Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2006-05-09

Trust Negotiation for Open Database Access Control

Paul A. Porter
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Computer Sciences Commons

BYU ScholarsArchive Citation

Porter, Paul A., "Trust Negotiation for Open Database Access Control" (2006). Theses and Dissertations.
422.

https://scholarsarchive.byu.edu/etd/422

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/422?utm_source=scholarsarchive.byu.edu%2Fetd%2F422&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

TRUST NEGOTIATION FOR OPEN DATABASE ACCESS CONTROL

by

Paul Alan Porter

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
Brigham Young University
August 2006

Copyright (© 2006 Paul Alan Porter
All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Paul Alan Porter

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Kent E. Seamons, Chair

Date David W. Embley

Date Quinn O. Snell

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Paul Alan
Porter in its final form and have found that (1) its format, citations, and bibliograph-
ical style are consistent and acceptable and fulfill university and department style
requirements; (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate committee and is
ready for submission to the university library.

Date Kent E. Seamons
Chair, Graduate Committee

Accepted for the Department

Parris K. Egbert
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean, College of Physical and Math-
ematical Sciences

ABSTRACT

TRUST NEGOTIATION FOR OPEN DATABASE ACCESS CONTROL

Paul Alan Porter
Department of Computer Science

Master of Science

Hippocratic databases are designed to protect the privacy of the individuals whose
personal information they contain. This thesis presents a model for providing and
enforcing access control in an open Hippocratic database system. Previously un-
known individuals can gain access to information in the database by authenticating
to roles through trust negotiation. Allowing qualified strangers to access the database
increases the usefulness of the system without compromising privacy.

This thesis presents the design and implementation of two methods for filtering
information from database queries. First, we extend a query modification method
for use in an open database system. Second, we introduce a novel filtering method
that overcomes some limitations of the query modification method. We also provide
results showing that the two methods have comparable performance that is suitable

for interactive response time with our sample data set.

ACKNOWLEDGMENTS

I would like to thank my advisor, Kent Seamons, for his help in writing and editing
this thesis. Reed Abbott, Travis Leithead, Dan Walker, Tim van der Horst, and Nate
Seeley have also been a great help. I would also like to thank my family for their

support.

Table of Contents

1 Introduction

1.1 HIPAA and Privacy
1.2 Database Access Control
1.3 Trust Negotiation
1.4 Differences from Traditional Trust Negotiation
1.5 Motivating Scenario
1.6 Goals.
1.7 Thesis Outline

2 Related Work

3 System Design

3.1 Policies.
3.1.1 Column Policies
3.1.2 Row and Cell Policies
3.1.3 Content-Based Policies

3.2 Trust Proxy
3.2.1 Results Filtering
3.2.2 Query Modification

4 Implementation

4.1 Policy Storage
4.2 Results Filtering Implementation
4.3 Query Modification Implementation

xiil

11
11
11
11
12
13
13

15

TABLE OF CONTENTS

4.4 Example Scenarioo
4.4.1 Results Filtering 00
4.4.2 Query Modification

4.5 Comparison of Filtering Methods

4.6 Software

5 Performance Analysis

6 Threat Model

7 Conclusions and Future Work

References

Xiv

31

35

39

44

List of Tables

3.1

3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1

Query results for the query SELECT name, diagnosis, phone FROM
patients WHERE diagnosis = ‘cancer.’ Note the leaked diagnoses
of Sally and Reed.

The modified query results

Cell-level diagnosis policies stored as role expressions
Cell-level telephone policies stored as separate permissions
Cell-level policies for diagnoses
Column Policies
Unfiltered query results oL
Cell-level policies
Filtered query results oL
George’s cell-level diagnosis policies

Advantages of each filtering method

Average runtimes for the two filtering methods

XV

LIST OF TABLES

XVi

List of Figures

3.1

4.1
4.2
4.3
4.4

5.1

The Trust Proxy 14

Alice’s interaction with the open database using results filtering . . . 24

Alice’s interaction with the database system using query modification 25

The demo query pageo 29
Query results 30
Average runtimes for the two filtering methods 32

xXvii

LIST OF FIGURES

xviil

Chapter 1 — Introduction

Concerns about the privacy of personal information are increasing significantly. Dis-
closing sensitive information to unauthorized entities often results in identity theft,
financial loss, and other serious problems. This thesis focuses on the creation of a
database system that is accessible to qualified strangers without the risks to privacy
that such openness normally entails.

Hippocratic databases focus on protecting the privacy of the individuals whose
personal information they contain. Requirements of Hippocratic databases [4] include

the following:

Purpose Specification: Individuals whose personal information is stored in the
database must be informed about the purposes for which their personal infor-

mation will be used.

Consent: Personal information cannot be released for any purpose without the con-

sent of the individuals to whom the information belongs.
Limited Disclosure: Information must not be disclosed for any other purpose.

Safety: Information stored in the database must be protected against theft and

misuse.

Thus far, research in the area of Hippocratic databases [2, 13] has focused on
managing policies and filtering data from queries. Little emphasis has been placed on
authentication of users and verification of purposes. In addition, current databases
are closed systems: only known, individually authorized users are allowed to access

protected content.

CHAPTER 1. INTRODUCTION

This thesis presents an architecture for an open system that satisfies the require-
ments of a Hippocratic database [4] and leverages trust negotiation to authenticate
users to roles. In this system, a role indicates the possession of a specific set of at-
tributes, and roles replace the concept of purposes in Hippocratic databases. An open
system does not authorize users by their identity (e.g., with a username and pass-
word); instead, users prove that they have required attributes by disclosing digital
credentials. This allows individuals outside the local security domain to connect to

the database and perform queries based on their membership in certain roles.

1.1 HIPAA and Privacy

While confidentiality is satisfied simply by not disclosing information to unautho-
rized individuals, privacy is more difficult to achieve. Privacy is defined as “freedom
from unauthorized intrusion.”! Privacy requires that information be protected even
after its release to authorized individuals.

Protecting the privacy of personal information is becoming increasingly important,
partly due to an increase in the availability of electronic information. In 2005, data
from over 200,000 credit card accounts was stolen from CardSystems, a company
that processes credit card transactions. CardSystems later admitted that it had
been storing credit card information in violation of agreements it had with Visa
and Mastercard [10]. Incidents such as this one illustrate the importance of keeping
information safe.

In 1996, the United States Department of Health and Human Services introduced
the Health Insurance Portability and Accountability Act (HIPAA). HIPAA was de-
signed to increase efficiency in dealing with medical information and to manage the
privacy of that information. HIPAA was passed into law and took effect in 2003.
Today, entities who violate HIPAA can be fined up to $250,000 [20].

