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Efficient Capacity-Based Antenna
Selection for MIMO Systems
Michael A. Jensen, Senior Member, IEEE, and Matthew L. Morris

Abstract—The achieved capacity of the multiple-input–mul-
tiple-output wireless channel is typically dependent on the array
configurations at the transmitter and receiver. Maximizing system
capacity or throughput therefore requires that the arrays adapt
to changing channel conditions, which may be accomplished by
selecting an appropriate subset of available antenna elements for
connection to the electronic transmit and receive modules. This
paper presents algorithms, derived using relatively straightfor-
ward information theoretic considerations, for efficiently and
effectively selecting the antenna elements. Computational ex-
amples using a realistic channel model for indoor environments
illustrate the performance of the techniques.

Index Terms—Antenna arrays, information theory, multiple-
input–multiple-output (MIMO) systems.

I. INTRODUCTION

MULTIPLE-INPUT–MULTIPLE-OUTPUT (MIMO)
wireless systems have demonstrated the potential for

increased capacity in rich multipath environments [1]–[3].
In traditional studies of MIMO systems, the communication
capacity is computed from the transfer matrix defining the
response from each transmit to each receive antenna. However,
this capacity depends on the antenna configuration [4]; there-
fore, maximizing the system throughput may require that this
configuration adapt to changing propagation conditions. One
mechanism for accomplishing this adaptation is to fabricate
large arrays and use switching networks to dynamically con-
nect different subsets of the elements to a smaller number of
transmit and receive modules [5], [6]. To make this approach
practical, however, efficient and effective methods for choosing
the appropriate antenna element subset are required.
Antenna selection for MIMO systems has been considered

for several scenarios. For example, recent studies reveal how an-
tenna selection can increase capacity [7] or received signal-to-
noise ratio (SNR) [8] and decrease symbol error rate [9] of
MIMO systems. Further, [10] demonstrates substantially im-
proved symbol error rates when using antenna selection in con-
junction with simple linear receiver topologies. However, each
of these studies examines antenna selection only at one end of
the link and uses an exhaustive search to identify the optimal el-
ement set, an approach that becomes prohibitive for large array
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sizes. A comprehensive look at MIMO antenna selection based
upon minimizing probability of error while maximizing SNR is
provided in [11]. However, this approach again utilizes an ex-
haustive search for antenna selection. Alternately, [12] proposes
selecting transmit antennas based on the power computed from
the water-filling capacity solution, an approach that is compared
to the schemes derived here. Finally, [13] presents a suboptimal
yet efficient iterative procedure for eliminating the antennas that
contribute least to the capacity.
In this paper, we present alternate suboptimal yet efficient an-

tenna-selection algorithms, suitable for application to large an-
tenna arrays, based upon metrics derived from mutual informa-
tion (MI) considerations. It is shown that, with little additional
computational overhead, antennas obtained using these algo-
rithms outperform those selected based on power alone. Com-
putational results obtained using realistic channel models reveal
the excellent performance of the techniques despite their com-
putational simplicity.

II. MIMO ANTENNA-SELECTION FRAMEWORK

The algorithms developed in this paper are generally based
on metrics related to the MI between the transmitted and re-
ceived data symbols. Therefore, it is useful to begin by defining
the communication model and notation assumed in the analysis
and by providing a mathematical foundation for the proposed
antenna-selection approaches. In the following derivation, bold-
face uppercase and lowercase letters will be used to represent
matrices and vectors, respectively, with representing the th
element of the vector and representing the element occu-
pying the th row and th column of the matrix .

A. MIMO System Capacity

Consider a narrow-band wireless system that communicates
over a general multipath channel using and antennas
at the transmitter and receiver, respectively. In general, if the

vector of complex baseband transmit symbols is denoted
as , where is the symbol transmitted from the th antenna,
then the vector of received symbols can be written as

(1)

where is the transfer matrix and is a vector
representing noise or measurement error. For the remainder of
this paper, we will assume zero-mean complex Gaussian noise
with covariance , where is the identity ma-
trix, denotes an expectation, and is the Hermitian
operator.

0018-9545/$20.00 © 2005 IEEE
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Given the representation in (1), the capacity of the MIMO
system can be computed using the water-filling solution [3],
[14]. This computation yields two key items: 1) the capacity
in bits per channel use (bits/s/Hz) and 2) the optimal transmit
covariance matrix . We can also compute the
covariance matrices and

that are useful in the MI metrics out-
lined later in this section. This computation assumes the system
possesses perfect channel estimates, although a modified water-
filling solution can be used instead when this is not the case [15].

