
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

2005-06-01

Active Contours Using a Constraint-Based Implicit Representation Active Contours Using a Constraint-Based Implicit Representation

Weiming Liu
tanmin@gmail.com

Bryan S. Morse
morse@byu.edu

Kalpathi Subramanian

Terry S. Yoo

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
B. S. Morse, W. Liu, T. S. Yoo, and K. Subramanian, "Active contours using a constraint-based

implicit representation," in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 285-292, IEEE Computer Society Press, June 25.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Liu, Weiming; Morse, Bryan S.; Subramanian, Kalpathi; and Yoo, Terry S., "Active Contours Using a
Constraint-Based Implicit Representation" (2005). Faculty Publications. 376.
https://scholarsarchive.byu.edu/facpub/376

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/376?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F376&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Active Contours Using a Constraint-Based Implicit Representation

Bryan S. Morse1, Weiming Liu1 , Terry S. Yoo2, Kalpathi Subramanian3

1Department of Computer Science, Brigham Young University
2Office of High Performance Computing and Communications, National Library of Medicine

3Department of Computer Science, The University of North Carolina at Charlotte

Abstract

We present a new constraint-based implicit active con-
tour, which shares desirable properties of both parametric
and implicit active contours. Like parametric approaches,
their representation is compact and can be manipulated in-
teractively. Like other implicit approaches, they can natu-
rally adapt to non-simple topologies.

Unlike implicit approaches using level-set methods, rep-
resentation of the contour does not require a dense mesh.
Instead, it is based on specified on-curve and off-curve con-
straints, which are interpolated using radial basis functions.
These constraints are evolved according to specified forces
drawn from the relevant literature of both parametric and
implicit approaches.

This new type of active contour is demonstrated through
synthetic images, photographs, and medical images with
both simple and non-simple topologies. For complex in-
put, this approach produces results comparable to those of
level set or parameterized finite-element active models, but
with a compact analytic representation. As with other ac-
tive contours they can also be used for tracking, especially
for multiple objects that split or merge.

1. Introduction

Active contour models (also known as deformable con-
tours or snakes) have been used prominently throughout
computer vision since their introduction [9]. These mod-
els are iteratively updated according to various forces de-
signed to seek out object/region boundaries while main-
taining smoothness of the fitted contour, as shown in Fig-
ure 1. In this way, active contours provide a robust tool for
image segmentation: the boundary-seeking portion of the
model (external energy) provides the segmentation while
the smoothness-preserving portion (internal energy) regu-
larizes noisy data and handles missing or low-confidence
sections of the contour. Interactively controlled forces may
also be introduced to allow the user to guide the segmen-
tation. This robustness has made active contours particu-
larly popular for medical imaging applications, as surveyed

Figure 1: A constraint-based implicit active contour used
to segment the multiple disjoint parts of a vertebrae cross-
section. Although initialized as a single encompassing cir-
cle, the active contour changes its topology naturally to
adapt to the disjoint parts. The green points denote the
evolving constraints, and the red curves are the evolving
contours defined by those constraints.1

in [14]. Active contour models have also proven useful for
object tracking, both for medical imaging and other appli-
cations, because of their ability to update their position and
shape as the segmented object moves.

For many problem domains it is necessary for an active
contour to be able to adapt to non-simple topologies (as in
Figure 1). This includes situations where a single object
has holes and it is necessary for the active contour to wrap
to both the interior and exterior contours of the object; or it
might include situations where a single structure branches
as it is tracked through 2-D slices of a volumetric image,
causing two disjoint structures that need to be tracked in
subsequent slices. Without this ability to split (or, going the
other way, to merge), only one branch could be tracked.

Most implementations of active contours use paramet-
ric models, splines or other interpolants defined by a se-
quence (2-D) or mesh (3-D) of control points. Because of
their reliance on a parametric representation, simple imple-
mentations of active contours cannot adapt to non-simple
topologies. Multiple active contours can be used to segment

1This and other figures in this paper use color to convey the different
components of the active contour. If these are not distinguishable in the
printed copy, please refer to the PDF copy of this paper if available.

