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Evidence of linear lattice expansion and covalency enhancement
in rutile TiO2 nanocrystals

Guangshe Li, Juliana Boerio-Goates, and Brian F. Woodfielda)
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602

Liping Li
Department of Physics, Brigham Young University, Provo, Utah 84602

(Received 20 April 2004; accepted 9 July 2004)

Lattice variations and bonding characteristics in rutile TiO2 nanocrystals were examined by x-ray
diffraction and x-ray photoelectron spectroscopy. With a reduction in the physical dimensions, rutile
TiO2 nanocrystals show a linear lattice expansion and an anomalous covalency enhancement in
apparent contradiction to the ionicity increase in BaTiO3 and CuO nanocrystals as reported recently
by S. Tsunekawa et al. [Phys. Rev. Lett. 2000, 85, 3440] and V. R. Palkar et al. [Phys. Rev. B 1996,
53, 2167]. A surface defect dipole model is proposed to explain these physical phenomena in terms
of the strong interactions among the surface dipoles that produce an increased negative pressure.
The covalency enhancement is interpreted according to the critical properties of the increased
TiuO bond lengths in the expanded lattice. © 2004 American Institute of Physics.
[DOI: 10.1063/1.1790596]

Metal-oxide nanocrystals have potential for or demon-
strated applications in many technologies including solar en-
ergy conversion, batteries, and ductile ceramics.1 These ma-
terials have properties that are highly dependent on the
physical dimensions or grain size. Extensive theoretical and
experimental studies2 have shown that the dimensional re-
duction into the nanoscale regime produces distinct proper-
ties from the bulk, which is thought to originate from phonon
confinement, additional surface phonons, or tensile surface
stresses. The reduction in grain size is also generally fol-
lowed by certain variations in lattice parameters. From a
solid-state physics viewpoint, the lattice dimensions directly
determine the band structure and, consequently, the physical
properties of the solids since the variations in lattice can lead
to a significant shift of the Brillouin zone. Metal-insulator
transitions observed in lower-dimensional solids are a good
example, illustrating the importance of lattice modulations.3
However, the origin of size-induced changes in the lattice
volume of metal-oxide nanocrystals is still not clearly under-
stood.

In contrast with the lattice contraction in metal
nanocrystals,4 most metal-oxide nanocrystals exhibit lattice
expansion as the particle size is reduced.5,6 This is somewhat
surprising since it is counter to general physical observations
for small particles7 in which surface stresses cause small
particles to compress. Tsunekawa et al.5 proposed that the
lattice expansion in metal-oxide nanocrystals is due to the
valence reduction such as from Ce4+ to the larger Ce3+ in
CeO2 nanocrystals, but Palkar et al.

6 found that there was no
oxygen loss as the particle size was reduced. Furthermore, in
certain transition-metal oxides, it has also been reported6 that
there is an ionicity increase as the particle size is reduced,
which is explained on the basis of a pressure-induced cova-
lency increase. This conclusion is questionable, since in cer-
tain solids that are primarily ionic in nature, ionicity en-
hancement occurs at high pressures.8 Rutile TiO2 is a model

compound that shows approximately 63% ionic nature in the
TiuO bonding as deduced from the electronegativity values
of Ti and O, and has a close structural link to high-pressure
phases of many metal oxides including GeO2,

9 ZrO2, and
HfO2

10 as well as the low-pressure earth’s mantle material,
stishovite SiO2.

11 Of its various analogues, rutile TiO2 is
among the few that can be stabilized at nanoscale sizes under
ambient conditions with a typical size effect being demon-
strated by a significant decrease in the transition pressure to a
phase of PbO2-type TiO2.

12 This has also led to the possibil-
ity of finding more high-pressure polymorphs including
�uPbO2-type and baddeleyite-structured TiO2. A precise
determination of the size dependence of the lattice volumes
and bonding characteristics of rutile TiO2 nanocrystals is
thus expected to improve our understanding on the nano-
physics, size-related properties (e.g., quantum effects), and
even certain geological processes.

In this letter, we report a linear lattice expansion as a
function of particle size in rutile TiO2 nanocrystals that dem-
onstrates critical quantum-size effects.

