Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2006-03-21

Browser-Based Trust Negotiation

Cameron Morris
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Computer Sciences Commons

BYU ScholarsArchive Citation

Morris, Cameron, "Browser-Based Trust Negotiation" (2006). Theses and Dissertations. 397.
https://scholarsarchive.byu.edu/etd/397

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F397&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F397&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/397?utm_source=scholarsarchive.byu.edu%2Fetd%2F397&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

BROWSER-BASED TRUST NEGOTIATION

by

Cameron Craig Morris

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
Brigham Young University

April 2006

Copyright © 2006 Cameron Craig Morris

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Cameron Craig Morris

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date Kent E. Seamons, Chair
Date Mark Joel Clement
Date Yiu-Kai Dennis Ng

Date Parris Egbert, Graduate Coordinator

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate's graduate committee, I have read the thesis of Cameron Craig
Morris in its final form and have found that (1) its format, citations, and bibliographical
style are consistent and acceptable and fulfill university and department style
requirements; (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate committee and is ready
for submission to the university library.

Date Kent E. Seamons
Chair, Graduate Committee

Accepted for the Department

Parris K. Egbert
Graduate Coordinator

Accepted for the College

Thomas W. Sederberg
Associate Dean, College of Physical and
Mathematical Sciences

ABSTRACT

BROWSER-BASED TRUST NEGOTIATION

Cameron Craig Morris
Department of Computer Science

Master of Science

Trust negotiation allows two parties on the Internet to establish trust in each other
according to the digital credentials that each other possesses. Traditionally, trust
negotiation uses certificates as digital credentials. However, certificates make trust
negotiation difficult to use since people rarely have certificates available to them, and they
must physically possess and secure all needed certificates in order to negotiate.

To avoid these problems, this thesis proposes that credential authorities negotiate
on behalf of the user. This thesis defines Browser-Based Trust Negotiation (BBTN) as a
method for negotiating with credential authorities using the Secure Assertion Markup

Language (SAML).

ACKNOWLEDGMENTS

Thanks to my best friend and wife, Lisa, who has made this work possible through
her encouragement, and immense sacrifice. Thanks also to my parents, Craig and Karen,
for making education a priority and encouraging me along the way. Thanks to Barbara and
Scott Soulier for watching the children when my studies required me to be elsewhere.
Thanks to my adviser, Dr. Kent Seamons, who's patience and high standard of excellence
have pushed me to accomplish more.

Thanks also to those who reviewed this thesis and gave valuable feedback: My dad -
Craig Morris, my wife - Lisa Morris, Angela Bawden, Dan Jepsen, Tim van der Horst, and
Greg DeHart.

This research was funded by my employer, Novell, Inc. Thanks to my managers for
being flexible with me during my graduate education.

Finally, thanks to the many contributors of the various open-source projects used
during this research: Apache Tomcat, Apache XML-Beans, Sun's XACML implementation,

Linux, and OpenOffice.

Table of Contents

Chapter 1 Introduction.............oooiiii i rr e e e e eeeeaeaeeeens 1
1.1 Trust Negotiation.......cccoiviiiiiiiiiiiiccceeeeeeeeeee e 1
1.2 Problem Statement............coooiiiiiiiiiiiii e 4
1.3 Negotiating Credential Authorities.............cccooiiiiiiiiiiiiiiiiirerr e 5
1.4 EXAMPLES...ccciiiee i aaaaaaaaaaaaaaans 6
Chapter 2 Related WOrK..........oooiiiiiii e e e e e reeeeeaeeeens 9
2.1 Assertions and Certificates.........cccoviiiiiiiiiiiiiiiiiiie e 9
2.2 SAML Protocols, Bindings and Profiles.........cccccccoiiiiiiiii e 10
2.3 Single Sign-On Profiles...........uuiiiiiiiiiiiiiiiiiieeceeeeeeee e 10
2.4 Real-Time Release........ccooiiiiiiiiiiiiiiiiii ittt 15
Chapter 3 Browser-Based Trust Negotiation.........ccccoooviiiiiiiiiiiiiiiiiiiiiiiiiieeccccee, 16
3.1 Overview of BBTN......ccooiiiiiiiiiie ettt e e 16
3.2 BBTN Message FIoW.....ccooviiiiiiiiieeieeeeeeeeeee e 17
3.3 Trust Negotiation Protocol for SAML...........ccccoovuiiiiiiiiiiiiiieeiieiiieereeereerreereeeeareee————— 18
3.4 Real-Time Release in BBTN.......ccooiiiiiiiiiiiiiiceieeee e 20
3.5 Visual Policy Resolution ServiCe............uuuiiiriiiiieiireeiieeereeeieeeeeeeeereeersierereersers———.. 21
Chapter 4 Implementation..........ccooeeieieiiiiieeeeeceeeeee e ae e e eeeeeees 23
4.1 SAML Trust Negotiation ENgine.........cccccoceeeiiiiiiiiiiiiieeei e 23
4.2 Attribute AUthoOrity....cccooiii e 25

xiii

4.3 SETVICE PrOVIACT .. .ccouniiieiiiieeiee ettt ettt e et s et s et e st seae s et seanssennns 25

4.4 Visual PoliCy ReSOLVETccoieiieieeiiee e e e e e e e e e e e e e e e e eeeeeeeeeaesaaenes 26
4.5 Challenges and Pitfalls........cccooooieoiiieeeieeeeeee e 29
4.6 Implementation OVEIVIEW............ueeiiieiiieieieeeeereeeeereeereereeereeerererrrrrrerrr————————————. 31
Chapter 5 Analysis of BBTN ..o rae e e e ae e e eeeeaees 33
5.1 Credential Management................uvuieiiiiiiiiiiiieiiieeireeeeeereeereeeeererrerrrerrer.—————————————. 33
5.2 Policy Management...........ccoooeiiiiiiiiiii s 34
3 T U1 01 5y 2O TR UPPRRRTPPRPN 35
LS <Y i (0} i 00 =1 s U PSR 36
RS T = L 7= 1o PR 37
5.6 Unintended Credential USage........cccoevviiiiiiiiiiiiiiiiiiice e 40
5.7 Denial of Service Attacks......cccooeeeiiiiiiiii e e e e 41
5.8 Other Security Threats..........ccceeeeeiiee i 42
Chapter 6 Contributions and Future Work.............oooiiiiiriiriiiirr e, 45
200 B 07} 0 1 o101 1o s 1= 45
6.2 FULUIE WOTK.....oiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeereeeeeeeeesreeeeeeeeeerereeerraerrrsrrrrrrarrrarrrerrerrrrreerereneee. 46
B3 o) B0y 7= o) o 2 48
Appendix XML Schema for SAML Trust Negotiation..............ccceevvvviiiiiiiiiiieee e, 52

Xiv

Illustration Index

Figure 1. A Typical Trust Negotiation Protocol.............cccccceririiiiiiiiiiiiiiieeeeeeeeee e 4
Figure 2. Browser-Based Single Sign-Omn...........ccccieiiiiiiiiiiiiiiiiicecceeeeeeeeiiee e e e e e e e e eeeeaaeaes 12
Figure 3. Web Single Sign-On Profile showing an AuthnRequestccccccvvviiiiiiiinnnnnnnnnnn. 14
Figure 4. Different Parties Involved in BBTN.......ccccoiiiiiiiiiiiiiiiiiiieee et 16
Figure 5. BBTIN MeSSage FLOW......coiiiiiiiiiiiiiiiieeeeeeeee ettt e e ee e e e e e 17
Figure 6. SAML Trust Negotiation Protocol..........ccccccooriiiiiiiiiiiiiiiieee e 19
Figure 7. BBTN Implementation Architecture...........cccccceeeiiiiiiiiiiiiiiiiiceeee e 23
Figure 8. SAML Trust Negotiation Engine Architecture...........cccccuvieiiiiiniiiiiiiiininiiiieeeeen. 24
Figure 9. Sample XACML policy (used to generate Figure 10).........ccccoeeeeiieeiieeeeeieiieeiininniinns 28
Figure 10. Generated VIPR Web Page............couiiiiiiiiiiiiiiiieeeeeetee et 28
Figure 11. Dependency Loop EXample..........ccoooviiiiiiiiiiiiiiiiicceeeeeeeeereeeeeeeeeveeee e aeeeees 30

XV

XVi

Chapter 1 Introduction

There exist many potential dangers to users of the Internet when they interact with
unknown web sites. Trust negotiation [2, 3, 10, 12, 19] is a recent technology that helps to
avoid these dangers by establishing trust between people and unknown web sites. People
must obtain and possess certificates before they can negotiate, which limits the adoption of
trust negotiation. The goal of this research is to remove the certificate dependency from
trust negotiation, improving the likelihood of adoption.

