLAB code to fit a Bayesian pollution source apportionment model

%%%%%%%%%%%%%%%%%

%

% Jeff Lingwall

%

% Bayesian pollution source apportionment

%

%

%%%%%%%%%%%%%%%%%

%% Define things

% global variables

global d t tau delta length burn days y k ksi

mutrans_constant; %make prior info global variables

% data

ydat = transpose(dlmread(’ydat1.txt’));

tlam = dlmread(’trueprofiles.txt’);

tfac = dlmread(’truesources.txt’);

lam = dlmread(’Ahat.txt’);
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scale = inline(’x./sum(x)’);

for t = 1:5

lam(:,t) = scale(lam(:,t));

end

lam_unc = lam;

ind = find(lam >=.4);

lam_unc(ind) = .02 * lam_unc(ind);

ind = find(lam < .4 & lam >= .1);

lam_unc(ind) = .05 * lam_unc(ind);

ind = find(lam < .1 & lam >=.01);

lam_unc(ind) = .1 * lam_unc(ind);

ind = find(lam < .01 & lam >=.001);

lam_unc(ind) = .2 * lam_unc(ind);

ind = find(lam < .001);

lam_unc(ind) = .5 * lam_unc(ind);

d = log(lam) - .5 .* log( (lam .^ 2 + lam_unc .^2)./lam .^2 ) ;

t = log( (lam .^ 2 + lam_unc .^2) ./ lam .^2) ;

k = .2;
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ksi = sqrt(log( k^2 + 1));

mutrans_constant = .5 * log( k^2 + 1 );

% prior on f (mean and variance of the log of the data)

tau = 2;

delta = 1;

% mcmc settings

days = 788;

length = 10000;

burn =0;

%% starting points, data

f = dlmread(’starting_points_f.txt’);

candsig_f = dlmread(’candsigs_for_f.txt’);

l = dlmread(’starting_points_l.txt’);% lam;

candsig_l =dlmread(’candsigs_for_l.txt’);

% f = ones(5,days) .* 10;

% candsig_f = ones(5,days);

% l = lam;

% candsig_l = .2 * lam;

%acceptance ratios, etc

l_rat = zeros(23,5);

f_rat = zeros(5,days);

y = (ydat(:,1:days));
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%% print out values for short run

dlmwrite(’f.txt’,f);

dlmwrite(’l.txt’,l);

%% print out values for long run

% dlmwrite(’f_sample.txt’,f);

% dlmwrite(’l_sample.txt’,l);

%% mcmc

count = 1;

intval = 20; %every intval iterations, adjust the candidate

sigmas and print out stuff

% tic

for i = 2:(length+burn)

if mod(i,intval) == 0

i

end

accept_f = zeros(5,days);

count = count+1;

for ii = 1:5

old = f(ii,:);

new = normrnd(old,candsig_f(ii,:));

zero_index = find(new <= 0);

new(find(new <=0)) = old(find(new<=0));

f_update = f;
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f_update(ii,:) = new;

p_F = (log(lognpdf(f(ii,:),tau,sqrt(delta))));

p_F_update = (log(lognpdf(new,tau,sqrt(delta))));

llo = posterior_f(f,y,l,p_F);

lln = posterior_f(f_update,y,l,p_F_update);

uu = rand(788,1)’;

ind = find(log(uu) < (lln - llo));

f(ii,ind) = new(ind);

accept_f(ii,ind) = 1;

accept_f(ii,zero_index) = 0; %these didn’t really change

end

accept_l = zeros(23,5);

for kk = 1:5

for k = 1:23

old = l(k,kk);

l_update = l;

new = normrnd(old,candsig_l(k,kk));

if new > 0 & new <=1

l_update(k,kk) = new;

l_update(:,kk) = scale(l_update(:,kk));

p_lam = sum(sum(log(mylognpdf(l,d,sqrt(t)))));

p_lam_update = sum(sum(log(mylognpdf(l_update,d,sqrt(t)))));

llo = posterior(f,y,l,p_lam);

lln = posterior(f,y,l_update,p_lam_update);

uu = rand(1);
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if log(uu) < (lln - llo);

l = l_update;

accept_l(k,kk) = 1;

end%

end

end

end

l_rat = (l_rat*(count-1) + accept_l) / count;

f_rat = (f_rat*(count-1) + accept_f) / count;