! Merriam-Webster Dictionary

1.2. DATABASE ACCESS CONTROL

The Privacy Rule is the component of HIPAA that deals with the privacy of
medical information. It applies to electronic, written, and oral information [20].
Among other things, the Privacy Rule requires that patients be informed about who
will have access to their medical information [21].

1.2 Database Access Control

Database systems provide access control at varying levels of granularity. It is
common for database administrators to grant permission to access columns of a table,
or to specify a filter that restricts access to certain rows [17]. A few recent systems
(see Chapter 2) provide access control at the cell level.

Individuals’ privacy requirements vary greatly. Some people are willing to disclose
personal information to almost anyone. Others are adamant about disclosing infor-
mation only when it is absolutely necessary. Cell-level access control allows database
subjects to set their own privacy policies, opting in or out of certain disclosures. Cell-
level policies allow the database to filter from query results only those cells that the
query issuer does not have permission to view.

Database systems that provide cell-level access control are well-suited to HIPAA
compliance because of their fine-grained nature. In order to provide a high level of
privacy without filtering information unnecessarily, the system presented in this thesis
provides access control at the cell level. The system utilizes two filtering methods that
support cell-level access control, described in Sections 3.2.1 and 3.2.2.

1.3 Trust Negotiation

Many Internet transactions occur between strangers. Entities who interact on the
Web should not disclose sensitive information to each other without first establishing
a certain degree of trust. Parties engaged in such transactions can build trust by
disclosing digital credentials, cryptographically signed statements that prove that their

owners possess certain attributes.

CHAPTER 1. INTRODUCTION

Trust negotiation is an iterative process by which two parties disclose digital
credentials in order to build trust in one another, based on the attributes they possess.
For example, customers are more likely to trust an online bookstore that is a member
of the Better Business Bureau (BBB). Trust negotiation makes use of access control
policies, which protect sensitive resources and credentials. Policies specify the types
of digital credentials (e.g., BBB credential) that the other party must disclose in
order to gain access to resources. The parties use trust negotiation to prove that they
satisfy the policies that protect each other’s resources.

Individuals may consider their credentials to be sensitive resources and protect
them with access control policies. Suppose that Fred, an AIDS Researcher, needs to
access medical records from another hospital. The policy that protects these records
requires Fred to be an AIDS Researcher and a Doctor. Fred has an AIDS Research
credential, but he is unwilling to disclose it to entities that do not possess a Hospital
credential. Once the hospital discloses its Hospital credential to Fred, he releases
his AIDS Research credential. Trust negotiation often takes multiple rounds because
credentials are sensitive. The two parties involved gradually gain trust in each other

and exchange policies and credentials until the negotiation concludes.

1.4 Differences from Traditional Trust Negotiation

Traditional trust negotiation is coarse-grained. A negotiation-enabled server con-
trols a set of resources and services, each with its corresponding access control policy.
Managing this set of resources is simple: when a user requests a resource, the server
looks up the policy associated with the resource, and it uses this policy in the ensuing
negotiation. These negotiations use an all-or-nothing approach: if a user cannot sat-
isfy all of the roles required in a policy, they are simply denied access to the resource.

In contrast, trust negotiation in database access control can be fine-grained and

dynamic. Instead of requesting a single resource, query issuers essentially request

4

1.5. MOTIVATING SCENARIO

many resources simultaneously (i.e., each item in the query results). A large number
of different query results are possible, and each item in the query result might have
a different access control policy. The result of fine-grained access control is that a

partial negotiation failure does not imply denial of access to the entire query result.

1.5 Motivating Scenario

While vacationing in another part of the country, Alice is involved in an automobile
accident. Bob, a physician in the emergency room at a nearby hospital, assesses
Alice’s condition. In order to provide Alice with the appropriate care, Bob needs
information about her medical history. He connects to a medical database in Alice’s
home state that contains her information. Because Bob practices medicine in another
state, he is unknown to the database and does not have a username and password
to log in. Trust negotiation permits Bob to authenticate himself to the database by

submitting his Doctor credential. This allows him to access the information he needs.

1.6 Goals

This thesis presents a database system that has the following characteristics:

1. Open: Allow qualified strangers to access the database by proving that they

possess the required attributes.

2. Fine-grained: Provide cell-level access control.

3. Customizable: Allow individuals whose personal information is stored in the

database to make choices regarding the disclosure of that information.

4. Transparent: Make the query filtering process as transparent as possible, so

that users notice few differences between this system and a normal database.

CHAPTER 1. INTRODUCTION

1.7 Thesis Outline

The remainder of the thesis will proceed as follows. Chapter 2 discusses related
work in database access control. Chapter 3 presents the design for an open database
system and describes two filtering methods. Details about the implementation of
the open database are given in Chapter 4. Chapters 5 and 6 contain a performance
analysis and a threat model of the system, respectively. In Chapter 7, we discuss

future work in this area and conclude.

Chapter 2 — Related Work

Mandatory Access Control (MAC) and Discretionary Access Control (DAC) are two
common database security models [6, 8, 15]. Many current database systems build
on one or both. In MAC, administrators assign security labels (e.g., Top Secret,
Unclassified) to subjects (database users) and objects (data items). The database
enforces access based on these labels. In DAC, data owners can grant permissions
(e.g., read and write) to others. In some systems, owners can delegate the granting

of permissions to other users [1, 24].

Many database systems support view-level access control [6]. A view contains a
subset of columns and rows in a relation. Permissions are granted based on these
views. Oracle supports the concept of a virtual private database [14], providing each

user with their own “private” view of the tables based on certain filtering criteria.

Systems that support role-based access control (RBAC) [18] allow permissions
to be granted to roles instead of to individual users. For example, an administrator
might grant permission to view and update various tables to the Payroll group. When
a new payroll employee is hired, they are assigned membership in the Payroll group
and automatically inherit all of the privileges assigned to that group. In this way,
RBAC greatly simplifies permission assignment. Usually, each registered database
user belongs to a single role. Oracle supports role-based access control and allows

users to act in more than one role at the same time [14].

Some database systems provide cell-level access control. Microsoft’s SQL Server
[16] supports both row-level and cell-level access control. Another cell-level system
developed by LeFevre et al. [13] allows individuals to specify which fields of their

personal information they are willing to disclose to whom. This is done using purpose-

CHAPTER 2. RELATED WORK

recipient pairs. For example, Bob might specify that he is willing to have his telephone
number disclosed to charities for the purpose of solicitation, but not to reporters for
any purpose. Before the results are returned to the query issuer, prohibited fields are
replaced with null values.