This research simplifies trust negotiation for users by using authoritative servers
that negotiate on behalf of several people, called negotiating credential authorities. This
thesis also defines a method of using negotiating credential authorities with a web browser,
called Browser-Based Trust Negotiation (BBTN). BBTN simplifies the process of trust
negotiation for people on the Internet, giving them improved security and privacy via trust
negotiation.

This chapter introduces trust negotiation, explains the certificate dependency that
impedes its adoption, presents negotiating credential authorities and BBTN as a solution,

and gives example scenarios of how BBTN can be used.

1.1 Trust Negotiation
Trust negotiation helps people establish trust with unknown entities on the
Internet. To negotiate, computers exchange digital credentials to learn more about the

attributes of each other.

1.1.1 Digital Credentials

A digital credential is digital proof that one entity believes another entity to have a
certain attribute. For example, suppose the Council on Higher Education Accreditation
(CHEA) were to issue a digital credential that states Brigham Young University is an
accredited university. BYU can use this credential to prove to other people that it is an
accredited university.

Digital credentials contain attributes of an entity. Common entities are people,
computers, servers, or organizations. These attributes are any property or characteristic
that describe the entity, such as “this person's hair is brown,” “this person's gender is
female,” “this organization is an accredited university,” etc.

Identity credentials are credentials that uniquely identify an entity, such as “this
person is George W. Bush,” “this organization is Brigham Young University,” or “this
computer is byu.edu.” Identity credentials are typically required by closed systems, or
systems where trusted entities are known and configured in advance. Trust negotiation
targets open systems, or systems where trusted entities are not known by name. This is
done in trust negotiation by determining access according to an entity's attributes, and not
their identity.

People and organizations obtain digital credentials from credential authorities.
Credential authorities are trusted to issue valid credentials for other entities. For example,
CHEA is a trusted authority of which schools are accredited universities in the United

States.

1.1.2 Negotiation with Sensitive Credentials

During trust negotiation, people build trust with other entities (such as a web site)
by exchanging digital credentials.

Some credentials may have sensitive information in them. With trust negotiation,
users only disclose sensitive credentials when they establish a certain level of trust. An
attribute release policy specifies the credentials another entity must disclose before an
attribute is released as a credential. An attribute release policy restricts access to
something unless certain conditions are met. For example, suppose a high school student
creates a policy that states “Only accredited universities can access my class grades.”
When this student engages in trust negotiation, the policy prevents the disclosure of any
grade credentials unless the other party first discloses an accredited university credential.

Figure 1 shows a typical trust negotiation protocol. When an attribute release policy
is not satisfied, the negotiating service may disclose the policy so the other party learns the
access control requirements. If the other party can satisfy the policy, it replies with the
requisite credentials. However, these credentials can also be protected by policies when
they are sensitive. The parties continue to exchange credentials and policies until either

access is denied or granted.

Requester Responder

Resource request

Policy or
certificate Repeated
. as many
POh-C Y or times as
certificate eeded
Access granted
or denied

Figure 1. A Typical Trust Negotiation Protocol

1.2 Problem Statement

Currently, implementations of trust negotiation use certificates as digital
credentials. Using certificates as digital credentials for users limit the adoption of trust
negotiation since 1) users rarely seek out and obtain certificates, 2) issuers rarely issue
certificates suitable for trust negotiation, and 3) obtaining certificates is inconvenient for

users.

1.2.1 Lack of Certificates
Users seldom make the effort to obtain certificates from certificate authorities. This
problem might come from the cost of purchasing certificates, the effort involved in
obtaining certificates, or simply a lack of awareness that certificates exist. Secure email
exemplifies this problem since it has existed for some time but few use it because of its
dependence on certificates. Regardless of the reasons, the lack of certificates impedes the

adoption of trust negotiation.

1.2.2 Unavailability of Adequate Certificates
Even when users seek out and obtain certificates, they are usually identity

credentials and are not suitable for open systems and trust negotiation.

1.2.3 Inconvenience of Obtaining Certificates
Even if adequate certificates are available, a user will not know which attributes
need to be certified until they are actually negotiating with another entity. Then the user
must manually obtain the certificates from one or more certificate authorities through
some mechanism such as email attachments, custom web pages, or physically obtaining the

certificate via mail or in person.

1.3 Negotiating Credential Authorities

To overcome the certificate dependency for trust-negotiation, this research proposes
that web servers negotiate directly with credential authorities to obtain the credentials of a
user. When negotiating with a stranger, a user will refer the stranger to one or more
negotiating credential authorities, who will negotiate on behalf of the user.

Negotiating credential authorities remove the need for users to seek out and obtain
certificates. When users need credentials, their authorities provide them on-demand.
However, this does assume that entities storing information about users will make this
information available via negotiating credential authorities.

These negotiating credential authorities negotiate as proxies for the user. This
approach means that users will not need to store and manage these credentials locally.

This approach simplifies the client software since it no longer needs to negotiate. This also

provides greater mobility for the user, so long as the web server can contact the negotiating
credential authorities.

These advantages simplify trust negotiation for users and increase the likelihood of
adoption. BBTN is a method of using negotiating credential authorities. BBTN uses only a
web browser as a client and provides a mechanism for web sites to negotiate directly with

the credential authority to build trust with a user.

1.4 Examples
This section presents some examples of how negotiating credential authorities and
BBTN could be used by health care providers, on-line shopping sites and government

authorities.

1.4.1 Health Care

Health care involves many entities such as hospitals, insurance agencies, family
practice doctors, and specialists. Each needs access to a wide array of information about a
patient. These different health care parties can share patient information using BBTN.

As an example of how health care benefits from using BBTN, consider a patient
coming to a family practice office for the first time. This involves filling out forms,
providing insurance information, and contacting the insurance provider to discover the
details of the insurance plan. Instead, insurance agencies act as negotiating credential
authorities for all this information and the family practice acts as a service provider. To
schedule a visit, the user simply accesses the doctor's site and introduces the insurance

authority. The doctors office, if it has the proper credentials, obtains all the needed

information about the patient from the insurance authority.
In this example BBTN enables more than just information sharing. In addition,
trust negotiation enables the patient to set additional policies to restrict access to sensitive

information such as mental health, sexually transmitted diseases, previous abortions, etc.

1.4.2 On-line Shopping

Similarly, BBTN can use universities, colleges, and high schools as credential
authorities for providing student information.

For example, suppose a student requests a discount from an on-line computer store.
The student can introduce the store to the school were he or she attends. The student
authenticates (or logs in) to their school web site to prove their student status to the on-line
store.

Using education authorities also enable a more specific discount, tailored to the
individual credentials of each user. For example, the computer store might give different
discounts for part-time students, full-time students, faculty, or even current students of
certain classes, such as graphic arts. Schools can establish default policies that protect

students from disclosing information to untrustworthy sites.

1.4.3 Government
Negotiating credential authorities remove the need for people to physically possess
digital credentials, and the same idea applies to paper credentials. Examples of paper
credentials issued by the government include vehicle registration, social security number,

and driver's license. Creating negotiating credential authorities in government benefits its

citizens by letting them use these credentials without physically possessing them.

For example, renting a car usually requires a driver's license. What if someone lost
their wallet? As an alternative, the rental company could have the driver authenticate to
his state authority and negotiate for a credential that states whether the user has a valid

driver's license.

