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Finite approximations to the second-order properties closure in
single phase polycrystals

Brent L. Adams a,*, Xiang (Carl) Gao a, Surya R. Kalidindi b

a Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, United States
b Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, United States

Abstract

Extension of the first-order theory of microstructure design to considerations of morphological texture is addressed in this paper.

The main challenges include the r-interdependence of the 2-point correlation functions of lattice orientation, construction of the

corresponding microstructure hull, and its corresponding properties closure(s). It is shown that the correlation functions can be

expressed in terms of an intermediate construct, called the texture function; the correlation functions have quadratic dependence

in the texture functions. A complete (finite) texture hull is readily constructed for the texture functions in Fourier space, and is found

to be a convex polytope. Eigen-texture functions occupy its corner (extreme) points. Microstructure design proceeds directly from

homogenization relations evaluated at the corner points. This gives rise to (combined) properties closures, from which second-order

microstructure design can proceed. This is demonstrated in a brief case study.

Keywords: Mesostructure; Microstructure-texture; Statistical mechanics; Mechanical properties-elastic behavior

1. Introduction

Within the context of statistical continuum theory,

refined bounds and estimates of effective properties re-
quire information about microstructure beyond the vol-

ume fractions required by the first-order theories. For

example, expressions for the fourth-order effective elas-

ticity tensor, C*, can be expressed as a geometric series

in the correlation functions of local stiffness [1–3]:

C� ¼ hCi � hC0CC0i þ hC0CC0CC0i � � � � ð1Þ
Here, the angular brackets, Æ Æ æ, denote ensemble aver-

ages, C 0 = C � Cr is the polarization of local stiffness

C with respect to a selected reference stiffness, Cr, and

C denotes an appropriate Green�s function operator

associated with solutions to the basic governing equa-

tions for static linear elastic properties subject to homo-

geneous boundary conditions. The basic feature of

Eq. (1) is a hierarchical dependence upon an ascending

order of correlation functions; thus, the first-order term
requires ÆC(x)æ, the second-order term ÆC 0(x)C 0(x 0)æ, and
so forth. This hierarchy is found in other theories, such

as the solution to the Navier–Stokes relations for the

visco-plastic modulus [4,5].

1.1. First-order theory for microstructure design

First-order effective properties theories, of the type
mentioned, have recently been incorporated in a new

methodology for tailoring the microstructure of materi-

als to meet the requirements of mechanical design [6–9].

The goal of microstructure design is to begin with the

combination of properties of importance to a specific de-

sign problem, and then to derive the class of microstruc-

tures that are predicted to best satisfy them. The new
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work builds upon the methodology of Bunge [10], which

describes the orientation distribution function (ODF),

f(g), in terms of an infinite Fourier series,

f ðgÞ ¼
X1
l¼0

XMðlÞ

l¼1

XNðlÞ

m¼1

Clm
l T

) lm

l
ðgÞ. ð2Þ

Here, g denotes the orientation of the lattice of any par-

ticular crystallite, with respect to a reference crystallite,

and T
) lm

l
ðgÞ are the generalized spherical harmonic func-

tions, symmetrized according to the symmetry sub-

groups of the lattice and the processing, as may be

appropriate. The set of Fourier coefficients, fClm
l g, de-

fine a point in the infinite dimensional Fourier space,

representing the ODF. The set of all possible ODFs is

called the hull of ODFs, as it is found to be a convex
set, compact in all of its sub-dimensions [6]. It was also

shown that the effective properties (homogenization)

relations themselves define hyper-planes or surfaces in

the Fourier space, delineating ODFs within the hull that

are predicted to achieve specified properties. Later work

demonstrated that ordinary methods of linear analysis

recover the set of properties combinations predicted by

the associated homogenization relations [7]. This set is
called the properties closure.

Properties closure is closely related to the important

G-closure problem for linear properties, which is defined

to be the set of all possible effective properties of all pos-

sible composites assembled from a given set of phases

[11,12]. Given that the properties closures of the present

work are estimated from homogenization relations of fi-

nite order, they can be considered to be approximations
of G-closure.

One key challenge in searching the microstructure

hull is to insure that a given ODF, represented by its

Fourier coefficients, actually lies in the physically al-

lowed hull of ODFs. This was treated in a particular

way, using Gramm–Schmidt orthogonalization [9].

Common design problems treated by themethodology

using first-order homogenization theories include elastic–
plastic treatment of compliant beams [6] and the load-

bearing capacity of plates containing holes [7–9].

The work to date has shown a remarkable degree of

invertibility in the homogenization relations. Although

much of modern thinking in materials design follows

exclusively the traditional �forward direction� of materi-

als science and engineering [viz. processing ) micro-

structure ) properties], forward design has been
limited to considerations of only a tiny fraction of the

space of all microstructures. By contrast, the new meth-

odology is able to precisely define the complete set (hull)

of all microstructures; and since the homogenization

relations themselves are described as sets that intersect

the hull, an invertible mapping of the form [properties

) microstructure] is obtained. The current weakness

of the new methodology is that it does not yet ade-

quately consider processing constraints and thermody-

namic stability. For this reason it is presently

considered to be a tool for preliminary or exploratory

design.

1.2. Extending microstructure design theory to

second-order

The extent to which invertibility can be achieved for

other, more advanced homogenization relations and

concomitant microstructure representations remains to

be explored. In this paper, we address mainly the prob-

lem of constructing the hull for 2-point orientation cor-
relation functions (OCFs), as required, for example, by

the second term in the homogenization relation given

by relation (1). It is known that homogenization rela-

tions based only upon volume-fraction information

may be less than adequate to conduct useful design.

Elastic bound estimates for polycrystals, for example,

are often separated by �10% or more of the estimate it-

self [13], and this may be unacceptable in highly con-
strained design. Remedy by resort to higher-order

homogenization relations is possible if we are able to

construct an appropriate hull for the 2-point correlation

functions. This possibility was mentioned in the earliest

work describing the new methodology [6], but the com-

plexities of the 2-point representations were not fully

appreciated.

The principal challenge associated with the 2-point
functions is a complex interdependency in the r-variable

of the representation itself. Consider the joint probabil-

ity density that the tail and head of a vector, r, randomly

placed in the microstructure of a single phase polycrys-

tal, associates with lattice orientations g and g 0, respec-

tively. In statistically homogeneous microstructures,

this probability density is labeled f2(g,g
0jr); it is also

called the 2-point OCF, or the OCF. Modern methods
of automated electron backscattering diffraction enable

statistically reliable estimates of this function to be ob-

tained by experimental sampling of the microstructure

[13]. A limited understanding of the r-interdependence

of the OCF can be seen in the following conservation

relationship that must hold in statistically homogeneous

microstructures:Z Z Z
WðXÞ

f2ðg; g0jrÞhðrÞdr ¼ f ðgÞf ðg0Þ. ð3Þ

Here, W(X) designates the complete set of all possible
vectors r that can be found in any particular region of

3-D space, X. When pairs of points are introduced into

random and independent locations within X, h(r) is the
geometrical probability density for the occurrence of

vector r among these pairs. It is evident that relation

(3) defines a necessary system of constraints, linking

the OCFs to one-another. However, the question that



arises is whether these constraints are sufficient to insure

that a set of OCFs is physically realizable in the ensem-

ble. Torquato [14] reviewed what is known about the

related problem of physical realizability for the auto-

covariance function in 2-phase composites, and con-

cluded that the problem remains an open and unsolved
one. Addressing the r-interdependence of the OCF is the

chief obstacle to a formulation of microstructure design

at the second-order level.

