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Kalman Consensus Strategies and Their

Application to Cooperative Control

Wei Ren,Member,Randal W. Beard,Senior Member,Derek Kingston,Student

Member

Abstract

In this paper, we propose discrete-time and continuous-time consensus update schemes motivated

by the discrete-time and continuous-time Kalman filters. With certainty information encoded into each

agent, the proposed consensus schemes explicitly account for relative confidence in the information that

is communicated from each agent in the team. We show mild sufficient conditions under which consensus

can be achieved using the proposed schemes in the presence of switching interaction topologies. The

Kalman consensus scheme is shown to be input-to-state stable. We show how to exploit this fact in

multi-agent cooperative control scenarios.

Index Terms

Information consensus, multi-agent systems, cooperative control, switched systems, Kalman filter-

ing.

I. I NTRODUCTION

During the last two decades there has been a dramatic paradigm shift in the way that com-

puter systems are designed: moving from centralized mainframe computers to networks of less
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capable, but much less expensive, personal computers. In much the same way, replacing large,

expensive, monolithic vehicles with teams of networked vehicles, promises less expensive, more

capable systems. In addition, there are applications where a team of vehicles can accomplish

objectives that would be impossible for a single vehicle. For example, a formation of networked

spacecraft could be used to synthesize a space-based interferometer with base-lines reaching tens

to hundreds of kilometers [1], [2]. With teams of vehicles, much of the design complexity is

shifted from mechanical hardware design to software that regulates the interaction of the team.

In recent years, there has been significant interest and research activity in the area of coordi-

nated and cooperative control [3], [4], [5], [6], [7], [8], [9], [10]. Much of this work assumes the

availability of global team knowledge, and/or the ability to plan group actions in a centralized

manner.

Centralized coordination techniques are suitable if each member of the team has the ability

to communicate to a centralized location or if the team is able to share information via a static

fully connected network. On the other hand, real-world communication topologies are usually

not fully connected. In many cases they depend on the relative position of the vehicles and on

other environmental factors and are therefore dynamically changing in time. In addition, wireless

communication channels are subject to multi-path, fading and drop-out. Therefore, cooperative

control in the presence of real-world communication constraints, becomes a significant challenge.

In a recent article we argued that “shared information is a necessary condition for coop-

eration” [11]. Shared information may take the form of common objectives, common control

algorithms, relative position information, or a world map. If this assertion is true, then information

exchange becomes a central issue in cooperative control. In this article, we will refer to the

information that is necessary for coordination as thecoordination informationor coordination

variable [12]. In the presence of an unreliable, dynamically changing communication topology,

it is not possible for all of the vehicles to have access to identical coordination information.

Suppose that a particular cooperation strategy has been devised and shown to work if the team

has global access to the coordination information. Cooperation will occur if each member on

the team has access to the same information.

As an example, consider the meet-for-dinner problem introduced in [11]. In this problem,

a group of friends decide to meet for dinner at a particular restaurant but fail to specify a

precise time to meet. On the afternoon of the dinner appointment, each individual realizes that
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they are uncertain about the time that the group will meet for dinner. A centralized solution to

this problem is for the group to have a conference call, to poll each individual regarding their

preferred time for dinner, and to average the answers to arrive at a time that the group will meet

for dinner. However, this centralized solution requires that a conference line is available, and

that the time of the conference call is known to the group. Since, whatever algorithm was used

to convey the time of the conference call to the group, could also have been used to convey the

time to meet for dinner, the central problem remains.

The information variable in this example is the time that the group will meet for dinner.

The particular time is not what is important, but rather that each individual in the group has a

consistent understanding of that information. A decentralized solution to the problem would be

for each individual to call, one at a time, a subset of the group. Given his current estimate of

the meeting time, the individual might update his estimate of the meeting time to be a weighted

average of his current meeting time and that of the person with whom he is conversing. The

question (which will be answered in this paper) is under what conditions this strategy will enable

the entire team to converge to a consistent meeting time.

Therefore, if a centralized solution to a cooperation problem, with its associated coordination

information, has been devised, then two additional questions must be addressed. First, what

algorithms should be employed to ensure that the team is converging to a consistent view of the

coordination information in the presence of an unreliable, dynamically changing communication

topology? Second, if the action of the group is based on the (dynamically changing) coordination

variable, will the cooperative control algorithm be robust with respect to the transient error in

the coordination variable across the team?

Convergence to a consistent view of the coordination variable in the presence of an unreliable,

dynamically changing communication topology is called the consensus problem. Consensus

problems have recently been addressed in [13], [14], [15], [16], [17], [11], [18], [19], to name

a few. In [14], sufficient conditions are given for consensus of the heading angles of a group of

agents under undirected switching interaction topologies. In [15], average consensus problems

are solved for a network of integrators using directed graphs. In [11] and [18], an algebraic graph

approach is used to show necessary and/or sufficient conditions for consensus of information

under time-invariant and switching interaction topologies respectively. In [16], a set-valued Lya-

punov function approach is used to consider discrete-time consensus problems with unidirectional
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time-dependent communication links.

Previous consensus seeking results reported in the literature do not explicitly account for

agent confidence in their instantiation of the coordination variable. Most results assume that

each individual in the group has identical confidence in their instantiation of the coordination

variable. However, there are many cases where some individuals on the team will have access

to better information than others. In cases like these, the consensus algorithm needs to be biased

to favor agents with better information. For example, if a team of UAVs is tasked with tracking

the location of a group of ground vehicles, the quality of information will be proportional to

the relative sensing distance. UAVs that have recently flown close to a ground vehicle should be

considered more reliable than those that are sensing from a greater distance, or whose information

is old. As another example, in the meet-for-dinner problem described above, if one individual is

considered more reliable than the others, his/her information should be weighted more heavily

when making the team decision.