Chapter 2 Related Work

Browser-based trust negotiation uses the Secure Assertion Markup Language, or
SAML [14, 15], as a foundation for digital credentials and protocols. This chapter
introduces SAML assertions, compares them to certificates, and explains SAML protocols,
bindings and profiles. The chapter concludes by discussing concepts found in SAML

browser-based single sign-on and other related works.

2.1 Assertions and Certificates

Certificate authorities issue certificates to state that the holder has a certain
identity or attribute. The certificate includes or references a public key. A person
demonstrates ownership of a certificate by proving the possession of the associated private
key. The verifying party may trust the issuer of the certificate directly or indirectly".

In SAML, an attribute authority (AA) issues credentials called assertions, that can
contain authentication statements, authorization statements, and attribute statements. A
SAML assertion can be of type bearer or holder-of-key. A holder-of-key assertion, similar to
a certificate, contains or references a public key and requires proof of ownership of the
private key. A bearer assertion, similar to a Kerberos service ticket, usually expires
quickly and the bearer of the assertion can use it as a valid credential until it expires.
Most scenarios use bearer assertions that expire quickly. For this reason, parties contact

SAML AAs on-line to obtain assertions on-demand.

1 If the verifying party indirectly trusts an authority then it uses a certificate chain, where the
chain includes certificates for subordinate authorities and a root authority.

9

2.2 SAML Protocols, Bindings and Profiles

SAML assertions form the base of SAML protocols, bindings and profiles. SAML
protocols carry SAML assertions within protocol messages. SAML protocols define the
structure of requests and responses. The SAML specification includes protocols to query
for different types of assertions. These protocols define only high-level messages and do
specify any lower-level transport protocols, such as HTTP, SOAP, or SMTP.

A SAML binding connects a specific transport layer to a protocol. SAML bindings
[5] exist for HTTP post, HTTP redirect, and SOAP. For example, the HTTP post binding
defines how to send an assertion query as a hidden attribute in an HTML form.

A SAML profile combines SAML assertions, protocols and bindings to solve the
needs of a particular application. A profile defines the semantics of protocol messages, and
can possibly restrict the syntax of assertions and protocol messages to suit the specific need

of an application. Two different implementations of the same profile must inter-operate.

2.3 Single Sign-On Profiles

Most common profiles of SAML are for browser-based single sign-on applications.
All browser-based profiles use bearer assertions to achieve single sign-on (i.e., one
authentication across different domains) with a zero footprint client (i.e., no additional

software installed beyond the browser).

2.3.1 SAML version 1 SSO
The SAML version 1 specifications [14] includes two profiles for browser-based
single sign-on.

10

In both profiles, a user authenticates to an AA (a typical web-page portal) that can
redirect the user's browser to another web site, called a service provider (SP), without
having to re-authenticate. The AA sends a bearer assertion, containing an authentication
statement, to the SP via the browser. The SP uses this authentication assertion as proof
that a user has authenticated to the AA®. After an SP receives and verifies the
authentication assertion, the SP grants the user appropriate access.

Using either profile, an AA can provide single sign-on to an SP when users click a
special link on its web page. This special link will send the browser to the intersite-transfer
service on the AA that will prepare an assertion specifically for the SP, and then send the
browser to the SP.

The two profiles differ in the redirect method used to send the browser from the AA
to the SP. The Browser-Post profile sends the assertion to the SP by placing the assertion
in an HTML form. When the form loads in the browser, javascript submits the form to the
SP using the HTTP post method.

The second profile, called Browser-Artifact, sends a simple HTTP redirect to the
browser with a destination URL. Placing an assertion within a URL may exceed the URL
length limit, so an artifact that represents the assertion is appended to the URL query
string. The artifact contains enough information for the SP to identify and query the AA
for the assertion.

The SP queries the AA for the assertion through a direct channel, also known as the

2 Alternatively an attribute authority sends an artifact of the assertion, in which case the service
provider will contact the attribute authority directly to resolve the artifact into an assertion.

11

back channel. The SP can also query the AA for additional attribute assertions containing
attribute statements, such as gender, shipping address, etc. Figure 2 shows the artifact

profile for browser-based single sign-on (for SAML version 1).

Attribute 3. Back-Channel > Service
Authority Provider

W

File Edit View Go Bookmarks Tools Window Help

a L

AGOOQ | | [© search | cgo

- X

Attribute Authority Login:

User Name: JohnDoe
PClSSWOT'd.‘ sesbsb sttt

Done —li-

Figure 2. Browser-Based Single Sign-On

L

Two prominent technologies use and extend these profiles: Liberty Alliance [11], and
Shibboleth [4]. The SAML profiles provide single sign-on for users that first authenticate
to an AA and then wish to go to an SP. However, this is not sufficient for users that first
contact the SP and may not know which AA will authenticate the user. Liberty Alliance
and Shibboleth both defined new profiles that allow an SP to send an authentication

request in a redirect to the AA.

2.3.2 Shibboleth
Shibboleth defines a separate service known as the “Where are you from?”, or

WAYF, for unauthenticated users that come to an SP. The WAYF allows a user to identify

12

an appropriate AA. The WAYF service generates an authentication request and sends it to
the AA by redirecting the browser to the AA. The AA authenticates the user and sends an
anonymous authentication assertion in a browser redirect to the SP. The SP uses this
information to query the AA on the back channel for the attribute assertions pertaining to
the user. Access to resources on the SP is determined by the attributes that the AA

provides.

2.3.3 Liberty Alliance

Like Shibboleth, a Liberty Alliance SP can send an authentication request to an AA
using a browser redirect. However, Liberty Alliance did not define a separate service for
this.

Liberty Alliance defines a number of useful extensions to SAML version 1. Identity
Federation links accounts from an AA and SP and uses a pseudonym for these accounts
when providing single sign-on. Liberty Alliance also defined metadata, documents that
describe an AA or SP. (Note that in Liberty Alliance, the authenticating server is called an
identity provider, and not an AA.) Instead of using attribute queries on the back-channel,

Liberty Alliance defined an extensive web services framework.
2.3.4 Single Sign-On with SAML v2
Most of the concepts used in Liberty Alliance were added to the SAML 2.0
specifications, with the exception of the web services framework. Figure 3 demonstrates

the use of an authentication request (AuthnRequest) in the web single sign-on profile as

defined in SAML version 2.0.

13

User Agent

Service Provider Identity Provider

1. User Agent attempts to access
some resource at the Service Provider

Do I have a security context for this UA?
No, so I'm going to establish one...

2. Service Provider determines

3. <Aut hnRequest > message

issued by Service Provider to Identity
Provider

- Identity Provider to use
/ (methods vary, details not
shown)

-
<4. Identity Provider identifies Principal (methods vary, details not shown) >

5. <Response> message issued by ldentity Provider to Service Provider

-
6. Based on the Identity Provider's
response identifying (or not) the Principal,
the Service Provider either returns the
resource or an (HTTP) error
et

\j \J \

Figure 3. Web Single Sign-On Profile showing an AuthnRequest

(Reproduction of a diagram found in the OASIS specifications [15])

The SAML version 2 specifications also adopted the Liberty Alliance naming
conventions. Note that an AA and an identity provider usually refer to the same entity.

This thesis refers to the identity provider as an AA because the focus is on attribute based

systems instead of identity based systems.

14

2.4 Real-Time Release

Pfitzmann and Waidner [17] raise a concern about the lack of “real-time release” of
attributes in single sign-on proposals, specifically in Shibboleth and Liberty Alliance
version 1. They define real-time release as the ability to prompt the user for consent before
releasing attributes. Their Browser-Based Attribute Exchange (BBAE) [16] profile
addresses this concern.

In BBAE, Pfitzmann and Waidner suggest an AA should disclose all attributes
before instead of after redirecting back to the SP. This means the web browser will be
interacting with the AA instead of the SP. This allows the AA to prompt the user for
consent to release an attribute.

In response to BBAE, Liberty 1.2 addressed this problem by defining three different
methods of prompting the user:

1. Trust the SP to prompt the user,

2. Redirect back to the AA to prompt the user, or

3. Prompt the user through an external mechanism, such as a phone or an instant
messenger service.

Shibboleth, Liberty Alliance and BBAE each incorporate SAML to create single sign-
on technologies. Browser-Based Trust Negotiation also builds on SAML as a foundation,

and borrows many of the concepts found in these other technologies.