1.3. Organization of the paper

The purpose of this paper is to describe an approxi-

mate method for obtaining the hull of OCFs – a method
that overcomes the problem of r-interdependence. An

essential intermediate step is the quantitative representa-

tion of the microstructures of samples belonging to a

statistical ensemble. Discrete, piecewise continuous

representations are introduced by partitioning the

homogeneous space of orientations into a finite set of

sub-spaces. Spatial attributes of sample microstructures

are obtained in like manner by partitioning sample
region X into a finite number of sub-regions. This is de-

scribed in Section 2. In Section 3, the fundamental equa-

tion, linking the 2-point OCFs in each sample to the

spatial coordination of orientations found among the

sub-cells, is presented. These local OCFs are readily

formed by integration, and passage to the ensemble

relates them to the overall, global OCFs describing the

microstructure of the statistical ensemble. The advan-
tage of forming the OCFs in this manner is that the

problems of r-interdependency are overcome. Section 4

describes construction of the hull of texture functions,

which is found to be more convenient for computations

than the hull for OCFs (which resides in a space of much

higher dimension). Section 5 describes a transformation

of basis from the indicator functions to the classical gen-

eralized spherical harmonic functions for orientation
variables, and to the Haar wavelet functions for the spa-

tial variables. These alternate bases can facilitate a dee-

per physical understanding of microstructure and

homogenization relations. In Section 6 we relate the glo-

bal and local 2-point OCFs to the elastic properties

using relation (1). Basic strategy for conducting micro-

structure design is outlined in Section 7, and illustrated

with a brief example extending microstructure design
methodology to second-order for a particular optimized

ODF obtained by first-order microstructure design [9].

1.4. Notational conventions

In the work that follows need will arise for the use of

many indices to enumerate orientational and spatial ba-

sis functions and their coefficients. It will be useful to
contract the number of indices needed into a single index

representing an entire set of related indices. Also, we

adopt the summation convention, viz. that repeated

indices indicate summation over that index, when the

repetition occurs on one side of the equation. Exceptions

to this rule will be clearly noted. For example, relation

(2) will be expressed in abbreviated form as

f ðgÞ ¼ CLT
) LðgÞ; ð4Þ

where the single index L implies all possible {l,l,n} re-

quired to enumerate the orthonormal subspaces of ori-

entation space. Given that L is repeated on the right
hand side, summation is implied. We shall use the con-

vention that upper indices are associated with orienta-

tion variables and lower indices with spatial ones.

Also, since there is little possibility for confusion, we

will omit reference to any particular sample of the

ensemble. For example, we use the symbol X to mean

the space occupied by any particular sample of the

ensemble, rather than the full notation (k)X for the kth
element of the ensemble, except where the index is re-

quired for clarity.

2. Representation of microstructure in rectangular regions

For purposes of pedagogical clarity we restrict our

considerations to polycrystalline materials comprising
a single phase; but extensions to polyphase polycrystal-

line materials would be straightforward. LetM(x,g) rep-

resent the meso-scale (i.e., granular) microstructure of a

sample that occupies region X of 3-D space. M(x,g) is a

real valued function on the product space X · FZ, where

�FZ� denotes the fundamental zone of all physically dis-

tinct orientations of the lattice of the crystalline phase.

(Formally, FZ = SO(3)/G, where G is the symmetry sub-
group of the crystal lattice, and SO(3) is the special

orthogonal group of rotations in 3-dimensional space.

See Morawiec [15] for a full treatment of the FZ for

all crystal classes.) Hereafter we refer to M(x,g) as an

example of a texture function (TF) associated with a

specified sample with microstructure occupying region

X, as it carries information on both the orientational

and morphological textures of the sample. The sample
need not be a representative volume element in the

development that follows. Formally, M(x,g)dg is de-

fined to be the volume fraction of material dV/V in an

infinitesimal neighborhood of material point x that

associates with lattice orientation lying within an infini-

tesimal neighborhood of (invariant) measure dg of the

specified orientation g:

Mðx; gÞdg ¼ dV =V . ð5Þ
For those familiar with the ODF, for any specified posi-

tion x, the TF can be thought of as specifying the local

ODF in the neighborhood of x. Functions similar to the

TF have been introduced elsewhere in the literature

[16,17].



If the TF is integrated over its spatial variables, the re-

sult must be the ODF in the sample occupying region X:
1

volðXÞ

Z Z Z
x2X

Mðx; gÞdx ¼ f ðgÞ. ð6Þ

Further, when integrated over the orientation variables,

the following normalization is taken to hold, consistent

with established convention for the ODF [10]:Z Z Z
g2FZ

Mðx; gÞdg ¼ 1 ðfor all xÞ. ð7Þ

Note that the usual parameterization of orientation g is

in terms of Euler-angles, with an associated invariant

measure of dg ¼ OðGÞ
8p2 sinU dU du1 du2. Here, u1, U, u2

are the Euler angles according to the Bunge convention

[10], and O(G) denotes the order or number of elements
belonging to symmetry subgroup G of the FZ.

The TF, although limited in its scope of microstruc-

ture representation, is a very complex function, and

unsuited for routine calculations. More accessible

approximations endowed with limited spatial and orien-

tational resolution are considered here. Approximation

of the TF based upon Fourier representation by indica-

tor functions is convenient to obtain the main results
presented in this paper. We hereafter refer to the repre-

sentation of the TF by indicator functions as the primi-

tive representation, and the basis of indicator functions

as the primitive basis. Transformation of the primitive

basis to another comprising classical generalized spheri-

cal harmonic functions for the orientation variables, and

Haar wavelets for the spatial variables, is also useful for

its physical clarity, and will be presented in Section 5.

2.1. Representation of TF by indicator functions

Consider rectangular samples of size D1 · D2 · D3.

Thus, the real interval [0,Dk) represents the range of pos-

sible values for spatial variables xk (k = 1,2,3). With an

eye towards compatibility with later representations by

wavelet functions, Dk are selected such that they accept
partitioning into 2Pk sub-intervals of fixed size

d ¼ Dk=2
Pk . Let the positive integers sk, 1 6 sk 6 2Pk ,

enumerate the cubical sub-cells of the sample, each

occupying region xs1s2s3 � X. These sub-cells must sat-

isfy the properties

xs \ xs0 ¼ Øðs 6¼ s0Þ;
[S
s¼1

xs ¼ X. ð8Þ

The explicit definition of the sub-cells is

xs1s2s3 ¼ ðx1; x2; x3Þjðs1 � 1Þd 6 x1 < s1d;f
s2 � 1Þd 6 x2 < s2d; ðs3 � 1Þd 6 x3 < s3dð g.

ð9Þ
Invoking the index contraction convention, the sub-cells

will be identified by a single index s: xs1s2s3 $ xs. The

number of indices involved is S ¼ 2ðP 1þP2þP3Þ.

Spatial indicator functions can be defined for each

sub-cell. These are

vsðxÞ ¼
1 if x 2 xs;

0 otherwise.

�
ð10Þ

Note the compact support for the indicator functions,

each in its specified region. Also note that the spatial res-

olution of the indicator basis is just (d3/D1D2D3) = 1/S.

Also, note that the spatial indicator functions satisfy

the following orthogonality conditions

1

d3

Z Z Z
X
vsðxÞvs0 ðxÞdx ¼ dss0 ; ð11Þ

where dss0 is the Kronecker delta, which equals 1 when

s = s 0, 0 otherwise.

Similarly, the FZ of orientations can be partitioned

into N sub-regions, say cn, each containing a particular

orientation gn at the centroid. These sub-regions are se-

lected to have the following properties:

cn \ cm ¼ Ø ðn 6¼ mÞ;
[N
n¼1

cn ¼ FZ;

Z Z Z
cn

dg ¼ 1=N ðfor all nÞ. ð12Þ

The last relation in (12) is taken for convenience; it

means that the orientation sub-regions each have the
same measure. Note that 1/N specifies the resolution

of orientation that we seek in partitioning the FZ. Asso-

ciated with each sub-region, define an indicator function

vn(g) such that

vnðgÞ ¼
1 if g 2 cn;

0 otherwise.

�
ð13Þ

These also satisfy orthogonality conditions

N
Z Z Z

FZ

vnðgÞvn0 ðgÞdg ¼ dnn
0
. ð14Þ

The TF accepts a primitive Fourier approximation in

the product space of indicator functions:

Mðx; gÞ � Dn
svsðxÞvnðgÞ. ð15Þ

Representing microstructure using the primitive indica-

tor bases is similar to modeling a microstructure with

the cubical sub-cells representing the constituent grains.

However, the definition used here is broader, since each
sub-cell may have a distribution comprising more than

one orientation. The present definition is consistent with

and motivated by experimental considerations. When

microscopy is conducted near the limiting spatial resolu-

tion of the instrument, volume fractions of the local ori-

entation in the information volume can often be

estimated, but the details of how the distribution of ori-

entation is distributed spatially is lacking. The present
definition enables this limiting spatial resolution to be

incorporated in the representation directly, without giv-

ing up the local distribution of orientation.