Highly pure rutile nanoparticles were prepared by a hy-
drothermal method.13 X-ray diffraction (XRD) data of the
rutile nanoparticles were measured at room temperature at a
scan rate of 0.2° 2� /min. The lattice parameters for the
samples were calculated by least-squares methods. The aver-
age grain size �D� was measured from the most intense XRD
peak (110) using the Scherrer formula.13 The ionic character-
istics were studied by determining the binding energies of
the O 1s and Ti 2p electrons using x-ray photoelectron spec-
troscopy (XPS). The binding-energy data are calibrated with
the C 1s signal at 284.6 eV.

XRD and TEM have already confirmed the formation of
single-phase rutile TiO2 nanocrystals in a rodlike shape.

13

Figure 1 shows the main diffraction peak (110) on an ex-
pended scale, where the broadening effects are clearly seen.
The strain and particle size are two predominant factors con-
trolling the broadenings of the diffraction peaks.14 The effec-
tive strain is calculated using the Williams and Hall
theorem15
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� cos �

�
=
1
D
+

� sin �

�
, �1�

where � is the full width at half maximum (FWHM), � is the
diffraction angle, � is the x-ray wavelength, D is the effec-
tive particle size, and � is the effective strain. A typical plot
of �� cos �� /� vs �sin �� /� for six intense peaks of 5.2 nm
rutile is shown in the inset of Fig. 1. The scattered data
points strongly demonstrate the absence of any significant
strain in our rutile TiO2 nanocrystals. Consequently, the av-
erage grain size of the rutile nanocrystals was calculated us-
ing only the peak broadenings, which will be described in
more detail elsewhere. Also indicated in Fig. 1, the (110)
peak shows a significant shift towards lower diffraction
angles as the particle size is reduced. This is associated with
the lattice expansion and has already been found in CeO2
nanocrystals containing dopants larger than Ce4+, such as
Nd3+.16

Structural refinements using a least-squares method indi-
cate the lattice volume of rutile TiO2 nanocrystals increases
monotonically with a reduction in grain size �D� (Fig. 2).

The lattice volume �V� size dependence was fitted to the
following linear equation:

V = V0 +
A
D
, �2�

where V0=6.236�10−2 nm3 and A=3.75�0��10−3 nm4. The
occurrence of a linear lattice expansion can be related to a
negative interface pressure, but this is different from the
positive surface pressure that is associated with the lattice
contractions in metal nanocrystals with a predominant sur-
face stress effect via frr=

1
2r ·p (where frr is the surface stress

and p is the hydrostatic pressure due to the surface of radius
r).4 Tsunekawa et al.5 and Ayyub et al.17 have proposed sev-
eral reasons for the lattice expansions appearing in certain
metal-oxide nanocrystals according to (i) the valence reduc-
tion as in CeO2,

5 and (ii) the unpaired electronic orbitals at
the outer surface as in Fe2O3.

17 However our XPS and EPR
results do not show any evidence of Ti3+ or oxygen vacan-
cies in our rutile TiO2 nanocrystals. Here, we propose a sur-
face defect dipole model to explain the negative pressure
observed for the rutile nanocrystals.

Ideally, in the highly symmetric TiuO6 octahedra, the
centers of positive and negative charges are located at the
octahedral sites. However, rutile TiO2 has been shown to
have intrinsic polarization fields in the lattice.18 That is, the
coordinated oxygen ions occupy positions where crystal
electrical fields may occur causing the ions to become
polarized.19 The titanium atoms are distributed with some
amount of disorder at several sites adjacent to the octahedral
sites due to the low-energy barrier between these sites.20
Therefore, titanium atoms can move off the centers of the
TiuO6 octahedra building blocks and form dipoles. Be-
cause of the smaller cell volume of the rutile lattice and two
equivalent molecules for each cell, stronger interactions be-
tween dipoles of the TiuO6 octahedra can be expected,
which most likely leads to a highly oriented array of dipoles
with a directional character similar to those found in most
titanate ferroelectrics and piezoelectrics.21

There are several factors that can considerably enhance
the strength of the surface dipoles in rutile nanocrystals. With
decreasing grain size, there will be a larger fraction of tita-
nium atoms appearing on the surface with lower coordina-
tion compared with the six-fold coordinated Ti in the bulk
phase. Consequently, surface titanium atoms will most likely
show a significant increase in the number of dangling bonds,
which could be compensated by the absorption of some re-
active molecules, such as H2O, by forming terminal hydra-
tion layers as was confirmed by our TGA-DSC and IR mea-
surements (not shown), causing a significant distortion
around the Ti ions. Consequently, the negative centers will
show a significant downward shift towards the grain interior
relative to the positive centers of the surface titanium atoms.
This shift of the negative centers is expected to produce en-
hanced surface defect dipoles that are perpendicular to the
outer surface of each rutile nanocrystal. The strong dipole-
dipole interactions would lead to a roughly parallel array of
the dipoles yielding larger defect dipoles on the surface layer
of each nanocrystal. The strong repulsive interactions of the
parallel surface defect dipoles account for the negative pres-
sure on the rutile nanocrystals. Even though the nanocrystals
may also show some positive pressure due to surface stresses
as has been indicated in metal nanocrystals,4 for the present

