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Kalman Consensus Strategies and Their

Application to Cooperative Control

Wei Ren,Member,Randal W. BeardSenior MemberDerek Kingston Student

Member

Abstract

In this paper, we propose discrete-time and continuous-time consensus update schemes motivated
by the discrete-time and continuous-time Kalman filters. With certainty information encoded into each
agent, the proposed consensus schemes explicitly account for relative confidence in the information that
is communicated from each agent in the team. We show mild sufficient conditions under which consensus
can be achieved using the proposed schemes in the presence of switching interaction topologies. The
Kalman consensus scheme is shown to be input-to-state stable. We show how to exploit this fact in

multi-agent cooperative control scenarios.

Index Terms

Information consensus, multi-agent systems, cooperative control, switched systems, Kalman filter-

ing.

I. INTRODUCTION

During the last two decades there has been a dramatic paradigm shift in the way that com-

puter systems are designed: moving from centralized mainframe computers to networks of less
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capable, but much less expensive, personal computers. In much the same way, replacing large,
expensive, monolithic vehicles with teams of networked vehicles, promises less expensive, more
capable systems. In addition, there are applications where a team of vehicles can accomplish
objectives that would be impossible for a single vehicle. For example, a formation of networked
spacecraft could be used to synthesize a space-based interferometer with base-lines reaching tens
to hundreds of kilometersl], [2]. With teams of vehicles, much of the design complexity is
shifted from mechanical hardware design to software that regulates the interaction of the team.

In recent years, there has been significant interest and research activity in the area of coordi-
nated and cooperative contrd][[4], [5], [6], [7], [8], [9], [10]. Much of this work assumes the
availability of global team knowledge, and/or the ability to plan group actions in a centralized
manner.

Centralized coordination techniques are suitable if each member of the team has the ability
to communicate to a centralized location or if the team is able to share information via a static
fully connected network. On the other hand, real-world communication topologies are usually
not fully connected. In many cases they depend on the relative position of the vehicles and on
other environmental factors and are therefore dynamically changing in time. In addition, wireless
communication channels are subject to multi-path, fading and drop-out. Therefore, cooperative
control in the presence of real-world communication constraints, becomes a significant challenge.

In a recent article we argued that “shared information is a necessary condition for coop-
eration” [11]. Shared information may take the form of common objectives, common control
algorithms, relative position information, or a world map. If this assertion is true, then information
exchange becomes a central issue in cooperative control. In this article, we will refer to the
information that is necessary for coordination as toerdination informationor coordination
variable [12]. In the presence of an unreliable, dynamically changing communication topology,
it is not possible for all of the vehicles to have access to identical coordination information.
Suppose that a particular cooperation strategy has been devised and shown to work if the team
has global access to the coordination information. Cooperation will occur if each member on
the team has access to the same information.

As an example, consider the meet-for-dinner problem introduced ip [n this problem,

a group of friends decide to meet for dinner at a particular restaurant but fail to specify a

precise time to meet. On the afternoon of the dinner appointment, each individual realizes that
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they are uncertain about the time that the group will meet for dinner. A centralized solution to
this problem is for the group to have a conference call, to poll each individual regarding their
preferred time for dinner, and to average the answers to arrive at a time that the group will meet
for dinner. However, this centralized solution requires that a conference line is available, and
that the time of the conference call is known to the group. Since, whatever algorithm was used
to convey the time of the conference call to the group, could also have been used to convey the
time to meet for dinner, the central problem remains.

The information variable in this example is the time that the group will meet for dinner.
The particular time is not what is important, but rather that each individual in the group has a
consistent understanding of that information. A decentralized solution to the problem would be
for each individual to call, one at a time, a subset of the group. Given his current estimate of
the meeting time, the individual might update his estimate of the meeting time to be a weighted
average of his current meeting time and that of the person with whom he is conversing. The
guestion (which will be answered in this paper) is under what conditions this strategy will enable
the entire team to converge to a consistent meeting time.

Therefore, if a centralized solution to a cooperation problem, with its associated coordination
information, has been devised, then two additional questions must be addressed. First, what
algorithms should be employed to ensure that the team is converging to a consistent view of the
coordination information in the presence of an unreliable, dynamically changing communication
topology? Second, if the action of the group is based on the (dynamically changing) coordination
variable, will the cooperative control algorithm be robust with respect to the transient error in
the coordination variable across the team?

Convergence to a consistent view of the coordination variable in the presence of an unreliable,
dynamically changing communication topology is called the consensus problem. Consensus
problems have recently been addressedlB), [[14], [19], [16], [17], [11], [1§], [19], to name
a few. In [14], sufficient conditions are given for consensus of the heading angles of a group of
agents under undirected switching interaction topologies15p [average consensus problems
are solved for a network of integrators using directed graphs.dhgnd [18], an algebraic graph
approach is used to show necessary and/or sufficient conditions for consensus of information
under time-invariant and switching interaction topologies respectively18]) & set-valued Lya-

punov function approach is used to consider discrete-time consensus problems with unidirectional
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time-dependent communication links.

Previous consensus seeking results reported in the literature do not explicitly account for
agent confidence in their instantiation of the coordination variable. Most results assume that
each individual in the group has identical confidence in their instantiation of the coordination
variable. However, there are many cases where some individuals on the team will have access
to better information than others. In cases like these, the consensus algorithm needs to be biased
to favor agents with better information. For example, if a team of UAVs is tasked with tracking
the location of a group of ground vehicles, the quality of information will be proportional to
the relative sensing distance. UAVs that have recently flown close to a ground vehicle should be
considered more reliable than those that are sensing from a greater distance, or whose information
is old. As another example, in the meet-for-dinner problem described above, if one individual is
considered more reliable than the others, his/her information should be weighted more heavily
when making the team decision.