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

non-simple topologies, but the topology must be known and
fixed. A topologically-adaptive variation of active contours
known as T-snakes [13, 15] addresses this problem by selec-
tively splitting or merging active contours periodically, then
allowing them to continue to relax towards a solution. This
approach is effective, but the topology changes only through
periodic testing and reparameterization, not as a natural part
of the representation. Because of the parametric nature of
the representation, though, T-snakes are able to make use
of existing techniques from the parametric snake literature,
including user control.

Another approach to segmenting non-simple topologies
is to use an implicit representation. Implicit contours or sur-
faces are defined as a level set (usually the zero set) of an
embedding function whose domain is the space in which
the contour or surface is represented (usually the image
plane or volume). Because there is no explicit parameteri-
zation, implicit representations can have arbitrarily complex
topologies while still using a topologically simple embed-
ding function. Implicit active contours [3, 4, 10, 21, 30, 31]
can thus segment and track topologically non-simple ob-
jects. Implicit active contour implementations typically rep-
resent the embedding function using a dense mesh of val-
ues, often corresponding to the image’s own pixel grid.
These are then updated iteratively using level-set meth-
ods [20, 21, 22, 24, 25] so as to cause the zero set (the
curve or surface) to move as desired. The PDEs (forces)
driving the movement of the implicit curve or surface gen-
erally correspond to the traditional energy terms in paramet-
ric approaches. (See [35] for a comparison of the two ap-
proaches.) As the embedding function changes according
to these PDEs, the topology of the implicitly represented
active curve or surface can change naturally without being
explicitly tested or changed. Unlike T-snakes, this topolog-
ical adaptation occurs as a normal part of the active con-
tour’s iteration. However, implicit active contours using
dense meshes (even those using narrow-band [1, 12], fast
marching methods [25], or sparse-field methods [32]) re-
quire storage and calculation for a large number of points.

We propose a new form of implicit active contour that
uses a sparse, compact representation like parametric ap-
proaches but has the ability to adapt to complex topologies
like other implicit approaches. This is based on a relatively
new form of implicit contour representation that uses point-
based constraints (analogous to control points) to define and
control the curve or surface [2, 6, 7, 17, 19, 23, 26, 28, 29].
We call this new model a constraint-based implicit ac-
tive contour. In some ways it shares similarities with the
particle-based approach of [27] but evolves according to
surface rather than particle particles. Like other implicit
active contours, there is no finite-element representation, so
it can easily adapt to non-simple or changing topologies.

Like parametric active contours, though, the representation
is compact.

2. Constraint-Based Implicit Representations

Implicit curves or surfaces need not be represented by
dense representations. One can use sparse primitives (usu-
ally “blobby” or medial structures), which provide a much
more compact representation but don’t allow the same de-
gree of control directly over the curve or surface. One can
also use algebraic surfaces, but these quickly become too
complicated for complex surfaces unless one subdivides the
surface into patches.

Since the mid-90s, a number of techniques have emerged
using scattered data interpolation techniques (most com-
monly radial basis functions or RBFs) to interpolate im-
plicit curves, surfaces, or hypersurfaces from scattered
points and some number of additional off-curve con-
straints [2, 6, 7, 17, 19, 23, 26, 28, 29]. Since the con-
straints are directly on the curve, these techniques give a
much greater degree of control than the sum-of-primitives
approach; and since they use only a scattered set of con-
straints, they are much more compact representations than
dense meshes. These techniques have gone by various
names in the literature, including variational implicit sur-
faces when constructed as a variational problem, implicit
surfaces that interpolate, etc. We prefer the term constraint-
based implicit curve or surface due to the reliance on scat-
tered surface constraint points.

These constraint-based methods basically take the same
approach: known points on the curve define points where
the implicit curve’s embedding function should have a value
of zero, known off-curve constraints define points where
the embedding function has nonzero values, and these
(point,value) targets are then interpolated using scattered
data interpolation. Though they differ in various ways (the
interpolation used, the means of defining the off-curve con-
straints, and the tolerance of fitting the points), they all share
this key idea: rather than explicitly interpolating the curve
or surface, they interpolate the embedding function that im-
plicitly defines it.

