
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

2005-04-07

Reducing Energy in FPGA Multipliers Through Glitch Reduction Reducing Energy in FPGA Multipliers Through Glitch Reduction

Nathaniel Rollins

Michael J. Wirthlin
wirthlin@ee.byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Rollins, Nathaniel and Wirthlin, Michael J., "Reducing Energy in FPGA Multipliers Through Glitch
Reduction" (2005). Faculty Publications. 385.
https://scholarsarchive.byu.edu/facpub/385

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/385?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Reducing Energy in FPGA Multipliers Through Glitch

Reduction

Nathaniel Rollins and Michael J. Wirthlin,

nhr2@ee.byu.edu, and wirthlin@ee.byu.edu

Department of Electrical and Computer Engineering

Brigham Young University, Provo, UT. 84602

Abstract

While FPGAs provide flexibility for performing high-
performance DSP functions, they consume a signif-
icant amount of power. For arithmetic circuits, a
large portion of the dynamic power is wasted on un-
productive signal glitches. Pipelining can be used to
significantly reduce the unproductive power wasted
in signal glitches. This paper presents a methodol-
ogy for estimating the amount of power consumed
by glitches and applies this methodology to non-
pipelined, pipelined, and digit-serial multipliers. This
glitch estimation is used to evaluate these multipliers
using four energy metrics: energy per operation, en-
ergy delay, energy throughput, and energy density.
Understanding the energy cost of arithmetic opera-
tors can be used to aid the designer or synthesis tool
in the creation of energy efficient datapath circuits.

1 Introduction

The flexibility, reprogrammability, and high per-
formance of field programmable gate arrays (FP-
GAs) make them an attractive architecture choice
for many digital signal processing (DSP) applica-
tions. FPGA designs however, consume more power
than application-specific integrated circuits (ASICs)
[1] which makes them less attractive for wireless and
handheld DSP applications. Consequently, energy
consumption is becoming a critical design parameter
for high-performance signal processing applications.
Designers must increasingly consider the impact of
power on FPGA signal processing systems.

The programmable nature of FPGA interconnect
results in an interconnect structure with significantly

larger loading than custom circuits. The signal
buffers, pass transistors and other programmable
switching structures significantly increase the capac-
itive load of signal nets over dedicated metal wires.
This loading burden increases both the delay of in-
terconnect as well as the power. Several studies sug-
gest that the primary contribution in global system
timing is the global interconnect [2]. It has also been
shown that most of the power dissipated by an FPGA
design occurs in the interconnect[3].

Because of the relatively large capacitive loading
of programmable interconnect, the switching activity
of individual signal wires will have a significant con-
tribution to the dynamic power of the circuit. Much
of the dynamic switching power can be wasted in un-
productive circuit “glitches”. Signal glitching refers
to the transitory switching activity within a circuit
as logic values propagate through multiple levels of
combinational logic. While glitching is not unique to
FPGAs, the relatively high capacitive loading of pro-
grammable interconnect places a much higher power
cost to signal glitching for FPGAs. Previous studies
have shown that power dissipation caused by glitch-
ing can makeup a significant amount of total dissi-
pated power[4, 5].

An important technique for reducing FPGA power
consumption is to reduce the amount of signal glitch-
ing within the circuit. Pipelining is one technique
for reducing signal glitches. Previous studies have
shown that pipelining can be used to reduce power
by 90% [6]. A pipelined design has less logic be-
tween registers and therefore is less prone to glitch-
ing. Pipelining an FPGA design can come at lit-
tle or no cost since flip-flops are included in every
FPGA logic block and often go unused. Digit serial
techniques, a form of pipelining, can also be used to

reduce signal glitching in arithmetic circuits [7].

This paper will describe a methodology for es-
timating the power associated with glitches within
FPGA datapath circuits. This paper will quantify
the dynamic glitch power, energy per operation, en-
ergy delay, energy throughput, and energy density of
each multiplier used in the study. This methodology
will be applied to a wide variety of multiplier circuits
including non-pipelined multipliers, pipelined multi-
pliers (with various pipelining levels), and digit-serial
multipliers. The methodology presented and results
from the study can be used by designers and high-
level synthesis tools to properly select arithmetic op-
erators based on energy consumption.