The primary contribution of this paper is to derive continuous-time and discrete-time consensus
strategies, based on a Kalman-filter structure, that asymptotically achieves consensus in the
presence of an unreliable, dynamically changing communication topology, giving proper weight
to individuals with greater certainty in their coordination variable. In addition, we will show that
the Kalman consensus scheme is input-to-state stable (ISS) where the input is the communication
noise on each channel and the state is the consensus error between each pair of agents. The ISS
property will be exploited to develop a distributed multi-vehicle cooperative control solution to
the cooperative timing problem.

UAV cooperative timing problems have been investigated recently in the context of battlefield
scenarios where the UAVs are required to converge on the boundary of a radar detection area
to maximize the element of surpris€Q], [12], [3], [21], [22]. Cooperative timing problems
also arise in refueling scenarios, fire and hazardous material monitoring, moving area of regard
problems, and continuous surveillance problems. In this paper we will investigate a simplified
cooperative timing problem that must be accomplished in the presence of an unreliable, dynam-
ically changing communication topology.

The paper is organized as follows. In Sectibrwe give an intuitive, non-rigorous derivation of
the Kalman-like consensus strategies, and show their application to the meet-for-dinner problem.

Sectionlll contains the main technical results that shows that the proposed consensus strategies
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are convergent under certain mild conditions. In Sectibrwe show that the Kalman consensus
scheme is input-to-state stable. As a corollary, we show that most of the other consensus
schemes proposed in the literature, are also ISS. In Sevtitime ISS property is exploited

to develop a distributed solution to the cooperative timing problem. Finally, Sectimontains

our conclusions.

[I. KALMAN -FILTER APPROACH TOMULTI-AGENT CONSENSUS

The Kalman filter is used extensively to estimate a system’s current state from imprecise
measurement dat3)], [24], [25]. It is well-known that the Kalman filter is an optimal estimator
in the case of Gaussian statistics and that it is the best linear estimator in the case of other
statistics p6]. Motivated by the Kalman filter scheme, we treat the final consensus value as the
system state, which is unknowan priori but is the final equilibrium state that each agent in
the group is expected to achieve. In the consensus problem, each agent has an estimate of the
final consensus value. Communication from other agents regarding their estimate of the final
consensus value will be regarded as measurement data. In this sense, each agent in the group
performs its own estimate of the final consensus value based on the information available to it.
Our goal is to guarantee that the information state of each agent achieves the final consensus
value. In other words, the objective is to minimize the mean squared error between each agent’s
estimate of the coordination variable and the final consensus value. The error covariance matrix
is interpreted as the confidence that each agent has in its current estimate of the coordination
variable, where large covariance indicates low confidence, and small covariance indicates a
high degree of confidence. In SectidhA we will derive the Kalman-consensus scheme for
a continuous-time update scheme, and in Sedligh we will address the discrete-time case.

Analytical properties of the algorithms will be derived in Sectidn

A. Continuous-time Consensus

The standard continuous-time Kalman filter is summarized in Table [27]. The objective
of this section is to show how the Kalman filter equations can be used to derive a decentralized
information consensus scheme.

Let ¢&* € R™ be thea priori unknown information state over which the team is to form

consensus. In other words, each information s§ateill converge to the consensus valgeas
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System model and measurement model:

& = Az + Bu + Gw

z=Hzx+wv

z(0) ~ (Zo, Po),w ~ (0,Q),v ~ (0, R)
Assumptions:
{w(t)} and{v(t)} are white noise processes uncorrelated with)
and with each othe? > 0.
Initialization:

P(0) = Py, #(0) = Zo
Error covariance update:

P=AP+PA" + GQG" — PH"R'HP
Kalman gain:

K=PH"R™!
Estimate update:

&= Ai + Bu+ K(z — Hz)

TABLE |

CONTINUOUS-TIME KALMAN FILTER [27].

t — oo. Note that the consensus value will depend not only on interaction topologies but on the
weighting factors in the update schemes. In this paper we will assume that the consensus state

is a constant, which implies that the system dynamics are given by
& =w,

where, with reference to Table-A, A = 0, B = 0, G = I,,, and F{ww’} = Q. In the
following, we assume thap(t) > 0 is uniformly lower and upper bounded.

Treat the:™ information state¢; as the:™" agent's estimate of* and suppose that thg"
agent communicates to thei™ agent with transmission, or communication noise Also, let
g:;(t) be a time-varying boolean variable that indicates the presence of an open communication
channel from agenf to agent: at timet, i.e., g;;(t) = 1 if information is communicated from

j to i at timet and zero otherwise. Note thaf(¢) 2. Using these definitions, it is clear that
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the measurement model of tii€ agent can be given by

g (&1 4+ vi)
Zi = :
gin (§n + vin)
gl gin (& — & +vi)
= & |e+ 5 ,
ginI gin (En — & 4+ vin)
where, with reference to Tabl&A,
H;T = (gz‘lf giNI>

and
gi1 (&1 — & +vin)

v; =
gin (v — & +vin) .

