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New Stereology for the Recovery of Grain-Boundary Plane

Distributions in the Crystal Frame

RYAN J. LARSEN and BRENT L. ADAMS

A new experimental method is given for recovering the probability-distribution function S, (4, | Ag). The
function S, (71, | Ag) is the grain-boundary area per unit volume as a function of grain-boundary plane
orientation (i3,), given a lattice misorientation (Ag) between the adjoining grains. The grain-boundary
normal (/) is expressed in the crystal frame in which the misorientation Ag originates. The proposed
method recovers the three-dimensional S, (73, | Ag) function using data taken from two-dimensional see-
tion planes. The method requires the measurement of many grain-boundary trace (in-plane) angles and
lengths associated with grain boundaries of lattice misorientation. All such boundary traces may be
observed from a single scction planc if the crystallographic texture is sufficiently random. In heavily
textured microstructures, the method requires the researcher (o observe traces [rom multiple oblique sce-
tion plancs cut through the material. A method of quantitatively estimating whether the texture is sul-
ficiently random is given. Simulations on both textured and nontextured microstructures demonstrate
the validity of the method. Experimentally, the new method is used to analyze boundaries of misorien-
tation (23) observed in 304 stainless steel. Calculated grain-boundary planc-probability functions are
shown to be consistent with what is already known.

I. INTRODUCTION

CONSIDERABLE research effort in recent years has
focused on designing materials that contain large numbers
of boundaries with special propertics. These special properties
include resistance to corrosion, cavitation, or precipitation.
Given the difficulty of recovering grain-boundary planc
orientations, most current studies characterize grain bound-
arics only by the relative misorientation between the two
grains adjoining the boundary. Although advances have been
madce by only considering misorientation, simulations and
experiments have shown that the oricntation of the grain-
boundary plane is important in determining grain-boundary
properties.!'!

The oricntations of grain-boundary plancs are often neglec-
ted, because current methods for recovering plane orienta-
tions (such as serial sectioning and transmission electron
microscopy studies) are too time consuming to allow the
researcher to gather data sets that are large cnough to be

statistically reliable. In order to obtain approximations of

the boundary orientation distribution, one may resort to the
stercological methods of Hilliard"?! or Adams.*! Both meth-
ods synthesize grain-boundary data taken from oblique sec-
tion planes. However, these methods are designed to recover
boundary distributions in a laboratory coordinate frame,
which is only useful in grain-boundary design problems that
involve a macroscopic field or directionality.
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In most rescarch applications, the grain boundary is
expressed in a reference frame embedded in an adjacent
crystal. Knowledge of the grain-boundary orientation in this
frame is useful because it contains information about the
arrangement ol atoms ncar the boundary, thus helping the
rescarcher characterize boundary energy and other propertics.

For most rescarchers, the probability distribution function
of interest, first described by Adams.™ is S, (4, | Ag). or the
grain-boundary arca per unit volume as a function ol bound-
ary normal (7)) for a given misoricntation (Ag). For a gen-
eral misorientation ol Ag, the domain of A4, is a hemisphere !
Therefore, for consistency, 7, must be expressed in a stan-
dardized crystal reference frame or fundamental zone, which
we here call the misorientation rame. Since the misorien-
tation frame of a given bicrystal in a sample has a known
orientation with respect (o the laboratory frame, we call it a
local misorientation frame (LMF). However, since S, (4, | Ag)
is an average ol grain-boundary plane orientations taken
from many bicrystals, it contains no information relating
grain-boundary planc distributions to the laboratory frame.
We, thercfore, say that the function S, (A, | Ag) is expressed
in the generalized misorientation frame (GMIF). The concep-
tual distinction between LMFs and GMIs is fundamental to
crystallite stercology.

The goal of crystallite stercology is to estimate S, (7 | Ag)
by observing large numbers of boundary traces on two-
dimensional data sets. If the texture of the observed material is
random, the macroscopic distribution of L.MFEs will be random.
If a single section planc is large enough to expose multiple
bicrystals of misorientation Ag, then cach observed bicrystal
provides a unique “view” of a grain boundary associated with
Ag. Each view consists of a grain-boundary trace (Figure 1).
Since the boundary normal must be perpendicular to the
observed trace, the measurement provides partial information
about the orientation of the grain-boundary plane. By piccing
together this partial information from numerous observed traces,
the rescarcher may arrive at an estimate of S, (4, | Ag).1® !
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lig. 1—Various LLMFs, which have different orientations with respect to
the laboratory frame.