Statistical databases attempt to provide statistical information about groups of
individuals (e.g., averages and totals) without compromising the privacy of any in-
dividual. Beck demonstrates that any statistical database that provides statistically
accurate data must necessarily leak information about individuals [5]. Beck’s work
shows that information can be leaked easily from databases in subtle and unexpected
ways.

Database systems can be grouped into the following three broad categories, based

on the type of access control they provide:

Freely accessible: Anyone can access the information in the database, without re-

gard to their attributes or identity.

Closed: The system provides access only to a pre-established list of authorized users.

No one else can access the database.

Open: The system provides access to users based on their attributes. Previously

unknown individuals who can prove they are qualified can access the database.

Many freely accessible databases can be found on the Internet. For example,
the Ancestral File! allows anyone to access a database of genealogical information
and obtain birth and death dates, names of family members, and other data about
individuals. This database can be accessed by strangers, but it does not restrict

access to certain groups; rather, it allows disclosure of freely available information

thttp://www.familysearch.org

to any web user. Most traditional databases, such as Oracle and MySQL, are closed
systems. The novelty of the database system presented in this thesis is that it is an

open system, providing access based on attributes and not identity.

CHAPTER 2. RELATED WORK

10

Chapter 3 — System Design

This chapter presents the design for an open database system. First, Section 3.1
describes the types of policies used to provide cell-level access control. Section 3.2
introduces the Trust Proxy, a software component that performs database filtering,

and describes two filtering methods.

3.1 Policies
The system accomplishes cell-level access control through four different types of
policies: column, row, cell, and content-based. This section describes each of these

types of policies in detail.

3.1.1 Column Policies
A column policy governs the release of a column in the database. It is the default
policy for a given type of information. For example, the column policy for telephone

numbers might make them available to Doctors and Hospital Employees.

3.1.2 Row and Cell Policies

Individuals whose personal information is stored in the database (referred to as
database subjects in this thesis) can make choices about the disclosure of their infor-
mation through cell-level and row-level policies that they establish. Suppose that the
diagnosis column policy makes diagnoses available to Doctors and Nurses. Sally, a
patient, might opt to make her own diagnosis available only to Doctors. These per-
sonalized policies might apply to a single cell, as in the case of Sally’s diagnosis, or to
an entire row. When a cell policy exists, it supersedes the column policy for that cell.
This is true even for cell policies that are more permissive than the corresponding
column policy. Thus, database subjects can increase or decrease the privacy of their

personal information.

11

CHAPTER 3. SYSTEM DESIGN

A security expert, e.g., the database administrator, determines the privacy choices
to offer to database subjects. In other words, subjects cannot write their own policies,
but they are given a controlled set of choices about the disclosure of their personal
information. This prevents database subjects from creating inappropriate policies to
protect their data. For example, patients should not be allowed to create policies

that prevent their doctor from obtaining their diagnosis information.

3.1.3 Content-Based Policies

Content-based access control is desirable in situations where access to data de-
pends on the content of the data itself, as specified by constraints in column and cell
policies.

Some content-based policies refer to attributes of the query issuer. For example, a
content-based column policy for diagnoses might allow Nurses access only to diagnoses
of patients on their assigned floor. Under this policy, diagnoses of patients on other
floors are removed from the query results. Because access to diagnoses depends on
the value of another column (floor), this is an example of an outside-referencing
content-based policy.

Self-referencing content-based policies restrict access to a field based on the value
of the field itself. For example, the diagnosis field might only be freely available when
it is not “AIDS.” Then, for query issuers who have not been authorized to see “AIDS”
diagnoses, those fields are replaced with null. Self-referencing content-based policies
may leak sensitive information. For example, if null values are only used to mask
diagnoses of terminal diseases, a query issuer can infer which patients have terminal
diseases, even without authorization to see diagnosis information.

Since content-based policies can leak information, only outside-referencing content-
based policies should be used. In addition, the column that the content-based policy

references (e.g., floor in the example above) must not be sensitive. Otherwise, query

12

3.2. TRUST PROXY

issuers may be able to infer the content of the column based on any null values for
the column in the query results.

Policies may themselves be considered sensitive resources. Seamons et al. [19]
suggest ways to avoid disclosing policies inappropriately. Even without disclosing a
policy, users may be able to make inferences about the values that were filtered by
content-based policies. In order to avoid such inferences, policies should follow these

minimum guidelines:
e Default policies should minimize disclosures.
e Self-referencing content-based policies should not be used.

e Some policies make strong implications about the data they protect. For in-
stance, if a database subject has their diagnosis protected by the policy AIDS
Researcher, it is likely that the patient’s diagnosis is AIDS. Systems that allow

policies to be disclosed to database users must not use these types of policies.

3.2 Trust Proxy

The Trust Proxy acts as an intermediary between a query issuer and the database
(see Figure 3.1). The proxy performs filtering operations and negotiates trust with
query issuers. The Trust Proxy is in the same administrative domain as the database,
and in practice, the two may be located on the same machine.

This section presents two methods by which the Trust Proxy controls access to
information in a database: 1) results filtering, and 2) query modification.
3.2.1 Results Filtering

Results filtering is an algorithm in which the Trust Proxy modifies query results
in order to remove prohibited information. After the proxy verifies a query issuer’s
roles through trust negotiation, it evaluates the policies for the data in the user’s

query results and replaces field values that the user is not allowed to see with null.

13

CHAPTER 3. SYSTEM DESIGN

Client Server

| |
|
Query : : 1| Trust —f
Issuer i Proxy : :-:
| |

Figure 3.1: The Trust Proxy

The results filtering method can leak sensitive information. LeFevre et al. [13]
point out that a query issuer can discover information such as a patient’s diagnosis
without being authorized to view that diagnosis. For example, suppose Mallory is
a Nurse. She issues the query SELECT name, diagnosis, phone FROM patients
WHERE diagnosis = ‘cancer.’ Mallory is authorized to view the ‘name’ column,
since it is freely available, but she is only authorized to see diagnoses of patients who
have opted to make their diagnoses available to Nurses. Each diagnosis she is not
allowed to see is replaced with null. The query results are shown in Table 3.1. Even
though some diagnoses have been filtered, Mallory knows that every patient listed in

the query results has cancer.

For queries with a predicate (WHERE clause), such as the example above, the
Trust Proxy must perform special filtering in order to avoid leaking information.
Because the mere presence of Sally’s and Reed’s rows shows that they have cancer,
those entire rows must be removed from the query results. More generally, whenever a
query has a constraint on a particular column (e.g., WHERE diagnosis = ‘cancer’),

rows that are null in that column must be removed.