The primary contribution of this paper is to derive continuous-time and discrete-time consensus

strategies, based on a Kalman-filter structure, that asymptotically achieves consensus in the

presence of an unreliable, dynamically changing communication topology, giving proper weight

to individuals with greater certainty in their coordination variable. In addition, we will show that

the Kalman consensus scheme is input-to-state stable (ISS) where the input is the communication

noise on each channel and the state is the consensus error between each pair of agents. The ISS

property will be exploited to develop a distributed multi-vehicle cooperative control solution to

the cooperative timing problem.

UAV cooperative timing problems have been investigated recently in the context of battlefield

scenarios where the UAVs are required to converge on the boundary of a radar detection area

to maximize the element of surprise [20], [12], [3], [21], [22]. Cooperative timing problems

also arise in refueling scenarios, fire and hazardous material monitoring, moving area of regard

problems, and continuous surveillance problems. In this paper we will investigate a simplified

cooperative timing problem that must be accomplished in the presence of an unreliable, dynam-

ically changing communication topology.

The paper is organized as follows. In SectionII , we give an intuitive, non-rigorous derivation of

the Kalman-like consensus strategies, and show their application to the meet-for-dinner problem.

SectionIII contains the main technical results that shows that the proposed consensus strategies
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are convergent under certain mild conditions. In SectionIV we show that the Kalman consensus

scheme is input-to-state stable. As a corollary, we show that most of the other consensus

schemes proposed in the literature, are also ISS. In SectionV the ISS property is exploited

to develop a distributed solution to the cooperative timing problem. Finally, SectionVI contains

our conclusions.

II. K ALMAN -FILTER APPROACH TOMULTI -AGENT CONSENSUS

The Kalman filter is used extensively to estimate a system’s current state from imprecise

measurement data [23], [24], [25]. It is well-known that the Kalman filter is an optimal estimator

in the case of Gaussian statistics and that it is the best linear estimator in the case of other

statistics [26]. Motivated by the Kalman filter scheme, we treat the final consensus value as the

system state, which is unknowna priori but is the final equilibrium state that each agent in

the group is expected to achieve. In the consensus problem, each agent has an estimate of the

final consensus value. Communication from other agents regarding their estimate of the final

consensus value will be regarded as measurement data. In this sense, each agent in the group

performs its own estimate of the final consensus value based on the information available to it.

Our goal is to guarantee that the information state of each agent achieves the final consensus

value. In other words, the objective is to minimize the mean squared error between each agent’s

estimate of the coordination variable and the final consensus value. The error covariance matrix

is interpreted as the confidence that each agent has in its current estimate of the coordination

variable, where large covariance indicates low confidence, and small covariance indicates a

high degree of confidence. In SectionII-A we will derive the Kalman-consensus scheme for

a continuous-time update scheme, and in SectionII-B we will address the discrete-time case.

Analytical properties of the algorithms will be derived in SectionIII .

A. Continuous-time Consensus

The standard continuous-time Kalman filter is summarized in TableII-A [27]. The objective

of this section is to show how the Kalman filter equations can be used to derive a decentralized

information consensus scheme.

Let ξ∗ ∈ Rm be thea priori unknown information state over which the team is to form

consensus. In other words, each information stateξi will converge to the consensus valueξ∗ as
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System model and measurement model:

ẋ = Ax + Bu + Gw

z = Hx + v

x(0) ∼ (x̄0, P0), w ∼ (0, Q), v ∼ (0, R)

Assumptions:

{w(t)} and{v(t)} are white noise processes uncorrelated withx(0)

and with each other.R > 0.

Initialization:

P (0) = P0, x̂(0) = x̄0

Error covariance update:

Ṗ = AP + PAT + GQGT − PHT R−1HP

Kalman gain:

K = PHT R−1

Estimate update:

˙̂x = Ax̂ + Bu + K(z −Hx̂)

TABLE I

CONTINUOUS-TIME KALMAN FILTER [27].

t →∞. Note that the consensus value will depend not only on interaction topologies but on the

weighting factors in the update schemes. In this paper we will assume that the consensus state

is a constant, which implies that the system dynamics are given by

ξ̇∗ = w,

where, with reference to TableII-A , A = 0, B = 0, G = Im, and E{wwT} = Q. In the

following, we assume thatQ(t) > 0 is uniformly lower and upper bounded.

Treat theith information stateξi as theith agent’s estimate ofξ∗ and suppose that thej th

agent communicatesξj to the ith agent with transmission, or communication noiseνij. Also, let

gij(t) be a time-varying boolean variable that indicates the presence of an open communication

channel from agentj to agenti at time t, i.e., gij(t) = 1 if information is communicated from

j to i at time t and zero otherwise. Note thatgii(t)
4
= 1. Using these definitions, it is clear that
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the measurement model of theith agent can be given by

zi =




gi1 (ξ1 + νi1)
...

giN (ξN + νiN)




=




gi1I
...

giNI


 ξ∗ +




gi1 (ξ1 − ξ∗ + νi1)
...

giN (ξN − ξ∗ + νiN)


 ,

where, with reference to TableII-A ,

HT
i =

(
gi1I . . . giNI

)

and

vi =




gi1 (ξ1 − ξ∗ + νi1)
...

giN (ξN − ξ∗ + νiN) .




If we definePi
4
= E{(ξi − ξ∗)(ξi − ξ∗)T} and assume thatE{(ξi − ξ∗)(ξj − ξ∗)T} = 0, where

i 6= j, then

Ri
4
= E{viv

T
i }

=




gi1(P1 + Ωi1) . . . 0
...

.. .
...

0 . . . giN(PN + ΩiN)


 ,

whereΩij
4
= E{νijν

T
ij} is assumed to be upper bounded.

Therefore, the error covariance update in TableII-A becomes

Ṗi = −PiH
T
i R−1

i HiPi + Q

= −Pi[
N∑

j=1

gij(Pj + Ωij)
−1]Pi + Q.