B. Selection Algorithms

The system of interest in this paper possesses a larger set of
antennas than transmit or receive electronics. For example, re-
cent research in reconfigurable antennas suggests the potential
for fabricating large antenna arrays and using inexpensive high-
performance switching networks to adaptively connect different
subsets of the elements to the transmit and receive modules.
What is lacking is a technique for determining which subset of
the antennas should be selected. For this work, the optimal com-
bination of transmit and receive subarrays is that which yields
the highest system capacity.
The most straightforward approach for selecting the optimal

subarray is to exhaustively search over all possible combina-
tions. However, this search quickly becomes computationally
prohibitive with increasing array size. For example, an exhaus-
tive search to select four antennas from transmit and receive ar-
rays with 16 elements each requires computation of the capacity
over 3.3 million combinations. This computational burden mo-
tivates the development of alternate more efficient selection ap-
proaches.
The problem can be simplified if we utilize the basic infor-

mation resulting from the capacity computation, specifically the
transfer matrix and the computed covariance matrices. Since
the diagonal elements of these covariance matrices are propor-
tional to the average power transmitted or received by the indi-
vidual antenna elements, one simple approach would be to se-
lect those elements with the highest power, as suggested in [12].
While this can be effective, for densely packed arrays the signals
on a cluster of closely spaced elements can all be characterized
by high power, but possess similar information content. From
the standpoint of capacity, it may be better to choose only one
element from this cluster and other lower-power signals, which
provide additional information. This fact will be demonstrated
by the results in Section III.
Effective algorithms for antenna selection should, therefore,

look at the entire covariance matrix rather than simply the di-
agonal elements. One way to use this additional information is
to form decision metrics based on MI quantities in combina-
tion, possibly, with the signal power. It should be emphasized,
however, that utilizing the covariance matrix for a large array to
select a subarray will generally lead to suboptimal results. This
can be explained by recognizing that, for a specific channel, the
optimal transmit covariance for the subset may be quite different
from the covariance for the entire array. The goal of these algo-
rithms, therefore, is to achieve high performance with compu-
tational efficiency.

The proposed algorithms are iterative, meaning that, at each
step, computations are performed to determine which of the re-
maining elements should be selected next. As such, we intro-
duce the set that contains the indexes of the antennas already
selected in the iterative process. The transmit vector containing
the subset of signals represented in is denoted as and has
covariance consisting of the rows and columns of
associated with the indices in . This notation also applies to
the receive array using the substitution . In describing the
algorithms, it is assumed that has been initialized to contain
at least one index.

1) High Power and Low MI Within an Array: The first pro-
posed metric for antenna selection involves choosing elements
with high signal power, but where the MI between the signal
(element) under investigation and the already selected signals is
low. For the transmit array, we therefore need to first compute
the MI between the signal on the th antenna and the vector
of signals on the already selected antennas. This quantity is
given as [16]

(2)

where represents the entropy. The variance of condi-
tioned on can be expressed as [17]

(3)

where, consistent with our notational convention, and
are row and column vectors, respectively, containing the

elements identified by the indices in of the th row and th
column of , respectively. The MI becomes

(4)

It will be convenient to make the relative weight of the MI on
the same order of magnitude as the power of the signal
. Therefore, as a measure of MI, we will use the argument of

the logarithm expressed as

(5)

Note that the MI metric for signals on antennas in the receive
array is given by (5) after making the substitution .
To generalize this result, let represent the covariance ma-

trix or , depending on whether we are applying the al-
gorithm for transmit or receive antenna selection, respectively.
A signal that has high average power but has low MI with
the already selected signals will have a large value of the ratio
of to in (5) or

(6)

Note that (6) is simply the variance of the signal on the th el-
ement conditioned on the signals on the already selected ele-
ments. If these selected signals are fixed and the signal on the
element under investigation is highly correlated to the selected
antennas, then this variance will be low, suggesting that the th
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antenna will provide little additional information beyond what
can be obtained from the already selected antennas.
For the algorithm implementation, we initially select the ele-

ment characterized by the highest average power so that con-
tains the index of this antenna. The metric in (6) is then com-
puted for all , and the antenna producing the highest
metric is selected. The set is then augmented to include this
index and the process is repeated until the desired number of
antennas has been selected. This algorithm is applied to the
transmit and receive arrays independently, resulting in low com-
putational cost.
Other methodologies for using this metric can be constructed,

such as rejecting the antennas offering the lowest values of the
metric either all at once or using iterative algorithms. However,
we have found that such variants generally do not perform as
well as this simple selection approach and require significantly
increased computational cost, since larger matrices are used in
the matrix-vector products. Therefore, they will not be consid-
ered further.