15

Chapter 3 Browser-Based Trust Negotiation

Browser-based trust negotiation (BBTN) combines SAML single sign-on technologies
with trust negotiation to create negotiating credential authorities. This chapter presents
an overview and message flow of BBTN, defines the SAML trust negotiation protocol
(SAML TN), explains real-time release of attributes in BBTN, and describes the visual

policy resolver (VIPR).

3.1 Overview of BBTN

BBTN relies on a standard web browser and does not require specialized client
negotiation software. When a user requests a protected resource from an unfamiliar web
site (SP), BBTN helps to build trust with the SP web site. One or more AAs negotiate with
the SP in behalf of the user to establish this trust. Figure 4 shows how the different

parties involved in BBTN interact generally.

Attribute ervic Attribute
Authority SAML TN Provider SAML TN Authority
; Re-direct
HEE' adtv i—iE‘iKi
@00 Q[= S
D imﬁéié

Figure 4. Different Parties Involved in BBTN

16

The user informs an unknown SP which AAs will negotiate for him. The SP
requests an authentication assertion from an AA with an authentication request.
Afterwards, the AA negotiates as a proxy for the user with the SP on the back-channel.
The back-channel negotiation uses the SAML TN protocol defined in section 3.3.

In BBTN, an AA's trust in an SP is an open system because this trust is not identity
based. However an SP's trust in an AA is still identity based. The trust that an SP places

in a person is attribute based and is considered an open system.

3.2 BBTN Message Flow

~ Service Attribute

Web Browser Provider Authority

1. Resource request >

2. VIPR

3. Select authority >

4. Redirect
5. Authentication >
6. Redirect
|
< 7. Trust negotiation >
8. Resource
or VIPR

Figure 5. BBTN Message Flow
Figure 5 shows the message flow of BBTN. The following steps to this procedure

combine trust negotiation with SAML so that users can establish trust with web sites using

17

a common web browser and negotiating credential authorities:
1. A user requests a protected resource at an SP.

2. The SP returns a visual policy resolver (VIPR) page to present the policy that

protects the resource.
3. The user selects a suitable AA for all or part of the policy.

4. The SP redirects the user to the selected AA. The SP includes an authentication

request in the redirect.
5. The AA authenticates the user.

6. The AA redirects the browser back to the SP and includes an authentication

assertion.
7. The SP and AA negotiate trust using SAML TN on the back channel.

8. The SP either releases the resource or presents another VIPR page, in which case,

steps 3-8 repeat until the user gains access to the resource.

3.3 Trust Negotiation Protocol for SAML

This section extends the existing SAML protocols to create a negotiation protocol,
called SAML TN. A schema definition for this protocol, suitable for SAML version 2,
appears in the Appendix at the end of this paper.

All protocols in SAML follow a synchronous request/response model. All responses
in SAML use a common response document can contain assertions and always contains a
status. The status includes three elements, 1) StatusCode, indicating either success or an
error, 2) StatusMessage, an optional text message describing the status of the request, and

3) StatusDetail, an optional field that can contain any information relevant to the status of

18

the request. In SAML TN, the StatusDetail contains the policy controlling access to the
requested request.

To support trust negotiation within the existing request/response model, a new
request must be defined and is known as a NegotiationMessage. A NegotiationMessage
includes a response document that can contain either assertions or policies. Figure 6
shows how the NegotiationMessage and SAML Response can be used in conjunction with

any SAML protocol to implement trust negotiation.

Requester Responder
Any SAML Protocol Request

SAML Response: Policy,
Assertion or Certificate Repeat as

Negotiation Message: Policy, needed
Assertion or Certificate

- SAML Response

Figure 6. SAML Trust Negotiation Protocol

SAML TN can use short-term bearer assertions and holder-of-key assertions as
credentials. However, AAs will most likely use bearer assertions and SPs will most likely
negotiate with holder-of-key assertions. This lets SPs hold the assertions for a much longer
period of time than a bearer token. SPs that handle a high volume of requests cannot
afford to dynamically obtain bearer assertions for each negotiation.

The SP must prove to the AA that the SP knows the private key associated with

holder-of-key assertions. One way to do this is for all the SP's assertions to reference a

19

single public key that the SP uses for session authentication with the AA. This could be
done using mutual authentication of a TLS session or by the SP signing all messages sent

to the AA.

3.4 Real-Time Release in BBTN

This section explores the real-time release options from BBAE and Liberty to
determine which will work best for BBTN

In BBAE, the AA initiates the attribute exchange with the SP and redirects the user
to the SP after the requested attributes are released. The policies at AAs and the SP may
create inter-dependencies across several AAs. These dependencies cause one AA to pause
its negotiation until an SP completes negotiation with another AA. If an AA waits to
complete negotiation before returning the browser to the SP, then either deadlock occurs or
the negotiation would have to be abandoned.

This problem could be avoided by creating additional redirections. To accomplish
this, one SP would redirect the browser to the SP and then on to another AA for attribute
release and then back again. This would make the protocol less efficient and more
complex. Similarly, using the Liberty Alliance method of redirecting back to the AA for
attribute release creates redundant redirections. To avoid these inefficiencies, BBTN does
not return to an AA after the authentication assertion is sent to the SP.

Unlike Liberty Alliance, the AA in BBTN is not required to have any previous
relationship or trust in the SP. Therefore, BBTN cannot rely on the Liberty Alliance

method of trusting the SP to prompt the user for permission to release an attribute.

20

Instead, BBTN could use the third method defined by Liberty, an external attribute
release mechanism. Since instant messenger services have become almost as common as
web browsers, an instant messenger client serves well as the external mechanism to

prompt the user for attribute release.

3.5 Visual Policy Resolution Service

The SP for BBTN needs a service to help the user resolve access policies by
authenticating to one or more AAs. Although similar to the Shibboleth WAYF, and other
authentication request services, this service must create a web page to visually explain the
access control policy of a requested web page to the user. This service interacts with the
user, allowing the user to select different AAs, and provides feedback by showing the
progress of negotiation. For BBTN we call this service the Visual Policy Resolver (VIPR).

The VIPR allows the user to identify multiple AAs, one at a time. Once the user
selects one, the VIPR sends an authentication request to the selected AA. After
authentication via the AA and trust negotiation on the back channel, if the user still cannot
access the resource, the SP again presents the VIPR page, giving the user an opportunity to
choose another AA.

Every time the VIPR page is presented it shows the progress of the negotiation by
displaying satisfied and unsatisfied parts of the policy. When a request for a protected
resource fails, the VIPR does not return a generic error message, such as “Error code 505:
access denied”. Instead the VIPR provides information as to why a request fails, such as

“Access to this resource requires the credentials a, b and ¢ from any of the following

21

authorities: x, y, or z”.

22

Chapter 4 Implementation

This chapter describes a prototype implementation of BBTN. It details the sub-
components of the implementation: the SAML negotiator engine, the AA, the SP, and the
VIPR. It also discusses challenges and pitfalls encountered during implementation.

The implementation of BBTN required several components on both the SP and the

AA. Figure 7 shows an implementation architecture diagram of the AA and SP.

Attribute Authority Service Provider
Application /SAML TN SOAP SAML TN Application
Server Engine Engine Server
Authentication Internet VIPR
g
G O O Q I:I [Csearen) <5, [

Figure 7. BBTN Implementation Architecture

4.1 SAML Trust Negotiation Engine

Both the AA and the SP use a SAML trust negotiation engine to handle SAML
protocols and policy decisions. Figure 8 shows the architecture of the SAML trust
negotiation engine. The PDP from the open source XACML policy project (SunXACML [13]

by Sun Microsystems) was adapted to return a policy when a request fails.

23

The Policy Enforcement Point (PEP) calls the PDP and enforces the decision
returned. It derives, from an incoming policy, which attributes another party requests and
releases them if possible.