Rows that are null only in columns not referenced by the WHERE clause do not
need to be removed. The row for Dan (Table 3.1) can remain in the query results

without leaking information, since it only has a null value in the Phone column, which

14

3.2. TRUST PROXY

Name || Diagnosis | Phone

Travis cancer 555-7365

Sally null null
Reed null 555-2329
Dan cancer null

Table 3.1: Query results for the query SELECT name, diagnosis, phone FROM
patients WHERE diagnosis = ‘cancer.’ Note the leaked diagnoses of Sally and

Reed.

Name || Diagnosis | Phone

Travis cancer 555-7365

Dan cancer null

Table 3.2: The modified query results

the WHERE clause does not reference. Table 3.2 shows the query results after the

appropriate rows have been removed.

3.2.2 Query Modification

This section discusses query modification, the second filtering method. This
method modifies queries in order to prevent the release of information to unautho-
rized individuals. Queries are modified based on inferred purpose-recipient pairs (e.g.,
charity for the purpose of solicitation), an algorithm introduced by LeFevre et al. [13],
who do the modification. These pairs are determined from contextual information,
not from the attributes of the query issuer, as is done in an open system

In an open system, the approach of LeFevre et al. can be adapted so that a user’s

authenticated roles replace purpose-recipient pairs. Roles are authenticated through

15

CHAPTER 3. SYSTEM DESIGN

trust negotiation and are used to rewrite queries so that the database only returns
results for which the user is authorized. This removes the need for the Trust Proxy
to filter results after they have been returned from the database.

The query modification filtering method requires query issuers to pre-select the
roles in which they wish to act. Negotiation verifies that the query issuers belong to
the roles that they pre-select. Once the Trust Proxy knows the roles to which the
user has authenticated, it can modify the query. Details of the query modification

algorithm are presented in Chapter 4.

16

Chapter 4 — Implementation

This chapter discusses details for an implementation of an open database system.
Section 4.1 presents two options for storing policies. Sections 4.2 and 4.3 provide
details about the results filtering and query modification algorithms. Section 4.4
shows how filtering occurs using the two methods in an example scenario. Section
4.5 compares the two filtering methods and explores the advantages of each. Finally,

Section 4.6 describes a software demo constructed as part of this research.

4.1 Policy Storage

Policies are stored in the database. When a user issues a query, policies governing
access to data in the query results are fetched from the database and used in the
ensuing trust negotiation. This thesis presents two options for storing policies. First,
actual role expressions can be stored as database policies. A role expression is simply
a logical expression of roles that an individual must satisfy. We are not aware of any
other database systems that use role expressions for policies. Using role expressions
permits policies that involve a combination of roles. For instance, a role expression for
diagnoses might be ((Nurse AND Researcher) OR Doctor). Table 4.1 shows how
diagnosis policies are stored as role expressions.

Second, policies may be stored as separate permissions [13]. For a given informa-
tion type (e.g., telephone number), a yes/no value is stored for each possible recipient
type (e.g., Doctor). Database subjects can opt in or out of making their data available
to the various groups, as shown in Table 4.2.

Storing policies as role expressions takes less space and is more flexible than storing
them as separate permissions. For role expressions, there is one policy table for each

data table, and the two tables have the same number of columns and rows. Each cell

17

CHAPTER 4. IMPLEMENTATION

Name | Diagnosis Diagnosis Policy

John Cancer Doctor OR Nurse

Sally Heart Attack Doctor

Joe Appendicitis | Doctor OR Nurse OR Employee

Table 4.1: Cell-level diagnosis policies stored as role expressions

Name | Phone | Nurses? | Reporters?

John 482-4458 Yes Yes
Sally 257-8546 No No
Joe 259-7445 Yes No

Table 4.2: Cell-level telephone policies stored as separate permissions

in the data table has a corresponding cell in the policy table. Separate permissions
require one policy table per column in the data table. For example, if the patients
table has columns for name, diagnosis, and room number, three tables are needed to
store name, diagnosis, and room number policies.

Role expressions require more processing time than separate permissions because
they are logical expressions that need to be evaluated to determine whether the
query issuer’s roles satisfy the role expression. Separate permissions require no such

evaluation.

4.2 Results Filtering Implementation

In this section, details of the results filtering algorithm are presented. In the
results filtering method, when the user issues a database query, the Trust Proxy
issues a separate query that uses the SELECT DISTINCT keywords to obtain a list of

all the roles contained in access control policies for data referenced by the query. If

18

4.2. RESULTS FILTERING IMPLEMENTATION

the original query requested the name and room columns for all patients, the query
used to obtain roles is

(SELECT DISTINCT namePolicy FROM patientsCellPolicies) UNION

(SELECT DISTINCT roomPolicy FROM patientsCellPolicies)

Next, the proxy builds a role expression that is a conjunction of all of the roles
in the list. For example, if some information is protected by the policy Doctor OR
Nurse and other information by Hospital Employee, the proxy combines these role
expressions into a single composite role expression, which the proxy uses in the ensuing
trust negotiation.

At this point, the user and the Trust Proxy begin trust negotiation. At the end
of the negotiation, the Trust Proxy receives a negotiation response, which contains
a list of roles for which the client (query issuer) was authenticated. Even if the
negotiation failed (e.g., if the client could not satisfy all of the roles contained in the
role expression), the query process can still continue. A failed role only means that
some information may be filtered from the query results.

Next, the Trust Proxy augments the original query so that it also requests cell
policies. If the original query was SELECT name, diagnosis, room FROM patients,
the augmented query is
SELECT name, diagnosis, room, namePolicy, diagnosisPolicy, roomPolicy

FROM patients, patientsCellPolicies

WHERE patients.id = patientsCellPolicies.id.

This modification allows the proxy to fetch both data and cell policies in a single
query, speeding up the filtering process. The Trust Proxy then requests column
policies from the database. Once the proxy has the data and policies, it uses the
list of authenticated roles to evaluate the role expressions for each cell in the query

results in order to determine which cells the client is authorized to see. When a cell

19

CHAPTER 4. IMPLEMENTATION

does not have a cell policy, the proxy uses the default (column) policy for that cell.

Cells whose policies evaluate to false are replaced with null. Rows that are null
in all fields are removed from the query results. Any rows that are null in a column
referenced by a WHERE clause are also removed. The proxy then returns the filtered
query results to the query issuer.
4.3 Query Modification Implementation

This section describes the query modification method introduced by LeFevre et
al. [13] and explains one way to extend it to an open system environment.