An example of this is shown in Figure 2. Zero-valued
constraints define the curve and nonzero-valued constraints
are uniformly distributed around the perimeter of the image.
The scattered (point,value) pairs constraining the implicit
curve or surface are then interpolated using radial basis
functions (RBFs) as follows.2

We begin with a set of constraints (ci, hi) such that hi =
0 for all ci on the curve and hi = 1 for all ci known to

2We follow most closely the general approach outlined in [29] and used
in [17], [6], and related works. The description of the process here is
intentionally brief, and we encourage the interested reader to consult these
more detailed descriptions.

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

Figure 2: A constraint-based implicit active contour. As
the constraints defining the contour evolve towards the ob-
ject boundaries (top), the contour separates into two parts,
occurring naturally as part of its underlying implicit rep-
resentation (bottom). For visualization, we here show the
absolute value of that embedding function, which may best
be interpreted as an approximate distance field.

lie away from the curve. We then interpolate an embedding
function f from these constraints such that ∀i : f(ci) = hi.

We can obtain this interpolation using an RBF φ(r) by
defining the embedding function f as a weighted sum of
these basis functions centered at each of the constraint po-
sitions, plus possibly an additional polynomial p (required
for some basis functions):

φ(x) =
n∑

i=1

diφ(‖x− ci‖) + p(x) (1)

where ci is the position of the constraint and di is the weight
of the radial basis function positioned at that point.

To solve for the set of weights di that satisfy the known
constraints f(ci) = hi, we substitute each constraint
(ci, hi) into Eq. 1:

φ(ci) =
n∑

j=1

djφ(‖ci − cj‖) + p(x) = hi (2)

Eq. 2 thus defines a system of equations for solving for the
weights in Eq. 1, which can now be used as an embedding
function implicitly defining a smooth curve passing through
the known constraints.

Constraint-based implicit curves or surfaces have al-
ready demonstrated themselves to be valuable for shape
modeling [29], shape interpolation [28], surface reconstruc-
tion [2, 6], and medical imaging [36].

3. Constraint-Based Implicit Active Contours

We propose that constraint-based implicit curves or
surfaces also provide an implicit representation suitable
for implicit active contours. This representation is much
more compact than previous dense-mesh or volumetric ap-
proaches. It can be stored using only the constraint points
and the results of solving for the weights in Eq. 2, and the
embedding function implicitly defining the curve or surface
can be reconstituted analytically using Eq. 1.

3.1. Basic Formulation

As with all active contour algorithms, we initialize the
active contour based on an initial estimate of the object’s
shape and position. This could be based on an anatomical
atlas, the results of segmenting a previous slice or frame, or
simply a standard starting point such as a simple circle.

We place along an approximate initial curve a number of
zero-valued constraints as described in Section 2. We also
place along the image border a number of nonzero-valued
constraints to define the exterior of the object. (These points
could be placed arbitrarily distant from the center of the
image, but we have chosen to include them in the image so
that they may be better visualized.) We then solve the sys-
tem of equations required for the RBF interpolation (Eq. 2)
in order to build the embedding function φ that implicitly
defines our initial active contour.

We then adjust our curve constraints according to a num-
ber of energy functionals designed to move the contour to-
wards the desired solution. (The nonzero constraints remain
as a bounding box or circle around the object and are not
updated.) A similar approach to evolving constraint-based
implicit surfaces can also be found in [18].

For the basic implementation, we use an external image
force Fimage, an internal smoothing force Finternal, a bal-
loon force Fballoon, and an internal constraint repulsion force
Frepulse. Together, these forces drive the evolution of the
constraints:

∂
∂tci = wimage Fimage(ci)

+ winternal Finternal(ci)
+ wballoon Fballoon(ci)
+ wrepulse Frepulse(ci)

(3)

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

The weights of these forces (wimage, winternal, wballoon, and
wrepulse, respectively) may be adjusted to control the relative
importance of each component.