Equality in relation (15) is achieved only in the limit

that S and N both go to infinity. Extending relation (6)

to considerations of individual cubical sub-cells, one can

describe the local ODF for a single sub-cell of the sam-

ple, s f (g):

1

d3

Z Z Z
x2X

Mðx; gÞvsðxÞdx

¼ 1

d3

Z Z Z
x2xs

Mðx; gÞdx ¼ sf ðgÞ ¼ Dn
sv

nðgÞ. ð16Þ

When combined with the normalization relation (7), one
finds the following normalizations among the Fourier

coefficients of the primitive basis:

XS
s¼1

XN
n¼1

Dn
s ¼ SN ð17Þ

and

XN
n¼1

Dn
s ¼ N ðfor all sÞ. ð18Þ

Also, given the definition of the TF (5), the definition of
its primitive Fourier approximation (15), and normali-

zation condition (18), it is readily seen that the texture

coefficients are bounded:

0 6 Dn
s 6 N . ð19Þ

If sub-cell s* contains only one orientation, say g� 2 cn� ,
then Dn�

s� ¼ N and all other Dn 6¼n�

s� ¼ 0. If more than one
orientation is found in sub-cell s*, the Fourier coeffi-

cients will be less than N, but greater than 0, and they

will sum to N according to (18). Relations (17)–(19) help

establish the hull of TFs, and will be considered again in

Section 4.

2.2. Relationships among the localized and global texture

coefficients

The global TF is related to the ensemble average of

the local TFs of the samples:

hMðx; gÞi � hDn
s ivsðxÞvnðgÞ; ð20Þ

where the ensemble average is defined by

hð�Þi ¼ 1

K

XK
k¼1

ðkÞð�Þ; ð21Þ

with K denoting the number of elements within the

ensemble.

3. 2-Point spatial correlations of orientation

Next, the construction of the 2-point OCF is under-

taken, using the TF of the sample as an intermediate

construct. The advantage is that we are assured that

the OCFs so obtained will be physically realizable. Since

M(x,g) is interpreted to be the volume-fraction density

of crystalline material of orientation g in the near vicin-

ity of point x in region X, then the joint density of mate-

rial of orientation g at point x and of orientation g 0 at

position x 0 is the product M(x,g)M(x 0,g 0). When a sin-
gle element of the ensemble is under consideration, this

joint density is of limited importance. However, the

ensemble average of this product, ÆM(x,g)M(x 0,g 0)æ,
carries the useful notion of the statistical occurrence of

pairs of orientations of various types, at the specified

positions, in the ensemble. It follows that in the ensem-

ble of microstructures, the difference ÆM(x,g)M(x 0,g 0)æ
� f(g)f(g 0) describes the polarization of coherence or
polarization of correlation of the specified pair of orien-

tations at the specified positions. If this difference is

positive, there is an attraction between the orientations,

beyond that which can be explained by random place-

ment of volume fractions alone, which is the product

f(g)f(g 0). If negative, there is repulsion. These correla-

tions are presumed to occur because of the complex

details of microstructure formation and transformation
during the manufacture of the material. They constitute

the meso-scale morphological texture of the polycrystal.

If ÆM(x,g)M(x + r,g 0)æ, is independent of position x

(r = x 0 � x), the microstructure of the ensemble is said

to possess statistical homogeneity. Most representations

of microstructure and effective microstructure/properties

relations assume statistical homogeneity, if they must

depend upon ordinary experimental measurements.
Opacity of most polycrystalline materials to X-ray and

electron probes effectively limits experimental measure-

ments to the ensemble rather than individual samples.

We note, however, that recent work with high-energy

X-rays [18] or automated serial sectioning [19] may re-

duce this limitation in the future. In the sequel we shall

assume that the microstructure of the ensemble is statis-

tically homogeneous.

3.1. The fundamental relation

Define the local OCF at separation r to be f2(g,g
0jr):

1

volðXjrÞ

Z Z Z
x2Xjr

Mðx; gÞMðxþ r; g0Þdx ¼ f2ðg; g0jrÞ;

ð22Þ

where Xjr � X symbolizes the set of those points x lying
within X for which, also, (x + r) 2 X. Relation (22) is the

fundamental relation linking the TFs of selected samples

to their local OCFs. Physically, f2(g,g
0jr) describes the

expectation for joint volume density for orientation g

at the tail and orientation g 0 at the head for randomly

placed vector r, falling entirely in X. Thus, assuming

that all samples of the ensemble occupy a region of



the same size and shape, X, the ensemble OCF is

Æf2(g,g 0jr)æ. As previously mentioned, it is the ensemble

OCF that is relevant to typical homogenization relation-

ships of statistical continuum theory. The main idea ta-

ken here is to represent the ensemble OCF,

approximately, using a Fourier series comprising prod-
ucts of spatial and orientational indicator functions,

and to relate the ensemble OCF to the local OCFs of

the samples from which it is constructed.

3.2. Representation and evaluation of the fundamental

relation in Fourier space

The reader will note that the range of the vector r is
over all possible pairs of points lying in X. But this re-
gion is also rectangular, and exactly twice the size of X
in each of its dimensions, or 8 times the volume of X
in the 3-dimensional real space. Label this set of possible

r vectors W(X). It is defined as

WðXÞ ¼ ðr1; r2; r3Þj � D1 6 r1 < D1;f
�D2 6 r2 < D2;�D3 6 r3 < D3g. ð23Þ

This region can also be subdivided into sub-cells, in a

manner similar to the partitioning of X. Let these sub-

cells be wt1t2t3 $ wt, where the indices t1, t2, t3 M t are

integers that enumerate in the 3-dimensions, as before.

The real interval [�Dk,Dk) contains all possible values

of the variable rk. Partition this interval into 2P
0
k sub-

intervals of size d0 ¼ Dk=2
ðP 0

k�1Þ. Note that the sub-cell

size d 0 is not necessarily dictated by d. However, given

the fact that spatial resolution of the approximate repre-

sentation of sample microstructure is limited to d, for
that which follows we stipulate d 0 = d. It follows that

P 0
k ¼ Pk þ 1. Consistent with this scheme, the sub-cells

themselves are defined by

wt $ wt1t2t3

¼ ðr1; r2; r3Þ

ðt1 � 2P
0
1
�1 � 1Þd0 6 r1 < ðt1 � 2P

0
1
�1Þd0;

ðt2 � 2P
0
2
�1 � 1Þd0 6 r2 < ðt2 � 2P

0
2
�1Þd0;

ðt3 � 2P
0
3
�1 � 1Þd0 6 r3 < ðt3 � 2P

0
3
�1Þd0;

16 tk 6 2P
0
k for k ¼ 1;2;3

����������

8>>>><
>>>>:

9>>>>=
>>>>;

ð24Þ
indicator functions on these sub-cells wt are defined as

before

vtðrÞ ¼
1 if r 2 wt;

0 otherwise.

�
ð25Þ

The local OCF then accepts the following representation

using the indicator basis for the r-dependence:

f2ðg; g0jrÞ � F nn0

t vnðgÞvn0 ðg0ÞvtðrÞ. ð26Þ
Introducing the Fourier representation of the TF (16)

into the fundamental equation (22) we obtain

f2ðg; g0jrÞ � Dn
sD

n0

s0 v
nðgÞvn0 ðg0Þ

� 1

volðXjrÞ �X
vsðxÞvs0 ðxþ rÞdx

� �
. ð27Þ

The last term in (27), involving the integration over X,
carries the r-dependence of the local OCF. It is conve-

nient to approximate this function with its own Fourier

series, with an indicator-function basis over the sub-cells

wt. Proceeding in this direction,

hss0 ðrÞ ¼
1

volðXjrÞ�XvsðxÞvs0 ðxþ rÞdx

� Hss0t0vt0 ðrÞ. ð28Þ

Multiplying both sides of this equation by vt(r), and

integrating over all r 2 W(X), we obtain

Hss0t ¼ �XvsðxÞ�WðXÞ
1

d03volðXjrÞ
vtðrÞvs0 ðxþ rÞdr dx

¼ �xs
vsðxÞ�wt

1

d03volðXjrÞ
vs0 ðxþ rÞdr dx.