If we define P, £ E{(& — £)(& — €9)T} and assume thal{(& — &) (& — €97} =0, where
1 # 7, then

R 2 E{vv!'}

gil(P1+Qi1) 0

0 gzN(PN_I'QzN)

where(;; 2 E{v;v]} is assumed to be upper bounded.

Therefore, the error covariance update in Tablé becomes

Py = —PHR;'H;P, + Q
N
= —R>_g:4(P+ Q) P+ Q.
j=1
Similarly, the Kalman gain is given by
K; = PHR;'

= <9i1]3i(P1 + Qil)_l o ginPi(Py + qu)_1> )
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and the estimate update is given by
& = Ki(z — Hi&)

gi1 (& + vir) 9irlm
= K; : - : &

gin(§n + Vin) ginIm
N
= Z Ki;9i5(& — & + vig),
=1

where K; = [Kib Kig, -+, Km]

Summarizing, we have the following Kalman consensus scheme faf'tagent:

P= =P [> g5()(P+ )" | B+ Q (1)
Kij = Pi(Pj+ Q)" (2)
& = Zgij(t)Kz‘j ((& +vi) — &) - (3)

Note that Eq. {) indicates that the certainty of information increases with communication but
decreases with the size of the process noise. In addition, the rate of increase in certainty for
the i!" agent is inversely proportional to the certainty of tfie agent and the communication
noise. Note also that the Kalman gdif; is reduced if either the communication noise is large,
or if the certainty of thej™ agent is small (henc; large). Note that Eq.3) is similar to the
continuous-time consensus schemes proposeii4n [15], [11] except that the consensus gain

K;j is time-varying in 8), and the communication noise is explicitly included.

B. Discrete-time Consensus

The standard discrete-time Kalman filter is summarized in Tékie [27]. Again assuming
that£* is constant we get
§lk+ 1] =&k + wik],

where, with reference to TableA, A[k] = I, B[k] = 0, G[k] = I,,, and E{w|[k|w[k]*} = Qlk].
Again letting v;;[k] represent the communication noise, the measurement model faf" the

agent can be given by
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System model and measurement model:
xzlk + 1] = Alk]x[k] + B[k]ulk] + G[k]w]k]
z|k] = H[k]z[k] + v[k]
2(0) ~ (%o, Pro), w ~ (0, Q[K]), v[k] ~ (0, R[k])
Assumptions:
{w[k]} and {v[k]} are white noise processes uncorrelated with
and with each other[k] > 0.
Initialization:
P[0] = Ppy, %0 = To
Time update: (effect of system dynamics)
error covarianceP[k + 1]~ = A[k]P[k]A[k]T + G[K]Q[k]G[k]*
estimte:z[k + 1]~ = A[k]|z[k] + B[k]ulk]
Measurement update: (effect of measurement|[k])
error covarianceP[k + 1] = [(P[k + 1)) '+ Hk + 1]"Rk + 1] " H[k + 1]] !
estimate:z[k + 1] = [k + 1]~ + Pk + 1|H[k + 1]" Rk + 1] " (2[k + 1] — H[k + 1]2[k + 1]7)

TABLE I

DISCRETETIME KALMAN FILTER [27].

gin (k|1 gin (K] (Enlk] — §*[k] + vin[K])
where, with reference to Tabl&A ,
HzT[k?] = (gil[kﬂ giN[k]I>

and
gin[k] (&1[k] — € [k] + var [K])

UV, =

9in[k] (Enlk] = E°[K] + vin [K])

November 24, 2004 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, SUBMITTED FOR REVIEW. 10

If we define P,[k] £ E{(&[k] — & [k])(&[k] — £ [k])T} and assume thab{(&[k] — &*[k])(&[k] —
& [k)T} = 0, wherei # j, then

Rik] £ E{vik]u,[K]"}

gil[k](Pl [k?] + Qzl[k]) e ()

0 .. gin|K](Pn[K] + Qink])
where;;[k] £ E{vy[klvi;[k]7}.
Therefore, the time update in TableB becomes
P~k + 1] = Pk] + QK]
& [k +1] = &lk].
The measurement update is given by
Plk+1] = [(P [k +1)"" + HI [k + 1R, \[k][k + 1 H;[k +1]]

= [(P[k] + QK" + Zgij (] (P k] + Qs [k]) ],

Glk+ 1] =& [k+ 1)+ Bk + 1)H] [k + 1R [k + 1] (25[k + 1] — Hi[k + 1€ [k + 1))

= &ilk] + Pilk + 1] (Z [gi5 (k) (Pi[K] + Q) 7 K] ((&[K] + vig [k + 1]) — &[’d)}) :

j=1

Summarizing, we have the following discrete-time Kalman consensus scheme f8ragent:

Pilk+1] = [(P[k] + Q[k]) " + Z 9 [k (Pi[K] + Qi K]) '], (4)

Gilk + 1] = &Gk + Bk +1] (Z 935 (K] (P [K] + Qi) 7 k] (&[K] + viglk + 1]) — &Uf])]) :

j=1
)
C. Meet for Dinner Example

To illustrate, consider the meet-for-dinner problem discussed in the introduction. Suppose that
there areN = 10 agents who communicate with exactly one other individual, chosen randomly

from the group, for a random length of time. After the communication has expired, the process
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No Leader Leader

| \ \
65 6.5}
XN\
g e&* =
4 J/
55( 55f)