Similarly, the Kalman gain is given by

Ki = PiH
T
i R−1

i

=
(
gi1Pi(P1 + Ωi1)

−1 · · · ginPi(PN + ΩiN)−1

)
,
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and the estimate update is given by

ξ̇i = Ki(zi −Hiξi)

= Ki







gi1(ξ1 + νi1)
...

gin(ξN + νiN)


−




gi1Im

...

giNIm


 ξi




=
N∑

j=1

Kijgij(ξj − ξi + νij),

whereKi = [Ki1, Ki2, · · · , Kin].

Summarizing, we have the following Kalman consensus scheme for theith agent:

Ṗi = −Pi

[∑
j

gij(t)(Pj + Ωij)
−1

]
Pi + Q (1)

Kij = Pi(Pj + Ωij)
−1 (2)

ξ̇i =
n∑

j=1

gij(t)Kij ((ξj + νij)− ξi) . (3)

Note that Eq. (1) indicates that the certainty of information increases with communication but

decreases with the size of the process noise. In addition, the rate of increase in certainty for

the ith agent is inversely proportional to the certainty of thej th agent and the communication

noise. Note also that the Kalman gainKij is reduced if either the communication noise is large,

or if the certainty of thej th agent is small (hencePj large). Note that Eq. (3) is similar to the

continuous-time consensus schemes proposed in [14], [15], [11] except that the consensus gain

Kij is time-varying in (3), and the communication noise is explicitly included.

B. Discrete-time Consensus

The standard discrete-time Kalman filter is summarized in TableII-B [27]. Again assuming

that ξ∗ is constant we get

ξ∗[k + 1] = ξ∗[k] + w[k],

where, with reference to TableII-A , A[k] = I, B[k] = 0, G[k] = Im, andE{w[k]w[k]T} = Q[k].

Again letting νij[k] represent the communication noise, the measurement model for theith

agent can be given by

November 24, 2004 DRAFT
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System model and measurement model:

x[k + 1] = A[k]x[k] + B[k]u[k] + G[k]w[k]

z[k] = H[k]x[k] + v[k]

x(0) ∼ (x̄0, Px0), w ∼ (0, Q[k]), v[k] ∼ (0, R[k])

Assumptions:

{w[k]} and{v[k]} are white noise processes uncorrelated withx0

and with each other.R[k] > 0.

Initialization:

P [0] = Px0 , x̂0 = x̄0

Time update: (effect of system dynamics)

error covariance:P [k + 1]− = A[k]P [k]A[k]T + G[k]Q[k]G[k]T

estimte:x̂[k + 1]− = A[k]x̂[k] + B[k]u[k]

Measurement update: (effect of measurementz[k])

error covariance:P [k + 1] = [(P [k + 1]−)−1 + H[k + 1]T R[k + 1]−1H[k + 1]]−1

estimate:x̂[k + 1] = x̂[k + 1]− + P [k + 1]H[k + 1]T R[k + 1]−1(z[k + 1]−H[k + 1]x̂[k + 1]−)

TABLE II

DISCRETE-TIME KALMAN FILTER [27].

zi[k] =




gi1[k] (ξ1[k] + νi1[k])
...

giN [k] (ξN [k] + νiN [k])




=




gi1[k]I
...

giN [k]I


 ξ∗[k] +




gi1[k] (ξ1[k]− ξ∗[k] + νi1[k])
...

giN [k] (ξN [k]− ξ∗[k] + νiN [k])


 ,

where, with reference to TableII-A ,

HT
i [k] =

(
gi1[k]I . . . giN [k]I

)

and

vi =




gi1[k] (ξ1[k]− ξ∗[k] + νi1[k])
...

giN [k] (ξN [k]− ξ∗[k] + νiN [k])


 .

November 24, 2004 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, SUBMITTED FOR REVIEW. 10

If we definePi[k]
4
= E{(ξi[k]− ξ∗[k])(ξi[k]− ξ∗[k])T} and assume thatE{(ξi[k]− ξ∗[k])(ξj[k]−

ξ∗[k])T} = 0, wherei 6= j, then

Ri[k]
4
= E{vi[k]vi[k]T}

=




gi1[k](P1[k] + Ωi1[k]) . . . 0
...

. ..
...

0 . . . giN [k](PN [k] + ΩiN [k])


 ,

whereΩij[k]
4
= E{νij[k]νij[k]T}.

Therefore, the time update in TableII-B becomes

P−
i [k + 1] = Pi[k] + Q[k]

ξ−i [k + 1] = ξi[k].

The measurement update is given by

Pi[k + 1] =
[
(P−

i [k + 1])−1 + HT
i [k + 1]R−1

i [k][k + 1]Hi[k + 1]
]−1

= [(Pi[k] + Q[k])−1 +
n∑

j=1

gij[k](Pj[k] + Ωij[k])−1]−1,

ξi[k + 1] = ξ−[k + 1] + Pi[k + 1]HT
i [k + 1]R−1

i [k + 1]
(
zi[k + 1]−Hi[k + 1]ξ−[k + 1]

)

= ξi[k] + Pi[k + 1]

(
n∑

j=1

[
gij[k](Pj[k] + Ωij)

−1[k] ((ξj[k] + νij[k + 1])− ξi[k])
]
)

.

Summarizing, we have the following discrete-time Kalman consensus scheme for theith agent:

Pi[k + 1] = [(Pi[k] + Q[k])−1 +
n∑

j=1

gij[k](Pj[k] + Ωij[k])−1]−1, (4)

ξi[k + 1] = ξi[k] + Pi[k + 1]

(
n∑

j=1

[
gij[k](Pj[k] + Ωij)

−1[k] (ξj[k] + νij[k + 1])− ξi[k])
]
)

.