The current article develops a new stercology for the
recovery of S, (7, | Ag). Simulations demonstrate that the
proposcd method recovers accurate function values. Fur-
thermore. recoveries of S, (A, | 23) [rom actual data sets
show trends consistent with the work of others.

This new stercology is a powerful tool that promises to
provide many insights into the prelerred orientations of the
arain-boundary planc, to help rescarchers measure how the
grain-boundary plane character changes during processing
and to better determine the extent that the grain-boundary
plane influcnces the macroscopic properties of the material.
It is our hope that this new approach will foster a more com-
plete approach to grain-boundary cngineering and design.

II. THEORETICAL
A. The Domain of S, (i, | Ag)

Before presenting the new method of solving for S, (7 | Ag),
we bricfly review the procedure for finding the fundamental
zone (or misorientation frame) and discuss some complications
inherent in plotting S, (4, | Ag) due to special symmetries.

. Misorientation—Ag

In order o deline the misorientation frame, we must first
defline the misorientation. In agreement with Bunge,!'”! the
misorientation from grain A to grain B is given by

Aoy — T
Ag = ¢ gp 8 & [1]

where g, and gg; are three-by-three matrices of dircction cosines
linking the lattice orientations of grain A and grain B to the

Jaboratory (rame, and the ¢; values are the complete set of

proper symmetry operators corresponding to the symmetry
aroup of the crystal lattice. All misorientations given by Eq. [ 1]
have the same physical meaning in the crystalline world.

2. The misorientation frame

The method for defining the misorientation frame is sim-
ply a matter of isofating a single fundamental zone [rom all
possible representations of the misorientation. Fundamental
zones of misorientations in Rodrigues space have been
described by Morawice and Field. !

The misorientation frame is simply the placement of coor-
dinate frames on grain A and grain B such that the axis of
minimum rotation, or the disorientation axis (72), falls into a
zone in grain A given by 7. > 7, > #i, > 0. This zonc forms
the familiar “standard triangle” of crystal dircctions in a
stereographic projection.

Using this procedure, the designation of grain A is gener-
ally unique. This unique designation of grain A is uscful in
avoiding error in the representation of the function S, (7, | Ag).
If S, (A4, | Ag) is known, a companion function, S, (4 | Ag”),
can be plotted from the relationship 74z = Agd,. Here, iy
gives the coordinates of the boundary normal in the crystal
coordinate frame associated with grain B.

The given method of distinguishing Ag from Ag’ (and,
thus, A, [rom #;) does not hold when the axis of disorientation
for Ag falls on the perimeter of the standard triangle. Although
it is highly unlikely that the calculated axis of disorientation
will fall exactly on this perimeter, given the experimental
crror of the measurements and misorientation variations in
the crystals, there will be a zone about the perimeter in which
any practical distinction between Ag and Ag” will not exist.
In these cases, peaks corresponding to both /iy and 7 will
likely appear in a plot of S, (4, | Ag). This effect should be
considered when interpreting S, (7, | Ag) for these special
misorientations.

When the axis of disorientation is an n-fold axis of crystal
symmetry, the domain of /4, in the function S.(4, | Ag) shrinks
(in general) by a factor of n.!"*! Equivalently, the distribution
in the original domain has n-fold symmetry. The exception
to this occurs in centrosymmetric crystals when the angle
of rotation about the n-fold symmetry axis is 77/n, in which
case the domain of 7, shrinks by a factor of 2n.

For example, consider a 33 misorientation (or 60 deg
about a [111] axis). Since the [111] axis is an axis of threc-
fold symmetry in centrosymmetric cubic crystals, the bound-
ary planc distribution must have at least threefold symmetry.
Morcover, since the angle of rotation is 60 deg, therc will
be sixfold symmetry about [1117] in the distribution of 7, in
the hemisphere.