10 20 30 0 10 20 30

0.6 ‘\ 0.6
0.4 \ 0.4
0.2 0.2
/[

0 10 20 30 0 10 20 30
time time

Fig. 1. Continuous-time meet-for-dinner simulation. The subplot in the upper left shows the evolution of the coordination
variable assuming that all agents begin with equally confident covariance. The subplot in the lower left shows the associated
covariance. The subplots on the right show identical data where the agent with initiaf;tia& has an initial covariance of

P; = 0.001.

is repeated. Figur& shows the state and variance plots under the continuous Kalman consensus
scheme 1)—(3) where the initial state is uniformly assigned. The subplots on the left show the
arrival times and variance when the initial variances are uniformly assigned. The subplots on
the right show the arrival times and variances when the variance of the agent with initial arrival
time &; = 7 is given an initial variance of’;, = 0.001, which is significantly lower than the other
agents. Note that in this case, the final consensus value is influenced to a greater degree by this
agent. Figure2 shows similar plots using the discrete Kalman consensus sch&m@)( Both

the continuous-time and discrete-time simulations use the valyes 0.1, @ = 0.1.

[11. CONVERGENCERESULTS

The objective of this section is to state some technical properties of the algorithms given in
Egs. ()-(3) and Egs. 4)—(5). For notational simplicity, we will focus on the case where each
information statet* is a scalar. The vector case reduces to the scalar cd3g i$ a diagonal
matrix. The general case whefg, is non-diagonal is currently a topic of research. In Sectibn
A, we will introduce some notation and results from graph theory and non-negative matrices
that will be used in the convergence arguments. In Seclidh we analyze the continuous-time

case and in Sectioll-C we analyze the discrete-time case.
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No Leader Leader
75 75

7 7
1
65 65
EY
6l | 6
55 ﬁjr 55
5 5

45 45
0 10 20 30

o
=
1S5
N
S
W
S

16 14

1.4 1.2
12 1
P‘ 1 0.8
0.8 0.6
0.6 0.4
0.4 0.2

0.2 0
[} 10 20 30 0 10 20 30
time time

Fig. 2. Discrete-time meet-for-dinner simulation. The subplot in the upper left shows the evolution of the coordination variable
assuming that all agents begin with equally confident covariance. The subplot in the lower left shows the associated covariance.

The subplots on the right show identical data where the agent with initialg¢iree7 has an initial covariance aP; = 0.001.

A. Preliminaries

Let A= {A;|i € T}, whereZ = {1,2,--- ,n}, be a set of, agents among whom consensus is
desired. A directed grap@ will be used to model the interaction topology among these agents.
In G, the i vertex represents thd" agentA; and a directed edge from; to A; denoted as
(A;, A;) represents a unidirectional information exchange feénto A;, that is, agenj receives
information from agent, (i, ) € Z. If the information flows from agent to agentj, agenti
is called the parent of, and agentj is called the child ofi. A directed path in graplyy is a
sequence of edgds!;,, A;,), (Ai,, Ais), (Aiy, Aiy), - -+ In that graph. Graplg is called strongly
connected if there is a directed path frofp to A; and A; to A; between any pair of distinct
verticesA; and A;, V(i,5) € Z. A directed tree is a directed graph, where every node, except
the root, has exactly one parent. A spanning tree of a directed graph is a directed tree formed
by graph edges that connect all the vertices of the gr&gh We say that a directed graph
has a spanning tree if there exists a spanning tree that is a subset of the directed graph. Fig.
shows a directed graph with more than one possible spanning trees. The double arrows denote
one possible spanning tree witly as the parent. Spanning trees with and A, as the parent,
are also possible. As a comparison, Figshows two cases where the graph does not have a

spanning tree.

November 24, 2004 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, SUBMITTED FOR REVIEW. 13

@e

)
Ol jS

Fig. 3. A directed graph that has more than one possible spanning trees, but is not strongly connected. One possible spanning

tree is denoted with double arrows.

- &

Fig. 4. (a) A directed graph that has two leaders, and hence does not contain a spanning tree. (b) A directed graph that has

two isolated groups, and hence does not contain a spanning tree.

The interaction topology may change dynamically. Get= {G,,G,,--- ,Gu} denote the set
of all possible directed interaction graphs defined.forlt is obvious thaig has a finite number
of elements and thag(t) € G. The union of a set of directed grapf§;,,Gi,, -+ ,Gi,.} C G is
a directed graph with vertices given by, i € 7 and edge set given by the union of the edge
sets ofG;,, j = 1,---,m. We will assume throughout the paper that the interaction topology
does not switch infinitely fast.

Let M, (R) represent the set of all x n real matrices. Given a matrid = [a;;] € M,(R),
the directed graph ofl, denoted byl'(A), is the directed graph on verticesV;, i € Z, such
that there is a directed edge lii{A) from V; to V; if and only if a;; # 0 [29]. For example, the
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directed graph of the matrix

[0 0 0 0 ap |

aszr; 0 0 0 aos
A=1 0 ax 0 0 0 |,

an 0 0 0 0

| 0 0 0 as O |

wherea;; # 0, corresponds to the graph in Fig.

A matrix A = [a;;] € M,,(R) is nonnegative, denoted as> 0, if all its entries are nonneg-
ative. Furthermore, if all its row sums arel, A is said to be a (row) stochastic matrix9. A
stochastic matrix? is called indecomposable and aperiodic (SIAliifi,_... P"* = 137, where
y is a column vector, and denotes am x 1 column vector with all the entries equal to 30].
For nonnegative matrices| > B implies thatA — B is a nonnegative matrix. It is easy to verify
that if A > pB, for somep > 0, then the directed graph @ is a subset of the directed graph
of A.