2) High Transmit/Receive MI: The second proposed metric
for antenna selection involves choosing elements that maximize
the MI between the signals on the transmit and receive arrays.
To enable this approach for receive-antenna selection, we will
compute the MI between a partition of the receive vector
and the transmit vector . For the signal model in (1), this MI
expression can be written as

(7)

where represents a determinant. Again, using the argument
of the logarithm leads to

(8)

For transmit-antenna selection, we need to compute the MI
between and a partition of or

(9)

where we have used the symmetry property of the information
to arrive at the latter equality. This last form is more computa-
tionally efficient, since vectors in the first expression are larger
than those in the second expression. However, wemust compute
the covariance

(10)

The argument of the logarithm in the MI expression will, there-
fore, become

(11)

In the selection algorithm using these quantities, we first let
represent the set of previously selected indexes plus the

index , where . Initially, contains only . When se-
lecting transmit or receive antennas, the value of that max-
imizes the value of or , respectively, is
selected and added to the set . This procedure is then re-
peated until the set contains the desired number of antennas.
In the examples shown later, this is implemented such that the
transmit antennas are first chosen to maximize (in this iterative
sense) . Then, the required covariance matrices are
recomputed from the water-filling capacity formulation using
the columns of corresponding to the chosen transmit an-
tennas. The receive antennas are then selected based on these
updated covariance matrices. This approach yields substantially
improved performance over simply independently maximizing

and .
3) Transfer Matrix Row/Column Selection: Instead of using

the full-array covariance matrix, we can iteratively choose the
rows and columns the transfer matrix that offer the best in-
cremental capacity. We select the first transmit antenna by com-
puting the capacity for each column of and choosing the
column (whose index is placed in ) that offers the largest
capacity. We then compute the capacity for the matrix formed
from the already selected column (in ) combined with each re-
maining column individually. The column that yields the max-
imum capacity is then selected and its index is added to . This
procedure is repeated until the desired number of antennas has
been selected. An identical procedure can be applied to the rows
of the new transfer matrix consisting of the chosen columns to
perform receive-antenna selection.

C. Algorithmic Computational Cost

Before demonstrating the performance of the various an-
tenna selection algorithms, it is worthwhile to compare their
relative approximate computational costs. For discussion, we
will assume that we are selecting out of antennas for both
transmit and receive. The cost of the singular value decompo-
sition (SVD) of an matrix required for the water-filling
capacity computation (and, therefore, covariance matrix con-
struction) is [18]. Therefore, for all
methods that first require construction of the full covariance
matrices (size ) of the signals on all antennas, there is
an initial cost of , where represents the order of the
computation. We will use this notion of computational order
throughout the remainder of this discussion.

1) Signal Power: Selecting elements based on the diagonal
terms of the covariance matrix (signal power) only requires
computation of the initial covariance matrices. Therefore, this
approach has computational cost .

2) High Power, Low MI Within an Array: In addition to the
initial covariance matrix computation, at the th iteration of this
approach , we have vector-matrix-vectormul-
tiplies each of cost operations. If , the cost for
these operations roughly scales as . This cost must,
therefore, be added to the computation of the initial
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Fig. 1. Antenna aperture divided into a two-dimensional grid. The antenna
elements are constrained to be placed at the centers of the grid cells (denoted by
dots).

SVD. This incremental cost is relatively small for small values
of .

3) High Transmit/Receive MI: In addition to the initial co-
variance matrix computation, we must perform an initial
matrix multiply of cost as well as determinant compu-
tations in each iteration, the largest of which has cost .
If , then the dominant incremental cost incurred stems
from the matrix product.

4) Transfer Matrix Row/Column Selection: This algorithm
does not use the initial SVD required for the covariance matrix
construction, but does require computation of an SVD at each
iteration. If we first select the columns of (transmit antennas),
then at the th iteration, , we compute
SVDs of matrices, each with a cost of . Since
the largest SVD ( matrix) dominates the cost expres-
sion, for we observe a rough cost of . Once
the transmit antennas have been selected, the SVD computations
for the receive-antenna selection are of reduced size (largest ma-
trix is ) and, therefore, do not dominate the computa-
tion. More generally, the computational cost of this approach
can be somewhat less or more than that of the other algorithms,
depending on the ratio of . Generally speaking, we have
found that this algorithm executes faster than those requiring the
initial SVD computation.