Another approach, rather than using separate external
image and balloon forces to drive motion, borrows a tech-
nique from the level-set implicit snake literature [3]. This
approach uses a balloon force to externally drive the motion,
the internal force to induce smoothness, and a boundary po-
tential “stopping function”:

∂
∂tci = g(ci) [winternalFinternal(ci) + wballoonFballoon(ci)]

+ wrepulseFrepulse(ci)
(4)

where the stopping function g(ci) is a function of the image
boundary potential ranging in value from 1 (no external
force, let the balloon and internal forces drive the motion)
to 0 (on a boundary, stop).

These individual forces are defined as follows, specifi-
cally as in Eq. 5 through Eq. 9.

Image Energy Force

As in parametric active contour models, we define an image
boundary potential function P (x) that is low for points with
high boundary-like properties. We then define one of the
terms driving the motion of the constraints as the negative
gradient of this potential:

Fimage = − ∇P

Moving the constraints only along the normal to the im-
plicit curve (as effectively done by level-set based implicit
active contour algorithms) gives a more effective constraint
motion. Denoting the curve’s normal as

N =
∇φ

‖∇φ‖
this becomes

Fimage = − (∇P · N) N (5)

We can use any of the external energy functionals in the
existing literature for parametric snakes and have imple-
mented such variants as gradient vector flow [34].

Internal Energy Force

For the internal energy term, we borrow not from para-
metric active contours but from their implicit counterparts.
Implicit active contours use differential geometry and the
derivatives of the embedding function to calculate the cur-
vature of the level set representing the curve. Using level-
set methods, the embedding function is then adjusted so as
to reduce the curvature of the implicitly represented curve
(mean curvature flow).

We also measure the curvature of the active contour
by using differential geometry to calculate the curvature
κ = div ∇φ

|∇φ| of the level set passing through each constraint
along the curve. We then explicitly move each constraint in
the direction of the curve’s local normal at a rate propor-
tional to the negative of the local curvature:

Finternal = − κ N (6)

Balloon Force

Balloon forces can be used to make the active contour work
like a balloon: expanding when inside the shape boundaries
and shrinking when outside the shape boundaries in the nor-
mal direction of the curve [5, 3, 16].

The motion due to the balloon force Fballoon(ci) at con-
straint i can be expressed as

Fballoon(ci) = F (I(ci)) N(ci) (7)

For images whose shape regions have different intensity
from the background and can be segmented using a simple
threshold T , F (I(c)) is simply ±1 depending on whether
the image intensity I(c) is above or below threshold.

For more complex distributions of intensities in the
image, we can use information about the region intensity
statistics [8]. Assuming that the shape regions have in-
tensity mean µ and standard deviation σ, and k is a user-
adjustable constant, F (I(c)) can be designed as

F (I(c)) =
{

+1 if |I(c) − µ| ≤ kσ,
−1 otherwise (8)

The constraint-based implicit representation makes it
easy to determine the statistics of the enclosed region(s),
because the embedding function acts as a characteristic
object-membership function for all pixels in the image.

Constraint Repulsion Force

To encourage uniform distribution of the constraints along

To avoid this repulsive force acting as a secondary bal-
looning force, we constrain the effect of the repulsion to be
only in the tangent to the curve (N⊥). To avoid interaction
between disjoint curves once the topology changes, we also
weight the repulsive force between two points by the simi-
larity between the normals at those points:

Frepulse(ci) =
X
j �=i

»
wij

(ci − cj)

‖ci − cj‖3
· N⊥(ci)

–
N⊥(ci) (9)

where wij = 1
2 [1 + (N(ci) · N(cj))].

3.2 Implementation

We implement the basic constraint-based implicit active
contour algorithm as follows:

1. Preprocess the original image by blurring with a Gaus-
sian to reduce noise, make edges cleaner, and increase
the capture range for the active contour.

2. Select a set of initial constraints around the shape of
interest. This may be done by having the user supply
an initial estimate of the contour; or they may be drawn
from a prior model of the shape or from a previous
slice or frame.