This paper will begin by describing the impor-
tance of dynamic transient power in FPGA circuits.
A methodology will be described for carefully es-
timating the static, dynamic, and glitch dynamic
power of datapath circuits. This methodology will
be applied to a combinational multiplier to identify
the unproductive glitching power component. Next,
the energy measures used to evaluate power will be
introduced. These will include energy per operation,
energy delay, and energy density. The paper will ap-
ply this methodology to a number of non-pipelined
multiplier circuits and highlight the significant con-
tribution of glitches in circuit power. The paper will
continue by applying this methodology on pipelined
circuits and digit-serial circuits. These circuit types
will be compared by evaluating the “operation en-
ergy” of each implementation style.

2 Dynamic Transient Power

Dynamic power makes up a large portion of the to-
tal amount of power consumed by an FPGA de-
sign. FPGA interconnect is largely responsible for
dynamic power consumption. It has been shown that
the interconnect of an FPGA accounts for the major-
ity of the area on an FPGA chip and also accounts
for the majority of the power dissipated by FPGA
designs[8]. The amount of power consumed by the
interconnect and clock tree can account for up to
86% of total dissipated power[8]. Unnecessary and
unproductive use of FPGA interconnect will there-
fore be very costly in terms of power.

Unproductive interconnect activity is usually
caused by glitching. Glitching refers to spurious

signal transitions on interconnect lines caused by
unequal logic or interconnect delays. For example
consider the signal activity of an N-bit ripple carry
adder. When new inputs arrive at the adder, all N-
bit sums are computed simultaneously but the carry
bits must ripple from the least significant bit up to
the most significant bit. The most significant bit of
the adder could switch N times due to this rippling.
Only the final transition can be called a productive
transition and so any other transitions are called
glitches. The carry-out of the 32nd bit of a 32-bit
carry chain will have on average 2x more useless tran-
sitions (glitches) than useful transitions per cycle and
the sum output will have on average 1.5x more use-
less transitions per cycle[9]. Fast carry chains in FP-
GAs may significantly reduce the glitching caused by
such an example, however FPGA designs are laden
with glitches caused unequal line lengths leading to
combinational logic block (CLB) logic.

Estimating the glitches that occur in FPGA de-
signs is important in order to understand how much
power is consumed by glitching. A static simulator
cannot estimate dynamic signal activity and thus is
not sufficient for accurate glitching power analysis of
an FPGA design. A previous study demonstrated
how static simulations of FPGA circuits can under
estimate the circuit signal activity. In that study,
the dynamic power estimation was 24% less than the
actual power consumption [4]. In designs with larger
amounts of glitching (such as a multiplier) the accu-
racy of such a static power model will be even worse.

An accurate power estimation should take sig-
nal glitching into account. To produce an effective
power estimation, a back-annotated timing model is
required in order to quantify net delays. A timing
simulation which uses this back annotated timing
model will then be able to simulate glitches so that
the amount of glitching can be determined. A power
analysis based on this timing simulation will produce
a more accurate power consumption estimation.

ModelSim together with Xilinx’s ISE tools can be
used effectively to model dynamic transient signal ac-
tivity and produce an accurate power consumption
estimation. The Xilinx tools can be used to gener-
ate a back-annotated timing file which can be used
by ModelSim to effectively model glitching through a
timing simulation. The amount of glitching reported
by ModelSim depends on the granularity chosen for
the simulations. This study finds that a resolution of
100ps is sufficient. ModelSim simulations can be cap-

2

tured and recorded in a file which reports the switch-
ing activity of every net in a design. The switching
activity of each net can be analyzed and tabulated
into two categories: unproductive glitching transi-
tions and productive signal transitions. Power esti-
mation tools such as XPower[10] can then use this
report to estimate the power consumption of the de-
sign.

The overall power consumption of a single circuit
component can be broken into three categories: nor-
malized static power, dynamic glitching power and
the remaining dynamic power.

Static Power The static power of an individual cir-
cuit module is obtained by dividing the total
static power of the device by the relative size of
the circuit (i.e. # Circuit LUTs / Total LUTs).
For circuits such as multipliers with large signal
activity, this component is relatively small.

Dynamic Glitching Power The glitching power
is obtained by counting the temporary signal
glitches in the timing simulation. The percent-
age of signal glitches to total glitches is used
to divide the dynamic power between glitching
power and useful dynamic power.