Two n x n honnegative matrices are said to be of the same type if their zero elements are
in the same locations3p]. We will use the notation® ~ () to denote that” and (@ are of the
same type.

Lemma 3.1:Given n x n nonnegative matrice®, Q, R, andS, if P ~ R and(@ ~ S, then
(P+Q)~ (R+S5)and PQ ~ RS. Moreover, if a time-varying nonnegative matei{ (¢) with
continuous entries is of a fixed type fok [t,t,], wheret, < ¢, then M (t) ~ ttf M (t)dt.
Proof: Trivial. |

Let & € R, i € Z, represent theé™ information state associated with tif& agent. The set of
agentsA is said to achieve consensus asymptotically if for i9), i € Z, ||&;(t) — &(t)|| — 0

ast — oo for each(i,j) € Z.

B. Continuous-time Consensus

The following theorem is our main technical result.

Theorem 3.2:Given switching interaction topologies and zero transmission or communication
noise, the Kalman consensus scheme given in Hjs(3) achieves asymptotic consensus if there
exist infinitely many consecutive uniformly bounded time intervals such that the union of the

interaction graph across each interval has a spanning tree.
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The proof of this theorem depends upon the following five lemmas.

Lemma 3.3:Let C(t) = [¢;;(t)] € M,,(R) be piecewise continuous, wherg > 0, i # j, and
>_;¢ij = 0. Let @¢(t, o) be the corresponding transition matrix. Thén(t, o) is a stochastic
matrix with positive diagonal entries for ary> .

Proof: From [31], we know that
q)C(t’tO)

:[—l—/tC(al)dUl—i—/tC(al)/al Clos) dosdon + - - - | (6)

to to to

Noting thatC'(¢)1 = 0, wherel is a column vector of ones, we can verify thiat(¢,4y)1 = 1.
Note thatC'(¢) can be written as€3(t) — 1, where B(t) is a nonnegative matrix and is a

constant greater thamax.cp, 4 max;ez |c;;(7)|. It is straightforward to see that

%‘I)c(t,to) = C(t)Pc(t, to)

and

d
%[(DB(t, to)e—u(t—to)]

= B(t)®p(t, to)e*#(tfto) — udp(t, to)e—u(tfto)
= (B(t) - M]n)(I)B(ty to)e_“(t_to)
= G0yt 1)),

and thatb ¢ (ty, tg) = ®p(to, to)e o) = I, Therefore, we obtaifq(t,ty) = ®p(t, to)e 1),

From Eq. ©), it is straightforward to see thdis(¢,t,) is nonnegative and has positive diagonal

entries. Therefore, it follows thab.(t,t,) iS nonnegative and has positive diagonal entries.

Combining these arguments implies that the transition maiiXt, ¢y) is a stochastic matrix

with positive diagonal entries. [
Lemma 3.4:Let C(t) = [c;;(t)] € M,(R) and C' = [¢;(t)] € M,(R) be continuous on

t € [r,s], wheres > 7 such thatc;;(t) > 0 and &;(t) > 0, Vi # j, and Y7, ¢;(t) =

> 51 Cij(t) = 0. Let &¢(s,7) and @4 (s, 7) be the corresponding transition matrices. Also let

the graph associated withi(¢) be fixed fort € [r, s] and suppose that'(¢) corresponds to the

same fixed graph a€'(t). Then the graph of’(¢) is a subset of the graph @ (s,7) and

O (s,7) ~ Pi(s, 7).
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Proof: Let C(t) = B(t) — ul,, where B(t) is a nonnegative matrix and is a constant greater
thanmax,c(, 4 max;er |c;;(t)]. Following Lemma3.3, we know thatbc (s, 7) = ®p(s, 7)e #=),
Note that the graphs associated witlit) and B(¢) are the same, so are the graphs associated
with (s, 7) and @ (s, 7). Therefore from Eq.&), we can see thabp(s,7) > [ B(oy)doy,
where [* B(o)doy ~ B(t) for ¢ € [r, s], or in other words, the graph associated wift) for
t € [r,s] is a subset of the graph associated with(s, 7). Therefore, the graph associated with
C(t) for t € [r,s] is a subset of the graph associated véitfi(s, 7).
Note thatd (s, 7) = ®5(s, 7)e #~7), whereC' = B — jil,,. In order to show thafb. is of
the same type a®-, we need to show thaby is of the same type a$;. Note thatB and
B are of the same type since they correspond to the same graph. By witirand o5 asin
Eq. 6) and comparing each term, Lemm3al implies that each corresponding term is of the
same type, which in turn implies thdtz (s, 7) and ® (5, 7) are of the same type. |
Lemma 3.5:Let Sy = {A;, As,--- , Ay} be a set of stochastic matrices with positive diagonal
entries. If the graph associated with has a spanning tree, theh is SIA. If the union of the
graphs of matricesl;, i = 1,--- , £, has a spanning tree, then the matrix produict, 4; is SIA.
Proof: The first statement is shown in Corollary 3.5 and Lemma 3.71Bj. [For the second
statement, note that the product of stochastic matrices is still a stochastic matrix. Also note that
I, A > 722‘;1 A; for some~ > 0 according to Lemma 2 in1{]. Since the union of the
graphs of matrices it5 4 has a spanning tree, it is obvious that the graph associatez@ﬁ;h A;
has a spanning tree. Therefore, it can be seen that the graph associated with the matrix product
has a spanning tree, which in turn implies, from the first statement of the Lemma, that the matrix
product is SIA. |
Lemma 3.6:Let C(t) = [¢;;(t)] € M,(R) be piecewise continuous fore |7, s|, wheres > 7
is boundedg;; > 0, i # j, and ). ¢;; = 0. If the union of the directed graphs of matriX(t)
for t € [, s| has a spanning tree, then the transition madrixs, 7) is SIA.
Proof: Note that®q (s, 7) = ®c (s, t)Po(te, te—1) - - - Pe(ty, 7), wheret;, j =1,--- £, denotes
the times wherC(t) is discontinuous. From Lemnta4, we know that the graph associated with
C(t) for eacht € [t;_1,t;] is a subset of the graph associated whth(¢;,¢; 1),i=1,--- {4+ 1.
In other words, if the union of the directed graphs of mari¢) has a spanning tree, so does the
union of the directed graphs of the corresponding transition matrices. Also note from Lésma