The SAML Negotiator uses the SAML version 2.0 specification for assertions and
protocols. The SAML Negotiator handles the SAML requests and maintains the open

negotiation sessions.

[e
Att\‘ri ute Re%ease User Attribute
~ Policies

XACML Subject-Resource
PDP Permit | Deny with policy

Negotiati
Sessionsy,

” Internet :

Figure 8. SAML Trust Negotiation Engine Architecture

The negotiation messages are exchanged using the SAML SOAP binding as defined
in the SAML version 2 binding specification. The SOAP binding limits the exchange to a
synchronous request-response, so the SAML negotiation engine must keep the state of

negotiation across many requests and responses. It does this by tracking the 'ID' attribute

24

of requests and 'InResponseTo' attribute of responses and matching them to the

appropriate negotiation session.

4.2 Attribute Authority

The attribute authority (AA) uses two web servlets, an authentication servlet, and a
SOAP back-channel servlet that uses the SAML Negotiator for attribute requests and
negotiation requests.

The authentication servlet implements the web single sign-on profile of SAML
version 2.0 (using only the post binding). It accepts post messages that include
authentication requests. The servlet authenticates the user with a simple user-name and
password, and then redirects the browser back to the SP including an authentication

assertion.

4.3 Service Provider

The SP uses two servlets, the AccessPoint and the AuthenticationRequester. All
resource requests channel through the AccessPoint servlet. This servlet uses, as
subcomponents, the SAML Negotiator engine and the VIPR service. When the engine
denies access to a resource, the AccessPoint uses the VIPR service to generate a VIPR web
page containing links and buttons for contacting AAs.

The links and/or buttons in the web page generated by the VIPR posts the selected
attribute authority to the AuthenticationRequester servlet. This servlet locates the

appropriate AA endpoints and sends an authentication request document. The request

25

indicates where the AA should redirect the web browser after the user authenticates.

The user's browser then returns to the AccessPoint servlet (at the SP) with an
assertion (from the AA). The AccessPoint uses the SAML Negotiator engine to negotiate on
the back channel with the AA. If the policy still requires more information, the SP once

again generates a VIPR page.

4.4 Visual Policy Resolver

When access to some page or service fails, the VIPR service generates a web page
that allows the user to introduce an AA in order to satisfy the policy that failed. In this
implementation, the VIPR service parses the failed policy into a simplified tree. The tree
has 'AND' and 'OR' branches with attribute leaf nodes that specify the required attribute
and required issuer. The VIPR uses this tree to create an HTML tree that lets the user
graphically see the logic required to satisfy the policy.

The leaf nodes in the tree provide links, buttons or text fields that allow the SP to
contact a specified AA. When parsing an XACML policy, the VIPR generator creates leaf
nodes in the tree for each 'Subject attribute designator' element. These elements specify
which credentials a subject must have, and who must issue the credentials.

The policies cannot express indirect trust without an extension to the XACML
language. So a policy can only specify root authorities as issuers of credentials. The
implementation requires separate configuration for subordinate authorities.

The implementation allows three possible leaf nodes:

1. No issuer: Any AA, that can give the requested attribute, will satisfy the leaf

26

node of the policy. The VIPR page presents this case as an empty text input box
that lets the user type which authority to use.

2. Direct issuer: A policy specifies an authority, and no configuration exists for
subordinate authorities. For this type of the leaf node, the VIPR presents a simple
submit button.

3. Root Authority issuer: A policy specifies an authority, and configuration exists
to indicate support for subordinate authorities. The VIPR presents this node as an
empty text input box for the user to type in a subordinate authority. A selectable
pull-down list appears in the HTML node if the SP already knows of some
acceptable subordinate authorities.

Figure 9 shows an XACML policy and Figure 10 shows a VIPR web page generated from

this policy.

27

<?xml version="1.0" encoding="UTF-8"7?>
<Policy PolicyID="SongDiscountPolicy"

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-equal">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#integer">1</AttributeValue>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-bag-size">
<SubjectAttributeDesignator
AttributeId="DriversLicense"
DataType="http://www.w3.0rg/2001/XMLSchema#string"
Issuer="dmv.gov"/>
</Apply>
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">enrolled</AttributeValue>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<SubjectAttributeDesignator
AttributeId="StudentStatus"
DataType="http://www.w3.0rg/2001/XMLSchema#string"
Issuer="dedu.gov"/>
</Apply>
</Apply>
</Condition>
</Rule>
</Policy>

Figure 9. Sample XACML policy (used to generate Figure 10)

k2 L FAE]
. File Edit View Go Bookmarks Tools Window Help

J O O © O [srmpy/127.001:808] [Csearch] Cf‘éga
b |

Access Denied

To gain access, please indicate which authorities can
provide the following required information:

ﬁ

AND
Requested attribute: DriversLicense, Requested attribute: StudentStatus, from any of
from the provider: dmv.gov, the providers authorized by dedir.gov:

Go there | fbyu.edu .| Go there |

[©F Done | =l e e
Figure 10. Generated VIPR Web Page

28

4.5 Challenges and Pitfalls

Even thought BBTN removes the need for client software, it complicates the
implementation of the AA and SP. The main challenges encountered during
implementation include selecting the correct AA to contact during negotiation and

detecting request loops.

4.5.1 Selecting the Correct Attribute Authority

A challenge specific to the SP is selecting the correct AA with which to negotiate.
The SP starts a negotiation session with each AA authority as the user introduces them.
This works fine if the negotiation with each AA completes independently. However, a
negotiation with one authority is suspended if it depends on completing a negotiation with
a different authority. When one negotiation completes, and multiple negotiations sessions
are still suspended, which session should resume next? An incorrect choice may result in
redundant message exchanges.

The implementation contacts AAs in the reverse order in which the user selects
them. For each message exchange, policy requests are either pushed on, or popped off the
request stack. The stack also keeps track of which authority made the request. As
negotiations with different authorities complete, previous requests are removed from the

stack and an SP contacts the associated authority to resolve the request.

4.5.2 Detecting Request Loops
Another challenge is detecting loops and knowing when to terminate negotiation. If

attribute release policies across several parties have a circular dependency, an infinite loop

29

occurs during negotiation. For example (see Figure 11), suppose a user requests a web
page from an SP. To release the web page, the SP requires credential al from AA; To
release credential al, AA; requires credential c1 from the SP. To release credential c1, the
SP requires credential a2 from AA, To release credential a2, AA, requires al from the SP.

If the cycle is not detected, the SP would then request al from AA,; and repeat the process.

SP

Attribute Release Policy

RESOUICE O); Reguiredicredentiial
credential for ralazigs

>

REguiedicredenticl

REguIrEd credential
o release

for ralezse

Eredeniel Eredentil

1. Web page
request

Figure 11. Dependency Loop Example

The SP implementation detects loops by saving a set of outstanding credentials
requested. When a request fails, negotiation continues only if the policy that failed
requests some additional credentials not found in the set of outstanding credentials

requested. This prevents loops and redundant message exchanges.

30

4.6 Implementation Overview
Items left for future work include signing and encrypting SAML messages and real-
time release of attributes via an instant messenger. Overall, the prototype implementation
successfully achieved the following:
1. Protects web resources and credentials at the SP via XACML policies
2. Redirects users from an SP to an AA with an authentication request
3. Authenticates the user at the AA and sends an assertion to the SP

4. Protects user credentials using XACML policies and trust negotiation

31

32

Chapter 5 Analysis of BBTN

This research removes the dependency of trust negotiation on certificates issued to
users, but at what cost? How does this approach effect privacy and security compared to
current single sign-on proposals and current trust negotiation proposals? The following
sections answer these questions by analyzing BBTN using the following criteria: credential
management, policy management, usability, performance, privacy, unintended credential

usage, denial of service attacks, and other security threats.

5.1 Credential Management

The addition of SAML assertions as a credential to trust negotiation simplifies
credential management for both administrators and users.

In BBTN, the user does not have to seek out and obtain certificates from various
organizations. This eliminates the need to adhere to stringent rules, as stated in a
certificate practice statement (CPS). These rules may require the user to request
certificates in person, present certain forms of identification, or store signing keys in
specially protected environments.

