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Abstract 

We present a new method for generating large 
numbers of accurate point correspondences between 
two wide baseline images. This is important for struc-
ture-from-motion algorithms, which rely on many cor-
rect matches to reduce error in the derived geometric 
structure. Given a small initial correspondence set we 
iteratively expand the set with nearby points exhibiting 
strong affine correlation, and then we constrain the set 
to an epipolar geometry using RANSAC. A key point to 
our algorithm is to allow a high error tolerance in the 
constraint, allowing the correspondence set to expand 
into many areas of an image before applying a lower 
error tolerance constraint. We show that this method 
successfully expands a small set of initial matches, and 
we demonstrate it on a variety of image pairs. 

1. Introduction 

Reliable feature matches between wide baseline image 
pairs are important for many stereo algorithms in com-
puter vision. Typical feature types include points, lines, 
curves, and textured regions. Correct feature corre-
spondences enable stereo camera calibration and struc-
ture-from-motion algorithms, and permit robust estima-
tion of epipolar geometries between two or more 
images. Epipolar geometries in turn facilitate further 
feature matching, image rectification, and the finding 
of dense image correspondences. 

Finding a sufficiently large number of correct fea-
ture correspondences between image pairs can deter-
mine the success or failure of stereo algorithms that 
rely on plentiful matches. It is therefore important to be 
able to generate many correct, high confidence matches 
from images in a reasonable amount of time. While 
there exist many wide baseline matching algorithms, 
most address the problem of finding matches independ-

ently; fewer use existing matches in a guided search for 
more [14, 17, 19]. 

The most common method for finding point corre-
spondences between two wide baseline images is to 
first identify points on each image that lend themselves 
well to matching. Such interest points often have char-
acteristics such as high intensity variance and anisot-
ropic texturing in surrounding pixels. Two sets of in-
terest points are then tentatively matched to one 
another by finding similar feature vectors between 
points, yielding a set of putative matches. The feature 
vectors often include correlation measures [3], and 
geometric and photometric invariances [16]. 

If each image of the pair has N interest points, the 
matching complexity is O(N2). Unfortunately, this com-
mon N2 method of finding a set of feature matches will 
usually result in many mismatches, due mainly to 
sampling noise, lighting changes, and foreshortening 
effects. A robust epipolar geometry estimator such as 
RANSAC [7] is frequently used as a final step to elimi-
nate the outlying matches. However, if there is a high 
percentage of incorrect matches given to the estimator, 
RANSAC executes very slowly. Even worse, matches 
failing the epipolar constraint are simply discarded, 
greatly reducing the size of the final correspondence 
set. A contribution of our work is that we exploit the 
near-correctness of these discarded matches, locally 
adjusting their positions to conform to the constraint 
(see section 3.4). 

Our goal is to aggressively search for additional 
matches using existing matches as starting locations, 
and to make the final correspondence set as large as 
possible while preserving the accuracy of its member 
matches. 

1.1. Related Work 

Many robust methods exist to create point matches 
for wide baseline stereo. Baumberg [1] finds affine-
invariant features by extracting the relative skew, 
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stretch, and rotation from interest point neighborhoods, 
and matches points with similar image structure. Ap-
plying the extracted affine transformation to the sam-
pling window reduces the number of incorrect matches 
in the final set of correspondences. Tuytelaars and Van 
Gool [20] use local affine and photometric invariant 
features of the points to facilitate matching. An ellipti-
cal region surrounding an interest point is examined to 
find its generalized color moments, which comprise the 
invariant feature vector. Interest points are matched 
according to feature vector similarity. Schaffalitzky and 
Zisserman [19] find texture region matches using affine 
and photometrically invariant descriptors. Their 
method is statistically insensitive to the shape of the 
region, yielding a more stable match descriptor than 
point-based matches provide. Mikolajczyk and Schmid 
[15] find affine-invariant feature points by first detect-
ing multi-scale Harris points, and then use these points 
in an iterative procedure until the points converge to 
affine invariance. Both the relative scale and the shape 
of the point neighborhoods are recovered simultane-
ously. 

Matas et al. [14] find corresponding regions using 
an improved similarity measure that adds a voting 
scheme to the commonly-used Mahalanobis distance. 
Their method also improves on the large-scale invari-
ance of [16]. Ferrari et al. [4] propose a method to util-
ize multiple images (more than two) to establish point 
correspondences between all images. We focus on us-
ing only two images, and our method for correspon-
dence expansion is independent of the type of compari-
son function used to score the fitness of a match. In 
fact, any method previously used to identify feature 
matches can be leveraged to initialize our algorithm, 
and correspondence expansion can easily be appended 
to any existing matching scheme to increase the num-
ber of final matches. 