(5)

C. Meet for Dinner Example

To illustrate, consider the meet-for-dinner problem discussed in the introduction. Suppose that

there areN = 10 agents who communicate with exactly one other individual, chosen randomly

from the group, for a random length of time. After the communication has expired, the process
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Fig. 1. Continuous-time meet-for-dinner simulation. The subplot in the upper left shows the evolution of the coordination

variable assuming that all agents begin with equally confident covariance. The subplot in the lower left shows the associated

covariance. The subplots on the right show identical data where the agent with initial timeξi = 7 has an initial covariance of

Pi = 0.001.

is repeated. Figure1 shows the state and variance plots under the continuous Kalman consensus

scheme (1)–(3) where the initial state is uniformly assigned. The subplots on the left show the

arrival times and variance when the initial variances are uniformly assigned. The subplots on

the right show the arrival times and variances when the variance of the agent with initial arrival

time ξi = 7 is given an initial variance ofPi = 0.001, which is significantly lower than the other

agents. Note that in this case, the final consensus value is influenced to a greater degree by this

agent. Figure2 shows similar plots using the discrete Kalman consensus scheme (4)–(5). Both

the continuous-time and discrete-time simulations use the valuesΩij = 0.1, Q = 0.1.

III. C ONVERGENCERESULTS

The objective of this section is to state some technical properties of the algorithms given in

Eqs. (1)–(3) and Eqs. (4)–(5). For notational simplicity, we will focus on the case where each

information stateξ∗ is a scalar. The vector case reduces to the scalar case ifPi0 is a diagonal

matrix. The general case wherePi0 is non-diagonal is currently a topic of research. In SectionIII-

A, we will introduce some notation and results from graph theory and non-negative matrices

that will be used in the convergence arguments. In SectionIII-B we analyze the continuous-time

case and in SectionIII-C we analyze the discrete-time case.

November 24, 2004 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, SUBMITTED FOR REVIEW. 12

0 10 20 30
4.5

5

5.5

6

6.5

7

7.5

ξ
i

No Leader

0 10 20 30
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time

P
i

0 10 20 30
4.5

5

5.5

6

6.5

7

7.5
Leader

0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

Fig. 2. Discrete-time meet-for-dinner simulation. The subplot in the upper left shows the evolution of the coordination variable

assuming that all agents begin with equally confident covariance. The subplot in the lower left shows the associated covariance.

The subplots on the right show identical data where the agent with initial timeξi = 7 has an initial covariance ofPi = 0.001.

A. Preliminaries

LetA = {Ai|i ∈ I}, whereI = {1, 2, · · · , n}, be a set ofn agents among whom consensus is

desired. A directed graphG will be used to model the interaction topology among these agents.

In G, the ith vertex represents theith agentAi and a directed edge fromAi to Aj denoted as

(Ai, Aj) represents a unidirectional information exchange fromAi to Aj, that is, agentj receives

information from agenti, (i, j) ∈ I. If the information flows from agenti to agentj, agenti

is called the parent ofj, and agentj is called the child ofi. A directed path in graphG is a

sequence of edges(Ai1 , Ai2), (Ai2 , Ai3), (Ai3 , Ai4), · · · in that graph. GraphG is called strongly

connected if there is a directed path fromAi to Aj andAj to Ai between any pair of distinct

verticesAi and Aj, ∀(i, j) ∈ I. A directed tree is a directed graph, where every node, except

the root, has exactly one parent. A spanning tree of a directed graph is a directed tree formed

by graph edges that connect all the vertices of the graph [28]. We say that a directed graph

has a spanning tree if there exists a spanning tree that is a subset of the directed graph. Fig.3

shows a directed graph with more than one possible spanning trees. The double arrows denote

one possible spanning tree withA5 as the parent. Spanning trees withA1 andA4 as the parent,

are also possible. As a comparison, Figs.4 shows two cases where the graph does not have a

spanning tree.

November 24, 2004 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, SUBMITTED FOR REVIEW. 13

_^]\XYZ[A5
(0

$$

_^]\XYZ[A1

©³
px_^]\XYZ[A4

::

_^]\XYZ[A2

v~
_^]\XYZ[A3

Fig. 3. A directed graph that has more than one possible spanning trees, but is not strongly connected. One possible spanning

tree is denoted with double arrows.
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Fig. 4. (a) A directed graph that has two leaders, and hence does not contain a spanning tree. (b) A directed graph that has

two isolated groups, and hence does not contain a spanning tree.

The interaction topology may change dynamically. LetḠ = {G1,G2, · · · ,GM} denote the set

of all possible directed interaction graphs defined forA. It is obvious thatḠ has a finite number

of elements and thatG(t) ∈ Ḡ. The union of a set of directed graphs{Gi1 ,Gi2 , · · · ,Gim} ⊂ Ḡ is

a directed graph with vertices given byAi, i ∈ I and edge set given by the union of the edge

sets ofGij , j = 1, · · · ,m. We will assume throughout the paper that the interaction topology

does not switch infinitely fast.

Let Mn(R) represent the set of alln × n real matrices. Given a matrixA = [aij] ∈ Mn(R),

the directed graph ofA, denoted byΓ(A), is the directed graph onn verticesVi, i ∈ I, such

that there is a directed edge inΓ(A) from Vj to Vi if and only if aij 6= 0 [29]. For example, the
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directed graph of the matrix

A =




0 0 0 0 a15

a21 0 0 0 a25

0 a32 0 0 0

a41 0 0 0 0

0 0 0 a54 0




,

whereaij 6= 0, corresponds to the graph in Fig.3.

A matrix A = [aij] ∈ Mn(R) is nonnegative, denoted asA ≥ 0, if all its entries are nonneg-

ative. Furthermore, if all its row sums are+1, A is said to be a (row) stochastic matrix [29]. A

stochastic matrixP is called indecomposable and aperiodic (SIA) iflimn→∞ P n = 1yT , where

y is a column vector, and1 denotes ann× 1 column vector with all the entries equal to 1 [30].

For nonnegative matrices,A ≥ B implies thatA−B is a nonnegative matrix. It is easy to verify

that if A ≥ ρB, for someρ > 0, then the directed graph ofB is a subset of the directed graph

of A.