Furthermore, each certificate authority may have different mechanisms of sending
the certificates to the user, such as by disk, mail, email, or through a custom built web
page. After receiving the certificates and private keys, the user must secure them to
protect from theft.

BBTN also removes the need for administrators to issue, revoke, and distribute

certificates to users. Such activities could happen very frequently if a user's attribute

33

changes frequently, such as a role.

The following university scenario, adapted from an example in Shibboleth [4],
demonstrates this burden. Students and professors from different universities wish to
collaborate on their research. Students of one class need documents hosted on a different
university's protected web page. In order to accommodate this collaboration, students need
to have certificates created at the beginning of the semester. Administrators need to make
the certificates expire at the end of the semester and also revoke certificates when classes
are dropped.

Using BBTN simplifies the model greatly. Rather than issue certificates every
semester, administrators create user accounts only once. Since current class enrollment
determines the access to other universities, administrators have nothing further to

configure.

5.2 Policy Management

Moving credentials off of the user's computer onto the AA also moves the policy
enforcement point to the AA. Before, credentials from many different authorities relied on
the user to secure access to these credentials. In BBTN, that responsibility resides on the
AA. The authority that issues a credential must also secure access to the credential.

Both organizations and users will most likely want the AA to create and enforce
default attribute release policies. Many organizations worry about the privacy of the user's
data they store, especially when legislation imposes severe penalties for privacy violations.

These organizations would probably want to enforce a default policy for all their users'

34

data. Also, creating attribute release policies requires specialized skills, and many users
will not craft adequate policies without additional training. Since the enforcement point
resides on the authority, the authority can apply a set of default policies for every user.

Some users will also wish to create their own policies. BBTN satisfies this desire by
allowing user-defined policies in addition to the default policy.

Other single sign-on systems also have attribute release policies. Shibboleth and
implementations of Liberty Alliance use identity-based attribute release policies, not
attribute-based as in trust negotiation. This means that the user assigns rights to
credentials for each SP one by one. Attribute-based release policies, once in place, apply to
any SP. This allows the user to exchange credentials securely with any number of SPs.

If single sign-on technologies continue to gain momentum in the industry, many of
the web sites people visit will be SAML enabled SPs. With current single sign-on
proposals, a person can very easily forget and mismanage which web sites he has granted
access to his attributes. In this scenario, trust negotiation has a compelling advantage

since creating one release policy applies to all possible SPs.

5.3 Usability

A browser-based application for trust negotiation simplifies the usability for a user.
First, the user does not have to install or upgrade trust negotiation software. Second, most
computer users feel comfortable using a web browser. Third, using negotiating credential
authorities moves credential configuration and management duties to the AA, relieving the

user from these duties.

35

A web-based application also has drawbacks. HTML does not provide the rich
flexibility that a native user interface provides. Complex tasks are more difficult to
implement and can be more cumbersome to use when implemented as a web page than if

implemented as a native client.

5.4 Performance
How does BBTN compare to traditional trust negotiation (TN) in terms of
efficiency and scalability? This section compares the number of message

exchanges and user interactions between the two approaches.

5.4.1 Message Efficiency

For a given negotiation involving certain policies and credentials, the number of
messages in BBTN will exceed the number in TN whenever BBTN distributes the
negotiation across several AAs. For instance, in a negotiation between a server and either
a client or single AA, the server can send the full policy in a single message. The
negotiation in TN and BBTN will be the same. The server assumes all credentials relevant
to the user are possessed by the client or AA. If instead the user’s credentials are
distributed among several AAs, the server will disclose the policy, or relevant portions, to
each AA. Thus, an upper bound on the number of messages using BBTN is the number of
messages using TN multiplied by the number of AAs, plus the messages for redirection and
authentication that occur once for each attribute authority. The number of BBTN

messages compared to the number of TN messages is represented by the following formula:

TN +c-n<BBTN<TN -n+cn

36

n = number of attribute authorities

¢ = constant number of messages used for redirection and authentication
TN = number of messages needed for traditional trust negotiation
BBTN = number of messages needed for BBTN

This formula indicates that the number of messages in BBTN at most grows

linearly as the number of AAs increases.

5.4.2 User Prompt Efficiency
Each AA prompts the user for authentication once per session.
Negotiations involving more than a few AAs could annoy users with an
excessive number of authentication requests. The technology exists in Liberty Alliance [11]
and SAML 2.0 [15] to achieve single sign-on, not only from an AA to an SP, but also to
other AAs. To accomplish this each AA also acts as an SP and users can federate their
identity across the domains, providing one authentication across all domains. Using this

technique for BBTN can limit the number of authentication prompts to one.

5.5 Privacy

5.5.1 Credential Linking
Credential linking is a privacy threat where SPs learn more about the user than
what the user disclosed by linking credentials or information that a user discloses to
several SPs. For example, suppose that during trust negotiation, an SP for a grocery store
learns the gender of a visitor. Suppose that this grocery store also has connections with an

on-line magazine shop. If the gender credential contains linkable information, the grocery

37

store can learn if the user had visited the magazine shop as well as any information the
user disclosed to the magazine shop. For example, the grocery store could learn about the
interests of the person from the articles viewed at the magazine shop and then present
advertisements specific to his interests.

If the credential contains a uniquely identifying attribute, such as a social security
number or a drivers license, then nothing can prevent linking. But, if the credential
contains something generic such as hair color, citizenship, or gender, then the credential
format should not allow linking.

Certificates and holder-of-key assertions can be linked using the public key
embedded in them, even the attribute in the credential contains generic information. This
allows an SP to store information about the user, such as which pages he visits, and which
credentials he discloses. Once a user discloses the same credentials to other SPs, the SPs
can then aggregate all the data and credentials, creating access to information that the
user never intended.

Assertions can contain a name identifier. Shibboleth and Liberty Alliance do not
produce assertions that contain a linkable name identifier. Liberty Alliance and SAML 2.0
define a persistent name identifier (or pseudonym) that remains constant for a particular
SP. However, the identifier still remains unique across different SPs, and SPs cannot link
them. These specifications also define transient (or one-time use) name identifiers which
are small random numbers used only to identify the user's current session.

BBTN prevents linking of bearer assertions since it only uses transient or persistent

38

identifiers. Using these identifiers, nothing else within SAML assertions or protocols
(other than the attributes themselves) can link user's credentials. This adds some level of
protection against linking. There exist additional methods to link users, such as tracking
which Internet addresses the user comes from. These threats are not discussed here since

they exist external to SAML and BBTN, and other proposals exist to deal with them.

5.5.2 Tracking People's Browsing Habits

While SAML assertions help to prevent linking, BBTN, and SAML in general, have
an additional privacy concern, the ability to track people's browsing habits. Because an AA
negotiates on behalf of the user, it can store information about which sites the user visits.
Pfitzmann and Waidner [16] identified this concern with other single sign-on proposals. As
a way to minimize this they suggest that SPs use one common URL and an 'opaque handle'
when it requests an authentication. The opaque handle identifies the user's current
session and is meanful only to the SP.

This suggestion still allows AAs to track to which SPs a user browses, but minimizes
the amount of information the AA can glean. For example suppose a user requests single
sign-on to a hospital. An AA's log for a wuser may look something like
“http://somehospital.com/drug-abuse-clinic, http://somehospital.com/abortion-clinic”. Using
the suggestion from BBAE, the same log could look like
“http://somehospital.com?ID=12345, http://somehospital.com?ID=23456", giving no
indication as to what pages were viewed at the hospital.

A more effective alternative makes use of the enhanced client/proxy defined in

39

http://somehospital.com/abortion-clinic
http://somehospital.com/drug-abuse-clinic

Liberty Alliance and SAML version 2. This proxy has capabilities beyond that of a browser
and can serve as a proxy to small mobile devices, such as cell phones. Enhancing this
proxy to negotiate on behalf of the user removes the AAs ability to track where a user
browses. The client could obtain the assertions needed for negotiation on demand from the
AA but the proxy would negotiate for the user. Unlike an AA in BBTN, this proxy belongs
to one user only. This would protect the privacy of the user and still yield some of the

advantages of BBTN. Exploration of such a proxy extends beyond the scope of this thesis.