Useful Dynamic Power The useful dynamic
power is obtained by tabulating the “useful”
transitions within the module. If the final value
of a signal is different from the beginning of a
clock cycle to the end, then a useful transition
is the last transition that occurs, and all others
are glitches. Otherwise, all transitions during
the clock cycle were glitches.

This study will show that the dynamic glitching
power and the remaining dynamic power make up
the majority of the total power for arithmetic cir-
cuits such as multipliers. Reducing one or both of
these parts is the key to reducing overall power con-
sumption.

3 Multiplier Dynamic Glitch

Power

This study uses multiplier designs to demonstrate the
effects of glitching on total power consumption and
on operation energy. A multiplier is a good design
to demonstrate this due to it’s large amount of net

delays and varied net lengths which lead to a large
number of glitches[8, 11]. The multiplier in Figure
1 shows that pipelining can be easily implemented
by adding registers between multiplier stages. Addi-
tionally, a digit-serial multiplier based on the repre-
sentation in Figure 1 can be easily created[7, 12]. A
pipelined multiplier and a digit-serial multiplier are
used in later sections to show how glitches can be
reduced in order to lower the operation energy.

Mult Stage

Mult Stage

Mult Stage

Mult Stage

5

5

5

X

Y0

Y1

Y2

Y3

P7 P6 P5 P4 P3 P2 P1 P0

4x4 Multiplier
4

Figure 1: 4x4 multiplier.

For a non-pipelined multiplier the amount of
glitching increases super-linearly as the size of the
multiplier grows. To show this behaviour power esti-
mates are performed on 4x4, 8x8, 16x16, and 32x32
multipliers. Random inputs are presented at the in-
puts for all simulations. The pie charts in Figure 2
show the breakdown of the total power into its con-
stituent parts of static power, dynamic glitch power
and remaining dynamic power. For all four multiplier
sizes the amount of static power used by the design
makes up less than 1% of the total power. Note how
the percentage of dynamic glitch power increases as
the bitwidth of the multiplier grows. In the case of
the 4x4 multiplier glitching accounts for about 12%
of the total power. As the multiplier grows to a 32x32
multiplier, the total power is dominated by glitching
which accounts for 76% of the total power.

4 Reducing Glitch Power

Through Pipelining

Pipelining a design is an intuitive way to reduce
glitching. A pipelined circuit has less glitching due to
the reduced amount of logic between registers. With

3

4-bit

0.2%

87.3%

12.5%

8-bit

0.2%

53.2%
46.6%

16-bit

0.1%

31.7%

68.2%

32-bit

0.0%
24.1%

75.9%

STATIC POWER

DYNAMIC POWER

DYNAMIC GLITCH
POWER

Figure 2: Breakdown of power constituents for a multiplier of various bitwidths.

less logic between registers, the amount of intercon-
nect between registers is also reduced. Pipelining
also causes long routing interconnect to be broken
up by registers resulting in a smaller range of logic
and interconnect delays. Consequently less glitch-
ing occurs. In many cases pipelining can be imple-
mented with little additional cost since often many
of the flip flops within the design’s CLBs go unused.
When pipelining can be used to reduce glitching, the
amount of power consumed by a design is also re-
duced.

Implementing pipelining on the multiplier design
previously presented shows how fewer glitches re-
duces overall power consumption and operation en-
ergy. Pipeline stages are strategically inserted in the
multipliers of different bitwidths (4x4, 8x8, 16x16,
and 32x32). For each multiplier, pipelining is grad-
ually introduced until the multiplier is completely
pipelined.

Figure 3 shows how glitching is reduced as pipeline
stages are inserted. The graph reports the number
of glitches as a percentage of the total signal tran-
sitions for each multiplier. The glitching percentage
drops with the amount of pipelining introduced. The
almost linear quality of the graph indicates that the
advantages gained from pipelining pay off right up
until the multiplier is fully pipelined.