Two n × n nonnegative matrices are said to be of the same type if their zero elements are

in the same locations [30]. We will use the notationP ∼ Q to denote thatP andQ are of the

same type.

Lemma 3.1:Given n× n nonnegative matricesP , Q, R, andS, if P ∼ R andQ ∼ S, then

(P + Q) ∼ (R + S) andPQ ∼ RS. Moreover, if a time-varying nonnegative matrixM(t) with

continuous entries is of a fixed type fort ∈ [t1, t2], wheret1 < t2, thenM(t) ∼ ∫ t2
t1

M(t)dt.

Proof: Trivial.

Let ξi ∈ R, i ∈ I, represent theith information state associated with theith agent. The set of

agentsA is said to achieve consensus asymptotically if for anyξi(0), i ∈ I, ‖ξi(t)− ξj(t)‖ → 0

as t →∞ for each(i, j) ∈ I.

B. Continuous-time Consensus

The following theorem is our main technical result.

Theorem 3.2:Given switching interaction topologies and zero transmission or communication

noise, the Kalman consensus scheme given in Eqs. (1)–(3) achieves asymptotic consensus if there

exist infinitely many consecutive uniformly bounded time intervals such that the union of the

interaction graph across each interval has a spanning tree.

November 24, 2004 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, SUBMITTED FOR REVIEW. 15

The proof of this theorem depends upon the following five lemmas.

Lemma 3.3:Let C(t) = [cij(t)] ∈ Mn(R) be piecewise continuous, wherecij ≥ 0, i 6= j, and
∑

j cij = 0. Let ΦC(t, t0) be the corresponding transition matrix. ThenΦC(t, t0) is a stochastic

matrix with positive diagonal entries for anyt ≥ t0.

Proof: From [31], we know that

ΦC(t, t0)

= I +

∫ t

t0

C(σ1) dσ1 +

∫ t

t0

C(σ1)

∫ σ1

t0

C(σ2) dσ2 dσ1 + · · · . (6)

Noting thatC(t)1 = 0, where1 is a column vector of ones, we can verify thatΦC(t, t0)1 = 1.

Note thatC(t) can be written asB(t)− µIn, whereB(t) is a nonnegative matrix andµ is a

constant greater thanmaxτ∈[t0,t] maxi∈I |cii(τ)|. It is straightforward to see that

d

dt
ΦC(t, t0) = C(t)ΦC(t, t0)

and

d

dt
[ΦB(t, t0)e

−µ(t−t0)]

= B(t)ΦB(t, t0)e
−µ(t−t0) − µΦB(t, t0)e

−µ(t−t0)

= (B(t)− µIn)ΦB(t, t0)e
−µ(t−t0)

= C(t)ΦB(t, t0)e
−µ(t−t0),

and thatΦC(t0, t0) = ΦB(t0, t0)e
−µ(t0−t0) = I. Therefore, we obtainΦC(t, t0) = ΦB(t, t0)e

−µ(t−t0).

From Eq. (6), it is straightforward to see thatΦB(t, t0) is nonnegative and has positive diagonal

entries. Therefore, it follows thatΦC(t, t0) is nonnegative and has positive diagonal entries.

Combining these arguments implies that the transition matrixΦC(t, t0) is a stochastic matrix

with positive diagonal entries.

Lemma 3.4:Let C(t) = [cij(t)] ∈ Mn(R) and C̃ = [c̃ij(t)] ∈ Mn(R) be continuous on

t ∈ [τ, s], where s > τ such thatcij(t) ≥ 0 and c̃ij(t) ≥ 0, ∀i 6= j, and
∑n

j=1 cij(t) =
∑n

j=1 c̃ij(t) = 0. Let ΦC(s, τ) and ΦC̃(s, τ) be the corresponding transition matrices. Also let

the graph associated withC(t) be fixed fort ∈ [τ, s] and suppose that̃C(t) corresponds to the

same fixed graph asC(t). Then the graph ofC(t) is a subset of the graph ofΦC(s, τ) and

ΦC(s, τ) ∼ ΦC̃(s, τ).
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Proof: Let C(t) = B(t)− µIn, whereB(t) is a nonnegative matrix andµ is a constant greater

thanmaxt∈[τ,s] maxi∈I |cii(t)|. Following Lemma3.3, we know thatΦC(s, τ) = ΦB(s, τ)e−µ(s−τ).

Note that the graphs associated withC(t) andB(t) are the same, so are the graphs associated

with ΦC(s, τ) andΦB(s, τ). Therefore from Eq. (6), we can see thatΦB(s, τ) ≥ ∫ s

τ
B(σ1)dσ1,

where
∫ s

τ
B(σ1)dσ1 ∼ B(t) for t ∈ [τ, s], or in other words, the graph associated withB(t) for

t ∈ [τ, s] is a subset of the graph associated withΦB(s, τ). Therefore, the graph associated with

C(t) for t ∈ [τ, s] is a subset of the graph associated withΦC(s, τ).

Note thatΦC̃(s, τ) = ΦB̃(s, τ)e−µ̃(s−τ), whereC̃ = B̃ − µ̃In. In order to show thatΦC is of

the same type asΦC̃ , we need to show thatΦB is of the same type asΦB̃. Note thatB and

B̃ are of the same type since they correspond to the same graph. By writingΦB andΦB̃ as in

Eq. (6) and comparing each term, Lemma3.1 implies that each corresponding term is of the

same type, which in turn implies thatΦB(s, τ) andΦB̃(s̃, τ̃) are of the same type.

Lemma 3.5:Let SA = {A1, A2, · · · , A`} be a set of stochastic matrices with positive diagonal

entries. If the graph associated withAi has a spanning tree, thenAi is SIA. If the union of the

graphs of matricesAi, i = 1, · · · , `, has a spanning tree, then the matrix productΠ`
i=1Ai is SIA.