B. Assumptions Required for Derivation
of the Fundamental Equation

The derivation of the fundamental equation of the new
S, (4 | Ag) stereology requires two assumptions: (1) that the
collected traces sample the cntire population of grain-bound-
ary planes associated with Ag in a statistically representative
lashion and (2) that the traces sampled from cach boundary
type are randomly chosen with no oricntation bias.

[t is clear that when a sample has a completely random
texture, both conditions may be satisfied by traces collected
from a single section plane. In this case, the LMFs are ran-
domly oricnted with respect to the laboratory frame. How-
ever, when the material is textured, there will be sampling
bias when a single-section plane is used for S, (i | Ag) recov-
ery. This bias may be overcome by oblaining traces from
scveral oblique section planes, as demonstrated by simula-
tions shown on Table II.

In order to estimate whether or not a given material is suf-
ficiently random for the stereology to be performed, we intro-
duce the probability-distribution function C, (73, | Ag). The
function C, (A, | Ag) is the distribution of scction-plane nor-




mals in the GMF. The function C, (A, | Ag) shares the same
domain as S, (4, | Ag), since both are distributions of plane
normals in the GMF. Unlike S, (7, | Ag), C, (i | Ag) is easy
to obtain experimentally because it involves representing
cach section-plane normal in the local crystal frame, or LMF,
of each bicrystal cut by that scction plane. The value of
C, (" | Ag) is then the distribution of all such plane normals
as if they were associated with a single crystal frame, the
GMF. Notice how even a single scction plane can give rise
to a uniform distribution in C, (A, | Ag), as long as the LMF’s
orientations of bicrystals cut by that section plane arc ran-
domly oriented. If C, (A, | Ag) collected from a single section
plane is not uniform due to sample texturing, the researcher
should cut additional oblique scction planes. Data from
the additional section planes will sample the boundaries
more randomly, and this will be reflected in a more uniform
C, (i, | Ag) value. Thus, the uniformity of C, (7, | Ag) is a
simple way to quantitatively estimate the sampling uniformity
with respect to the GMF.

We wish to identify a single parameter that will quantify the
uniformity of C, (i, | Ag). We do this by representing C, (7, | Ag)
in terms of surface spherical harmonics according to

R

C,in | Ag) = D> CKl (i) 2]

r=0 ==

where the functions K (,) are surface spherical harmonics,
and the C/ functions are weighting coefficients, obtained from
the data in the usual fashion. The uniformity of C, (7, | Ag)
is estimated by summing the moduli of the low-order coefti-
cients in the series expansion. The uniformity estimator <<C),>
is given by

2

<c>= S ey 131

=2

Because the function C, (i, | Ag) is even, the five C3' coef-
ficients in Eq. |3] arc the lowest-order coeflicients associated
with nonconstant basis functions. Low <C,> values corre-
spond to uniform distributions of C, (11, | Ag). For C, (4, | Ag)
distributions generated with pseudorandom numbers over the
hemisphere, <C,> values typically fall between 0.001 and
0.003. For reduced domains of C, (i, | Ag) corresponding to
special misorientations, values of <<C,> are typically smaller.
The usefulness of <<C,> in estimating whether the collec-
ted traces are sufficiently random is established by the simula-
tions on textured materials. We note, however, that the only
way for a researcher to be absolutely certain that the afore-
mentioned two assumptions are satisfied is to obtain a full
three-dimensional characterization of the microstructure.

C. Derivation of Fundamental Equation

Consider a volume of material that has been sampled by
one or more section planes, such that both assumptions given
in Section II-B are satisficd. In order to draw a quantita-
tive relation between the distribution of observed traces in
the GMF and S, (3, | Ag), we tirst recognize that the normal
(A,) of the grain boundary associated with a trace vector H
must lie on the great circle perpendicular to 7. Since two
parameters are needed to quantify the orientation of 7y,
knowledge of the orientation of any trace from the bound-

ary reveals once of the parameters, leaving only one unknown
parameter. Knowing this, it is natural to express a known trace
vector in a coordinate frame that decouples the known and
unknown parameters. This is done by representing the trace
veetor in a new coordinate system, &7, in which the trace
vector lies in the & — &3 plane. If the trace makes an angle
of @’ with respect to the 7 axis, the normal of the grain-
boundary planc associated with this trace must have coor-
dinates (v,w) where @ = o' + 7/2 (Figure 2). Note how in
this coordinate system, the azimuthal angle (w) of the bound-
ary normal is known and the polar angle of the boundary
(v) is unknown and independent ol w.

