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Cavity enhancement of the magneto-optic Kerr effect for optical studies
of magnetic nanostructures

N. Qureshia) and H. Schmidt
School of Engineering, University of California, 1156 High Street, Santa Cruz, California 95064

A. R. Hawkins
ECE Department, Brigham Young University, 459 Clyde Building, Provo, Utah 84602

(Received 6 February 2004; accepted 24 May 2004)

We present a study of cavity enhancement of the magneto-optic Kerr effect using dielectric
multilayers in order to facilitate optical studies of individual single-domain nanomagnets. We
develop a transfer matrix theory to analyze Kerr rotation from an arbitrary number of possibly lossy
dielectric layers. The combination of one lossless and one thin metallic layer is found to be most
favorable for studying individual nanomagnets, providing the best tradeoff between signal
enhancement and spatial resolution. Accounting for the microscopic surface structure, we find good
agreement between theory and experiment. Using this technique, we demonstrate Kerr
enhancements by a factor of more than 16. © 2004 American Institute of Physics.
[DOI: 10.1063/1.1774276]

Single-domain ferromagnetic nanostructures have re-
cently received a lot of interest, mainly due to their potential
use in high-density magnetic storage media1 and spin-
tronics.2 The advent of nanofabrication capabilities has cre-
ated opportunities to study phenomena such as magnetization
switching that have been theoretically investigated for a long
time in near-ideal single-domain particles.3–5 Nanomagnetic
structures have indeed been fabricated in a number of differ-
ent ways and materials6,7 and the standard characterization
method has been magnetic force microscopy (MFM) based
on its relative ease and high spatial resolution. The major
drawbacks of MFM are its intrinsically perturbative nature
(the field from the magnetic tip itself interacts with the
sample) and slow scan speed, which complicate studies of
magnetization switching8 and preclude the observation of
magnetization dynamics. Optical techniques based on the
magneto-optic Kerr effect (MOKE) do not suffer from these
problems.9 In order to spatially resolve individual single-
domain magnets with dimensions on the order of 100 nm,
near-field optical scanning techniques have been used
successfully.10 The difficulties lie in simultaneously achiev-
ing spatial resolution and sufficient signal-to-noise ratio be-
cause polarization rotations due to magnetization reversal are
small and fiber tips with small apertures reduce polarization
extinction and light intensity.11

It has been known for some time that the polarization
rotation due to MOKE from a magnetic surface can be in-
creased by depositing dielectric films on the magnetic
surface.12–14 This technique is promising for nanomagnetics
studies since it is compatible with both nanofabrication and
near-field measurements. The MOKE signal enhancement is
due to a cavity effect where the dielectric layer acts as a
Fabry–Perot etalon that gives rise to multiple reflections off
the magnetic layer. If the layer thicknesses are chosen cor-
rectly, these partial reflections add up in phase and the polar-
ization rotation of the total reflected field is increased.
MOKE enhancement up to a factor of 4 has been observed
using a single dielectric film12,14 on a reflective magnetic
material. The agreement between theory and experiment for

lossy materials has been rather poor and a systematic study
of the possible enhancement based on the number and com-
position of the layers has not yet been reported.

In this letter, we systematically analyze cavity enhance-
ment of the polar magneto-optic Kerr rotation for improving
the signal-to-noise ratio of optical studies on single nano-
magnets. We describe a matrix formalism that allows us to
consider the situation of multiple lossy dielectric layers and
identify the best solution for simultaneous Kerr enhancement
and spatial resolution. The method takes into account the
microscopic structure of the multilayers yielding good agree-
ment with experimental data. In such an optimized structure,
we observe the largest Kerr enhancement to date.