ð29Þ
The sub-volume sampled by vector r is readily expressed

for rectangular models as

volðXjrÞ ¼ ðD1 � jr1jÞðD2 � jr2jÞðD3 � jr3jÞ. ð30Þ
Notice that for fixed sk and tk

s0
1
s0
2
s0
3

s1s2s3H t1t2t3
$ Hss0t has va-

lue only when s0k ¼ sk þ tk � 2Pk � 1 or s0k ¼ sk þ tk � 2Pk .

The final expression for the local OCF is obtained by

incorporating (27) into (26)

f2ðg; g0jrÞ � Hss0tDn
sD

n0

s0 v
nðgÞvn0 ðg0ÞvtðrÞ. ð31Þ

Recalling relation (26), with Fourier coefficients of the

local OCF, F nn0

t , and equating to relation (31), we obtain

the fundamental relation in terms of the primitive Fou-

rier coefficients:

F nn0

t ¼ Hss0tDn
sD

n0

s0 . ð32Þ

Thus, the coefficients of the local 2-point OCF, F nn0
t , are

related through (32) to the coefficients of the specified

sample microstructure, Dn
s . The latter represent coeffi-

cients of the local ODF specified in each cell of the sample

as previously described. An analytical estimate for the

weighting coefficients, Hss0t, is provided in Appendix A.

At this juncture an important observation can be

made with reference to the fundamental relation (32).

Approximations to the TF of resolution 1/S in the spa-
tial variables and resolution 1/N in the orientation vari-

ables give rise to NS independent Fourier coefficients,

Dn
s . On the other hand, the same resolution in both types

of variables requires 8N2S coefficients F nn0

t of the OCF.

Thus, relation (32) reflects the fact that only a small

fraction of the F nn0

t coefficients can be independent, since

the true number of independent coefficients must be the

same for the local OCF as it is for the sample TF. In-
deed, the r-interdependence of the OCFs is massive,



and must be dealt with in second-order microstructure

design.

4. The hull of texture functions

The preceding development clarifies the relationship

between OCFs and their TFs. Given the r-interdepen-

dence of the OCFs, it is preferable for the purposes of

microstructure design to define a hull of texture func-

tions, which is the set of all physically possible TFs.

By definition, the TF for each element of the ensemble

must belong to the hull of TFs. The question before us

is how can this hull of TFs be constructed, and then ex-
plored to obtain all possible effective properties. Here,

we take a particular approach that relates to our previ-

ous work on the hull of ODFs for the first-order micro-

structure design problem [6–9]. We first define the

concept of eigen-TFs that comprise only single-orienta-

tion states (i.e., from only one sub-region of the FZ) in

each sub-cell. Having fixed the spatial and orientational

resolutions of the double-indicator primitive basis for
TFs, we find that the hull of TFs is just the set of convex

combinations of all possible eigen-TFs. Thus, the hull of

TFs is a convex polyhedron in the SN dimensional space

of coefficients Dn
s .

4.1. Eigen-texture functions

Consider TFs that can be thought of as assigning a
single lattice orientation gn 2 cn to each sub-cell xs.

These are the eigen-TFs, and even for very ordinary res-

olutions in the spatial and orientational variables, they

are very large in number. In fact, since there are N pos-

sible orientations for each sub-cell s, there must be NS

distinct eigen-TFs. Let them be enumerated by the index

j, 1 6 j 6 NS. Use the symbol jM̂ðx; gÞ to represent the

jth eigen-TF. Let the orientation index nj(s) identify
the particular orientation that associates with sub-cell

s of the jth eigen-TF. The Fourier coefficients for

jM̂ðx; gÞ, jD̂
n

s , must have, according to (18), the form

jD̂
n

s ¼ NdnjðsÞn . ð33Þ
Inputting (33) into (15) we obtain

jM̂ðx; gÞ ¼ jD̂
n

svsðxÞvnðgÞ ¼ N
XS
s¼1

vsðxÞvnjðsÞðgÞ. ð34Þ

It is evident that the Fourier coefficients of each eigen-

TF satisfy relations (17)–(19). Note that only NS of

the NS eigen-TFs are linearly independent.

4.2. Construction of the hull of texture functions

Enumeration of the eigen-TFs can be accomplished

in many ways. At this juncture we will not describe

any particular method, but one approach is illustrated

in Section 7 of the paper. Let the set of all eigen-TFs

be M̂. From M̂ the hull of texture functions, M, is read-

ily constructed. Within a spatial resolution of 1/S and an

orientation resolution of 1/N, all possible TFs belong to

the set of all possible convex combinations of the eigen-
TFs. Mathematically

Mðx; gÞ ¼
XNS

j¼1

jajM̂ðx; gÞ

such that

XNS

j¼1

ja ¼ 1; 0 6 ja 6 1. ð35Þ

And M is defined as

M ¼ Mðx; gÞjMðx; gÞ ¼
XNS

j¼1

jajM̂ðx; gÞ;jM̂ðx; gÞ 2 M̂;

(

XNS

j¼1

ja ¼ 1; 0 6 ja 6 1

)
. ð36Þ

Associated with M is a related hull, comprising the con-

vex hull of all possible Fourier coefficients associated

with all TFs in M. Let this hull be ~M. By combining
(34) and (36) we have

~M ¼ Dn
s jDn

s ¼
XNS

j¼1

jajD̂
n

s ;
XNS

j¼1

ja ¼ 1; 0 6 ja 6 1

( )
.

ð37Þ

When combined with relation (33), expression (37) is

amenable to the construction of the entire set of all pos-

sible Fourier coefficients belonging to all TFs.

Returning to the point that the set ~M contains eigen-

TFs that are not linearly independent of one another
over the SN-dimensional Fourier space, we note that

the set ~M does comprise the unique set from which all

possible TFs can be constructed by convex combination.

If a set of linearly independent eigen-TFs were selected

from among ~M, then all TFs can be formed by linear

combination of this set. These combinations, however,

will not be convex combinations. The advantage of

forming TFs from ~M lies in the fact that convex combi-
nations form a rule of mixtures for the formation of

TFs, where any particular TF can be considered a mix-

ture of eigen-TFs weighted by volume fractions that

must sum to one.

4.3. Geometrical interpretation of the hull of TFs

A geometrical interpretation of ~M is readily achieved
based on relation (37), subject to constraint relations

(17)–(19). Eq. (37) delineates a hypercube of length N



(see relation (33)) in SN-dimensional Euclidean space.

As required in (18), the sum of Dn
s over all orientation

sub-domains must equal N for any choice of sub-cell s.

Each such equation represents a hyper-plane in

Dn
s -space. There are S of these hyper-planes. The inter-

section of the S constraining hyper-planes with the
hypercube delineated by relation (37) then defines the

convex hull ~M. Further reflection reveals that the hull
~M is essentially a SN-S dimensional polyhedron (includ-

ing the surface and the interior), whose vertices are the

distinct NS eigen-texture functions described earlier.1

Within the frameworkpresented, it is also easy to isolate

the sub-space of ~M that corresponds to a prescribed global

ODF. The normalization relations 6, 7, 17, 18 require

XS
s¼1

Dn
s ¼ V nSN ; ð38Þ

whereVn denotes the volume fraction occupied by the ori-

entations g 2 cn. It is evident that constraint relation (38)

is of similar kind as that implied by (17). There areN � 1

constraint relations of type (38). Imposing these con-

straints on ~M identifies the subspace of ~M, say ~MjV n, that

is associated with a prescribed ODF. This subspace of
~MjV n is an (S � 1)(N � 1) dimensional polyhedron.