As the amount of glitching goes down the amount
of power consumed due to glitching is also reduced.
Figure 4 shows how the dynamic glitching power low-
ers as the amount of pipelining increases. This log-
arithmic graph agrees with the intuition that as the
amount of glitching goes down (see Figure 3) the
amount of power consumption due to glitching also
goes down. The logarithmic quality of the graph in-

Glitching as a Percentage of Total Transitions

0
10

20
30

40
50
60

70
80

90
100

0 1 2 4 8 16 32

Number of Pipeline Stages

4-bit

8-bit

16-bit

32-bit

Figure 3: The amount of glitching as a percentage
of total design transitions for multipliers of various
widths and varying amounts of pipelining.

dicates that as pipelining begins to be applied to the
multiplier there is a large initial pay-off in reduc-
tion of power due to glitching. After a certain point
there is less power savings to be had by increasing
the amount of pipelining.

5 Reducing Glitch Power

Through Digit-Serial Com-

putation

Pipelining the stages of a multiplier has proven to
be an effective way of reducing glitching (see Fig-
ure 3). The amount of pipelining available in the
multiplier shown in Figure 1 is limited by number
of multiplier stages. In other words an NxN multi-
plier can have a maximum of N pipeline stages. The

4

Dynamic Glitching Power as a Percentage of Total Power

0

10

20

30

40

50

60

70

80

0 1 2 4 8 16 32

Number of Pipeline Stages

4-bit

8-bit

16-bit

32-bit

Figure 4: The amount of dynamic glitching power as
a percentage of total power for multipliers of various
widths and a varying amount of pipelining.

graph in Figure 3 suggests that glitching could be fur-
ther reduced if additional pipelining was available.
Additional pipelining is available in a digit-serial
multiplier where pipelining is applied at a smaller
granularity[12]. A bit-serial multiplier is pipelined at
the bit level. It can reduce the amount of glitching to
less than 1% of total signal transitions (for operands
of any width). When compared to the percentages
shown in Figure 4 for the pipelined multiplier, the
less than 1% glitching achieved by the bit-serial mul-
tiplier is very impressive. With almost zero glitches,
the amount of power consumed by glitching in a bit-
serial multiplier approaches zero. This means that
at least 98% of the consumed power is due to useful
dynamic power.

Figure 5 compares the overall energy consumption
of the pipelined multipliers with that of the bit-serial
multiplier. The total amount of energy consumed by
the bit-serial multiplier is almost independent of the
bitwidth of its operands. For this reason, the total
energy consumption of the bit-serial multiplier for
any width is shown as a single line. The graph shows
that a bit-serial multiplier with 32-bit operands con-
sumes the same amount of total power as a fully
pipelined 4x4 multiplier or 6x less overall power than
a fully pipelined 32x32 multiplier.

With such an extreme amount of pipelining the
minimum clock period of the bit-serial multiplier is
reduced allowing for a faster clock rate. Unfortu-
nately however, the pipelining in a bit-serial unit not
only increases the latency but also the throughput of
the design. Whereas the throughput of an NxN mul-

Total Energy

1

10

100

1000

0 1 2 4 8 16 32

Number of Pipeline Stages

(n
J)

4-bit

8-bit

16-bit

32-bit

bit-serial

Figure 5: Total energy consumption (in nJ/cycle) of
a multiplier of different widths and various amounts
of pipelining compared to the total power consump-
tion of a bit-serial multiplier with operands of differ-
ent widths.

tiplier based on the design of Figure 1 is one product
per cycle, the throughput of a bit-serial multiplier
is one product per N*2 cycles. New operands are
introduced to a bit-serial multiplier every N*2 cy-
cles. Since the throughput of a design directly affects
operation energy, even though a bit-serial multiplier
consumes less overall power it may have a larger op-
eration energy than a pipelined multiplier.

6 Operation Energy

Most studies quantifying the power consumption of
FPGA circuits report on the average power of the
overall circuit. For high-throughput arithmetic cir-
cuits, however, the primary concern is the amount of
energy required to perform a specific arithmetic op-
eration. Understanding the energy consumption of
individual datapath operators will allow the designer
or synthesis tool to choose operators that meet a spe-
cific throughput constraint while minimizing energy
consumption.

This study will use the glitch estimation technique
presented in the previous section to estimate the
amount of energy consumed by a number of multi-
plier operators. Four energy parameters will be used:
energy per operation, energy delay, energy through-
put, and energy density.

5

6.1 Energy per Operation

Energy per operation quantifies the amount of energy
required to complete a single operation of a specific
circuit operator. This measure, reported as nJ, is
more useful than an average power measure when
comparing arithmetic circuits with different imple-
mentation approaches. Specifically, this measure al-
lows us to compare the energy efficiency of multi-
cycle operators with single-cycle operators.