%adjust candidate sigmas

if i == intval

dlmwrite(’l_rat.txt’,l_rat);

dlmwrite(’f_rat.txt’,f_rat);

dlmwrite(’candsigs_for_l.txt’,candsig_l);

dlmwrite(’candsigs_for_f.txt’,candsig_f);

end

if mod(i,intval*10) == 0

dlmwrite(’l_rat.txt’,l_rat);

dlmwrite(’f_rat.txt’,f_rat);

dlmwrite(’candsigs_for_l.txt’,candsig_l);

dlmwrite(’candsigs_for_f.txt’,candsig_f);

end

88



if i <= burn & mod(i,intval) == 0

candsig_l(find(l_rat < .2)) = candsig_l(find(l_rat < .2))* .9;

candsig_l(find(l_rat > .6)) = candsig_l(find(l_rat > .6))* 1.1;

l_rat = zeros(23,5);

candsig_f(find(f_rat < .25)) = candsig_f(find(f_rat < .25))* .9;

candsig_f(find(f_rat > .55)) = candsig_f(find(f_rat > .55))* 1.1;

f_rat = zeros(5,days);

count = 1;

end

%%%%%%%%%%%%%%%%%%%%% write out values in a short run

dlmwrite(’f.txt’,f,’-append’);

dlmwrite(’l.txt’,l,’-append’);

%%%%%%%%%%%%%%%%%%%%%% write out values in a run of 100,000

% if mod(i,intval) == 0

% dlmwrite(’f_sample.txt’,f,’-append’);

% dlmwrite(’l_sample.txt’,l,’-append’);

% end

% if i == 90000

% dlmwrite(’f.txt’,f);

% dlmwrite(’l.txt’,l);

% end

% if i > 90000

% dlmwrite(’f.txt’,f,’-append’);

% dlmwrite(’l.txt’,l,’-append’);

% end

%%%%%%%%%%%%%%%%%%%%%%%
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end %end of i loop 1:(burn + length)

%% write files

dlmwrite(’l_rat.txt’,l_rat);

dlmwrite(’f_rat.txt’,f_rat);
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Appendix C

MATLAB code for making three-dimensional movies

%% three d metropolis steps for day 100 of F

input = dlmread(’f_sample.txt’);

cols= jet(24)

input(50001:50005,:) = [];

f = ones(5,788,2000);

count = 0;

for k = 0:5:(10000-1)

count = count + 1;

f(:,:,count) = input((1+5*k):(5+5*k),:);

end

clear input

burn = 1800j

testval = 100

count = 0

for j = 5:5:1800

count = count + 1;

plot3(converter(f(1,testval,1:j)),converter(f(2,testval,1:j)),
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converter(f(3,testval,1:j)),’Color’,cols(1,:))

xlabel(’F[1,100]’);ylabel(’F[2,100]’);zlabel(’F[3,100]’)

grid on

% hold on

F(count) = getframe(gcf);

end

for j = (1800+5):5:(2000 - 5)

count = count + 1;

plot3(converter(f(1,testval,1:burn)),converter(f(2,testval,1:burn)),

converter(f(3,testval,1:burn)),’Color’,cols(1,:))

xlabel(’F[1,100]’);ylabel(’F[2,100]’);zlabel(’F[3,100]’)

hold on

plot3(converter(f(1,testval,(burn):j)),converter(f(2,testval,(burn):j)),

converter(f(3,testval,(burn):j)),’Color’,cols(10,:))

xlabel(’F[1,100]’);ylabel(’F[2,100]’);zlabel(’F[3,100]’)

grid on

hold off

F(count) = getframe(gcf);

end

F(1) = F(399)

movie2avi(F,’test.avi’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% rendered surfaces

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%write out code to R
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% kde2d in R, write back to MATLAB, one for each day

for i = 1:788

dlmwrite(strcat(’f1_’,int2str(i)),f(1,i,:))

dlmwrite(strcat(’f2_’,int2str(i)),f(2,i,:))

end

%% looop through plotting each day (factors 1 and two) !!!! with names!!!

clear F;

counter = 0;

counter2 = 0;

colorcount = 1;

ctrip = 1;

cols = jet(100);

for i = 1:200

x = dlmread(strcat(’Rf1_’,int2str(i)));

y = dlmread(strcat(’Rf2_’,int2str(i)));

z = dlmread(strcat(’RZ_’,int2str(i)));

surf(x,y,z,’FaceColor’,cols(colorcount,:),’EdgeColor’,’none’)

junk = axis;

axis([0 10 0 20 junk(5) junk(6)]);

if i == 1

[az,el] = view;

end
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if ctrip == 1

colorcount = colorcount + 1;

end

if ctrip == 0

colorcount = colorcount - 1;

end

if colorcount == 100

ctrip = 0;

end

if colorcount == 1

ctrip = 1

end

counter = counter + 1;

if el + counter2 > 70

trip = 0;

end

if el + counter2 < 46

trip = 1;

end

if trip == 1

counter2 = counter2 + 2;

end

if trip == 0

counter2 = counter2 - 2;
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end

view(az + counter,el + counter2);

xlabel(’Sea salt’);ylabel(’Secondary sulfate’);zlabel(int2str(i));

camlight left; lighting phong

F(i) = getframe(gcf);

end

%%

movie2avi(F,’render.avi’,’fps’,3,’quality’,100)%,’fps’,1
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