Arguably, the simplest example of a microstructure
amenable to the geometrical interpretation just de-

scribed is a two-dimensional microstructure occupying

a square of size 1. If we choose to partition this square

into four sub-squares of equal size (length 1/2 on each

side), we have fixed S = 4. Suppose that the local state

space can be split into two sub-regions, each with mea-

sure 1/2. Thus, N = 2. The initial set of Fourier coeffi-

cients are thus D1
1;D

2
1;D

1
2;D

2
2;D

1
3;D

2
3;D

1
4;D

2
4. Relation

(19) indicates that each of these must satisfy the con-

straints 0 6 Dn
s 6 2, and when combined with the four

relations required by (18) (e.g. D1
1 þ D2

1 ¼ 2), it is evident

that all possible independent Fourier coefficients (say

D1
1;D

1
2;D

1
3;D

1
4) must lie in a 4-dimensional hypercube

bounded by four sets of faces D1
s ¼ 0; 2. The points lying

within or on the faces of this hypercube constitute the

hull of TFs for this problem. This hypercube is also
bounded by NS = 16 eigen-TFs, which are the corners

of the polyhedron. These are the sets

ðD1
1;D

1
2;D

1
3;D

1
4Þ2

ð2;0;0;0Þ;ð0;2;0;0Þ;ð0;0;2;0Þ;ð0;0;0;2Þ;
ð2;2;0;0Þ;ð2;0;2;0Þ;ð2;0;0;2Þ;ð0;2;2;0Þ;
ð0;2;0;2Þ;ð0;0;2;2Þ;ð2;2;2;0Þ;ð2;2;0;2Þ;
ð2;0;2;2Þ;ð0;2;2;2Þ;ð2;2;2;2Þ;ð0;0;0;0Þ

8>>><
>>>:

9>>>=
>>>;
.

One way to visualize in 3-dimensions this 4-dimensional

polyhedron is to add an additional constraint for vol-

ume fraction of phase 1, V1 = V. Eq. (38) then has the

form D1
1 þ D1

2 þ D1
3 ¼ 8V � D1

4. For fixed V, taking D1
4

to lie in the range 0 6 D1
4 6 2 we see that D1

1;D
1
2;D

1
3 must

lie between the two bounding planes D1
1 þ D1

2 þ D1
3 ¼ 8V

and D1
1 þ D1

2 þ D1
3 ¼ 8V � 2. The perpendicular distance

between this pair of planes is always 2=
ffiffiffi
3

p
. Given the

fact that 0 6 V 6 1, a continuous sequence of bounding

planes is realized, spanning across the 3-dimensional

cube in D1
1;D

1
2;D

1
3. Their intersections comprise isolated

points, tetrahedral of various sizes, and also 8-sided

polyhedra of various sizes and shapes. The largest of

these occurs when V = 1/2. Figs. 1 and 2 depict these
geometrical constructions.

5. Transformations of coordinate basis

The goal of this section is to transform the represen-

tation of the TF, with its primitive double-indicator ba-

sis, to an alternative basis consisting of products of
generalized spherical harmonic functions (for the orien-

tation variables) and Haar wavelets for the spatial vari-

ables. The chief advantage to representation of the

orientation variables by generalized spherical harmonic

functions is that this basis is known to be optimally effi-

cient in describing functions that transform like tensors

with coordinate change. The advantage with wavelet

functions is that they are efficient in describing certain
modulations of local state in space that are intuitive with

respect to well known results of homogenization theory.

Full description of the generalized spherical harmonic

functions, symmetrized for the point symmetry sub-

group of the pertinent crystal lattice, is beyond the scope

of this paper. A full treatment, with many numerical

helps, can be found in Bunge [10]. Likewise, the treatment

of theHaar wavelet functions is limited; for deeper under-
standing textbook presentations can be consulted [20].

5.1. Orientation symmetry in the texture functions

The reader will notice a difference between the gener-

alized spherical harmonic functions to be used hereafter

and those used for representation of the ODF in relation

(2). The ODF is typically constructed with basis func-

tions of the type T
) lm

l
ðgÞ $ T

) LðgÞ, which contain both

crystallite and statistical (processing) symmetries. (This

is signified by the set of three dots above the functions,

and the use of the greek symbol m for the third index,

which is restricted to the range 1 6 m 6 N(l), according

to convention [10].) Basis functions used in representa-
tion of the TF would generally not satisfy the statistical

(processing) symmetry condition, since this symmetry

would normally be absent in the cubical sub-cells of

1 Another way to look at this comes from examining the number of

independent Fourier coefficients. We begin with SN of these, but add

one constraint equation for each sub-cell. There are S of these

constraint equations, each of which can be used to remove one

interdependent Fourier coefficient. Thus there are SN-S independent

coefficients forming a polytope residing in an SN-S dimensional real

space.



size d. (Hence, they are expressed in the form T
: ln

l ðgÞ $
T
: LðgÞ, with the two dots above the functions indicating

crystallite symmetry only, and the use of index n,

with �l 6 n 6 +l as the third index, enumerating an

expanded number of pertinent subspaces.)

5.2. Haar wavelet functions

Consider an alternative Fourier representation for

the spatial component of the TF, involving elementary

Haar wavelet functions. We first present the equations

in full (non-compacted) notation, and then transition

to the compact form.
In the context of wavelets, Pk denotes the generation

of the Haar wavelet representation in xk. Define the

1-dimensional father wavelet on the prescribed interval

to be W 0
0ðxkÞ, where

W 0
0ðxkÞ ¼

1 if 0 6 xk < Dk;

0 otherwise.

�
ð39Þ

The reader should note the compact support of this

function on the interval [0,Dk).

The mother wavelet is defined to be

W 0
1ðxkÞ ¼

þ1 if 0 6 xk < Dk=2;

�1 if Dk=2 6 xk < Dk;

0 otherwise.

8><
>: ð40Þ

Daughter wavelets are conveniently defined relative to
the mother wavelets:

W q
pðxkÞ ¼ W 0

1ð2
ðp�1Þxk � qDkÞ

ðp P 2; 0 6 q 6 2ðp�1Þ � 1Þ. ð41Þ

Utilizing the full set of Haar wavelets and the (symme-
trized) generalized spherical harmonic functions, the

alternative Fourier representation of M(x,g) can readily

be constructed:

Fig. 1. Sequence of polytopes representing the hull of textures for S = 4, N = 2, with volume fractions V. (Coordinates are D1
1, D

1
2, D

1
3. Vertices are

coordinated with Fig. 2.)

H

C
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A B D
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F

Fig. 2. Eigen-textures for S = 4, N = 2. (Labels correspond to vertices

in Fig. 1.)



Mðx; gÞ �
XP1

p1¼0

XQðp1Þ
q1¼0

XP2

p2¼0

XQðp2Þ
q2¼0

XP3

p3¼0

XQðp3Þ
q3¼0

XL
l¼1

XMðlÞ

l¼1

�
Xþl

n¼�l
llnMq1q2q3

p1p2p3
W q1q2q3

p1p2p3
ðxÞT

: ln
l ðgÞ. ð42Þ

Here, the summation limits on the q-indices are

Qð0Þ ¼ Qð1Þ ¼ 0; Qðpk P 2Þ ¼ 2ðpk�1Þ � 1. ð43Þ
The functions W q1q2q3

p1p2p3
ðxÞ in (42) are 3-dimensional Haar

wavelet functions, comprising products of the 1-dimen-

sional wavelets:

W q1q2q3
p1p2p3

ðxÞ ¼ W q1
p1
ðx1ÞW q2

p2
ðx2ÞW q3

p3
ðx3Þ. ð44Þ

These form a complete basis for functions in the

3-dimensional real space that are piecewise continuous
over the sub-cells xs1s2s3 � X.

Returning to the compact notational form, we set

W q1q2q3
p1p2p3

ðxÞ $ W pðxÞ and T
: ln

l ðgÞ $ T
: LðgÞ. It follows that

(42) accepts the form:

Mðx; gÞ � ML
pW pðxÞT

: LðgÞ. ð45Þ

5.3. Transformations between the two bases

From the basic properties of the Haar wavelets and

the primitive indicator functions, the following relation-

ship exists between the two:

1

d3

Z Z Z
ðiÞ

X

W pðxÞvsðxÞdx ¼ Pps 2 f�1; 0;þ1g. ð46Þ

In words, the Pps coefficients are integer-valued, and

must be �1, 0, or +1.