Proof: The first statement is shown in Corollary 3.5 and Lemma 3.7 in [18]. For the second

statement, note that the product of stochastic matrices is still a stochastic matrix. Also note that

Π`
i=1Ai ≥ γ

∑`
i=1 Ai for someγ > 0 according to Lemma 2 in [14]. Since the union of the

graphs of matrices inSA has a spanning tree, it is obvious that the graph associate with
∑`

i=1 Ai

has a spanning tree. Therefore, it can be seen that the graph associated with the matrix product

has a spanning tree, which in turn implies, from the first statement of the Lemma, that the matrix

product is SIA.

Lemma 3.6:Let C(t) = [cij(t)] ∈ Mn(R) be piecewise continuous fort ∈ [τ, s], wheres > τ

is bounded,cij ≥ 0, i 6= j, and
∑

j cij = 0. If the union of the directed graphs of matrixC(t)

for t ∈ [τ, s] has a spanning tree, then the transition matrixΦC(s, τ) is SIA.

Proof: Note thatΦC(s, τ) = ΦC(s, t`)ΦC(t`, t`−1) · · ·ΦC(t1, τ), wheretj, j = 1, · · · , `, denotes

the times whenC(t) is discontinuous. From Lemma3.4, we know that the graph associated with

C(t) for eacht ∈ [ti−1, ti] is a subset of the graph associated withΦC(ti, ti−1), i = 1, · · · , `+1.

In other words, if the union of the directed graphs of matrixC(t) has a spanning tree, so does the

union of the directed graphs of the corresponding transition matrices. Also note from Lemma3.4

that eachΦC(ti, ti−1) is a stochastic matrix with positive diagonal entries. The proof then follows
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from Lemma3.5.

Before moving on, we need the following definition from [30]. Given a stochastic matrix

S = [sij] ∈ Mn(R), define

λ(S) = 1−min
i1,i2

∑
j

min(si1j, si2j).

Note thatλ(S) ≤ 1 for any stochastic matrixS. If λ(S) < 1, S is called a scrambling matrix.

λ(S) = 0 if and only if the rows ofS are identical. The introduction ofλ will be useful for the

proof of Theorem3.2.

Lemma 3.7:(See [30].) Let S = {S1, S2, · · · , Sk} be a finite set of SIA matrices with

the property that for each sequenceSi1 , Si2 , · · · , Sij of positive length, the matrix product

SijSij−1
· · ·Si1 is SIA. Then for each infinite sequenceSi1 , Si2 , · · · there exists a column vector

ν such that

lim
j→∞

SijSij−1
· · ·Si1 = 1νT . (7)

In addition, in the case thatS is an infinite set,λ(W ) < 1, whereW = Sk1Sk2 · · ·SkNt+1
and

Nt is defined as the number of different types of alln× n SIA matrices. Furthermore, if there

exists a constant0 ≤ d < 1 satisfyingλ(W ) ≤ d, then Eq. (7) also holds.

Proof: See Lemma 4 and the concluding remarks in [30].

Proof of Theorem 3.2:

From Eq. (1), we see thatPi > 0 is uniformly lower bounded sinceQi is uniformly lower

bounded. Also noting that−Pi[
∑

j gij(t)(Pj + Ωij)
−1]Pi ≤ −P 2

i /(Pi + Ωii), we know thatPi is

uniformly upper bounded. From Eq. (2), we can see thatKij(t) > 0, ∀i 6= j, is uniformly lower

and upper bounded.

Let t0, t1, · · · be an infinite time sequence corresponding to the times at which graphG(t)

switches topology. Since the interaction topology cannot switch infinitely fast, we assume that

ti−ti−1 ≥ tL, ∀i = 1, 2, · · · . Note that each interval[ti−1, ti) can be divided into finite or infinite

number of subintervals such that the length of each subinterval is greater than or equal totL

but less than or equal totM = 2tL and the graph on each subinterval is fixed. Relabel these

subintervals ass0, s1, · · · .
Without transmission or communication noise, Eq. (3) can be rewritten in matrix form as

ξ̇ = Λ(t)ξ, where ξ = [ξ1, · · · , ξn]T and Λ(t) = [λij(t)]. As mentioned above, the solution
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can be denoted asξ(t) = Φ(t, sj)Φ(sj, sj−1) · · ·Φ(s1, s0)ξ(s0), whereΦ is the transition matrix.

Noting thatλij(t) = gij(t)Kij(t), ∀j 6= i, and
∑

j λij(t) = 0, we know thatΛ(t) is continuous

and satisfies the hypothesis of Lemma3.4 for t ∈ [sj−1, sj]. Noting thatKij(t) is uniformly lower

and upper bounded, we know that each nonzero, that is, positive, entryλij, wherei 6= j, satisfies

the property thatλij ∈ [λL, λM ], which is a compact set. In addition,λii = −∑
j 6=i λij, which is

also in a compact set. In the case that the interaction topology is switching with time, there are a

finite number of possible interaction topologies. For each possible interaction topology, note that

matrix Λ(t) has the same structure in the sense that positive, zero, and negative entries are in the

same places fort ∈ [sj−1, sj]. From Lemma3.4, each transition matrixΦ(sj, sj−1) is a stochastic

matrix, wheretL ≤ sj−sj−1 ≤ tM , andΦ(sj, sj−1) is of constant type over this interval, for each

possible interaction topology. Combining the above arguments with the fact thatΦ(sj, sj−1) is a

continuous function ofλij(t) for t ∈ [sj−1, sj], we see that each nonzero entry ofΦ(sj, sj−1) is

lower bounded for each possible interaction topology. It is straightforward to see that there are

only finitely many types forΦ(sj, sj−1). We know that there exists a sequence of unions of the

directed interaction graphs across some time intervals and each union is uniformly bounded and

has a spanning tree. Thus the transition matrixΦ(k) for each union is a product of finitely many

matricesΦ(ski
, ski−1

). From Lemma3.1, the type ofΦ(k) is uniquely decided by the order and

type of each element in its product. Also, from Lemma3.6, we know that eachΦ(k) is SIA. In

addition, noting that the graph associated with eachΦ(k) has a spanning tree, we see that any

number of products ofΦ(k) is also SIA according to the second part of Lemma3.5. Noting that