3. Construct an embedding function from these con-
straints using thin-plate spline radial basis functions
and the methods described in Section 2. Generally it
is better to select constraints near the desired bound-
aries, which then require fewer iterations to find the
final boundaries. However, our model also allows the
user to select constraints farther away from the bound-
aries.

4. Evolve the constraints according to Eq. 3 or Eq. 4 for
5–10 time steps. During this process, we use the same
embedding function because it changes little.

5. Reconstruct the embedding function from the changed
constraints after each set of 5–10 time steps using an
incremental solver (an iterative solver that uses the pre-
vious solution as a starting point).

6. Stop evolving when the active contour reaches object
boundaries and converges.

At no time during the algorithm do we need to extract the
contour from its implicit representation or to otherwise use
any form of finite-element, spline, or other explicit repre-
sentation. (In our implementation we do so only to provide
visualization of the intermediate steps of the evolution.)

A direct solver can be used for Step 5, but using an in-
cremental solver takes advantage of the RBF weights calcu-
lated for the previous embedding function, usually converg-
ing to the new solution within only a few iterations.

We use a base time step of ∆t0 = 1
max(winternal,wballoon)

.
We then conservatively select a time step so as to limit the
motion of a single constraint to be no more than one pixel:
∆t = ∆t0

maxi ‖c+∆t
i −ct

i‖
.

3.3. Enhancements

Inserting and Deleting Constraints

Many snake implementations insert additional constraints
as the curve expands. Although we have no explicit pa-
rameterization, we can likewise insert or delete constraints
by recognizing when a constraint becomes too far from
or too close to nearby constraints [33]. This pairwise
constraint-to-constraint distance calculation requires no ad-
ditional computation because it is already part of the RBF
calculations. If the minimum distance from one constraint
to all other constraints exceeds a predetermined threshold,
we split that constraint into two new constraints placed at a
small offset in the curve’s tangent direction from the origi-
nal. If the minimum distance becomes too small, we merge
those constraints. This is useful in avoiding instabilities in
the repulsive forces when collapsing to a small object.

User Interaction

As with the original snake implementation [9], we can also
introduce “springs”: user-defined forces to pull a specific
constraint (ci) towards a goal (a):

Fspring = (a − ci)p

for some exponent p, or to push them all away from that
point (“volcanos”):

Fvolcano =
1

‖a− ci‖3 [(ci − a) · N(ci)] N(ci)

See Figure 7 for an example of the application of user inter-
action to snake evolution.

Automatic Constraint Addition

In some cases, the user may wish to indicate that the snake
is missing a significant part of the object (or because of the
topological flexibility, a disjoint part). This can be accom-
plished by adding new constraints, which can be placed au-
tomatically by finding points in the image where both the
object boundary likelihood and the distance from the cur-
rent snake is high. Using the negative of the boundary po-
tential −P (x) and recognizing that the embedding function
can serve as a pseudo-distance field, we can define this as
the point that maximizes −P (x) |φ(x)|.

In our implementation, we found that a pseudo-distance
field is better created by non-zero constraints placed at a
fixed offset from the zero-valued constraints [2]. Since we
do not do this during normal snake evolution, we do so only
when asked to automatically add new constraints.

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

4. Results

Figures 3–4 show results for simple synthetic images in
order to demonstrate how constraint-based implicit snakes
work. Figure 3 shows a single contour adapting to multi-
ple disjoint objects, and Figure 4 shows several initial con-
tours merging to segment the separate interior and exterior
boundaries of a hollow shape.

Figure 1 and Figures 5–8 show the use of constraint-
based implicit active contours to segment various types
of medical images. Figure 1 shows how the contour can
change topology to adapt to multiple disjoint pieces of an
object. Figures 5–7 show how even in situations with simple
topology, constraint-based implicit active contours perform
in ways comparable to both parametric or level-set based
methods. Figure 7 also demonstrates user interaction to di-
rect the contour away from an interfering nearby bound-
ary. Figure 8 shows a complex branching (though topologi-
cally simple) shape, which can be segmented using a single
constraint-based implicit active contour through the use of
automatic point insertion as the contour grows.