Circuit energy can be computed by integrating the
circuit power consumption over time (E =

∫
Pdt).

Assuming constant power consumption, the energy
can be estimated by multiplying the average power
of the circuit operator by the amount of time to
complete a single operation. For single-cycle oper-
ators, the energy per operation is simply the aver-
age power of the circuit times the clock period, or
Ecycle = P · tclk.

The pipelined multiplier is an example of a circuit
with a single-cycle operation. The energy per opera-
tion for the pipelined multipliers is shown in Figure 6.
Energy per operation is affected by glitching power.
Just as the graph of power consumption in Figure 4
drops logarithmically, Figure 6 shows that energy per
operation also drops logarithmically. The graph also
shows that as the width of the multiplier increases,
energy per operation grows exponentially.

Energy per Operation

1

10

100

1000

 0 1 2 4 8 16 32

Number of Pipeline Stages

(n
J) 4-bit

8-bit

16-bit

32-bit

Figure 6: The energy per operation (in nJ) for a
multiplier of different widths and various amounts of
pipelining.

The energy per operation of multi-cycle circuit op-
erators must take into consideration the number of
clock cycles required to perform the operation. For
a non-pipelined multi-cycle operator, the energy per

operation is Eop = P · tclk · n where n is the number
of clock cycles required to perform the operation.

Pipelined operators overlap the computation of
several discrete operations in a single clock cycle.
The energy consumed by a pipelined operator is
shared among the various instances of the operator
in the pipeline. Thus for pipelined operators, rather
than considering the number of cycles required to
perform the operation (n), the interval between suc-
cessive initiations of the pipeline operation is con-
sidered (δ). The energy for a single computation is
computed as Eop = P · tclk · δ. For δ = 1 (which is
the case for the pipelined multipliers), the operator
is fully pipelined (i.e. a new operation can be initi-
ated every clock cycle) and the energy per operation
is Eop = P · tclk.

The bit-serial multiplier is an example of a circuit
with multi-cycle operation. The bit-serial multiplier
does not have a δ = 1 like the pipelined multipliers,
but has δ = N ∗ 2; where N is the bitwidth of the
bit-serial multiplier operands. Thus, despite its much
lower overall power consumption (Figure 5) in gen-
eral the bit-serial multiplier has a large energy per
operation.

Energy per Operation

1

10

100

1000

0 1 2 4 8 16 32

Number of Pipeline Stages

(n
J)

16-bit 32-bit

16-bit (bit-serial) 32-bit (bit-serial)

Figure 7: Energy per operation (in nJ) of a multiplier
of different widths and various amounts of pipelining
compared to the energy delay of a bit-serial multiplier
with operands of different widths.

The energy per operation of the bit-serial multi-
plier is compared to the pipelined multipliers in Fig-
ure 7 (16-bit and 32-bit operands only). The x-axis of
the graph is irrelevant to the bit-serial plots since the
bit-serial multiplier cannot be pipelined any further.
For this reason the bit-serial energy per operation
plots show up as horizontal lines. The graph shows

6

that the energy per operation of the bit-serial multi-
plier is always greater than the pipelined multiplier
except for one case of the 32x32 pipelined multiplier.
This one case occurs when the 32x32 multiplier is
non-pipelined. Having to take δ into consideration
causes the large energy per operation for the bit-
serial multiplier. For 32-bit operands, the bit-serial
multiplier requires δ = 64. Notice the similarity of
the graphs in Figure 5 and Figure 7. The value of
the bit-serial line in Figure 5 (in nJ) is multiplied
by 32 in Figure 5 for the 16-bit operand bit-serial
multiplier and by 64 for the 32-bit operand bit-serial
multiplier. In general the energy per operation of
a bit-serial multiplier is lower than the energy per
operation of a pipelined multiplier.

6.2 Energy Delay

Energy delay is a related measure that combines the
energy efficiency and speed of an operator into a sin-
gle parameter [13]. This measure is frequently used
to balance the trade-off between reducing energy and
increasing circuit speed. The energy delay of a circuit
operator is computed as Edelay = Ecycle · λ, where λ
is the latency of a single computation of the operator.
The latency of the operation is λ = tmin · n where n
is the number of clock cycles required to complete a
single operation and tmin is the minimum clock time
period of the circuit.