In one of their examples, patient telephone numbers are available to charities
for the purpose of solicitation only for patients who have “opted in” to allow this

disclosure. The original query, SELECT Phone FROM Patients, is rewritten to be:

SELECT CASE WHEN EXISTS
(SELECT Phone_Choice FROM PatientChoices
WHERE Patients.PatientID = PatientChoices.PatientID
AND PatientChoices.Phone_Choice = 1)

THEN Phone ELSE null END FROM Patients

Here, PatientChoices is a table that records patients’ preferences for having their
data disclosed to charities for the purpose of solicitation. Phone_Choice is a column
in this table that pertains to telephone numbers. Each row in the table with a value
set to 1 in the Phone Choice column indicates that a patient has opted to allow their
telephone number to be disclosed to charities.

The SQL CASE statement is similar to the if-then-else statement used in many
programming languages. In this example, the query checks cell policies for the phone
column and only returns telephone numbers whose cell policies the query issuer satis-

fies. For individuals that have not made their telephone numbers available to charities,

20

4.3. QUERY MODIFICATION IMPLEMENTATION

Name || Doctor | Nurse | Reporter

John Yes Yes Yes
Sally Yes No No
Joe Yes Yes No

Table 4.3: Cell-level policies for diagnoses

the inside SELECT statement returns an empty result set which, in turn, causes the
CASE statement to evaluate to false. This causes a null value to replace the telephone
numbers for those individuals.

In order to adapt the query modification method to an open system, cell policies
are stored as separate permissions with one column for each recipient type, as de-
scribed in Section 4.1. Each column’s cell policies are stored in a separate relation.
Table 4.3 shows example cell policies for diagnoses. As before, each row in the relation
represents a patient. Each column represents a role. Each cell in the table indicates
whether an individual’s diagnosis is available to members of the role pertaining to
the given column.

Consider the query SELECT name, phone FROM patients. Upon submitting her
query, Alice checks a box that indicates she wants to act as a Nurse. Trust negotiation
occurs before any query processing, and Alice is authenticated to the system as a
Nurse. The Trust Proxy modifies her query so that it will only return cells that

Nurses are authorized to view. The modified query is

SELECT name, CASE WHEN EXISTS
(SELECT nurse
FROM phoneCellPolicies

WHERE patients.id = phoneCellPolicies.id

21

CHAPTER 4. IMPLEMENTATION

AND phoneCellPolicies.nurse = ‘yes’)

THEN phone ELSE NULL END FROM patients

As before, columns referenced in a query’s predicate (WHERE clause) must be
handled differently. Suppose Alice changes her query to SELECT name, phone FROM

patients WHERE diagnosis = ‘cancer.’ In this case, the modified query is

SELECT name, CASE WHEN EXISTS
(SELECT nurse
FROM phoneCellPolicies
WHERE patients.id = phoneCellPolicies.id
AND phoneCellPolicies.nurse = ‘yes’)
THEN phone ELSE NULL END FROM patients WHERE EXISTS
(SELECT nurse FROM diagnosisCellPolicies
WHERE patients.id = diagnosisCellPolicies.id
AND diagnosisCellPolicies.nurse = ‘yes’

AND diagnosis = ‘cancer’)

The last five lines of this query ensure that when a patient’s diagnosis is not
available to Nurses, that entire row is excluded from the query results.
4.4 Example Scenario

Alice, a Nurse, connects to the hospital database and submits a query to obtain
information about George, a new patient. The database access control policy specifies
that names are freely available. Diagnoses are only disclosed to Doctors and Nurses.
These column policies are shown in Table 4.4. George, however, has opted not to
allow Nurses to see his diagnosis.

This section shows how the Trust Proxy performs filtering for Alice’s query. Sec-

tion 4.4.1 illustrates the process using results filtering. Section 4.4.2 shows how query

22

4.4. EXAMPLE SCENARIO

Column Policy

Name Freely available

Diagnosis | Doctor OR Nurse

Room Freely available

Telephone Employee

Table 4.4: Column Policies

modification filters the same query.

4.4.1 Results Filtering

Alice issues a normal database query to find information about George. Her
query is SELECT * FROM patients WHERE name = ‘George’. The filtering process
is shown in Figure 4.1. The Trust Proxy receives the query and issues a separate
query to the database requesting roles for the user’s query. The Trust Proxy uses the

list of roles it receives to create a role expression, then initiates trust negotiation with

Alice.

During the negotiation, Alice submits her Nurse credential and thus authenticates
to that role. At this point, the proxy sends Alice’s original query to the database and
also requests the policies that protect Alice’s query results. The database then returns
the full query results to the proxy, along with the associated policies. The unfiltered
query results are shown in Table 4.5. The proxy uses the list of authenticated roles
to filter the query results. Because George’s diagnosis is not available to Nurses,
the proxy replaces it with null. The proxy then sends the query results on to Alice.

Filtered query results are shown in Table 4.7.

23

CHAPTER 4. IMPLEMENTATION

Trust
Proxy Database

Query
> Request roles >
< Roles
Trust negotiation
< > Request query
results & policies >
Filtered query Query results &
< results < policies

Figure 4.1: Alice’s interaction with the open database using results filtering

Alice

Patient ID | Name | Diagnosis | Telephone

1234567 George | Emphysema | 555-1725

Table 4.5: Unfiltered query results

Patient ID Name Diagnosis Telephone

1234567 freely available Doctor Doctor or Nurse

Table 4.6: Cell-level policies

Patient ID | Name | Diagnosis | Telephone

1234567 George null 555-1725

Table 4.7: Filtered query results

24

Alice

4.4. EXAMPLE SCENARIO

;::::; Database
Query >
List of desired roles >
Trust Negotiation >
Modified query >
< Query results

Query results

Figure 4.2: Alice’s interaction with the database system using query modification

Patient ID

Doctor?

Nurse?

Employee?

1234567

yes

no

no

Table 4.8: George’s cell-level diagnosis policies

4.4.2 Query Modification

Figure 4.2 shows Alice’s interaction with the database using query modification.

When she submits the query, Alice notifies the proxy that she wants to act in the

role of a Nurse for this query. The proxy initiates a trust negotiation with Alice and

verifies that she satisfies the role Nurse. The proxy uses that role to modify Alice’s

query so that it will only return results that Nurses are authorized to see. Table

4.8 shows George’s cell-level policies for his diagnosis, which indicate that it is not

available to Nurses. His policy for his telephone number, however, does permit access

to Nurses. This query returns the same results as those shown in Table 4.7.