In terms of the orientation variables we have the fol-
lowing approximation:Z Z Z

FZ

vnðgÞT
: LðgÞdg � T

: LðgnÞ=N . ð47Þ

Recall that gn is the �centroid� orientation of the sub-

domain cn.
Having defined the hull of TFs in the primitive dou-

ble-indicator-function basis, where a relatively simple

geometrical interpretation can be given, it is useful to

consider the coordinate transformations that would en-

able ~M to be calculated for other coordinate bases. In

particular it is useful to express the spatial dependence

in terms of the Haar wavelet basis, and the orientation

dependence in terms of the classical generalized spheri-
cal harmonic functions. The process of coordinate trans-

formation proceeds readily from the following

construction: Equate relations (15) and (45) for the

TF. Multiply both sides by the basis product

T
: LðgÞW pðxÞ and integrate over the entire range of orien-

tation and spatial variables. Since the generalized spher-

ical harmonic functions have the property [10]Z Z Z
FZ

T
: LðgÞT

: �L0 ðgÞdg

¼
Z Z Z

FZ

T
: ln
l ðgÞT

: �l0n0
l0 ðgÞdg ¼

dl
0

l d
l0

l d
n0

n

2lþ 1
$ dL

0

L

2lðLÞ þ 1
;

ð48Þ
with l(L) reminding us that we seek the index l 2 {l,l,n}
associated with the compaction index L on the right

hand side. The Haar wavelets have the property

Z Z Z
X
W p0 ðxÞW pðxÞdx ¼

Z Z Z
X
W

q0
1
q0
2
q0
3

p0
1
p0
2
p0
3

ðxÞW q1q2q3
p1p2p3

ðxÞdx

¼ Kq1q2q3
p1p2p3

dp
0
1

p1
dp

0
2

p2
dp

0
3

p3
dq

0
1

q1
dq

0
2

q2
dq

0
3
q3
$ Kpd

p0

p ;

ð49Þ
where the constants Kp are real valued, and follow read-

ily from the definition of the Haar wavelets (39)–(41)

and (44), it follows that the side containing the TF ex-

pressed in wavelets and harmonics becomes, upon inte-

gration,
ML

pKp

2lðLÞþ1
(no summation over p implied). The side

containing the TF expressed in the double-indicator ba-

sis becomes

Dn
s

Z Z Z
X
vsðxÞW pðxÞdx

Z Z Z
FZ

vnðgÞT
: LðgÞdg. ð50Þ

Combining this with (46) and (47) we obtain

ML
p ¼

Ppsd
3ð2lðLÞ þ 1ÞT

: LðgnÞ
NKp

" #
Dn

s ¼ p
LJn

sD
n
s . ð51Þ

With appropriate choices for truncation in each basis,

the coefficients p
LJn

s can be chosen to form a SN · SN

square matrix that is invertible. (This compatibility be-

tween the two bases, leading to the same dimensionality

of the representations, and to invertibility, is required by

the development that follows.) Let the inverse have coef-

ficients s
nJ
^L
p , such that

Dn
s ¼ s

nJ
^L

pM
L
p . ð52Þ

5.4. Geometrical interpretation of the coordinate

transformations

Note that the coordinate transformation described

in (51) and (52) is a linear one. Linear transforma-

tions transform lines into lines, planes into planes,

etc. Thus, given that the hull of TFs in the primitive

double-indicator space is a polyhedron, it must re-

main a polyhedron when transformed into the space

of Haar wavelets and generalized spherical harmonic
functions.



5.5. The fundamental equation expressed in the new

coordinate basis

Relation (52) is readily combined with the Fourier rep-

resentation of the fundamental relation (32) to obtain the

fundamental relation in the new coordinate basis:

F nn0

t ¼Hss0tDn
sD

n0

s0 ¼Hss0ts
nJ
^L

p s0
n0 J
^L0

p0M
L
pM

L0

p0 ¼ t
nn0KLL0

pp0M
L
pM

L0

p0 .

ð53Þ

6. Effective properties in the Fourier space

Second-order estimates of effective properties require

input of the 2-point OCFs. This is illustrated for the effec-

tive elastic stiffness tensor inEq. (1) that contains a fourth-

order tensor that can be written in index form as

hC0CC0iijkl ¼
Z Z Z

X
Cr

mnopðx� x0ÞhC0
ijmnðxÞC0

opklðx0Þidx0.

ð54Þ

Here, Cr(x � x 0) is the fourth-order Green�s function
tensor appropriate for the solution of the elastic field

equations in a selected homogeneous reference medium

subjected to homogeneous (displacement) boundary

conditions [21]. For statistically homogeneous micro-

structures, the ensemble-averaged term in the integrand

can be written as a function of r = x 0 � x,

hC0
ijmnð~xÞC0

opklð~x
0Þi¼

Z Z Z
FZ

Z Z Z
FZ

f2ðg;g0jrÞ

�ðgC
_0
Þijmnðg0C

_0
Þopkl dgdg0; ð55Þ

where

ðgC
_0
Þijmn ¼ gisgjtgmugnvðC

_

stuv � Cr
stuvÞ ð56Þ

is the polarization of the local stiffness tensor at orienta-

tion g, expressed in terms of C
_

, the elastic stiffness tensor

of the crystal in its reference orientation g = I. Incorpo-
rating (55), relation (54) can be rewritten as

hC0CC0iijkl

¼
Z Z Z

WðXÞ
Cr

mnopð�rÞ
Z Z Z

FZ

Z Z Z
FZ

f2ðg;g0jrÞ

�ðgC
_0
Þijmnðg0C

_0
Þopkl dgdg0 dr. ð57Þ

We introduce new notation for part of the integrand of

Eq. (57),

Cr
mnopð�rÞðgC

_0
Þijmnðg0C

_0
Þopkl ¼ n2ðijklÞðg; g0; rjC

_

Þ; ð58Þ

where ðg; g0; rjC
_

Þ indicates that g, g 0 and r are the func-

tion variables, and C
_

is considered fixed. It is readily
seen that the essential form of (57) is

hC0CC0iijkl

¼
Z Z Z

WðXÞ

Z Z Z
FZ

Z Z Z
FZ

f2ðg; g0jrÞ

� n2ðijklÞðg; g0; rjC
_

Þ dg dg0 dr. ð59Þ

It is notable that n2ðijklÞðg; g0; rjC
_

Þ effectively separates

that portion of the integrand that carries the Green�s
function tensor, and the properties of the reference stiff-
ness tensor. When the Green�s functions themselves are

selected such that they are independent of microstruc-

ture itself, then a convenient separable form of relation

(59) is obtained. In the sequel it is considered that the

Green�s functions are separable in this manner. Forming

a Fourier representation for n2ðijklÞðg; g0; rjC
_

Þ,

n2ðijklÞðg; g0; rjC
_

Þ � Nnn0

t ðijkl;C
_

ÞvnðgÞvn0 ðg0ÞvtðrÞ; ð60Þ

and introducing it into (59), with reference to (11), (14)

and (26), yields the expression

hC0CC0iijkl ¼ h~Nnn0

t ðijkl;C
_

ÞF nn0

t i; ð61Þ

where the renormalized coefficients are

~N
nn0

t ðijkl;C
_

Þ ¼ d3

N 2

� �
Nnn0

t ðijkl;C
_

Þ. ð62Þ

The notation for the Fourier coefficients, Nnn0

t ðijkl;C
_

Þ, re-
minds us that they depend upon the reference elastic con-

stants and on the particular ijkl component that is being

considered, but not upon any aspect of microstructure.

Introducing (32) into (61) and separating out the compo-

nent that is affected by ensemble averaging, we obtain

hC0CC0iijkl ¼ h~Nnn0

t ðijkl;C
_

ÞHss0tDn
sD

n0

s0 i ¼ @nn0

ss0 ðijkl;C
_

ÞhDn
sD

n0

s0 i.
ð63Þ

If the classical coordinate frame is preferred, relation

(53) is introduced into (61) to obtain

hC0CC0iijkl ¼ h~Nnn0

t ðijkl;C
_

Þnn
0
tKLL0

pp0M
L
pM

L0

p0 i

¼ ~@LL0

pp0 ðijkl;C
_

ÞhML
pM

L0

p0 i. ð64Þ

Thus, the second-order correction term in the effective

property relation (1) is expressed in (63) and (64) as a

sum over the 4 M 12 indices of the @ (or ~@) coefficients
weighting the ensemble average of a particular quadratic

product of the Fourier coefficients of the local OCF.