Finally, Figures 9–10 show how constraint-based im-
plicit snakes can be used to track objects in video sequences.
In each, the result for one frame is used as the initial es-
timate for the following frame. In particular, Figure 10
demonstrates tracking multiple objects as they merge and
later separate.

5. Conclusion

We have presented a new approach to topology-adaptive
active contours using a constraint-based implicit represen-
tation. Like parametric active contours, the representation
uses only a sparse number of points on the contour. Like
other implicit active contours, topological changes happen
naturally as part of their implicit representation. These
new constraint-based implicit active contours thus com-
bine the best features of both implicit approaches (natu-
rally topology-adaptive) and parametric approaches (com-
pact representations, user interaction).

Examples have been shown for simple synthetic images,
photographs, medical images, and video sequences. These
examples show that in cases of simple topology, constraint-
based implicit active contours perform in ways compara-
ble to either parametric or level-set based approaches. In
cases with more complex topologies, constraint-based im-
plicit active contours adapt naturally to the topology in ways
comparable to level-set based methods or T-snakes. How-
ever, the representation requires neither the dense mesh re-
quired for level-set methods nor the ACID node structure
required for T-snakes. The representation is compact and
can be analytically defined by simply listing the (unordered)
constraints that evolve to localize the object.

Figure 3: Synthetic image with one initial contour and six
disjoint targets. As the contour evolves, it breaks naturally
into multiple disjoint curves.

Figure 4: Six initial contours merging to form two contours,
one each for the interior and exterior boundaries.

Figure 5: Segmentation of the left-ventricular chamber of
the heart (LV) in an ultrasound image.

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

Figure 6: Segmentation of a tumor in a slice of an MRI
using a constraint-based implicit active contour.

Figure 7: Segmentation of the corpus callosum. A user-
defined “spring” (indicated with a red dot for the anchor)
is placed interactively to correctively pull the contour away
from a nearby boundary.

Figure 8: Segmentation of a blood vessel with complex
branching structure. Although initialized with a small cir-
cle in the interior of the vessel, the active contour expands
to segment the entire structure. As the contour expands, ad-
ditional constraints are inserted automatically even though
there is no parameterization or even ordering of the points.

Figure 9: Using constraint-based implicit active contours
to track a car in a traffic sequence. As is commonly done,
the active contour for each frame was initialized using the
results of the previous frame.

Figure 10: Constraint-based implicit active contour track-
ing multiple objects through a synthetic motion sequence
(top-to-bottom, left-to-right). As the objects approach each
other and combine, their respective active contours merge
implicitly. As the objects later separate again, their respec-
tive active contours also implicitly separate.

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

Acknowledgments

We would like to thank Lauralea Otis, David Chen, and
Tom Sederberg for their help with this work. We would
also like to thank Greg Turk, James O’Brien, Quynh Dinh,
Ross Whitaker, and John Hart for their useful discussions
regarding implicit surface modeling.

References

[1] D. Adalsteinsson and J. Sethian. A fast level set method for propa-
gating interfaces. J. Computational Physics, 118:269–277, 1995.

[2] J. C. Carr, T. J. Mitchell, R. K. Beatson, J. B. Cherrie, W. R. Fright,
B. C. McCallum, and T. R. Evans. Reconstruction and representation
of 3D objects with radial basis. In SIGGRAPH 2001 Proceedings,
Annual Conference Series. ACM SIGGRAPH, ACM Press, August
2001.

[3] V. Caselles, F. Catté, B. Coll, and F. Dibos. A geometric model for
active contours in image processing. Numerische Mathematik, 66(1),
1993.

[4] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours.
In In Proc. Fifth International Conf. on Computer Vision (ICCV’95),
pages 694–699, Los Alamitos, CA, June 1995. IEEE Computer So-
ciety Press.

	Active Contours Using a Constraint-Based Implicit Representation
	Original Publication Citation
	BYU ScholarsArchive Citation

	tmp.1409849408.pdf.XgDmY