The minimum clock time period of a circuit de-
creases as the amount of pipelining increases. This
smaller clock period provides greater throughput
for designs with single-cycle operations such as the
pipelined multipliers. However, as we increase the
amount of pipelining the latency increases (n in-
creases), potentially increasing the energy delay.
Thus, as pipelining is increased the energy delay
could increase due to an increased latency, but the
energy delay could also be reduced due the the re-
duced amount of glitching.

Figure 8 shows how an increased amount of
pipelining could either decrease or increase energy
delay. In designs which have a large percentage of
glitching (see Figure 2) such as the 32-bit multiplier,
increasing the amount of pipelining decreases the en-
ergy delay. In designs with less glitching, energy de-
lay rises as pipelining is increased.

The trade-off of larger latency for less glitching
is accented with the bit-serial multiplier. The bit-

Energy Delay

1

10

100

1000

10000

100000

0 1 2 4 8 16 32

Number of Pipeline Stages

(n
J

n
s)

4-bit

8-bit

16-bit

32-bit

Figure 8: Energy delay (in nJ·ns) for a multiplier of
different widths and various amounts of pipelining.

serial multiplier consumes almost no energy due to
glitching, but relative to the pipelined multipliers re-
quires a large number of cycles to complete an op-
eration. The graphs in Figure 9 compares the en-
ergy density of the bit-serial multiplier with 16-bit
and 32-bit operands (where n = 32 and n = 64 re-
spectively) with the pipelined multipliers (where n =
pipeline depth). Due to the large amount of glitching
in the 32-bit pipelined multiplier, the bit-serial mul-
tiplier has a lower energy delay. As the size of the
pipelined multiplier goes down, the energy delay of
the pipelined multipliers goes lower than the energy
delay of the bit-serial multiplier.

Energy Delay

1

10

100

1000

10000

100000

0 1 2 4 8 16 32

Number of Pipeline Stages

(n
J

n
s)

16-bit 32-bit 16-bit (bit-serial) 32-bit (bit-serial)

Figure 9: Energy delay (in nJ·ns) of a multiplier of
different widths and various amounts of pipelining
compared to the energy delay of a bit-serial multiplier
with operands of different widths.

7

6.3 Energy Throughput

The energy throughput parameter is similar to en-
ergy delay in that it combines energy efficiency
and circuit speed into a single parameter. Energy
throughput differs from energy delay in that it does
not take into account the number of clock cycles
needed to complete a single operation (n), but rather
it considers the number of clock cycles between suc-
cessive operation initiations (δ). In most cases only
one or the other is used. Energy throughput is cal-
culated as Ethput = Ecycle · tmin · δ, where tmin is the
minimum clock time period of the circuit and δ is the
interval between successive initiations of the pipeline
operation.

Sometimes it is more useful to consider through-
put energy rather than energy delay. In some designs
a pipelined operation is used successively in such a
way that a new operation can be initiated on each
clock cycle (δ = 1). In these cases, energy through-
put might be a more desirable parameter than energy
delay. Energy delay is more useful for designs which
require an operation to complete before a new one
can be initiated (δ = pipedepth).

Where increasing pipeline depth raises energy de-
lay (due to an increased latency), it lowers energy
throughput. Pipelining benefits energy throughput
in two ways: it reduces glitches which lowers over-
all energy consumption, and it reduces the minimum
clock period - providing a greater throughput. Fig-
ure 10 shows how pipelining greatly benefits energy
throughput. Energy throughput (in nJ·ns) is dis-
played on a logarithmic scale therefore over a range
of different pipeline depths it appears linear. The
graph shows how critical the first stages of pipelin-
ing are. Implementing only a single pipeline stage in
the 32x32 multiplier reduces the energy throughput
by an order of magnitude.