We generally expect that for any given é; coordinate sys-
tem, there will be a subpopulation ol observed trace vectors
that arc nearly perpendicular to the é3 direction. We define
“nearly perpendicular” to mean those traces which have
angular deviations less than & from perpendicularity to the
&3 axis, where in the current study we have sct & = 3 deg.
If we make the approximation that all such traces are exactly
perpendicular to the &3 direction, we may describe their dis-
tribution in the & — &3 planc with the probability-density
function /, (w | Ag, 9. Note that w, the independent variable
of 1,, is the angle between the trace normal and the &7 axis,
as shown in Figure 2. The function /,(w | Ag, %) has units
of trace length per unit arca. The arca used to normalize
[ (w] Ag, é3) is the total scanned area from which all obser-
ved traces were collected.

We are now in a position to write the fundamental equation
relating [, (0 | Ag, é3) to S, (1, | Ag, &3) in any S-coordinate

frame. (Note that in the fundamental equation, S, (i, | Ag)

is expressed in the S frame as S, (7, | Ag, é3)). The funda-
mental equation is given by

w2
Li(w]|Ag.éy) = Z[S\.(U, w | Ag, &3 P(v) sin (v)dv 4]
0]

where P(v) is the probability that a trace randomly selected
from a grain boundary of polar angle v in the S frame will

S
€

/\S‘

N ) AS
&

Fig. 2—A random trace 7 taken from a grain boundary of normal /i is
expressed inan § coordinate frame, ?'f . such that the trace lies in the Fl\ - (%f
frame and forms an angle @’ with the &) axis. The boundary normal i must
have coordinates (mw) in the § frame, where @ =+ o' -+ 7/2. Notice how
the azimuthal coordinate, w, is constrained once the trace is specified,
whereas the polar coordinate. v, is independent of the trace angle.



have an angular deviation less than & from perpendicularity
to the &% axis (Figure 3). The value of P(v) is given by

Plvy=1 when=v=c¢
2 . [sin(e) .
P(v) = —sin — otherwise  [5]
sin (v)

A
~S

()

ui 4

iy
0 \ ]

0 L ) . o
0 10 20 30 40 £0 60 70 80 a0

v (degrees)
()
Fig. 3—(a) A randomly sclected trace from plane M is less likely to fall

within 3 deg of perpendicularity (o &3 than a randomly selected trace from
plane L. This is quantified (h) by the probability P(v) for & = 3 deg. P(v)

is the probability that a trace randomly sclected from a grain boundary of

polar angle vin the S frame will have an angular deviation less than & {rom
: . PR
perpendicularity to the ¢ axis.

In deriving P(v) (refer to the Appendix), it was assumed
that all possible traces of a grain boundary have an equal
probability of being chosen (Assumption 2). The fundamental
relation, Eq. [4], involves a single integration over the single
unknown parameter, v, weighted by P(v). The lactor /4 is
the constant of proportionality between 7, and S,.""* These
functions are proportional due to representative sampling of
all boundary types (Assumption 1).

Equation |4] represents a classic inverse, or ill-posed, prob-
lem in which the known function, [, (w | Ag, &3), contains
only a fraction of the information contained in the unknown
function, S, (A4, | Ag, é3). However, we use Eq. [4] to esti-
mate S, (4, | Ag) by considering the functions /, (w | Ag, &3)
from many S frames. In the current study, we have chosen
an array of S frames that have the characteristic that the &3
directions sample the domain of S, (4, | Ag) as uniformly as
possible. Fundamental equations from each S frame combine
as a system of equations that is solved simultancously (o esti-
mate S, (4, | Ag).