5.5.3 Single Point of Attack
Maintaining an on-line credential authority also represents a single point for an
attack to obtain information about many users. A compromised authority could mean the
release of all user information stored at that authority. Pfitzmann and Waidner [17]
explained this problem with current single sign-on proposals. To minimize the threat, they
recommend partitioning a user's information across several authorities, or even allowing a

user-specific authority, or wallet, that holds information about only one user.

5.6 Unintended Credential Usage

Certificates can be stolen, lent, or pooled to gain un-intended access to systems.
Using BBTN (and SAML in general) helps to limit these problems, but does not completely
solve them.

BBTN helps limit the theft of credentials. Because negotiations occur directly
between the AA and SP, AAs never place the user's credentials on the user's machine. This

reduces the chance that rogue software on a user's computer could steal the credentials.

40

However, rogue software could capture a password, gaining the ability to use someone's
credentials via the AA. For every use of a stolen password, a thief must contact the AA,
possibly leaving an audit trail. This would help make detection of the theft easier.

Similar to credential theft, users cannot lend SAML bearer assertions. But again,
nothing prevents lending passwords. More secure authentication mechanisms can help
thwart this, such as biometrics, smart cards, proximity cards, etc. SAML does not specify
which authentication mechanisms to use. The authentication mechanisms depend on the
system deployed at the AA. Furthermore, SAML provides a way for an SP to request
certain authentication mechanisms [9] to use when authenticating a user. A web server's
release policies can directly reference the class of authentication methods used by the AA to
authenticate a user.

Pooling credentials means that several users can combine their credentials to gain
higher privileges. Using BBTN with different authentication mechanisms can help limit
the pooling of credentials. In BBTN, pooling cannot occur within the same domain.
Several users from the same AA cannot pool attribute assertions because of the tie between
assertions and the user's current authenticated session. However, several users from
different domains can still pool their credentials by having each user authenticate to

different authorities using the same browser.

5.7 Denial of Service Attacks

BBTN requires AAs and SPs to keep track of several negotiation sessions. This can

lead to denial of service (DOS) attacks.

41

Once the SP and AA begin negotiation, the SP may need to contact other authorities
before it can complete the negotiation. Therefore, the negotiation session must remain
open. An untrusted SP could flood an AA with uncompleted negotiation requests in an
attempt to comsume all available memory on the AA.

However, before negotiation can begin, a user must authenticate to the AA.
Therefore, a rogue SP would need to authenticate to the AA as a user in order to launch
such an attack. To help prevent this, the AA should only allow one negotiation session for
each user and SP. A successful attack would need either access to multiple accounts or
access to one account and multiple rogue SP's.

Another scenario of a DOS attack involves a user attacking an SP. In this attack,
the user attempts to access a protected web site and retrieve the VIPR page specifying the
policy. The user would then redirect the SP to an AA with an authentication request.
Then the user would abandon the connection, open a new connection and repeat the
process. In this case the SP would have to remember which resource the user originally
requested and how much of the policy the user had satisfied to that point. To minimize this
threat, an SP must not store information for a user until that user has authenticated to at

least one trusted AA.

5.8 Other Security Threats
SAML version 2.0 [8] includes a document, “Security and Privacy Considerations”,
that explains countermeasures to several security and privacy threats:

« Eavesdropping

42

+ Theft of the user authentication information or bearer token
+ Replay

+ Message insertion

+ Message deletion

+ Message modification

+ Man-in-the-middle

+ Impersonation without re-authentication

These same threats and countermeasures apply to BBTN. Countermeasures include
a combination of “strong bilateral session authentication, confidentiality, and data
integrity.” These countermeasures are implemented with different combinations of the
following mechanisms: XML encryption, XML signature, TLS, mutual authentication TLS,
or HTTP basic authentication. For example, signing requests and responses, and sending
them over TLS thwarts all the attacks listed above.

In BBTN, setting up these countermeasures can be difficult for an AA, since the SP
is initially unknown. The AA can request a metadata document [6] containing the signing
certificate of an SP. The AA uses the certificate to verify all signed requests and responses
from the SP.

When an SP makes a request (such as an authentication request), it includes a
provider ID. SAML recommends that the provider ID be a web page URL (Universal
Resource Locater) that points to the metadata document. Usually, for SAML or Liberty,

establishing secure communications with another provider involves importing the

43

metadata of the other provider. For BBTN, an AA must be able to dynamically discover the
metadata for an SP, and therefore the provider ID must be the URL of a provider's
metadata.

In BBTN, when an AA receives an authentication request, it must check to see if it
has already obtained the metadata for the SP. If not, the AA must use the provider ID of
the SP to obtain the metadata. This metadata should be requested using SSL/TLS to
ensure integrety and authenticity. Once the AA obtains the metadata it applies the needed

countermeasures to thwart the security and privacy attacks listed above.

44

Chapter 6 Contributions and Future Work

Browser-based trust negotiation avoids the problems associated with issuing
certificates to users, simplifying negotiation for those who use it. BBTN allows people to
use negotiating credential authorities with a web browser, by combining SAML single sign-
on technology with trust negotiation.

This chapter explains the contributions of this thesis to the areas of single sign-on

and trust negotiation, and discusses possible future work.

6.1 Contributions
Negotiating credential authorities and BBTN contribute several novel ideas to the

area of single sign-on and trust negotiation.

6.1.1 Contributions to Single Sign-On

In Liberty Alliance and Shibboleth, an AA defines trust in an SP by identity.
Instead, BBTN is an open system because trust in an SP is determined by attribute and not
pre-configured by name. Similarly, BBAE does not base trust in SPs by identity. However,
BBAE negotiates trust via privacy promises instead of credentials.

BBTN demonstrates how to extend existing single sign-on proposals (Liberty
Alliance, Shibboleth, and SAML) to use trust negotiation as an authentication mechanism.

BBTN also adds the concept of combining credentials from multiple AAs to access a
single SP to the area of single sign-on. This gives SPs additional assurance in a user's

validity.

45

6.1.2 Contributions to Trust Negotiation

This thesis contributes several new ideas to the study of trust negotiation. First,
this research contributes the concept of obtaining credentials on-demand from credential
authorities.

Second, negotiating credential authorities provide an alternative approach for proxy
based trust negotiation. Surrogate or mobile trust negotiation [18] uses proxies that
represent a mobile user. Instead, a negotiating credential authority acts as a proxy for
multiple users.

Third, using the SAML TN protocol, trust negotiation can utilize SAML assertions
as digital credentials in addition to certificates.

Fourth, BBTN provides a browser-based, zero-footprint client to accomplish trust
negotiation.

Finally, the VIPR service provides an interactive mechanism for a user to view and

resolve unsatisfied policies.

6.2 Future Work

Future work should consider several variations and enhancements to both BBTN
and SAML TN. One such variation, mentioned in section 5.5.2, could expand on the SAML
2 enhanced client proxy (ECP) profile. The profile adds additional functionality for clients
that have enhanced capabilities beyond that of a browser. The client can also act as a
proxy for the user when the user has access to only smaller or remote devices. Combining

BBTN with ECP would create something similar to mobile trust negotiation with the

46

ability to obtain credentials as needed.
Another alternative to explore is a hybrid system supporting both traditional trust
negotiation and BBTN. If users possess digital credentials, they can negotiate directly with

the SP, and then resort to BBTN if they need additional credentials.

47

Bibliography

[1] R. Bradshaw, J. Holt, and K. E. Seamons. Concealing Complex Policies with Hidden
Credentials. Eleventh ACM Conference on Computer and Communications Security,

October 2004.

[2] M. Y. Becker and P. Sewell. Cassandra: Distributed Access Control Policies with
Tunable Expressiveness. POLICY ’04: Proceedings of the 5th International Workshop on
Policies for Distributed Systems and Networks, pages 159-168, Yorktown Heights, NY,

June 2004. IEEE Computer Society Press.