Energy throughput for the bit-serial multiplier is
the same as energy density since n = δ = N ∗2 where
N is the size of the bit-serial multiplier operands.
Despite its low power consumption (see Figure 5)
the bit-serial multiplier tends to have a large energy
throughput and energy delay. The bit-serial multi-
plier benefits from having almost no glitching and
a smaller clock period than the pipelined multipli-
ers. However, it suffers from having a large δ value.
In almost every case, this large δ value outweighs
the advantages of a low minimum clock period and
minimized glitching. Figure 11 compares the energy

Energy Throughput

1

10

100

1000

10000

100000

0 1 2 4 8 16 32

Number of Pipeline Stages

(n
J

n
s)

4-bit

8-bit

16-bit

32-bit

Figure 10: Energy throughput (in nJ·ns) for a mul-
tiplier of different widths and various amounts of
pipelining.

delay of the bit-serial multiplier with the pipelined
multipliers (16x16 and 32x32 only). It shows that
in most cases the energy throughput of the bit-serial
multiplier is larger than the energy throughput of the
pipelined multipliers.

Energy Throughput

1

10

100

1000

10000

100000

0 1 2 4 8 16 32

Number of Pipeline Stages

(n
J

n
s)

16-bit 32-bit
16-bit (bit-serial) 32-bit (bit-serial)

Figure 11: Energy throughput (in nJ·ns) of a mul-
tiplier of different widths and various amounts of
pipelining compared to the energy delay of a bit-
serial multiplier with operands of different widths.

6.4 Energy Density

The final energy parameter used in this study is en-
ergy density, Edensity . This parameter normalizes
the amount of energy required to perform a single
operation to the number of logic resources used by
the circuit. This parameter can be calculated as
Edensity = Ecycle/A, where A is the “area” of the

8

circuit. It is important to note that the amount of
dynamic energy consumed by a circuit module is not
necessarily linearly related to the size of the circuit.
As described earlier, the primary contributer to dy-
namic power is signal glitches. Since circuit size af-
fects energy density, large circuits that reduce glitch-
ing through pipelining may have a lower energy den-
sity than smaller pipelined circuits.

Figure 12 shows the energy density for the
pipelined multipliers. From the graphs in this fig-
ure it may appear that energy density is not di-
rectly related to circuit size, but multiplier size does
impact energy density through average net activity
rate. The 4x4 multiplier has the smallest area but
the largest energy density. The 32-bit multiplier has
very high energy density when it is non-pipelined,
however as pipelining is introduced the energy den-
sity drops until it reports the lowest energy density.

The energy trends shown in Figure 12 are the re-
sult of glitching and average net activity rate. As
expected, glitching is reduced as pipelining is intro-
duced, lowering the overall energy consumption. The
32-bit multiplier demonstrates this trend. However,
the size of the multiplier also affects the energy den-
sity. The nets of a smaller multiplier have a higher
average activity rate than a larger multiplier, result-
ing in larger energy densities for smaller multipliers.

Energy Density

1

10

100

1000

0 1 2 4 8 16 32

Number of Pipeline Stages

(p
J/

L
U

T
) 4-bit

8-bit

16-bit

32-bit

Figure 12: Energy density (in pJ/LUT) for a mul-
tiplier of different widths and various amounts of
pipelining.

The graph in Figure 13 compares the energy den-
sity of the bit-serial multiplier with that of the
pipelined multiplier (16x16 and 32x32 only). The
graphs in this figure show that despite being a cir-
cuit with a multi-cycle operation, the bit-serial en-

ergy delay is often lower than the energy delay of
the pipelined multipliers. Whereas the area of the
pipelined multipliers has no direct correlation with
its energy density, the energy density of the bit-
serial multiplier is inversely proportional to its area.
The bit-serial multiplier with 4-bit operands has the
smallest area and the highest energy density. Con-
versely, the bit-serial multiplier with 32-bit operands
has the largest area and the smallest energy density.

Energy Density

1

10

100

1000

0 1 2 4 8 16 32

Number of Pipeline Cycles

(p
J/

L
U

T
)

16-bit 32-bit

16-bit (bit-serial) 32-bit (bit-serial)

Figure 13: Energy density (in pJ/LUT) of a mul-
tiplier of different widths and various amounts of
pipelining compared to the energy delay of a bit-
serial multiplier with operands of different widths.

7 Conclusion

This paper presents a methodology for estimating
the glitches of FPGA circuits and uses this method-
ology to determine the amount of power wasted in
glitching. This paper shows that the majority of
dynamic power in non-pipelined multipliers is con-
sumed by glitches. The glitch power can be reduced
by pipelining the circuit. Results in the paper show
an exponential decrease in glitch power by increasing
the pipelining depth.