Several methods have been proposed that use 
known matches to guide the search for additional point 
matches. Lourakis et al. [12] find point and line feature 
correspondences on a common plane by using a ran-
domized search strategy to find an initial set of point 
and line matches. They then use the derived homogra-
phy of three lines to verify the point locations and to 
predict the location of further matches. Their method 
relies on the presence of planar features, while our al-
gorithm makes no assumptions on geometric proper-
ties. Pritchett and Zisserman [17] compute local homo-
graphies at existing matches to guide the search for 
new matches. They first use existing homographies to 
predict match locations and then employ a hierarchical 
approach to create new homographies to carry out ad-
ditional searches. Our algorithm uses local affine trans-

formations to guide searches, rather than homo-
graphies. Matas et al. [14] improve their number of 
matched regions by finding affine transformations of 
correspondences that survive a preliminary RANSAC 
cull. They then include those portions of regions whose 
transformed correlation are above a pre-selected 
threshold in a second RANSAC cull. This roughly 
doubles or triples the number of correspondences from 
simply using a single RANSAC prune. A major 
contribution we make beyond both [17] and [14] is to 
apply an epipolar constraint at each iteration, rather 
than once, as described in section 3.2, enabling many 
more correct matches to be found. 

Figure 1: An example of correspondence expansion 
occurring at each step of the iterative algorithm. The top 
two images of a wall are the left and right images to be 
matched. One initial point was selected by a user, shown 
as a red and white circle in the top two images. As 
matches are found and added to the correspondence set, 
the matches “grow” outward from the original point, and 
incorrect matches quickly disappear. Point correspon-
dences are shown as white lines in the image sequence. 
The last image in the sequence shows the final corre-
spondence set containing 1,925 matches. The lower six 
images have been darkened to better highlight the corre-
spondences. 
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Ferrari et al. [5, 6] introduce a method that selects 
an initial set of feature correspondences as anchors to 
an iterative exploration of the surrounding image areas. 
The resulting correspondence set is able to detect 
matches between images exhibiting non-rigid deforma-
tions, and they use this ability as input to an object rec-
ognition system. Our proposed method is similar to that 
of Ferrari et al. in that we iteratively augment and con-
strain our expanding match set (see section 3). How-
ever we employ a novel use of the epipolar constraint 
(section 3.2) that allows a high growth rate while re-
taining an approximate epipolar geometry, then refine 
the final match set to a correct epipolar geometry upon 
completion. This is in contrast to the method of Ferrari 
et al. in which they purposefully avoid epipolar con-
straints in order to permit non-rigid deformations. 

Finally, Schaffalitzky and Zisserman [19] improve 
on the number of matched regions they find by match-
ing pixels within matched regions. This approach is 
very successful in generating large numbers of cor-
rectly matched points. Their method is limited, how-
ever, to isotropic texture regions. In contrast, we are 
not limited by any statistical property of the input im-
ages. 

1.2. Contribution 

In this paper we present a new method that expands 
an initial set of wide baseline correspondences by an 
iterative two-step process. We do not propose a new 
method of establishing initial feature matches. Rather, 
we propose a novel technique to iteratively grow a set 
of correspondences outward from a small initial set of 
matched points. 

We use a local affine transform approximation to 
predict search locations near existing matches. Newly 
found matches are incrementally added to the corre-
spondence set, and the expanded correspondence set is 
refined using a high error tolerance RANSAC measure. 
The result is an expanding set of high confidence cor-
respondences that “grow” outward from existing 
matches, as shown in figure 1. We discuss the details of 
our algorithm in the next sections. Section 2 briefly 
describes the initialization of the algorithm, section 3 
discusses how the process iteratively expands the cor-
respondence set, section 4 shows the results of the 
method, and we conclude in section 5. 

2. Initial Correspondence Set 

Prior to employing the correspondence expansion 
algorithm, we must have a potentially small set G of 
putative matches between two source images I1 and I2.

These matches need not all be correct. For correspon-
dence expansion to work, at least one match needs to 
be correct. The more correct matches contained in G,
the faster the algorithm will perform. Note that a single 
initially correct match is a necessary, but not sufficient 
condition, i.e., given at least one correct match, the 
algorithm provides no guarantee that matches will be 
expanded. We have found in practice that this is of no 
practical concern, since generally there are several cor-
rect matches in an initial correspondence set, all of 
which tend to expand quickly as the algorithm pro-
ceeds. 

As discussed in the introduction, there have been 
many wide baseline feature correspondence algorithms 
proposed over the past several years (see [4, 8] for ref-
erences to more algorithms), and any of these could be 
used to create G. These matches could also be input by 
a user if desired. While not novel, we briefly mention 
the initialization procedure we used to create G.

We start by detecting Harris corners [9] in each of 
the two source images I1 and I2. We employ the often-
used O(N2) scheme of comparing each corner point 
detected in I1 to every corner point detected in I2. We 
also determine the relative local rotation between im-
age patches surrounding the corner points, and follow-
ing [2] we attempt to match at several resolutions to 
find a characteristic scale between image regions. 

We measure similarity by taking the sum of the 
squared differences between pixels in the local image 
region, and assign as matches point pairs with the high-
est similarity. Since the matching assignment may be a 
many-to-one mapping, point pairs with the highest 
similarity are bi-directionally checked, making it an 
O(N3) procedure. Matches passing the bi-directional 
comparison check are finally added to G. While not 
optimal, for a small number of initial corner points the 
computation time is negligible when run on a modern 
processor, exploiting a strength of our algorithm of not 
needing many initial matches. 