5) Exhaustive Search: Choosing out of antennas
leads to combinations for each array. For
each transmit-antenna combination, we must search over all
combinations of the receive antennas, so that the total number
of combinations is . The capacity of the

submatrix must then be computed for each scenario,
leading to the potentially huge overall computational cost of

.
The conclusion of this analysis is that the algorithms all

share roughly the same computational cost, although higher
algorithmic complexity tends to lead to some additional burden.
Naturally, the feasibility of implementing these algorithms in
a real-time communication system will depend on the array
sizes as well as the temporal channel variability that dictates
the frequency of updating the selected antenna subset.

TABLE I
CAPACITY OF THE BEST ARRAY SELECTED FROM 100, 1000, AND 5000
RANDOMLY GENERATED ARRAYS AS WELL AS THE CAPACITY OF THE

OPTIMAL ARRAY OBTAINED BY AN EXHAUSTIVE SEARCH FOR THREE- AND
FOUR-ELEMENT ARRAYS PLACED IN A NINE-ELEMENT GRID

Fig. 2. Selected array capacity normalized by the maximum capacity from
5000 randomly generated arrays versus the number of selected antenna
elements. Each point represents an average computed from 150 different
channels. The �� apertures are divided into two gridpoints per wavelength.

III. COMPUTATIONAL EXAMPLES

To illustrate the relative performance of the proposed al-
gorithms, MIMO channels were created using the path-based
Saleh–Valenzuela model extended with angle of departure/ar-
rival information, referred to as the SVA model [19], [20].
Square transmit and receive apertures are subdivided into square
sections and antenna elements with omnidirectional patterns in
the horizontal plane are placed at the subdivision centers, as
depicted in Fig. 1. For each channel, the transfer matrix is
created for the aperture under investigation and the relevant co-
variance matrices are computed using the water-filling capacity
formulation [3], [14]. The single-input–single-output (SISO)
SNR, as defined in [19], is set to 20 dB in each computation.
First, many channels were generated using the SVA model

and 150 of these channels that offered a relatively uniform ca-
pacity distribution for square transmit and receive apertures
( is the free-space wavelength) were selected for the compu-
tations. For each channel realization, 5000 random arrays con-
sisting of two, three, four, and eight elements and conforming
to the array grid were generated and the capacity of each array
was recorded.Wewill use the symbol to denote this set
of capacities for all array realizations of a given number of ele-
ments and for a given channel. Also, for each channel and array
size, the capacity of a “square” array placed around the
grid perimeter was computed. For two- and three-element ar-
rays, this “square” array consisted of either two elements at op-
posite corners of the square or the isosceles triangle formed by
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Fig. 3. Selected array capacity normalized by the capacity for the appropriate
square array versus the number of selected antenna elements. Each point
represents an average computed from 150 different channels. The �� apertures
are divided into two gridpoints per wavelength.

Fig. 4. Percentile performance of the selected array capacity relative to the
capacity statistics obtained from 5000 randomly generated arrays. Each point
represents an average computed from 150 different channels. The �� apertures
are divided into two gridpoints per wavelength.

using elements at two adjacent corners and the middle of the
opposite side, respectively.
Because of the large array sizes considered here, an exhaus-

tive search for the optimal antenna subset is impractical. Instead,
the maximum capacity value obtained from the 5000 randomly
generated arrays is used to approximate this optimal capacity. To
assess the quality of this approximation, a specific channel real-
ization was created and transmit and receive arrays consisting of
three or four elements constrained to a 3 3 grid on square
apertures were formed. An exhaustive search was used to iden-
tify the optimal array configurations, after which the best array
out of 100, 1000, and 5000 random realizations was chosen.
Table I shows the capacities obtained by these methods. As can
be seen, the random search in some cases finds the optimal array
and generally provides a reasonable estimate of the optimal per-
formance. Naturally, for larger grids, the ability of the random

Fig. 5. Selected array capacity normalized by the maximum capacity from
5000 randomly generated arrays versus the number of selected antenna
elements. Each point represents an average computed from 150 different
channels. The �� apertures are divided into four gridpoints per wavelength.