One can create numerous possible methods of solving
these fundamental equations. We have chosen to solve the
cquations using a method proposed by Adams that makes
use of surface spherical harmonics.!'" In this method, the
distribution functions are represented using surface spherical
harmonics and Fourier series according to

R r
Sial Ag) = 7 > SIK (i) [6]
Q) e
' R o
Iy(w) = X " 171

where R is the truncation order of the serics. Adams obtained
matrix equations relating the coefficients S| to the coeffi-
cients [ by inserting Eqgs. |6} and [7] into a fundamen-
tal equation similar to Eq. [4] and performing the proper
coordinate transtormations from the S frames to the GMF
(S, (Ax | Ag, &) to S, (7, | Ag)). As more S-coordinate sys-
tems are added, the systems of equations become overde-
termined, allowing a solution of the coefficients S| using
singular-value decomposition.!**!

D. Alternative Form of the Fundamental Equation

The concepts presented in the derivation of the funda-
mental equation may also be applied to recover the function
S, (A4 | Ag), or the grain-boundary area fraction. This is sim-
ply a matter of replacing /, (w | Ag, €%, which is normalized
by the total scan area, with [, (w | &3, Ag), which is normal-
ized by the total trace length. In this case, the fundamental
equation is given by

/2
I(w]Ag,25) = f Sy, @] Ag)P() sin (Wdv  [8]

0

E. Simulations

Simulations were performed to demonstrate that the tech-
nique gives viable estimates of S, (7, | Ag) in both nontexturcd
(Table I) and textured (Table II) microstructures. Simulated
microstructures arc not three-dimensional arrangements of
polyhedra; rather, they are ensembles of bicrystals with fixed




Table 1. Simulations on Nontextured Microstructures (Random LLMFs)

Microstructure Recovery Results

(a) Number (b) Pct (e) Trace (y Pct ol HPs (g) Pct of HPs (1) Number

of Habit Random (¢) Number Measured with <10 Pct with <30 Pct (h) Mean of alse

Planes GBs of Bicrystals (d) Order R Error Error Error Frror Peaks
General Misorientation—No Symmetry

8 20 pet 300 34 0 49 pet 93 pet 13 pet 4/400

4 30 pet 1000 24 *5 deg 16 pet 100 pet 15 pet 0/200
2.3 Misorientation—Sixfold Symmetry

7 20 pet 500 34 0 39 pet 85 pet 16 pet 16/350

2 70 pet 1000 24 *5 deg 32 pet 87 pet 16 pet 0/100

Each line gives averaged results of 50 simulations performed under given conditions. Microstructure: (a) number of habit planes in N, (77, | Ag), and
(b) random fraction of N, (i, | Ag). Recovery: (¢) number of bicrystals in each simulation, (d) order R of recovery. and (¢) range of values from which trace
measurement errors were selected. Results of simulations: (1) percent of habit planes recovered with fess than 10 pet error, () pereent ol habit plancs
recovered with less than 30 pet error, (h) average error of habit plane recovery, and (i) total number of false peaks from all simulations over total number
of habit planes from ali simulations.

Table II.  Simulations on Textured Material

Microstructure Recovery Results
(a) Number (b) Pet (d) Number  (c) Average () Pct of (h) Pct of (j) Number
of Habit Random  (¢) Texture  of Candidate Number () HPs with HPs with (i) Mean ol False
Plancs GBs Deviation GBs/Plane of GBs <(C,> <10 Pct Error <30 Pt Lrror Lirror Peaks
Textured Material (Seven Section Planes)
4 40 pet 15 deg 100 548 0.002 34 pet 86 pet 20 pet 15/80
Nontextured Equivalent
4 40 pet — — 540 0.005 26 pet 94 pet 17 pet 14/80)
Cumulative Recovery Information
Section Section Average Percent Error vs. Number of Section Planes
Plane Plane S o B
Number Normals <C,> 70
[ (1,0,0) 1.4688 -
2 (0.1,0) 0.37 .
3 00,1y 0.0051 o
4 (LLD/V3 0.0934 2 e
5 (~1,1,1/V3 0.0785 0
6 (L—5L/V3 0.0417 o
7 (=1,—1,0/V3 0.0023 coo o