The experimental situation we consider is shown in Fig.
1. A magnetic surface (complex refractive index n) with
magnetization perpendicular to the surface (polar Kerr ef-
fect) is coated with k dielectric layers (complex indices
n1 , . . . ,nk, thickness L1 , . . . ,Lk). A linearly polarized beam of
vacuum wavelength � is incident on the top layer and we
assume an incident polarization Ei in the x direction. The
resulting polar Kerr rotation is given by �
=arctan��Er�y / �Er�x�. This problem has been solved more
generally for magnetic multilayers and any incident angle
using a system of 2�2 transmission matrices for each
layer,15 and still more generally by formulating 4�4 bound-
ary and propagation matrices for each layer with arbitrary
magnetization direction.16 In our specialization to single na-
nomagnets, however, the experimental emphasis is on polar
Kerr rotation and on only one reflective magnetic layer.
Similar to Refs. 15 and 16, we introduce a matrix approach
that describes each dielectric layer and interface by a transfer

a)Electronic mail: naser@soe.ucsc.edu
FIG. 1. A cavity formed between a magnetized structure (complex refractive
index n) and a nonmagnetic dielectric multilayer sequence �n1 ,n2 , . . . ,nk�.
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matrix that accounts for magneto-optic rotations, but in a
form specifically adapted to this experimental situation.

To account for the polarization mixing upon reflection
from the gyrotropic medium, we modify the standard
T-matrix theory17 by describing the reflection coefficients rn
as 2�2 matrices. At the magnet–dielectric interface, polar-
ization rotation is a result of the differing refractive indices
r+ and r− for the two circular polarization components.

18 For
linear polarization components this is

r1 =
1
2� r+ + r− i�r+ − r−�
− i�r+ − r−� r+ + r−

� . �1�

The field reflected from the multilayer structure is calculated
from the total T-matrix of the system. As specific examples,
the total T-matrix for the one-layer Fabry-Perot cavity is

T�1� = �t1t2�−1�Iei� + r1r2e−i� r2ei� + r1e−i�

r1ei� + r2e−i� Ie−i� + r1r2ei�
� , �2�

where I is the 2�2 identity matrix and �=2�n1L1 /� is the
phase shift within the dielectric of thickness L1, and t1 and t2
are transmission matrices. Using Er=S11Ei= �T21�−1T11Ei,
where S is the scattering matrix, we obtain the reflected field.
Note that the t matrices cancel out of the problem since we
are only interested in reflection from the system. When a
second nongyrotropic dielectric layer is added, the resulting
T-matrix is a product of the T-matrix for a one-layer problem
and a propagator

T�2� = �t1t2t3�−1�Iei� r3e−i�

r3ei� Ie−i��
��Iei� + r1r2e−i� r2ei� + r1e−i�

r1ei� + r2e−i� Ie−i� + r1r2ei�
� , �3�

where �=2�n2L2 /�. The reflection matrices are now (1) and
the diagonal matrices r2= �n2−n3� / �n2+n3�I and r3= �n3
−1� / �n3+1�I. This procedure can be extended easily to the
general case of k layers.

Using this formalism, we can evaluate the Kerr rotation
from any sequence of dielectric layers. In the following, we
analyze the potential of three possible cases to realize Kerr
enhancement in nanostructures: single lossless layer, mul-
tiple lossless layers, lossless plus highly lossy (metallic)
layer. The results are experimentally verified by MOKE mea-
surements on ferromagnetic nickel films.

The simplest way to achieve cavity enhancement of the
Kerr rotation is to add a single lossless dielectric layer char-
acterized by a real refractive index n1. In this case, � can be
calculated analytically11,19 or by using the matrix formalism
to determine the enhancement factor as a function of n1. This
is shown in Fig. 2 using nickel as magnetic material and a
wavelength of 785 nm (assuming n=2.43+4.31i,20 and a
bare Ni Kerr rotation of 0.1°). The Kerr rotation can be in-
creased to 90° for a dielectric index of 4.1. Also shown as
circles are the experimental enhancement values � /��bare Ni�

we found using SiO2 and SiN layers on nickel. Both maxi-
mum enhancement and Kerr rotation as a function of dielec-
tric thickness (inset) show excellent agreement with theory
with no free parameters. The analysis suggests that a single
layer is sufficient to achieve the desired large Kerr enhance-
ment. However, dielectrics with index on the order of 4 such
as Si or Ge are lossless only at infrared wavelengths. The use
of longer wavelength light in near-field optics strongly re-

duces throughput through a submicron near-field aperture
and significantly deteriorates the available signal. A single
dielectric layer is therefore not ideal for magneto-optic stud-
ies of nanostructures.