Φ(k) can only have finitely many types, we see that for each type ofΦ(k) its nonzero entries are

lower bounded. LetW = Φ(j1)Φ(j2) · · ·Φ(jNt+1). From the second part of Lemma3.7, we know

that λ(W ) < 1. Note thatW can only have finite many types, denoted asWt. In order to show

that λ(W ) ≤ d < 1, it is sufficient to show that for each type, there exists a0 ≤ di < 1 such

thatλ(W ) ≤ di. This can be verified by noting that the nonzero entries ofW are lower bounded

for each type. Letd = max{d1, d2, · · · , dWt}. It is obvious thatλ(W ) ≤ d. From Lemma3.7,

we can show thatξ(t) → 1νT ξ(0), whereν is a nonnegative column vector.

In previous results on consensus [14], [18], the coefficient matrixC(t) was assumed to be

piecewise constant with finite dwell time, and elements drawn from a finite set. The following

corollary of Theorem3.2 shows that these conditions can be relaxed.

Corollary 3.8: Let ξ̇ = C(t)ξ, where C(t) = [cij(t)] ∈ Mn(R) is piecewise continuous,
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cij ≥ 0, i 6= j,
∑

j cij = 0, and each nonzero entrycij, i 6= j, is both uniformly lower and upper

bounded. Under switching interaction topologies,ξi achieves consensus if there exist infinite

many consecutive uniformly bounded time intervals such that the union of the interaction graph

across each such interval has a spanning tree.

C. Discrete-time Consensus

Theorem 3.9:Given switching interaction topologies and zero transmission or communication

noise, the discrete-time Kalman consensus scheme listed in Eq. (4)–(5) achieves asymptotic

consensus if there exist infinitely many consecutive uniformly bounded time intervals such that

the union of the interaction graph across each interval has a spanning tree.

Proof: Without transmission or communication noise, Eq. (5) can be written as

ξi[k + 1] =

[
1− Pi[k + 1]

∑

j 6=i

gij[k](Pj[k] + Ωij)
−1

]
ξi[k]

+ Pi[k + 1]
∑

j 6=i

[
gij[k](Pj[k] + Ωij)

−1ξj[k]
]
. (8)

Note that each weighting factor ofξ` is less than or equal to 1 and the sum of the weighting

factors of ξ` is equal to 1, wherè ∈ I. Letting ξ = [ξ1, · · · , ξn]T , we can rewrite Eq. (8)

as ξ[k + 1] = D[k]ξ[k], where it can be verified thatD[k] is a stochastic matrix with positive

diagonal entries. In addition, for each possible interaction topology,D[k] is of the same type

and its nonzero entries are lower bounded.

We know that there exists a sequence of unions of the directed interaction graphs across some

time intervals and each union is uniformly bounded and has a spanning tree. LetD(i) be the

product of matricesD[k] over theith union. Note that eachD(i) is SIA from Lemma3.5. As a

result, the proof follows the same reasoning as the proof of Theorem3.2 with D(i) playing the

role of Φ(k).

IV. CONSENSUSSCHEMES AREINPUT-TO-STATE STABLE

We are primarily interested in the application of consensus algorithms to cooperative control

problems. In this section we will explore a control architecture where a consensus algorithm

is in cascade with a coordination algorithm, as shown in Figure5. Our purpose in this section
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Fig. 5. The control architecture consists of a consensus algorithm in cascade with a coordination algorithm. The consensus

algorithm receives information from the communication network to produce a value of the coordination variableξi. The

coordination algorithm uses the coordination variableξi to produce a command to the vehicleui. We assume that identical

consensus and coordination algorithms are implemented on each vehicle.

is to derive conditions on the consensus and coordination algorithms that guarantee that the

cooperation objective is achieved. Toward that end, rewrite Eq. (3) as

ξ̇i =
n∑

j=1

gij(t)Kij (ξj − ξi) +
n∑

j=1

gij(t)Kijνij. (9)

Letting xij = ξi − ξj andx = (x11, x12, . . . , x1n, x21, . . . , xnn)T , we get the state-space model

ẋ = A(t)x + B(t)ν (10)

where ν is a column vector created by stacking the communication noise termsνij, and the

elements ofA(t) and B(t) are linear combinations ofgijKij(t) and can be easily constructed

from Eq. (9). The vectorx represents the total consensus error.

Theorem 4.1:Under the hypothesis of Theorem3.2, the Kalman consensus scheme given by

Eqs. (1), (2), and (10) is input-to-state stable.

The proof of this theorem requires the following two lemmas.

Lemma 4.2:Under the hypothesis of Theorem3.2, if the communication errorν is zero, then

the consensus errorx is uniformly stable.

Proof: Note that ξ(t) = Φ(t, t0)ξ(t0), where Φ(t, t0) is a stochastic matrix according to

Lemma3.3. As a result, we see that theith coordination variableξi(t) is equal to a weighted

average of all agents’ initial coordination variables communicating with agenti. Since a weighted
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average can never be greater (or smaller) than any one of the components in the average, we

know thatξi(t) ∈ [minj ξj(t0), maxj ξj(t0)] for all t and i. Then it is straightforward to see that

‖x(t)‖∞ ≤ ‖x(t0)‖∞ , for t ≥ t0.

Lemma 4.3:The norm ofB(t) in Eq. (10) is bounded.

Proof: SinceB(t) is composed of linear combinations ofKij(t), if ‖Kij(t)‖ is bounded for

each(i, j), then‖B(t)‖ will also be bounded.‖Kij‖ was shown to be bounded in the proof of

Theorem3.2.