25

CHAPTER 4. IMPLEMENTATION

4.5 Comparison of Filtering Methods

This section discusses strengths and weaknesses of the two filtering methods pre-
sented in this thesis.

Results filtering supports more flexible policies than query modification. Since
query modification requires policies to be stored as separate questions (a ‘yes’ or
‘no’ for each recipient type), policies are a simple disjunction of roles. For example,
if Bob has made his telephone number available to Doctors and Nurses, his policy
is Doctor OR Nurse. More complex role expressions, e.g., Doctor OR (Nurse AND
Researcher) are not supported. Results filtering, on the other hand, stores policies
as role expressions and thus supports complex policies such as the one used above.

Forcing a user to pre-select roles for the query modification method has subtle
privacy implications. For instance, suppose Bob unknowingly connects to a malicious
server and selects the role AIDS Researcher before submitting a query. The server
can infer that Bob is an AIDS Researcher without authenticating itself to Bob. Bob
may be unwilling to disclose to untrusted servers that he is a member of the AIDS
Research group, but he allows a server to infer that information each time he pre-
selects the AIDS role.

Query modification is, by nature, faster and simpler than results filtering. Results
filtering requires that the Trust Proxy evaluate query results cell by cell. In contrast,
query modification leverages the capabilities of the query language to filter the results
in the database during query processing. Chapter 5 compares the performance of the
two filtering methods.

Results filtering and query modification handle policies differently, and this can
affect the information that query issuers can infer following a negotiation. Suppose
Alice submits a query about John, who has his diagnosis protected by the policy

AIDS Researcher. This query returns a result set with a single row. If filtering

26

4.6. SOFTWARE

Results Filtering Query Modification

Allows complex policies Faster and simpler

No need to pre-select roles | Policies not disclosed to query issuer

Table 4.9: Advantages of each filtering method

happens using query modification, Alice simply pre-selects her role (Nurse), and she
is never notified why John’s diagnosis was replaced with null. However, if results
filtering is used, the Trust Proxy creates a role expression for the result set, Doctor
AND Nurse AND AIDS Researcher, and this role expression is available to Alice. The
AIDS Researcher role in the role expression tells Alice that one or more cells in the
query results are protected by the role AIDS Researcher, which is a good indication

that John’s diagnosis is AIDS.

A summary of the strengths of each filtering method is shown in Table 4.9.

4.6 Software

Our prototype software is written in Java and implements both results filtering and
query modification. It interacts with MySQL databases, but changing the software
to connect to another database system would be trivial.

TrustBuilder is a prototype trust negotiation system developed by researchers in
the Internet Security Research Lab. It supports X.509v3 certificates. Users prove
membership in roles by releasing the appropriate credentials to the other party in-
volved in the negotiation.

When a TrustBuilder negotiation terminates, the server sends a negotiation re-
sponse object to the client indicating whether the negotiation succeeded or failed.
Since trust negotiation previously used an all-or-nothing approach, the response did

not notify the client which roles were authenticated during the negotiation. In order

27

CHAPTER 4. IMPLEMENTATION

to accommodate fine-grained access control, the negotiation response object was ex-
tended to include a list of authenticated roles. The Trust Proxy uses this list to filter
information that is only available to roles to which the client did not authenticate.

The implementation combines two types of policies: database policies and Trust
Policy Language (TPL) policies [12]. Database policies have been discussed through-
out this thesis. TPL policies describe the credentials a user must disclose in order
to authenticate to the roles in the database policies. For example, a database policy
might make hospital room numbers available to the Nurse role. A TPL policy will
specify that the Nurse role requires the user to submit either a Registered Nurse
credential or a Licensed Practical Nurse credential, signed by the American Nursing
Association.

The proof-of-concept software demonstration provided with this thesis uses Tom-
cat and Java Servlets. The demo allows the user to assume the role of one of four
fictional health care workers, each possessing different credentials. The user specifies
a query by filling in an HTML form that has check boxes for the available columns in
the database and text fields to enter conditions (e.g., ‘WHERE room = 205°). There
are also check boxes that allow the user to specify the roles to assume during the
current query. If the user checks any of the boxes, the query modification method is
used. Otherwise, results filtering is used. A screenshot of the query page is shown in
Figure 4.3.

The Trust Proxy intercepts queries, and trust negotiation and filtering proceed as
described in Sections 3.2.1 and 3.2.2. Query results are presented to the user in an

HTML table, as shown in Figure 4.4.

28

4.6. SOFTWARE

©) Hospital Query Form - Mozilla Firefox
File Edt Wiew Go Bookmarks Tools Help

<:Z| - LL:’ - @ |:| @ ||_| hittps: flocalhost: B443 trust findese, html = V| D Go “Q, |

Internet

Research Lab

Welcome to the
BYU Internet Security Research Lab
Open Database Demo

Colunns to project:

[Hospital ID

[ame

[Diagnosis
[JPhone

ORoom

Ozsm

Filters on those cohuans:

[Column narme]	+ H Egualto v		
[Column name] H Egualto v			
[Column name] v H Equalto b			

What roles do you want to act m? (optional)

ODoctor

O 1urse

O Employee

[0 ATDS Researcher

[Submit Query][Reset]

Admmin

Daone localhost:2443 (= (P Adblock

Figure 4.3: The demo query page

29

CHAPTER 4. IMPLEMENTATION

©J Query Results - Mozilla Firefox |Z||E||g|
File Edit ‘iew i&o Bookmarks Tools Help .

@ b le; - =:| @ :_JJ ||_| https:) flocalhost: 8445 trust, (2 V| @ o “Q, |

Log out

Bacl to query page

Your authenticated roles: [nurse]

Your query retwmed & row(s).

id name diagnosis | room | ssn

516541 | Ealph Eabies 238 | 535-35-6161

216542 || Trene =hingles 220 || null

516543 | Larry Soraple 217 || 535-35-6161

516544 | Esther Eerben 220 |l

516545 || Bob Taemaszis | 215 mall

516546 || Jacqueline | Asthma 220 111-55-6532

Back to query page

Done localhost:8443 = adblock

Figure 4.4: Query results

30

Chapter 5 — Performance Analysis

This chapter examines the runtime performance of the open database system proto-
type. Specifically, this chapter compares the filtering times of the two methods for
result sets of varying sizes. The performance results in this chapter measure only
the times for database filtering operations. They exclude times for trust negotia-
tion. This permits a more accurate analysis and comparison of the runtimes for the

implementations of the algorithms described in this thesis.