Several energy related measures were introduced
and used to provide better tools for comparing
the energy requirements of different implementa-
tion approaches. Single cycle and multi-cycle cir-
cuit implementations can be compared by estimat-
ing the energy per operation rather than the aver-
age power consumption. This paper demonstrates
that while multi-cycle bit-serial operators have signif-
icantly lower average power, the energy per operation
is higher than deeply pipelined parallel approaches.

9

Energy delay, energy throughput and energy den-
sity were also used to compare the multiplier im-
plementation approaches. Energy delay is used to
balance the trade-off between energy reduction and
operator latency. Increasing the pipelining depth ex-
ponentially reduces glitch power, but also increases
latency. The amount of pipelining which produces
the best trade-off depends on the bitwidth of the
multiplier. In general, as the bitwidth increases, the
amount of pipelining producing the lowest energy de-
lay also increases.

The metrics and estimates generated in this paper
will be used as part of a high-level datapath synthesis
tool. This tool will use energy estimates of the var-
ious multiplier implementation approaches to select
the proper multiplication approach. High-power low-
pipelined circuits will be selected for datapath cir-
cuits with tight latency constraints while low-power,
highly pipelined circuits will be selected for latency
tolerant datapath circuits.

References

[1] P. Zuchowski et al. A hybrid ASIC and FPGA
architecture. In Proc. ICCAD, pages 187–194,
2002.

[2] Verghese George, Hui Zhang, and Jan Rabaey.
The design of a low energy FPGA. In Inter-
national Symposium on Low Power Electronics
and Design 1999. Proceedings, pages 188–193,
August 1999.

[3] Juergen Becker, Michael Huebner, and Michael
Ullmann. Power estimation and power mea-
surement of Xilinx Virtex FPGAs: Trade-offs
and limitations. In Proceedings of the 16th
Symposium on Integrated Circuits and Systems
Design (SBCCI’03). IEEE Computer Society
Press, 2003.

[4] Nathan Rollins. SLAAC1V power user’s man-
ual. Technical report, Department of Electri-
cal and Computer Engineering, Brigham Young
University, 2004.

[5] Anand Raghunathan, Sujit Dey, and Niraj K.
Jha. Register transfer level power optimiza-
tion with emphasis on glitch analysis and re-
duction. IEEE Transactions on Computer-aided

Design of Intergerated Circuits and Systems,
18(8):1114–1131, August 1999.

[6] Steven J.E. Wilton, Su-Shin Ang, and Wayne
Luk. The impact of pipelining on energy per
operation in field-programmable gate arrays.
In Field-Programmable Logic and Applications.
Proceedings of the 13th International Workshop,
FPL 2004, Lecture Notes in Computer Science,
LNCS 3203, pages 719–728. Springer-Verlag,
August 2004.

[7] Yun-Nan Chang, Janardhan H. Satyanarayana,
and Keshab K. Parhi. Systematic design of
high-speed and low-power digit-serial multipli-
ers. 45(12):1585–1596, December 1998.

[8] Eric Kusse and Jan Rabaey. Low-energy embed-
ded FPGA structures. In International Sym-
posium on Low Power Electronics and Design
1998, pages 155–160, August 1998.

[9] Jeroen Leijten, Jef van Meerbergen, and Jochen
Jess. Analysis and reduction of glitches in
synchronous networks. In European Design
and Test Conference, 1995.ED&TC Proceed-
ings, pages 398–403, March 1995.

[10] Xilinx, Inc. XPower Manual.

[11] Suleman Sirri Demirsy, Andrew G. Dempster,
and Izzet Kale. Power analysis of multiplier
blocks. In International Symposium on Circuits
and Systems, volume 1, pages I–297–I–300, May
2002.

[12] R. F. Lyon. Two’s complement pipeline multi-
pliers. IEEE Transactions on Communications,
pages 418–425, April 1976.

[13] Ricardo Gonzalez and Mark Horowitz. En-
ergy dissapation in general purpose micropro-
cessors. IEEE Journal of Solid-State Circuits,
31(9):1277–1284, September 1996.

10

	Reducing Energy in FPGA Multipliers Through Glitch Reduction
	BYU ScholarsArchive Citation

	tmp.1409849408.pdf.5616A