Fig. 6. Selected array capacity normalized by the capacity for the appropriate
square array versus the number of selected antenna elements. Each point
represents an average computed from 150 different channels. The �� apertures
are divided into four gridpoints per wavelength.

search to identify the maximum capacity is reduced, since more
array realizations are needed to cover the search space.
Using this framework, we now explore the performance of

the antenna-selection algorithms. As a first computation, the
square apertures were divided into square cells at a density of
two cells per wavelength (16 transmit and 16 receive array ele-
ments). For each channel and array size, the capacity of the array
formed by the antenna-selection algorithm was recorded. This
capacity was then normalized by the capacity of the random
array (of the same size) that yielded the maximum capacity for
the channel or, alternatively, by the capacity

of the square array in the channel. Additionally, the ca-
pacities from the random array computation were formed into
a cumulative distribution function (cdf) and the percentile point
within the cdf corresponding to the capacity from the algorith-
mically selected array was recorded. These numbers were then
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Fig. 7. Percentile performance of the selected array capacity relative to
the capacity statistics obtained 5000 randomly generated arrays. Each point
represents an average computed from 150 different channels. The �� apertures
are divided into four gridpoints per wavelength.

Fig. 8. Complementary cdf of capacity for 5000 randomly generated channels
for different two-element arrays selected by the various algorithms compared
to the performance of a two-element square array. The 2� apertures are divided
into four gridpoints per wavelength.

averaged over the 150 channels for each array size. Figs. 2–4
show the results of these computations. Figs. 5–7 show the same
results when four antennas per wavelength were used to dis-
cretize the apertures. In each case, the performance obtained
when selecting antennas based solely on power (the diagonal
elements of the covariance matrix) are included.
These results show that the proposed algorithms outperform

selection by power alone. Furthermore, algorithms based on the
covariancematrix tend to improve for larger subarrays that more
closely mimic the abilities of the full array for which the covari-
ance was originally computed. For such large subarrays, selec-
tion based on power alone is a reasonable approach. The perfor-
mance of the selected arrays relative to that of the square array
decreases with increasing array size, since the larger square
array is more able to fully exploit the channel spatial properties.
This result suggests that using a large fixed array of elements

Fig. 9. Complementary cdf of capacity for 5000 randomly generated channels
for different eight-element arrays selected by the various algorithms compared
to the performance of an eight-element square array. The �� apertures are
divided into four gridpoints per wavelength.

Fig. 10. Average capacity versus aperture size for 5000 randomly generated
channels for different four-element arrays selected by the various algorithms
compared to the performance of a four-element square array. The �� apertures
are divided into two gridpoints per wavelength.

located on the aperture perimeter is a reasonable approach for
achieving high capacity.
Perhaps most striking is the observation that the selection

based strictly on the transfer matrix outperforms all other algo-
rithms. This approach is superior since it computes the capacity
for each potential arrangement, while the other methods esti-
mate this capacity using the full-array covariance matrix. Selec-
tion based on high transmit/receive (Tx/Rx) MI performs nearly
as well as the transfer matrix approach, since maximization of
this quantity is directly tied to the system capacity. It is note-
worthy that although this approach does not perform as well as
the best algorithm, it does do better than nearly all (and in most
cases all) of the randomly selected arrays, as shown in Figs. 4
and 7. This observation also reinforces the limitations of using a
random search to identify the optimal achievable performance.
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The observations discussed previously can be reinforced by
applying the antenna selection algorithms to 5000 randomly
generated channels. Apertures with side length and dis-
cretized with four antennas per wavelength are used. Figs. 8
and 9 show the complementary cdf of capacity for two- and
eight-element arrays, respectively, obtained using the different
approaches. These results confirm the superiority of selection
based upon the transfer matrix. They also demonstrate that,
for these circumstances, very reasonable performance can be
obtained simply by using a square array around the aperture
perimeter, particularly for large array sizes.
Finally, it is interesting to examine the impact of aperture size

on the algorithm performance. For this simulation, the capacity
averaged from 5000 randomly generated channels is plotted as
a function of the square aperture side length. The discretiza-
tion size is two antennas per wavelength and the selected array
size is four elements. Fig. 10 shows the capacity performance.
These results confirm the relative performance of the techniques
and show that the performance benefit of the best algorithms
increases significantly with array size (the ratio of selected to
available antennas becomes small).

IV. CONCLUSION

This paper has presented several algorithms for selecting a
subset from a large set of available antennas for MIMOwireless
communications. The different algorithms use an iterative ap-
proach to provide suboptimal yet good performance with com-
putational efficiency. The performance of the algorithms has
been studied using channel matrices obtained from a channel
model known to provide good characterization of indoor wire-
less multipath channels. These results show that simple iterative
approaches based upon the large channel matrix or covariance
matrices can produce arrays that provide very good capacity.
With continued development of large reconfigurable antennas,
such algorithms could be used in practice for future generation
wireless systems. The results also indicate that, under certain
circumstances, placing the array elements around the perimeter
of the transmit and receive apertures tends to provide very good
performance. This is noteworthy, since implementation of such
fixed arrays requires considerably less system complexity.
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