The second option to achieve large enhancements is to
use multiple layers of lower index dielectrics such as SiN
and SiO2 that are lossless at visible wavelengths. This can be
conveniently modeled using the above-described T-matrix
approach. We find again that large enhancement factors are
possible by optimizing the layer sequence. For example, us-
ing six dielectric layers of Ni:SiO2:SiN:SiO2:
SiN;SiO2:SiN, an enhancement factor of 310 is obtained,
clearly exceeding the single-layer enhancements of the indi-
vidual materials shown in Fig. 2. When combined with high-
resolution Kerr microscopy, however, this presents a prob-
lem: the total thickness of this multilayer sequence is
706 nm, which is close to the wavelength and makes true
near-field measurements impossible. Thus, in this approach
the spatial resolution is compromised.

A third approach is to add a thin, lossy metallic layer on
top of a single dielectric layer. Intuitively, this modifies the
effective reflectivity of the dielectric–air interface matching
better the reflectivity of the dielectric/magnet interface to
create a Fabry–Perot cavity with higher Q. Using the matrix
formalism we found that, in principle, for any metal, a thick-
ness exists that increases the Kerr rotation to 90° even if
silicon dioxide is used as dielectric layer. In order to verify
these theoretical findings, we coated several nickel films with
a silicon dioxide layer whose thickness was graded across
the sample. Gold films with thicknesses between 2.2 and
7 nm were then deposited on top and the Kerr rotation was
measured as a function of both layer thicknesses. The result-
ing curves as a function of SiO2 thickness are depicted in
Fig. 3(a) and the maximum enhancement factor as function
of Au thickness is shown in the inset. We find that maximum
enhancement is achieved for a gold thickness of 4.1 nm and
that the sign of the Kerr rotation switches as the gold thick-
ness is increased. In order to describe these results with the
matrix theory, the microscopic structure of the gold layers
needs to be taken into account. AFM images showed thick-
ness variations on the order of 1.5 nm, i.e., 20% –68% the
nominal value. Therefore, for a given nominal gold thickness
and measured thickness broadening �L, the polarization ro-

FIG. 2. Cavity enhancement factor of MOKE for a single dielectric layer of
index n1 on a nickel film at cavity resonance, as predicted by T-matrix
theory �—�, and measured ���. Inset: Enhancement in SiN coated nickel as
a function of dielectric thickness; theory �—� and experiment ���.
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tation ��L2� needs to be convolved with a Gaussian to yield
a broadened curve

�B�L2� = N� ��L2 − L��e−�L2 − L�2/�L2dL� �4�

with appropriate normalization N. The real part of the Au
refractive index n2 was fixed at 0.08

20 and the imaginary
(absorption) part was varied to fit the data and was found to
increase with gold thickness in agreement with intuition. Af-
ter taking the granular structure of the gold film into account,
the measured enhancement curves are reproduced very well
[Fig. 3(b)]. Both the maximum enhancement limited by the
film nonuniformity as well as the sign change and the peak
shift with increasing gold thickness agree with the theory.
Finally, Fig. 4 shows the enhancement obtained from a
nickel film with SiO2 and a 7 nm gold coating with smaller
thickness variations ��L=1.3 nm�. As expected, the en-
hancement is larger and reaches a value of 16.25. The data

are taken for the cavity’s second enhancement peak; the
equivalent first peak is at 115 nm, which allows for yet thin-
ner coatings. This lossless dielectric plus thin metal film thus
provides the best approach to nanomagnet Kerr microscopy:
it allows for a significant increase of the Kerr rotation com-
pared to a single dielectric layer without adding significant
additional thickness above the magnetic structure. This en-
ables highly sensitive near-field measurements at visible
wavelengths. We point out that the analysis can be readily
applied to other combinations of metals and dielectrics and
even larger enhancements can be achieved with metals that
form a more uniform film. Furthermore, the reduction of
reflected intensity at the enhancement maximum has not pre-
sented a limitation for the experiments and preliminary stud-
ies on microstructured magnets using fiber imaging have
shown that the Kerr enhancement indeed improves the avail-
able signal-to-noise measurements by an order of magnitude.