The first line gives the averaged results of 20 simulations performed under the given conditions. The second line gives the results of 20 simulations performed
on nontextured microstructures with otherwise similar conditions. Conditions are as follows. All textured simulations were performed using the seven section planes
shown above. Microstructure: (a) number of habit planes in N, (7, | Ag), (b) random fraction of N, (7, | Ag), and (¢) maximum allowed angular deviation of 1LMF¢
orientations from the central LMF orientation. Recovery: (d) number of candidate bicrystals for cach section plane; (¢) number of observed boundaries from all
section planes, averaged over all simulations; and (f) <C,> from all section planes, averaged over all simulations. Order of recovery for all simulations was R =+ 24
with trace measurenent error range of 5 deg. Results: (g) percent of habit planes (HPs) recovered with less than 10 pet error, (h) pereent of habit plances recov-
ered with less than 30 pet error, (i) average error of habit plane recovery, and (j) total number of false peaks from all simulations over total number ol habit planes
from all simulations. The bottom section of the table shows the cumulative results of recoveries performed as cach section plane was added. Columns on the Jeft
show plane normal orientations in the laboratory frame, ol as well as <C,> values caleulated with cach new section plane. Plot shows the average error of habit
plane recovery as new section planes are added. Note how a decrease in <<C,> corresponds to a decrease in error due (o increased randomness of sampling.

Ag values and individual LMF and boundary-normal
orientations. Since we do not simulate the detailed three-
dimensional microstructure, it is appropriate to substitute
[y (w] &%, Ag) and S, (A4, | Ag) with the number-fraction
probability-distribution functions n, (w | & Ag) and N, (7 | Ag).
The trace normal distribution, n, (@ | &3, Ag), is normalized
by the total number of traces observed, and N, (7, | Ag) gives
the number fraction of grain boundaries with the orientation
. All other details of the stereological recovery are the

same, with the exception that the factor of @/4 is removed
from the fundamental equation.

The first step in performing cach simulation was to estab-
lish N, (A4 | Ag) for a simulated microstructure. For most
simulations, we assumed that Ag was a general misorientation
such that the domain of N, (A, | Ag) was the hemisphere.
All simulated N, (4, | Ag) functions consisted of random
distributions plus two to cight “habit” planes of equal weight.
The habit planes for each microstructure were chosen using



pseudorandom numbers. After establishing N, (A, | Ag), it was
necessary o specify the orientations of the LMFs associated
with each bicrystal. For nontextured microstructures, LMF
orientations with respect to the laboratory frame (6%) were
chosen randomly. For textured microstructures, LMF ori-
entations were chosen by first randomly choosing a single
LMF orientation as the “central” orientation. All LMF orien-
tations were chosen randomly, but were required to fall
within 15 deg of this central orientation. After specifying
the LMFs we selected a grain-boundary plane for cach bicrys-
tal based on the established N, (4, | Ag) function, with no
correlation between boundary type and LMF orientation.
These steps completely constrained the microstructure.

After constraining the microstructure it was necessary to
select the orientations of the section planc(s) with respect
to the laboratory frame. In the case of random LMF distribu-
tions, a single section plane was used, but in the case of
nonuniform LMF distributions, the seven section planes
shown in Table 1 were used.

Having determined the microstructure and the section-
planc orientations, the next step was to calculate the
“observed” traces, expressed in the GMF. Trace vectors were
given by the intersections of all the grain-boundary planes
and the section plane(s). In most simulations, the effect of
trace-measurcment error was simulated by rotating the
observed trace in the plane of the section planc by an amount
chosen randomly from an even distribution in the range of
*5 deg. In nontextured materials, a trace from each of the
bicrystals was considered observed. In textured microstruc-
tures, we expect the sample texture to give rise to sampling
bias for boundaries associated with the same section plane.
This bias results from the fact that boundaries that are nearly
parallel to the section plane are less likely to be observed
than boundarics that are perpendicular to the section plane.
The probability that a boundary will be cut by a section
plane is proportional to sin (), where « is the angle between
the grain-boundary plane and the section plane. For each
section plane, a fraction of observed boundaries was cho-
sen from a pool of “candidate” grain boundaries according
to the probability sin («). Although the candidate grain
boundaries were representative of N, (A, | Ag), the observed
boundaries werc not.

Once all traces were collected and expressed in the GMF
according to these rules, N, (7, | Ag) was estimated using the
new method. The parameter & was assigned to be 3 deg in
all simulations. We chose to use 500 S frames, so that the
average spacing between &5 directions was about 6 deg. The
order R of scries truncation (Fig. 6) was usually taken to be
34, but, in the cases of tracc-measurement error, better recov-
eries were obtained with R = 24. The angular resolution
was found to be about 1.57/R.