6.1. Interpretation of the effective properties relationships

in terms of the set of eigen-TFs

The principal advantage of constructing the hull of

TFs from the set of eigen-TFs can now be clearly dem-

onstrated in terms of Eqs. (63), (64) for the second-order

correction to the elastic effective properties. Recalling

the meaning of ensemble averaging, as described in rela-

tion (21), relations (63), (64) can be rewritten as



hC0CC0iijkl ¼ @nn0

ss0 ðijkl;C
_

ÞhDn
sD

n0

s0 i

¼ h@nn0

ss0 ðijkl;C
_

ÞDn
sD

n0

s0 i
¼ hðkÞðC0CC0Þijkli ð65Þ

and

hC0CC0iijkl ¼ ~@LL0

pp0 ðijkl;C
_

ÞhML
pM

L0

p0 i

¼ h ~@LL0

pp0 ðijkl;C
_

ÞML
pM

L0

p0 i

¼ hðkÞðC0CC0Þijkli; ð66Þ
where (k) (C 0CC 0)ijkl is interpreted to be the contribution

to the property correction arising from the kth element
of the ensemble. Since all possible elements of the

ensemble of TFs can be formed by convex combinations

of the eigen-TFs belonging to ~M:2

hDn
sD

n0

s0 i 2 D
^n

sD
^n0

s0 jD
^n

sD
^n0

s0 ¼
XNS

j¼1

XNS

k¼1

jakajD̂
n

s kD̂
n0

s0 ;

(

XNS

j¼1

ja ¼ 1; 0 6 ja 6 1; jD̂
n

s 2 ~M

)
. ð67Þ

Similarly,

hML
pM

L0

p0 i 2 M
^ L

pM
^ L0

p0 jM
^ L

pM
^ L0

p0 ¼
XNS

j¼1

XNS

k¼1

jakajM̂
L

p kM̂
L0

p0 ;

(

XNS

j¼1

ja¼ 1; 06 ja61; jM̂
L

p ¼ p
LJn

s jD̂
n

s ; jD̂
n

s 2 ~M

)
.

ð68Þ

6.2. The second-order property correction closure

Combining (65)with (67), and (66)with (68)wefind that

all possible second-orderproperty correctionsmustbe con-

vex combinations of the quadratic products of eigen-TFs:

hC0CC0iijkl

¼@nn0

ss0

XNS

j¼1

XNS

k¼1

jakajD̂
n

s kD̂
n0

s0

for
XNS

j¼1

ja¼1; 06 ja61; jD̂
n

s 2 ~M

 !

¼ ~@LL0
pp0

XNS

j¼1

XNS

k¼1

jakajM̂
n

s kM̂
n0
s0

for
XNS

j¼1

ja¼1; 06 ja61; jM̂
L

p ¼ p
LJn

s jD̂
n

s ; jD̂
n

s 2 ~M

! 
.

ð69Þ

Thus, all possible second-order property corrections can

be constructed from convex combinations of quadratic

products of the eigen-TFs. The set of all possible sec-

ond-order property corrections is called the second-or-

der property correction closure.

7. Design of texture functions for elastic properties

Second-order design for elastic properties proceeds

naturally from relation (69). The key idea is to identify

microstructure ensembles whose component eigen-TFs

give rise to useful combinations of properties. Suppose,

for example, that our principal interest lies with
ÆC 0CC 0æ3333 and ÆC 0CC 0æ1313. Assume that first-order de-

sign led to an optimized set of volume fractions

{Vnjn = 1, . . . ,N} giving rise to satisfactory first-order

estimates of C�
3333, C�

1313 via ÆC3333æ, ÆC1313æ. Holding

the Vn constant we may then proceed to enumerate the

set of eigen-TFs that belong to ~MjV n. Let this set be

M̂jV n. For each jD̂
n

s 2 M̂jV n (or jM̂
L

p ¼ p
LJn

s jD̂
n

s

ðjD̂
n

s 2 M̂jV nÞ) the contribution of the eigen-TF to the
properties, say j(C

0CC 0)3333, j(C
0CC 0)1313, can be com-

puted, given that fixing the volume fractions of compo-

nents of texture renders the @nn0

ss0 coefficients independent

of microstructure, as discussed in Section 6. The

2-dimensional properties closure for ÆC 0CC 0æ3333 and

ÆC 0CC 0 æ1313 is just the convex hull of all points with

coordinates j(C
0CC 0)3333, j(C

0CC 0)1313.

7.1. The large numbers challenge

The main challenge in forming the closure is determi-

nation of the elements of set M̂jV n. The number of ele-

ments of M̂jV n, OðM̂jV nÞ, equals

OðM̂jV nÞ ¼
S!QN

n¼1Nn!
; ð70Þ

where Nn denotes the number of sub-cells within region

X that associate with sub-region cn of the FZ. Even for

relatively small models, with relatively coarse resolu-
tions in spatial and orientational variables, OðM̂jV nÞ
can be very large. For example, consider a model with

only 5 · 5 · 5 = 125 sub-cells, and only 2 distinct orien-

tation sub-regions. Imagine that 100 of the sub-cells

associate with sub-region c1, and 25 with sub-region

c2. For this case OðM̂jV nÞ � 1.3� 1026. This large num-

bers challenge is central to second-order microstructure

design. Sampling the set M̂jV n offers one approach for
dealing with this problem. This approach has been taken

in the case study.

7.2. Case study in second-order elastic design

We illustrate the basic concepts of second-order

elastic design based upon M̂jV n for a microstructure

2 The reader will note that the condition
P

jja ¼ 1 also implies thatP
j

P
k jaka ¼ 1. Thus, relations (67) and (68) can be considered as

forming convex combinations among the quadratic products of the

primitive coefficients of the eigen-texture functions.



previously obtained by first-order design over the hull of

ODFs. The problem was to design an ODF that is

predicted to maximize the (uniaxial) load bearing capac-

ity of a plate containing a small hole. The problem was

conducted for single-phase Cu polycrystals, restricted to

the cubic-orthorhombic ODFs. Globally optimized

Fourier coefficients were reported in previous publica-

tion [9]. The reported optimal texture, to a good
approximation, can be approximated by the four ortho-

rhombic variants of three single crystal components.

The components and their volume fractions are listed

in Table 1.

Restricting our calculations to effective elastic stiff-

nesses of the form C�
iiii or C

�
ijij (summation not intended)

enables the fundamental zone to be restricted to three

elements (N = 3).3 The three components were distrib-
uted within a 4 · 4 · 4 rectangular model (S = 64). Com-

ponent 0 was distributed among 31 of the sub-cells,

component 1 among 21, and component 2 among 12.

Approximately 3 · 106 eigen-texture functions were

created by pair-wise switching of components among

the sub-cells.

Elastic properties estimates were calculated using

Eq. (1), with the second-order correction term evalu-
ated using relation (69). The required @nn0

ss0 coefficients

were calculated on the rectangular model based upon

the isotropic Green�s function tensor given by Kröner

[21]. Ordinarily, given the natural spherical geometry

of the problem, evaluation of the Green�s functions

may be conducted in expanding spherical shells in

r-space. It is typically assumed that pair correlations

beyond a coherence length for the microstructure,
rc, the 2-point OCFs decouple according to the

expression f2(g,g
0jr > rc) = f(g)f(g 0). The Green�s func-

tions of Kröner [21] no longer contribute to the effec-

tive properties beyond this coherence length. Here,

however, spatial correlations are considered in a

cubical region, rather than in a sphere, and hence a

correction term is needed. Following the notation of

Kröner, the second-order correction to the elastic
properties is

hC0CC0iijkl

¼
Z Z Z

WðXÞ
CnpqrðrÞhC0

ijnpðxÞC0
qrklðxþrÞidr

þhC0
ijnpðxÞihC0

qrklðxþ rÞi
Z Z Z

RðXÞ�WðXÞ
CnpqrðrÞdr;

ð71Þ

where R(X) denotes the smallest sphere that contains the

rectangular region W(X). Thus, the region of integration

for the left-most term in (71) is over the set of six caps
that lie in the region of difference between R(X) and

W(X), or R(X) � W(X). In this region it is assumed that

the microstructure is statistically uncorrelated, and

hence the decoupling of the pair correlation functions

is appropriate. Also, the reader will note that hC0
ijnpðxÞi

and hC0
qrklðxþ rÞi in statistically homogeneous micro-

structures (as is the assumption here) are independent

of position x and r.
Basic elastic constants for the cubic copper crystal

were taken to be, in units of GPa: Co
11 ¼ 168.4,

Co
12 ¼ 121.2, and Co

44 ¼ 75.4. A Green�s function was

used, based upon an isotropic reference medium exhib-

iting Lame�s constants calculated from the following

ensemble averages:

liso ¼
1

3
ðhC1212i þ hC3131i þ hC2323iÞ;

kiso ¼
1

3
ðhC1111i þ hC2222i þ hC3333iÞ � 2l.