The tests were performed on a 3.4 GHz Pentium 4 machine running Windows XP
Professional with 1 GB of RAM. The software was tested in this configuration on
query result sets ranging from 10 to 10,000 rows. Runtimes for the query SELECT
* FROM patients are shown in Table 5.1, and the corresponding graph is shown in
Figure 5.1. Each result is an average of ten execution times for a particular result
size. Note that each of the times includes a constant startup time of slightly less than

300 ms, most of which is spent creating a connection to the database.

For relatively small result sets (i.e., a few thousand rows or less), results filtering

is slightly faster than query modification. This is probably due to the extremely long

Rows | Results Filtering | Query Modification
10 333 ms 375 ms
100 325 ms 411 ms

1000 388 ms 472 ms

10000 942 ms 908 ms

Table 5.1: Average runtimes for the two filtering methods

31

CHAPTER 5. PERFORMANCE ANALYSIS

‘ =& Query Modification == Restts Filtering ‘

1000
900 /—
800

700 /

600 /

400 g
300

200

Average time (ms)

100

0

0 2000 4000 6000 8000 10000

Rows in result set

Figure 5.1: Average runtimes for the two filtering methods

and complex queries that are produced by the query modification algorithm. The
query is just as complex for the result set of 10 rows as for the larger result sets, and
database processing takes longer for these queries than for the much simpler queries
used by results filtering. As result sets grow larger, query modification becomes the
faster of the two algorithms. For both methods, filtering always completes in less

than a second for the tests performed in this analysis.

Typical performance for a simple negotiation using TrustBuilder is about two
seconds. When a user executes more than one query in a single database session,
performing trust negotiation each time to authenticate a user to the same roles is
wasteful. For this reason, the Trust Proxy caches roles for the duration of a user’s
session. If Bob submits a query and authenticates himself as a Doctor through trust
negotiation, then submits another query where he needs to assume the same role,
trust negotiation does not occur the second time. However, if Bob’s second query

requires him to act in a role he did not need for the first query (e.g., the second query

32

requires him to be an AIDS Researcher), trust negotiation occurs the second time

but only for that new role. There is no need to reauthenticate Bob as a Doctor.

33

CHAPTER 5. PERFORMANCE ANALYSIS

34

Chapter 6 — Threat Model

This chapter discusses threats to the open database system and explores methods to

resolve them.

Each time a query is issued, potentially sensitive information is sent between the
Trust Proxy and the database, and between the Trust Proxy and the user. Using
Transport Layer Security (TLS) ensures the confidentiality and integrity of the infor-

mation in transit.

The Trust Proxy can be a single point of failure for both filtering methods. It is
very important to secure the Trust Proxy against all known types of security threats.
However, protecting the Trust Proxy is no different from protecting any other server

on the Internet.

It is also important to prevent unauthorized changes to policies (willful or acci-
dental). Care should be taken to ensure that a minimum number of individuals have
write access to database policy tables. Database administrators are an example of
those who should have this access. When individuals want to change policies that pro-
tect their information, they submit a request to the administrators, who authenticate

to the database and perform the actual updates.

A common fear in database access control is that a malicious user might use a
combination of queries to make inferences about information they are not allowed to
see. For instance, suppose Tom, a hospital employee, is aware of the existence of Bob’s
information in a medical database and suspects that Bob’s diagnosis is ‘cancer’. He
issues the query SELECT * FROM patients WHERE diagnosis = ‘cancer.’ A row
for Bob is not returned in the query results. Tom does not know if this is because

Bob’s diagnosis was ‘cancer’ or because Bob opted out of allowing employees to see

35

CHAPTER 6. THREAT MODEL

his diagnosis. As explained in Section 3.2.1, the entire row for Bob was removed
because it was null in the diagnosis column, which was referenced by the WHERE
clauses. Tom decides to submit more queries in order to deduce Bob’s diagnosis.
He submits the query SELECT * FROM patients WHERE diagnosis != ‘cancer.’
Bob’s diagnosis does not appear in this result set either. In fact, rows for other
patients who have opted out of letting employees see their diagnosis do not appear in
either result set. Thus, with these two queries, the only information Tom can infer is

that he is not authorized to see Bob’s diagnosis.

Next, Tom issues queries to find patients that have other common diseases. This
still does not provide him with any information about Bob’s diagnosis. Even if Tom
has a comprehensive list of all diseases in the database, he still cannot obtain any
information about Bob’s diagnosis through a process of elimination. Bob’s row (and
probably rows for other patients) is not returned in the result set for any diagnosis;
again, this is not because it is ‘cancer,” but because Tom is not allowed to see it.
Finally, Tom removes the WHERE clause and submits the simple query SELECT *
FROM patients. Here, Bob’s row finally appears in the query results, but Bob’s
diagnosis has been replaced with null. Again, this only tells Tom that he is not

authorized to view Bob’s diagnosis, but he still knows nothing about the diagnosis.

Database joins combine data from two or more tables into a single result set. In
this open system, query issuers cannot use joins to obtain information for which they
are not authorized because joins use a WHERE clause. For example, the query
SELECT name, medication FROM patients, diagnosisMedications

WHERE patients.diagnosis = ’aids’ and patients.diagnosis =

diagnosisMedications.diagnosis
lists medications typically prescribed for patients who have AIDS. A query issuer

cannot use the returned medications to infer a patient’s diagnosis because rows where

36

the diagnosis is null are removed due to the WHERE clause’s reference to that column
(see Section 3.2.1). As a result, query issuers only see the names and medications for

patients whose diagnoses they have permission to view.

37

CHAPTER 6. THREAT MODEL

38

Chapter 7 — Conclusions and Future Work

This thesis presented the design and implementation of an open system database.
Whereas traditional databases rely on a username/password access control model,
the system authenticates users based on their attributes through trust negotiation.
This system allows qualified strangers to access the database without compromising

the privacy of the information stored in the database.

This thesis described and analyzed two methods for access control in open Hip-
pocratic databases. This thesis adapted a query modification method proposed by
LeFevre et al. [13] for use in an open system. Instead of using query modification
with inferred purpose-recipient pairs, queries are modified based on a user’s roles,

which are authenticated through trust negotiation.

We also proposed and implemented a novel approach to database access control
that uses a combination of column and cell-level policies. This method overcomes
some limitations of the query modification method by supporting policies that use
a combination of roles and not requiring query issuers to choose their roles before

negotiation takes place.

Cell-level access control maximizes the amount of information the database can
disclose to query issuers without violating the policies that protect the data, increasing
the usefulness of the system. Giving database subjects the ability to tailor policies
gives them control over their own privacy.