For each recovered N, (A, | Ag) value, numerical integra-
tions were performed in the regions surrounding the ten largest
peaks in order to estimate the number fraction of bound-
aries at each peak. Known habit planes were then matched
with recovered peaks, and the percent error in number
fraction was calculated for cach peak. False peaks occurred
when a recovered peak associated with no habit plane had a
higher number fraction than a recovered peak that was asso-
ciated with a habit planc. The data presented in Tables I
and Il demonstrate that the method may be used to estimate
Sy | Ag) in a statistically reliable tashion. Moreover, simula-

tions demonstrate that Sy (4, | Ag) may be characterized on
highly textured materials if several section planes are used.
The simulations also demonstrate the usefulness of <<C,> in
quantifying the randomness of available data.

III. EXPERIMENTAL

The proposed method was used to recover the function
S, (A, | £3) in 304 stainless steel. The sample was first treated
in a vacuum furnace at 1010 °C for 23.5 hours and oven
cooled. A subsequent heat treatment at 600 °C for 4 hours
“fine tuned” the boundaries to lower-energy configurations.!”!

The sample was polished, and electron backscatter patterns
taken from a FEI/PHILIPS* XL 30 scanning field-emission

*PHILIPS is a trademark of Philips Electronics Corp., Mahwah, NJ.

gun were processed using Orientation Imaging Microscopy
(OIM*) software. The step size of all scans was 2 um. The

*OIM is a trademark of TSI, Inc., Draper, UT.

average grain diameter was approximately 150 wm.

A grain-boundary reconstruction algorithm was used to
find all boundary lengths, trace angles, and adjacent grain
orientations.!'®" We estimated that in order to keep trace-
measurement error below 5 deg, only boundaries greater
than 15 times the step size of the scans could be used in
the analysis. However, boundaries of this length or greater
accounted for only 59 pct of the total %3 boundary trace
lengths. For this reason, we collected the S, (4, | 23)
function with respect to all boundaries of length greater
than 30 pm.

Figure 4 shows the function S, (7, | 23) taken from 717
bicrystals observed on four scans. For these bicrystals, <C,>
was found to be 0.0003; hence, we assumed that a single
section plane would provide a reasonable estimate of S, (4, |
33). The largest peak is the coherent {111}/{111} peak. An
integration out to 9 deg away from this peak returned S,
({1LIp{111} ] 23) = 0.78.

It is interesting to note similarities between Figures 4
and 5. Figure 5 is a plot of low-energy tilt boundaries on
the <<011>> zone that were observed in nickel by Randle.!'*!
All boundary types observed by Randle were given equal
weight in the plot of Figure 5. The plot is made to the 34th
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Fig. 4—Recovered S, (23.4,) for 717 boundaries of length greater than 30 gm.




Tilt boundarics on the <011> zone

observed by Randle
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Fig. 5—Low-cnergy tilt boundaries on the <011> zone observed by
Randle er al!™!
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Fig. 6—Coherent trace deviation angle (in deg) vs trace length for 717
boundaries of length >30.

order. From a comparison of Figures 4 and 5, it would
seem that 23 grain boundaries tend to align on the <011>
zone.

Figure 6 shows a plot of coherent trace-deviation angles
of the same 717 boundaries as a function of their lengths
(in microns). The coherent trace-deviation angle is the angle
between the measured trace and the trace of the { 111}/{111}
plane.!"®""! It is likely that most grain boundaries with coher-
ent trace-deviation angles near O deg are associated with
coherent boundaries. Traces with coherent trace-deviation
angles much greater than 0 deg cannot be coherent bound-
aries. The striking feature of Figure 6 is that the boundaries
that are known to be noncoherent mostly occur at lengths
smaller than about 60 wm. This result raises many fundamen-
tal questions about the grain-boundary planes of the small
2.3 boundaries that, by number and area fraction, are a major
2.3 boundary type.