ð72Þ

The results are shown in Figs. 3 and 4. Only a small frac-

tion of the calculated points are shown in Fig. 3. We re-

mark that the first-order Hill–Paul bounds are quite
narrow for the optimized ODF, but the vast majority

of calculations for estimating the second-order proper-

Table 1

List of components of optimized ODF

Component u1 / u2 Vn

0 3.51 0.95 0.58 0.49

1 1.38 1.07 0.38 0.32

2 4.95 1.28 0.28 0.19

u1, /, u2 are the Euler angles of the orientations in the Bunge con-

vention [10]. Vn are the volume fractions.

3 Each of the orthorhombic variants of the components has the same

‘‘diagonal’’ elastic stiffnesses; hence only one of the orthorhombic

variants needs to be considered in the present calculations.
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Fig. 3. Second-order combined elastic properties closure. (The black

rectangular boundary comprises the Hill–Paul first-order bounds.

Points indicate contributions of individual eigen-textures. The convex

boundary indicates the approximate location of the boundary of the

second-order (convex) properties closure. Points A and B correspond

to configurations described in Fig. 4.)



ties combinations lie within the first-order bounds,

although a small number of cases were found that fall

slightly outside. This is not surprising given the various

numerical approximations used in obtaining the second-

order estimates.

8. Summary and conclusions

This paper shows how the challenging problem of

r-interdependence of the 2-point OCFs can be over-

come, by introducing the texture function as an interme-

diate construct. Texture functions, M(x,g), describe the

local distribution of lattice orientation g at position x. A

fundamental relation is given that links the 2-point

OCFs, f2(g,g
0jr), to quadratic products of the texture

functions.

Rectangular models were introduced to approximate

the spatial dependence of the texture functions. Piece-

wise linear indicator functions were introduced as a

primitive basis for both orientational and spatial vari-

ables on the domain of the texture function. These

approximations give rise to a finite hull of texture func-

tions, wherein all physically possible microstructures re-
side. The hull of texture functions is shown to be a

convex polytope (hyper-cube) of dimension SN, where

S is the number of sub-cells in the rectangular model

and N is the number of sub-domains chosen to represent

the fundamental zone of orientations. The corner (ex-

treme) points of the hull (polytope) are found to number

NS. These corner states are called eigen-textures since

they comprise cells that carry a single sub-domain of
the fundamental zone.

Transformations of the hull of texture functions to

other basis functions, viz. generalized spherical harmon-

ics (orientational variables) and Haar wavelets (spatial

variables) is approximated by a linear transformation

law that leaves the basic geometry of the hull unchanged.

The 2-point OCFs, when introduced into appropriate

homogenization relationships for effective properties,

describe a family of generalized quadratic surfaces that

intersect the hull of texture functions. All texture func-

tions lying on any specified quadratic surface are pre-
dicted to be equipollent in terms of the specified

effective property.

Second-order design of microstructure for specified

properties combinations and constraints can proceed di-

rectly from consideration of the eigen-textures, in cases

where the Green�s functions are independent of micro-

structure. Combined properties combinations must lie

in the convex combination of properties associated with
component eigen-textures. The method is illustrated for

elastic properties, beginning with an optimized ODF ob-

tained by first-order texture design. Second-order esti-

mates of the C�
1111 vs C�

2222 elastic closure were

obtained for an ODF that was first optimized for (uniax-

ial) load bearing capacity in a plate containing a small

hole, using the methods of first-order texture design

[9]. These estimates were obtained using isotropic
Green�s functions, and methods that have been widely

reported in the literature [1,13–15,21]. Recent results

for obtaining Green�s functions applicable to cubic poly-

crystals possessing orthorhombic symmetry, could

potentially improve the results obtained for the case

study reported here [22]. These estimates are found to

be compatible with the first-order (Hill–Paul) bounds,

and particular eigen-textures were found that are pre-
dicted to reach relative extremes in the closure. Thus,

a limited invertibility of the second-order microstructure

design methodology is demonstrated.

(a) layer 1 layer 2 layer 3 layer 4

(b) layer 1 layer 2 layer 3 layer 4

X1

X2

X1

X2

0 1 2
orientation

Fig. 4. Examples of specific configurations (eigen-textures) associated with extreme locations in the second-order elastic closure. (The shading

scheme is correlated with Table 1.)



The texture community is accustomed to consider-

ations of statistical symmetry in the ODF itself, but

the extent to which these symmetries must be observed

spatially, in selected volume elements, is generally un-

known. For the case study in this paper, the question

is whether the orthorhombic symmetry can be, or
must be present in the spatial distribution of the ori-

entation components in a single 4 · 4 · 4 model of

the microstructure. This is not possible without violat-

ing the volume fraction condition. The reader should

note that for the two elastic properties considered,

C�
1111 and C�

2222, both are invariant with respect to

the twofold orthorhombic symmetry elements. Thus,

an orthorhombic cluster could be constructed from
the derived 4 · 4 · 4 model, which would possess

orthorhombic symmetry, and which would have, to

first-order, the same properties as the small model.

Some minor differences in properties would accrue,

primarily due to additional correlations (mostly of

longer length scale) between sections in the larger

model.

The main challenge to be addressed in applications
is likely to be associated with the large numbers of

eigen-textures comprising the set of extreme points

of the polytope. It is anticipated that information

about the sensitivities of properties to various compo-

nents of the Fourier representation will need to be

considered to optimize the search within this very

large set.
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Appendix A. Evaluation of Hss0t

The values of the components of Hss0t are deter-

mined by substituting relation (30) into relation (29)

and evaluating the integral. As noted earlier, this inte-

gral produces non-zero values only when s0k ¼ skþ
tk � 2Pk � 1 or s0k ¼ sk þ tk � 2Pk . Furthermore, in evalu-
ating this integral, one needs to pay attention to the

sign of each of the components of the variable r. It

can be shown that

Hss0t $
s0
1
s0
2
s0
3

s1s2s3H t1t2t3

� hðs1; s01; t1jP 1Þhðs2; s02; t2jP 2Þhðs3; s03; t3jP 3Þ; ðA:1Þ

where

hðs; s0; tjPÞ ¼

�1� ð2Pþ1 � t þ 1Þ ln 2Pþ1�t
2Pþ1�tþ1

� �
if t ¼ s0 � sþ 2P and s0 > s

1þ 2Pþ1 � tÞ ln 2Pþ1�t
2Pþ1�tþ1

� �
if t ¼ s0 � sþ 2P þ 1 and s0 P s

1� ðt � 1Þ ln t
t�1

� 	
if t ¼ s0 � sþ 2P and s0 6 s

�1þ t ln t
t�1

� 	
if t ¼ s0 � sþ 2P þ 1 and s0 < s

0

if t 6¼ s0 � sþ 2P and

t 6¼ s0 � sþ 2P þ 1.

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ðA:2Þ
Note that the relations (A.2) possess a singularity at the
edges of the W(X), when t = 1 or t = 2P+1. Furthermore,

in most cases, one might find the following approxima-

tion of relation (A.2) very useful.

hðs;s0; tjP Þ ¼

1

2 2P� t�2P�1
2j jð Þ

if t¼ s0 � sþ2P or t¼ s0 � sþ2P þ1;

0

if t 6¼ s0 � sþ2P and t 6¼ s0 � sþ2P þ1.

8>>>><
>>>>:

ðA:3Þ
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