that eachb(t;,¢;_1) is a stochastic matrix with positive diagonal entries. The proof then follows
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from Lemma3.5. [
Before moving on, we need the following definition frorB0[. Given a stochastic matrix
S = [si;] € M,(R), define

>‘(8> =1- mln Z min(‘shj? Si2j)'

11,22 j
Note that\(S) < 1 for any stochastic matrix. If A\(S) < 1, S is called a scrambling matrix.
A(S) = 0 if and only if the rows ofS are identical. The introduction of will be useful for the
proof of Theorem3.2,

Lemma 3.7:(See BQ].) Let S = {S1,5,,---,S,} be a finite set of SIA matrices with

the property that for each sequentg, S;,,---,S;, of positive length, the matrix product
Si;Si,_, -+ Si, is SIA. Then for each infinite sequenég , S;,,-- - there exists a column vector
v such that

lim 5,5, - S0 = 1. 7

In addition, in the case tha is an infinite set\(W) < 1, whereW = S Sk, - - Skxyia and
N, is defined as the number of different types ofzalk n» SIA matrices. Furthermore, if there
exists a constarl < d < 1 satisfying\(WW) < d, then Eq. {) also holds.

Proof: See Lemma 4 and the concluding remarks3a] [ [
Proof of Theorem 3.2

From Eq. (), we see thatP; > 0 is uniformly lower bounded sincé); is uniformly lower
bounded. Also noting that P[>~ g:;(t)(P; + Qi) P, < —P?/(P; + Q4), we know thatP; is
uniformly upper bounded. From E)( we can see thak(;;(t) > 0, Vi # j, is uniformly lower
and upper bounded.

Let to,t1,--- be an infinite time sequence corresponding to the times at which g@réaph
switches topology. Since the interaction topology cannot switch infinitely fast, we assume that
ti—t;1 >tr,Vi=1,2,---. Note that each interval; ,,¢;) can be divided into finite or infinite
number of subintervals such that the length of each subinterval is greater than or egual to
but less than or equal to, = 2¢; and the graph on each subinterval is fixed. Relabel these
subintervals asg, sq, - .

Without transmission or communication noise, Eg) ¢an be rewritten in matrix form as
£ = A(t)¢, whereé = [¢,---,&,]7 and A(t) = [\;(t)]. As mentioned above, the solution
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can be denoted a&t) = ®(t, s;)P(sj, 5j-1) - - - P(s1, 50)€(50), Wwhered is the transition matrix.
Noting that\;;(t) = g;;(1) Ki;(t), Vj # i, and ), A;(t) = 0, we know thatA(t) is continuous

and satisfies the hypothesis of Lemféfor ¢ € [s;_1, s;]. Noting thatk;;(¢) is uniformly lower

and upper bounded, we know that each nonzero, that is, positive, gntiyhere: # j, satisfies

the property thah;; € [A\., Ay, which is a compact set. In addition;;, = — Z#i Aij, Which is

also in a compact set. In the case that the interaction topology is switching with time, there are a
finite number of possible interaction topologies. For each possible interaction topology, note that
matrix A(t) has the same structure in the sense that positive, zero, and negative entries are in the
same places far € [s;_1, s;]. From LemmaB.4, each transition matri®(s;, s;_1) is a stochastic
matrix, wheret;, < s;—s;_1 < ty, and®(s;, s;_1) is of constant type over this interval, for each
possible interaction topology. Combining the above arguments with the facbtkats;_;) is a
continuous function of\;;(¢) for t € [s;_1, s;], we see that each nonzero entryd®(s;, s;_;) is

lower bounded for each possible interaction topology. It is straightforward to see that there are
only finitely many types fod(s;, s;_1). We know that there exists a sequence of unions of the
directed interaction graphs across some time intervals and each union is uniformly bounded and
has a spanning tree. Thus the transition mafi% for each union is a product of finitely many
matrices® (s, sr,_,). From Lemma3.1, the type of®®* is uniquely decided by the order and
type of each element in its product. Also, from Lemfa&, we know that eacld®) is SIA. In
addition, noting that the graph associated with e@tH has a spanning tree, we see that any
number of products ob*) is also SIA according to the second part of Lem#a Noting that

d*) can only have finitely many types, we see that for each type(8fits nonzero entries are
lower bounded. LetV = ®U1)@02) ... UNi+1), From the second part of Lemn$a7, we know

that A(W) < 1. Note thatl¥’ can only have finite many types, denotedlEs In order to show

that \(W) < d < 1, it is sufficient to show that for each type, there exist8 € d; < 1 such

that \(1¥) < d,. This can be verified by noting that the nonzero entrieB/oére lower bounded

for each type. Letl = max{d;,ds, - ,dw,}. It is obvious that\(WW) < d. From Lemma3.7,

we can show thaf(t) — 1v7£(0), wherev is a nonnegative column vector. [

In previous results on consensust], [18], the coefficient matrixC'(t) was assumed to be
piecewise constant with finite dwell time, and elements drawn from a finite set. The following
corollary of TheorenB.2 shows that these conditions can be relaxed.