[3] E. Bertino, E. Ferrari, and A. C. Squicciarini. Trust-X: A Peer-to-Peer Framework for
Trust Establishment. IEEE Transactions on Knowledge and Data Engineering, 16(7):827—

842, July 2004.

[4] S. Cantor and M. Erdos. Shibboleth-Architecture Draft v05. Internet 2 Middleware
Working Group, May 2002.

http://shibboleth.internet2.edu/draft-internet2-shibboleth-arch-v05.html

[5] S. Cantor, F. Hirsch, J. Kemp, R. Philpott, E. Maler. Bindings for the OASIS Security
Assertion Markup Language (SAML) V2.0. OASIS SSTC, March 2005. Document ID saml-

bindings-2.0-0s. See http://www.oasis-open.org/committees/security/.

[6] S. Cantor, J. Moreh, R. Philpott, E. Maler. Metadata for the OASIS Security Assertion

48

Markup Language (SAML) V2.0. OASIS SSTC, March 2005. Document ID saml-metadata-

2.0-0s. See http://www.oasis-open.org/committees/security/

[7] S. Cantor, J. Hughes, J. Hodges, F. Hirsh, P. Mishra, R. Philpott, E. Maler. Profiles for
the OASIS Security Assertion Markup Language (SAML) V2.0. OASIS SSTC, March 2005.

Document ID saml-profiles-2.0-0s. See http:/www.oasis-open.org/committees/security/.

[8] F. Hirsch, R. Philpott, E. Maler. Security and Privacy Considerations for the OASIS
Security Assertion Markup Language (SAML) V2.0. OASIS SSTC, March 2005. Document

ID saml-sec-consider-2.0-0s. See http:/www.oasisopen.org/committees/security/.

[9] J. Kemp, S. Cantor, P. Mishra, E. Maler. Authentication Context for the OASIS
Security Assertion Markup Language (SAML) V2.0. OASIS SSTC, March 2005. Document

ID saml-authncontext-2.0-0s. See http://www.oasis-open.org/committees/security/.

[10] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a Role-based Trust-

management Framework. In 8th ACM Symposium on Access Control Models and

Technologies, Como, Italy, June 2003

[11] Liberty Alliance. Liberty Alliance Project Phase 2 Specifications, November 2003.

http://www.projectliberty.org/specs/

[12] W. Nejdl, D. Olmedilla, and M. Winslett. PeerTrust: Automated Trust Negotiation for

Peers on the Semantic Web. SDM ’04: Workshop on Secure Data Management in a

49

http://www.oasisopen.org/committees/security/
http://www.oasis-open.org/committees/security/

Connected World, pages 118-132, Toronto, Canada, August 2004.

[13] OASIS eXtensible Access Control Markup Language Technical Committee.
eXtensible Access Control Markup Language (XACML) Version 1.1 Specification. OASIS
Standard, July 2003. http:/www.oasis-open.org/committees/xacml/repository/cs-xacml-

specification-1.1.pdf

[14] OASIS Security Services Technical Committee. Security Assertion Markup Language
version 1.1 Specification. OASIS Standard, May 2003.

http://www.oasis—open.org/committees/tc_home.php?wg_abbrev=security#samlvll

[15] OASIS Security Services Technical committee. Security Assertion Markup Language
version 2.0 Specification. OASIS Standard, March 2005.

http://www.oasis—open.org/committees/tc_home.php?wg_abbrev=security#samlv20

[16] Birgit Pfitzmann and Michael Waidner. BBAE -- a general protocol for browser-based

attribute exchange. Research Report RZ 3455 (# 93800), IBM Research, September 2002.

[17] Birgit Pfitzmann and Michael Waidner. Privacy in browser-based attribute exchange.
ACM Workshop on Privacy in the Electronic Society (WPES), Washington, Nov. 2002,

pages 52-62, ACM Press

[18] T. van der Horst, T. Sundelin, K. E. Seamons, and C. Knutson. Mobile Trust

Negotiation: Authentication and Authorization in Dynamic Mobile Networks. Eighth IFIP

50

http://www.oasis/

Conference on Communications and Multimedia Security, Lake Windermere, England,

September 2004.

[19] W. H. Winsborough, K. E. Seamons, and V. E. Jones. Automated Trust Negotiation.

DARPA Information Survivability Conference and Exposition, Hilton Head, SC, January

2000.

51

Appendix XML Schema for SAML Trust Negotiation

<?xml version="1.0"7>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="urn:byu:cs:irsl:negotiator:samltn"
xmlns:samltn="urn:byu:cs:irsl:negotiator:samltn"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:xacml="urn:oasis:names:tc:xacml:1.0:policy">
<import namespace="urn:oasis:names:tc:SAML:2.0:assertion"
schemaLocation="sstc-saml-schema-assertion-2.0.xsd"/>
<import namespace="urn:oasis:names:tc:SAML:2.0:protocol"
schemaLocation="sstc-saml-schema-protocol-2.0.xsd"/>
<import namespace="urn:oasis:names:tc:xacml:1.0:policy"
schemalocation="cs-xacml-schema-policy-01.xsd"/>
<annotation>
<documentation>
Document identifier: saml2-trustnegotiator.xsd
</documentation>
</annotation>
<element name="NegotiationMessage" type="samltn:NegotiationMessageType"/>
<complexType name="NegotiationMessageType">
<complexContent>
<extension base="samlp:RequestAbstractType">
<choice>
<sequence>
<element ref="saml:Subject" minOccurs="0" />
</sequence>
<element ref="samlp:Response"/>
<!-- The Response possibly contains attribute statements in
assertions or a policy in the status detail -->
</choice>
</extension>
</complexContent>
</complexType>
</element>

<!l-- A Response to this message results in a samlp:Response with the
status detail containing policy elements -->
</schema>

52

	Browser-Based Trust Negotiation
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	Illustration Index
	Chapter 1 Introduction
	1.1 Trust Negotiation
	1.1.1 Digital Credentials
	1.1.2 Negotiation with Sensitive Credentials

	1.2 Problem Statement
	1.2.1 Lack of Certificates
	1.2.2 Unavailability of Adequate Certificates
	1.2.3 Inconvenience of Obtaining Certificates

	1.3 Negotiating Credential Authorities
	1.4 Examples
	1.4.1 Health Care
	1.4.2 On-line Shopping
	1.4.3 Government

	Chapter 2 Related Work
	2.1 Assertions and Certificates
	2.2 SAML Protocols, Bindings and Profiles
	2.3 Single Sign-On Profiles
	2.3.1 SAML version 1 SSO
	2.3.2 Shibboleth
	2.3.3 Liberty Alliance
	2.3.4 Single Sign-On with SAML v2	

	2.4 Real-Time Release

	Chapter 3 Browser-Based Trust Negotiation
	3.1 Overview of BBTN
	3.2 BBTN Message Flow
	3.3 Trust Negotiation Protocol for SAML
	3.4 Real-Time Release in BBTN
	3.5 Visual Policy Resolution Service

	Chapter 4 Implementation
	4.1 SAML Trust Negotiation Engine
	4.2 Attribute Authority
	4.3 Service Provider
	4.4 Visual Policy Resolver
	4.5 Challenges and Pitfalls
	4.5.1 Selecting the Correct Attribute Authority
	4.5.2 Detecting Request Loops

	4.6 Implementation Overview

	Chapter 5 Analysis of BBTN
	5.1 Credential Management
	5.2 Policy Management
	5.3 Usability
	5.4 Performance
	5.4.1 Message Efficiency	
	5.4.2 User Prompt Efficiency

	5.5 Privacy
	5.5.1 Credential Linking
	5.5.2 Tracking People's Browsing Habits
	5.5.3 Single Point of Attack

	5.6 Unintended Credential Usage
	5.7 Denial of Service Attacks
	5.8 Other Security Threats

	Chapter 6 Contributions and Future Work
	6.1 Contributions
	6.1.1 Contributions to Single Sign-On
	6.1.2 Contributions to Trust Negotiation

	6.2 Future Work

	Bibliography
	Appendix XML Schema for SAML Trust Negotiation