This research focused on flexibility. It enables qualified strangers to access the
database and receive as much information as possible. Performance was a secondary
concern. While added security almost always has a negative effect on performance, it

is important to ensure that the system remains reasonably fast. Performance testing

39

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

shows that both query modification and results filtering complete within a reasonable
amount of time in our prototype system using a sample database of 10,000 records.

Many aspects of this research area remain unexplored. For example, this thesis
focused on assigning read permissions. The design presented in this thesis could
be augmented to include insert, update, and delete permissions. Policies for these
operations could be stored and handled in a similar manner to read permissions.

Encryption is a particularly powerful feature provided by some databases. Encryp-
tion in a database has the significant advantage that even if unauthorized individuals
gain access to sensitive information, it will be in a form that they cannot read without
knowledge of the encryption key.

Integrating the features described in this thesis directly into an open source
database like MySQL would allow filtering to occur in the database system itself,

eliminating the need for a Trust Proxy.

40

References

1]

Mysql reference manual. http://downloads.mysql.com/docs/refman-5.1-en.pdf,
Mar 2006.

Rakesh Agrawal, Dmitri Asonov, Roberto Bayardo, Tyrone Grandi-
son, Christopher Johnson, and Jerry Kiernan. White paper: Man-
aging disclosure of private health data with hippocratic databases.
http://www.almaden.ibm.com/software/projects/hdb/Publications/papers/
nc_hdb_white_paper_health.pdf, Jan 2005.

Rakesh Agrawal, Paul Bird, Tyrone Grandison, Jerry Kiernan, Scott Logan, and
Walid Rjaibi. Extending relational database systems to automatically enforce
privacy policies. In Proceedings of the 21st International Conference on Data

Engineering, Tokyo, Japan, Apr 2005. IEEE Computer Society.

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Hip-
pocratic databases. In Proceedings of the 28th VLDB Conference, Hong Kong,
China, Aug 2002.

Leland L. Beck. A security mechanism for statistical databases. ACM Transac-

tions on Database Systems, 5(3), 1980.

Elisa Bertino and Ravi Sandhu. Database security—concepts, approaches, and

challenges. IEEFE Transactions on Dependable and Secure Computing, 2(1), 2005.

Robert Bradshaw, Jason Holt, and Kent E. Seamons. Concealing complex poli-
cies with hidden credentials. In Proceedings of the Eleventh ACM Conference on

Computer and Communications Security, Washington, DC, Oct 2004.

41

REFERENCES

8]

[10]

[11]

[13]

[14]

[15]

Silvana Castano, Mariagrazia Fugini, Giancarlo Martella, and Pierangela Sama-

rati. Database Security. ACM Press, 1995.

Microsoft Corporation. Cell-level security in SQL Server 7.0 OLAP services.
http://www.microsoft.com/technet/prodtechnol /sql/70/maintain/cellsec.mspx,
2001.

Julie Creswell and Eric Dash. Banks unsure which cards were exposed in breach.

http://www.nytimes.com/2005/06/21 /business/21card.html, 2005.

Luigi Giuri and Pietro Iglio. Role templates for content-based access control. In
Proceedings of the Second ACM Workshop on Role-based Access Control, Fairfax,
Virginia, Nov 1997. ACM Press.

Amir Herzberg, Yosi Mass, Joris Michaeli, Dalit Naor, and Yiftach Ravid. Access
control meets public key infrastructure, or: Assigning roles to strangers. In
Proceedings of the 2000 IEEE Symposium on Security and Privacy, Oakland,
California, May 2000.

Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan, Yirong
Xu, and David DeWitt. Limiting disclosure in hippocratic databases. In Pro-
ceedings of the 30th VLDB Conference, Toronto, Canada, Aug 2004.

Arup Nanda and Donald K. Burleson. Oracle Privacy Security Auditing. Ram-

pant, 2003.

Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based access
control to enforce mandatory and discretionary access control policies. ACM

Transactions on Information and System Security, 3(2), 2000.

42

[16]

[17]

[18]

[19]

[20]

[22]

REFERENCES

Art Rask, Don Rubin, and Bill Neumann. Implementing row- and
cell-level security in classified databases using SQL Server 2005.
http://www.microsoft.com/technet /prodtechnol /sql/2005/multisec. mspx,

Apr 2005.

Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extending
query rewriting techniques for fine-grained access control. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, Paris, France,
Jun 2004.

Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The NIST model for role-
based access control: Towards a unified standard. In Proceedings of the 5th

ACM Workshop on Role Based Access Control, Berlin, Germany, Jul 2000.

Kent E. Seamons, Marianne Winslett, and Ting Yu. Limiting the disclosure of
access control policies during automated trust negotiation. In Proceedings of the
Network and Distributed System Security Symposium, San Diego, California, Feb
2001.

Phoenix Health Systems. What’s HIPAA? a basic HIPAA primer.

http://www.hipaadvisory.com /regs/HIPA Aprimer.htm.

US Department of Health and Human Services. Stan-
dards for privacy of individually identifiable health information.

http://www.hhs.gov/ocr/hipaa/privrulepd.pdf, 2002.

William H. Winsborough, Kent E. Seamons, and Vicki E. Jones. Automated trust
negotiation. In Proceedings of the DARPA Information Survivability Conference

and FEzxposition, Hilton Head, South Carolina, Jan 2000.

43

REFERENCES

[23] Ting Yu. Fine-grained database access control. In Proceedings of the Fall Privacy
Place Workshop, Raleigh, North Carolina, Oct 2004.

[24] Longhua Zhang, Gail-Joon Ahn, and Bei-Tseng Chu. A role-based delegation
framework for healthcare information systems. In Proceedings of the 7th ACM

Symposium on Access Control Models and Technologies, Monterey, California,

Jun 2002.

44

	Trust Negotiation for Open Database Access Control
	BYU ScholarsArchive Citation

	Title Page
	Copyright Page
	Graduate Committee Approval
	Acceptance Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	HIPAA and Privacy
	Database Access Control
	Trust Negotiation
	Differences from Traditional Trust Negotiation
	Motivating Scenario
	Goals
	Thesis Outline

	Related Work
	System Design
	Policies
	Column Policies
	Row and Cell Policies
	Content-Based Policies

	Trust Proxy
	Results Filtering
	Query Modification

	Implementation
	Policy Storage
	Results Filtering Implementation
	Query Modification Implementation
	Example Scenario
	Results Filtering
	Query Modification

	Comparison of Filtering Methods
	Software

	Performance Analysis
	Threat Model
	Conclusions and Future Work
	References