Corollary 3.8: Let £ = C(t)¢, where C(t) = [c;;(t)] € M,(R) is piecewise continuous,
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cij > 0,1 # 7, Zj ¢;; = 0, and each nonzero entry;, i # j, is both uniformly lower and upper
bounded. Under switching interaction topologi€s,achieves consensus if there exist infinite
many consecutive uniformly bounded time intervals such that the union of the interaction graph

across each such interval has a spanning tree.

C. Discrete-time Consensus

Theorem 3.9:Given switching interaction topologies and zero transmission or communication
noise, the discrete-time Kalman consensus scheme listed in4E¢5) achieves asymptotic
consensus if there exist infinitely many consecutive uniformly bounded time intervals such that
the union of the interaction graph across each interval has a spanning tree.

Proof: Without transmission or communication noise, Eg). ¢an be written as

Gk +1] = (1= Bk +1])  gykI(Pk] + Q)" | GIK]
J#i
+ Bilk+ 1] [gu[K(Pi[k] + Qi) (K] (8)
J#

Note that each weighting factor @f is less than or equal to 1 and the sum of the weighting
factors of¢, is equal to 1, where € Z. Letting ¢ = [&,---,&,]7, we can rewrite Eq.§)
asé[k + 1) = D[k|¢[k], where it can be verified thaD[k] is a stochastic matrix with positive
diagonal entries. In addition, for each possible interaction topoldy¥| is of the same type
and its nonzero entries are lower bounded.

We know that there exists a sequence of unions of the directed interaction graphs across some
time intervals and each union is uniformly bounded and has a spanning tre@() die the
product of matricesD[k] over thei™ union. Note that eactb® is SIA from Lemma3.5. As a
result, the proof follows the same reasoning as the proof of The@rémwith D® playing the
role of ), |

IV. CONSENSUSSCHEMES AREINPUT-TO-STATE STABLE

We are primarily interested in the application of consensus algorithms to cooperative control
problems. In this section we will explore a control architecture where a consensus algorithm

is in cascade with a coordination algorithm, as shown in Figur®ur purpose in this section
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9i1€1
9i2€2

Communication Ginkn Consensus & Coordination | %i

Network Algorithm Algorithm —
on Vehicle 2 on Vehicle 2

Fig. 5. The control architecture consists of a consensus algorithm in cascade with a coordination algorithm. The consensus
algorithm receives information from the communication network to produce a value of the coordination védriablee
coordination algorithm uses the coordination variableo produce a command to the vehialg. We assume that identical

consensus and coordination algorithms are implemented on each vehicle.

is to derive conditions on the consensus and coordination algorithms that guarantee that the

cooperation objective is achieved. Toward that end, rewrite Boag

&= 050Ky (& — &)+ gi () Kijwi. (9)
j=1 j=1
Letting z;; = & — & andx = (w11, 212, . . ., T1n, Ta1, - - -, Tnn)’, WE get the state-space model
T = A(t)x + B(t)v (20)

where v is a column vector created by stacking the communication noise tegmand the
elements ofA(t) and B(t) are linear combinations af;; K;;(t) and can be easily constructed
from Eqg. @). The vectorz represents the total consensus error.

Theorem 4.1:Under the hypothesis of TheoreBn?, the Kalman consensus scheme given by
Egs. (), (2), and (0) is input-to-state stable.

The proof of this theorem requires the following two lemmas.

Lemma 4.2:Under the hypothesis of Theoresn?, if the communication error is zero, then
the consensus errar is uniformly stable.
Proof: Note that&(t) = ®(¢,t0)E(to), Where ®(¢,t,) is a stochastic matrix according to
Lemma3.3. As a result, we see that th# coordination variable;(t) is equal to a weighted

average of all agents’ initial coordination variables communicating with ag&mce a weighted
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average can never be greater (or smaller) than any one of the components in the average, we

know that¢;(t) € [min; &;(ty), max; &;(t)] for all t andi. Then it is straightforward to see that

[l < lz(to)lle»  for & =to.

Lemma 4.3:The norm of B(t) in Eq. (L0) is bounded.
Proof: Since B(t) is composed of linear combinations &f;;(t), if ||/;;(¢)|| is bounded for
each(z, 7), then||B(t)| will also be bounded| X;;|| was shown to be bounded in the proof of
Theorem3.2 |
Proof of Theorem4.1: By Lemma4.2, the Kalman consensus error is uniformly stable. By
Theorem3.2, ||§; —¢;|] — 0 ast — oo for all (i,j). Since each element of — 0, then
|z|| — 0 ast — oo and we conclude uniform asymptotic stability. Any linear system that is
uniformly asymptotically stable is also uniformly exponentially stald#&.[ Additionally, linear
uniformly exponentially stable systems witt#(¢)|| <  for finite 5 are bounded-input bounded-
output stable 31]. Since the Kalman consensus error governed by EQ).i§ a linear uniformly
asymptotically stable system withB(¢)|| bounded, it is ISS. |

Corollary 4.4: If the continuous-time consensus schemes presentéd]irf 18], [14], and [L5]
are augmented with communication noise, then the representation of these schemes that is
equivalent to Eq.X0) is ISS.
Proof: The difference between each of these schemes and® Esjthat the consensus gain
K;;(t) is time invariant. Therefore, from the proof of Theoréni it is clear that they are ISS.