In summary, we have investigated enhanced magneto-
optic Kerr rotation from a magnetic film using dielectric
coatings. For Kerr microscopy of individual single-domain
nanomagnets, the polarization rotation needs to be increased
while maintaining ultrahigh spatial resolution. Using
T-matrix analysis and a series of experiments on nickel films,
we found that the best way to achieve this goal is to use a
multilayer structure composed of a lossless dielectric and a
thin metallic layer. We demonstrated the importance of the
surface structure of the metallic film. This approach facili-
tates noninvasive studies on single-domain nanomagnets and
allows for demanding experiments such as time-resolved
magnetization switching.

This work was supported by NSF under Grant No. ECS
0245425.

1S. K. Nair and R. M. H. New, IEEE Trans. Magn. 34, 1916 (1998).
2G. A. Prinz, Science 282, 1660 (1998).
3E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A
220, 599 (1948).

4W. F. Brown, Jr., Phys. Rev. 105, 1479 (1957).
5H. Schmidt, J. Appl. Phys. 93, 2107 (2003).
6F. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang,
M. Walsh, M. C. Abraham, and R. J. Ram., J. Vac. Sci. Technol. B 17,
3168 (1999).
7S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287,
1989 (2000).
8M. C. Abraham, H. Schmidt, T. A. Savas, H. I. Smith, C. A. Ross, and R.
J. Ram, J. Appl. Phys. 89, 5667 (2001).
9M. R. Freeman, W. K. Heibert, and A. Stankiewicz, J. Appl. Phys. 83,
6217 (1998).

10P. Fumagalli, A. Rosenberger, G. Eggers, A. Munnemann, N. Held, and G.
Guntherodt, Appl. Phys. Lett. 22, 2803 (1998).

11M. A. Paesler and P. J. Moyer, Near-field Optics: Theory, Instrumentation,
and Applications (Wiley, New York, 1996).

12A. V. Sokolov, Optical Properties of Metals (Blackie, London, 1967), p.
311.

13M. M. Noskov and A. V. Sokolov, Zh. Eksp. Teor. Fiz. 17, 969 (1947).
14K. Nakamura, T. Asaka, S. Asari, Y. Ota, and A. Itoh, IEEE Trans. Magn.
21, 165 (1985).

15M. Mansuripur, J. Appl. Phys. 67, 6466 (1990).
16J. Zak, E. R. Moog, C. Liu, and S. D. Bader, Phys. Rev. B 43, 6423

(1991).
17L. A. Coldren and A. Corzine, Diode Lasers and Photonic Integrated
Circuits (Wiley, New York, 1995), Chap. 3.

18R. Gamble, P. H. Lissberger, and M. R. Parker, IEEE Trans. Magn. 21,
1651 (1985).

19N. Qureshi, H. Schmidt, and A. W. Hawkins, IEEE Nano 2003 Proceed-
ings, Vol. 1, pp 175–178.

20CRC Handbook of Chemistry and Physics, 83rd Ed. (CRC, Boca Raton,
FL).

FIG. 3. (a) Measured MOKE enhancement factor of a nickel film coated
with silicon dioxide and different thicknesses of gold (labeled in nm). Inset:
Peak enhancement vs, gold thickness. (b) Fits to two-layer T-matrix theory
including grain structure.

FIG. 4. Measured enhancement for a nickel film coated with silicon dioxide
and 7.0 nm of gold �—� and a fit to T-matrix theory �¯� including grain
structure.
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