Proof of Theorem4.1: By Lemma 4.2, the Kalman consensus error is uniformly stable. By

Theorem3.2, ‖ξi − ξj‖ → 0 as t → ∞ for all (i, j). Since each element ofx → 0, then

‖x‖ → 0 as t → ∞ and we conclude uniform asymptotic stability. Any linear system that is

uniformly asymptotically stable is also uniformly exponentially stable [31]. Additionally, linear

uniformly exponentially stable systems with‖B(t)‖ < β for finite β are bounded-input bounded-

output stable [31]. Since the Kalman consensus error governed by Eq. (10) is a linear uniformly

asymptotically stable system with‖B(t)‖ bounded, it is ISS.

Corollary 4.4: If the continuous-time consensus schemes presented in [11], [18], [14], and [15]

are augmented with communication noise, then the representation of these schemes that is

equivalent to Eq. (10) is ISS.

Proof: The difference between each of these schemes and Eq.3 is that the consensus gain

Kij(t) is time invariant. Therefore, from the proof of Theorem4.1 it is clear that they are ISS.

Referring to Figure5 we see that the combination of the communication network and the

consensus scheme is an ISS system. It is well known that the cascade combination of two ISS

systems is also ISS. Therefore if the feedback loop containing the coordination algorithm and

the ith vehicle is ISS from the consensus error to the cooperation objective, then the total system

will be ISS from the communication noise to the cooperation objection. This concept is shown

schematically in Figure6 and can be summarized by the following Theorem.

Theorem 4.5:If a consensus scheme is ISS from the communication noise to the consensus

error and a coordination scheme is ISS from the consensus error to the cooperation objective,

then the cascade interconnection of the two (see Fig.6) is ISS from the communication noise
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Coordination
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Fig. 6. The distributed cooperative control problem can be thought of as a cascade connection between the consensus algorithm

and the coordination algorithm. If both are ISS, then the cascade system will be ISS

to the cooperation objective.

V. I LLUSTRATIVE EXAMPLE - DISTRIBUTED COOPERATIVETIMING FOR A TEAM OF UAV S

Suppose that a team of UAVs, flying at distinct altitudes, is tasked to simultaneously visit

a pre-specified location. For simplicity, also assume that paths with appropriate velocities have

been precomputed for each UAV as shown in Figure7. Algorithms that achieve this functionality

are described in [21].
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Fig. 7. Cooperative timing scenario with five UAVs.

We will also assume that each UAV has autopilot functionality that maintains the UAV on its

pre-defined path, but that the velocity along the path can be adjusted to meet the simultaneous

arrival objective [32], [33]. We will assume that the velocity hold autopilot has been designed
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such that

v̇i = αi (v
c
i − vi) (11)

whereαi > 0, vi is the velocity, andvc
i is the commanded velocity for theith UAV. Let Li denote

the length of the path remaining to the target, then

L̇i = −vi.

Given Li andvi, the ith UAV can estimate its expected time-of-arrival as

τi =
Li

vi

.

Therefore

τ̇i =
viL̇i − Liv̇i

v2
i

= −1− αiτi

(
vc

i − vi

vi

)
.

The cooperation objective for this problem is that each UAV arrives at its destination simulta-

neously, i.e.τi − τj = 0 for each(i, j). The coordination variable for this problem is chosen

as the arrival time. Thereforeξi represents theith UAVs understanding of the team arrival time.

Letting

vc
i = vi +

vi

αiτi

(γτi − γξi − 1) (12)

we get that

τ̇i = −γτi + γξi.

Note that

(τ̇i − τ̇j) = −γτi + γξi + γτj − γξj

= −γ (τi − τj) + γ (ξi − ξj) ,

and that the systeṁφ = −γφ + γu is input-to-state stable. In fact we have that

|φ(t)| ≤ e−γ(t−t0)φ(t0) + sup
t0≤σ≤t

|u(σ)| .

Therefore, from Theorem4.5, the combination of the consensus strategy given by Eqs. (1)–

(3) and the velocity controller given by Eq. (12) is input-to-state stable with the input being
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communication noise and the state consisting of both the consensus discrepancyξi− ξj and the

UAV arrival discrepancyτi − τj.

The cooperative timing scenario was simulated with an unreliable switching communication

topology. The team is connected in the graph shown in Fig.8 where each link is only available

70 percent of the time. When an agent receives communication it updates its estimate ofξ using

1

2

3

4

5

Fig. 8. Union of possible communication topologies.

the Kalman consensus scheme of SectionII-A . In between consensus updates, agents control

their velocity using Equation (12). Five agents were given a single target at which to arrive

simultaneously. Fig.7 shows the application scenario, where each red circle represents an agent,

the blue circles represent threats, the blue square represents the target, and the green lines are

the waypoint paths.

In the first case, communication noise was set to zero and each agent started with approxi-

mately the same confidence in its estimate ofξ. A plot of ξ for each vehicle is shown in Fig.9(a)

and Fig.9(b)showsτ for each vehicle. As can be seen, each agent in the team achieves agreement

using consensus, adjusts its velocity to matchξi, and arrives at the target in approximately 20

seconds.

In the second case, significant communication noise is added.ξ is shown for each vehicle

in Fig. 10(a) and τ for each vehicle is shown in Fig.10(b). As can be seen, each agent in the

team achieves approximate agreement using consensus where the error in agreement is due to

the communication noise.
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Fig. 9. Cooperative timing with no communication noise.
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(a) Estimated team time of arrival,ξ, for each agent
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(b) Actual time of arrival,τ , for each agent

Fig. 10. Cooperative timing with significant communication noise.

VI. CONCLUSION

This paper has considered the problem of consensus seeking with relative uncertainty in

distributed multi-agent systems. We have proposed discrete-time and continuous-time Kalman

filter-like consensus schemes that are appropriate when different agents in the group may have

different confidences about their information state. Sufficient conditions have been shown for

consensus seeking using the proposed consensus schemes under switching interaction topologies.
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Consensus schemes were shown to be input-to-state stable from the communication noise to the

consensus error. This fact was exploited in an application to a UAV distributed cooperative timing

scenario.
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