[

Referring to Figure5 we see that the combination of the communication network and the
consensus scheme is an ISS system. It is well known that the cascade combination of two ISS
systems is also ISS. Therefore if the feedback loop containing the coordination algorithm and
the i vehicle is ISS from the consensus error to the cooperation objective, then the total system
will be ISS from the communication noise to the cooperation objection. This concept is shown
schematically in Figuré& and can be summarized by the following Theorem.

Theorem 4.5:1f a consensus scheme is ISS from the communication noise to the consensus
error and a coordination scheme is ISS from the consensus error to the cooperation objective,

then the cascade interconnection of the two (see ®igs ISS from the communication noise

November 24, 2004 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, SUBMITTED FOR REVIEW. 22

Cooperation
Objective

I

4 Consensus L Coordination
Scheme Scheme

Fig. 6. The distributed cooperative control problem can be thought of as a cascade connection between the consensus algorithm

and the coordination algorithm. If both are ISS, then the cascade system will be ISS

to the cooperation objective.

V. ILLUSTRATIVE EXAMPLE - DISTRIBUTED COOPERATIVE TIMING FOR A TEAM OF UAV S

Suppose that a team of UAVs, flying at distinct altitudes, is tasked to simultaneously visit
a pre-specified location. For simplicity, also assume that paths with appropriate velocities have
been precomputed for each UAV as shown in Figur@lgorithms that achieve this functionality

are described inZ1].

50

o
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o
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% L :
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> ol o o
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~30 -20 -10 0 10 20 30

X position

Fig. 7. Cooperative timing scenario with five UAVS.

We will also assume that each UAV has autopilot functionality that maintains the UAV on its
pre-defined path, but that the velocity along the path can be adjusted to meet the simultaneous

arrival objective B2], [33]. We will assume that the velocity hold autopilot has been designed
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such that

. C

v = o (V] — ;) (11)

wherea; > 0, v; is the velocity, and is the commanded velocity for th# UAV. Let L; denote

the length of the path remaining to the target, then
Li = —;.

Given L, andu;, thei™ UAV can estimate its expected time-of-arrival as

Therefore

vj — U;
= —1—OJZ'T1' L .
(%

The cooperation objective for this problem is that each UAV arrives at its destination simulta-
neously, i.e.r; — 7; = 0 for each(i, j). The coordination variable for this problem is chosen

as the arrival time. Thereforg represents thé" UAVs understanding of the team arrival time.

Letting
Vi
vi=vi+ — (m =& — 1) (12)
we get that
Ty = =T + i
Note that

(7i = 73) = =7 + & + 75 — 7§
=—v(ni—7)+7&—§),

and that the system = —v¢ + ~yu is input-to-state stable. In fact we have that

@) < e (ko) + sup [u(o)].

to<o<t
Therefore, from Theorem.5, the combination of the consensus strategy given by Egs. (

(3) and the velocity controller given by Eql%) is input-to-state stable with the input being
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communication noise and the state consisting of both the consensus discréparggyand the
UAV arrival discrepancyr; — ;.

The cooperative timing scenario was simulated with an unreliable switching communication
topology. The team is connected in the graph shown in &ghere each link is only available

70 percent of the time. When an agent receives communication it updates its estihatsirgd

3D\

4
Fig. 8. Union of possible communication topologies.

the Kalman consensus scheme of SeclieA. In between consensus updates, agents control
their velocity using Equationl1@). Five agents were given a single target at which to arrive
simultaneously. Fig7 shows the application scenario, where each red circle represents an agent,
the blue circles represent threats, the blue square represents the target, and the green lines are
the waypoint paths.

In the first case, communication noise was set to zero and each agent started with approxi-
mately the same confidence in its estimaté.oA plot of £ for each vehicle is shown in Fi§(a)
and Fig.9(b) showsr for each vehicle. As can be seen, each agent in the team achieves agreement
using consensus, adjusts its velocity to magghand arrives at the target in approximately 20
seconds.

In the second case, significant communication noise is addéxl.shown for each vehicle
in Fig. 10(a) and 7 for each vehicle is shown in Fig.0(b). As can be seen, each agent in the
team achieves approximate agreement using consensus where the error in agreement is due to

the communication noise.
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Fig. 10. Cooperative timing with significant communication noise.

VI. CONCLUSION

This paper has considered the problem of consensus seeking with relative uncertainty in
distributed multi-agent systems. We have proposed discrete-time and continuous-time Kalman
filter-like consensus schemes that are appropriate when different agents in the group may have
different confidences about their information state. Sufficient conditions have been shown for

consensus seeking using the proposed consensus schemes under switching interaction topologies.
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Consensus schemes were shown to be input-to-state stable from the communication noise to the
consensus error. This fact was exploited in an application to a UAV distributed cooperative timing

scenario.
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