In order to better understand what boundary types the
noncoherent 23 types were associated with, we decided to
perform a stereological recovery only on the 146 boundaries
with coherent trace-deviation angles greater than 10 deg.
The result is shown in Figure 7. By far, the three largest
peaks from this recovery were S, ({221}/{744} | £3) = 0.39,
S({TITY(511}]23) = 0.23,and S, ({211}/{211} [ 23) = 0.17.
It is interesting to note from Figure 7 the preponderance of
grain-boundary planes near the {1 11}/{111} position. Bound-
aries near { 1 11}/{111} are known to have lower energy than
those removed from {1 11}/{111}.1!
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Fig. 7—Rccovered S (7 | 23) for 146 boundarics of length greater than
30 wm and coherent trace deviation angle greater than 10 deg.

IV. CONCLUSIONS

We have derived the fundamental cquation of a new
stercology and have shown with both simulations and actual
data that it may be used to recover grain-boundary plane
distributions in the GMF. In the derivation of the new stere-
ology, it was assumed that all boundary types are sampled
in correct proportions and that all boundarics are sampled
in a random manner. Even in the case of textured mater-
ials, it was shown that the method is reliable if multiple sec-
tion planes are used. We have introduced the parameter
<(C,> as an estimate of the randomness of the data and
have shown it to be a reliable indicator of the accuracy of
the recovery.

Trace measurements made from 304 stainless steel pro-
vided evidence that there is a tendency for 23 boundaries to
be tilt boundaries on the <O11> zone. It was shown that a
significant proportion of 23 grain-boundary planes are of the
smaller type, where coherent boundaries are less common.
Measuring these boundary traces with cnough precision to
determine their trace angles accurately while still collecting
many boundaries from a large area poscs a significant experi-
mental challenge. Nonetheless, the results obtained show the
usefulness of quantifying the grain-boundary distribution
through stereological methods.
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APPENDIX
Derivation of P(v)

Consider a grain-boundary plane whose normal lies v deg
from the &3 direction. As stated previously, P(v) is the prob-
ability that a randomly chosen trace angle from that bound-
ary plane will lie within & deg of perpendicularity to the &3
direction. To obtain P(v), it is assumed that all grain-boundary
trace angles have the same probability of being chosen.



From this assumption, it is clear that

2 ’
Pv) = <:T/> |AT]

where 29" is the range of trace angles on the boundary that
have angular deviations less than & from perpendicularity to
the &3 dircection, as shown in Figure Al.

From the definition of P(v), it is obvious that P(v) is com-
pletely independent of one’s placement of é§ and &3. With-
out loss of generality, we arc free to place &7 and &3 in a
right-handed sense such that &7 is perpendicular to both the
boundary normal, n;, and the &3 direction, as shown in Fig-
ure Al.

In order to label all possible traces of the boundary,
we begin by placing the grain-boundary normal parallel
to the &3 direction. With the boundary normal in this posi-
tion, we are free to place é7 anywhere within the bound-
ary plane, since any choice of é§ will be perpendicular to
both the boundary normal and the &3 direction. The angle
between a trace of the grain boundary and the é§ direc-
tion is given by y. Now, we incline the boundary normal
to v degrees from the é3 axis by a rotation R(v) of v deg
about the — &7 direction (where 0 = v = 7/2). R(v) is given
by

| 0 0
Rv) = | 0 Cos v sinwv . [A2]
0 —sinv  cosv
~S
&
A

g, Al—2v" gives the mngg ol grain-boundary traces that arc within & deg
of perpendicularity to the ey direction.

We wish to find the two traces (with trace angles *v') in the
cos (y")
range —/2<y=/2, for which the vectors R(v)| sin (")

’ 0
from angles of 7/2 . = & with the &5 axis. These traces cor-
respond to the dashed vectors shown in Figure Al. Any trace
such that |y| = ' will have an angular deviation less than
¢ [rom perpendicularity to the &5 direction. Using the dot
product, we write

cos (y")
cos <727“ - .g> = (001)- R(w)| sin (=9 | [A3]
0

from which wc obtain
sin € = sin vsin /' [A4]
Combining Eqgs. [Al] and [A4], we have

2 . _(sin(e)
Ply) = _sin | == ) whenv=e  |AS]

sin (v)

When v < g, P(v) is undefined in the preceding expression.
For this case, it is clear that

Plvy=1 whenv<eg [AG]
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