FIG. 1. Normalized diffraction peak (110) for rutile TiO2 nanocrystals at the
indicated grain sizes. Inset is the relationship between �� cos �� /� and
�sin �� /�.

FIG. 2. Grain-size dependence of the lattice volume for rutile TiO2 nanoc-
rystals (�). Inset shows grain-size dependence of the blueshifts of the band
gap compared with that of the bulk TiO2 crystallites (�) (see Ref. 22).

2060 Appl. Phys. Lett., Vol. 85, No. 11, 13 September 2004 Li et al.
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rutile nanocrystals, the negative pressure is evidently much
larger as the particle size is reduced below some critical di-
mension. The net negative pressure is the primary reason for
rutile nanocrystals having a larger equilibrium volume than
that of the bulk phase. Similar defect dipoles have been pro-
posed on the grain surfaces of Ba4Ti3O12 nanocrystals and
�Ba,Sr�TiO3-based oxides.

21

Now let us return to our linear equation for lattice ex-
pansion in rutile nanocrystals. Equation (2) can be rewritten
as follows:

V = V0 +
�Vc − V0� · Dc

D
, �3�

where V0�=6.236�10−2 nm3� denotes an imaginary bulk lat-
tice infinitely large and Dc and Vc are the critical particle size
and lattice volume when the external forces from the surface
dipoles and surface tension are balanced. As the particle size
increases beyond Dc, the relative surface area and surface
tension will become extremely small and the lattice volume
at D�Dc can be taken as a constant; that is, Vc will have a
value much closer to the actual lattice volume of 6.243
�10−2 nm3 for the bulk phase of rutile TiO2. If we assume
this value for Vc, Eq. (3) will yield a critical size of Dc
=54 nm. This critical size, obtained by our linear lattice ex-
pansion, is in excellent agreement with that of approximately
50 nm as determined by the photoluminescence method22
below which a significant blueshift is observed in the absorp-
tion spectra relative to those of bulk phases, indicating a
quantum-size effect (see the inset of Fig. 2).

The lattice expansion in rutile nanocrystals is also asso-
ciated with changes in the chemical bonding. The Ti 2p spec-
tra of 7.9 nm rutile TiO2 (Fig. 3) consist of well-defined Ti
2p1/2 and Ti 2p3/2 photoelectron signals that are located near
464 and 458 eV, respectively. No shoulders associated with
Ti3+ or Ti2+ were observed at the lower energy sides. The
spin-orbital splitting between these peaks is nearly constant
at approximately 5.6 eV, which is comparable with the value
of 5.74 eV for nanoporous anatase TiO2.

23 Taking the O 1s
binding energy for the bulk oxygen species as a reference,
the bonding energy difference �	E� between O 1s and Ti

2p3/2 was calculated by fitting the photoelectron peaks. It
was found that with decreasing particle size from 17.8 to 5.4
nm, 	E decreased from 71.40(2) to 70.54(2) eV, which
clearly indicates a decrease in the relative ionicity that has
also been demonstrated by a nonempirical electronic-
structure calculation.24 The covalency enhancement is
closely related to the change in the electronic transfer ability
during the lattice expansion. The covalent TiuO bond dis-
tance is 0.202 nm, which is nearly the same as that for the
ionic TiuO bond length (0.201 nm).5 The increased TiuO
bond lengths during the lattice expansion might provide a
higher barrier for retarding the electronic transfer between Ti
and O by reducing the ability to donate or accept electrons
between Ti and O atoms.

This work was supported with a grant (DE-FG03-
01ER15235) from the U.S. Department of Energy. The au-
thors wish to thank Professor Alexandra Navrotsky, Univer-
sity of California at Davis, and Professor Frances Hellman,
University of California at Berkeley, for many fruitful dis-
cussions as part of our on-going collaboration.
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