3. Guided Matching 

With a set G of initial matches, we employ our cor-
respondence expansion algorithm to grow the set to 
include additional matches. The expansion algorithm is 
iterative, and adds matches to the correspondence set at 
each step. There are two parts to each iterative step: 
aggregation and constraint. In the aggregation step, we 
use the current set of matches as seed points to “grow” 
additional matches that are nearby, adding the new 
matches to the current set. In the constraint step, we 
constrain the newly-enlarged correspondence set to an 
epipolar geometry, so that when the points in the set are 
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used as seed points in the next iteration, they will have 
a higher likelihood of growing correct matches. Impor-
tant to the success of the algorithm is the need for a 
high error tolerance on the epipolar geometry, as will 
be explained in section 3.2. 

3.1. Aggregation 

Before beginning the iterative cycle, we detect a set 
of several thousand Harris corners P1 in I1. These serve 
as interest points which will be matched together with 
locations in I2 to form correspondences as the iteration 
proceeds. We also maintain a current correspondence 
set C which is initialized to the original match set G.

For each point pi in P1, we find the nearest point c1i

in C; c1i has already been matched to a point c2i in I2.

To quickly find nearest points, Voronoi maps over I1

and I2 are constructed for the points in C. We use 
graphics hardware to quickly build Voronoi diagrams 
by rendering cones into two depth buffers, one each for 
I1 and I2 [11, 21]. The cones are centered at each point 
in C and have a finite base. The colors of the rasterized 
cones determine the identity of the Voronoi regions. In 
this way Voronoi regions can be looked up from a 2D 
location in constant time. Figure 2 shows an example of 
the Voronoi regions for an image. 

Having found the closest matched point c1i in C to 
the unmatched feature point pi, we compute an affine 
transformation that maps the image region surrounding 
c1i to the region surrounding c2i. Baumberg observed 
that small planar surface patches undergo affine trans-
formations when seen from different viewpoints [1], 
and that non-planar smooth patches can successfully be 
approximated by planar surface patches for correlation. 
Rather than estimate the whole affine transform which, 
given the match location in C amounts to finding 4 
parameters, we only consider the local rotation and 
scale. 

Rotation is estimated by using the best correlation 
from a small set of candidate rotations. A pre-
computed lookup table is used to accelerate the rotated 
locations of each pixel in the window. We could use 
nearby matches to estimate the rotation, or even the full 
affine transformation. However, local 2D rotations 
differ greatly across the image due to the projection of 
3D camera rotation, so matches not in the immediate 
neighborhood of c1i yield incorrect rotations. Local 
scale is less susceptible to the effects of 3D camera 
rotation, so we compute it directly from a nearby 
match. We first find the closest match c1j to c1i in C,
then using these two existing matches the local scale is 
the ratio of their distances (figure 3). 

Once the local rotation and scale are estimated, the 
feature point pi in I1 is transformed to a new location p’
in I2 (not necessarily a corner point). A steepest-ascent 
hill-climbing strategy is used to find the best match in 
I2—the correlation at p’ is compared with the correla-
tion at all the pixel neighbors, and p’ is moved until a 
local maximum is reached. 

With the putative match identified, the whole proc-
ess is reversed, where the inverse rotation and scale are 
used to transform p’ back to I1 to predict the original 
location of pi in I1. Again the hill-climbing strategy is 
used to find the best match p’’ in I1. If the original fea-
ture point pi and the point p’’ are within a threshold 
distance (we use 1 pixel), then the match [pi, p’] is con-
sidered valid and added to the set C of current corre-
spondences, and pi is removed from the set P1 of fea-
ture points. 

Figure 2: Voronoi regions for a set of existing corre-
spondences. The top image of a taxidermy display con-
tains a set of points, highlighted in white, matched to 
points in another image of the same scene (not shown). 
The bottom image shows the same set of points sur-
rounded by their corresponding Voronoi regions—each 
separate region is highlighted in a different shade. The 
black Harris corners within each Voronoi region will 
potentially be matched using the local rotation and scale 
of the nearest existing match. 
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After all feature points in P1 have been processed in 
this manner, C will potentially be much larger. The rate 
at which matches are added to C depends on the size of 
the cones determining the Voronoi regions, the number 
of Harris corners detected within the Voronoi region of 
each existing match, and the heterogeneity of the tex-
ture surrounding the detected corners. In images con-
taining a large portion of high frequency detail, we 
have found that C increases in size by 50% to 200% at 
each iteration until the saturation point is reached (dis-
cussed in section 3.3).  

3.2. Constraint 

It is imperative that C contain many correct 
matches, since these are used to seed the growth of 
additional matches in subsequent iterations. To further 
ensure that most or all matches in C are correct, they 
are constrained to an epipolar geometry. It has been 
well demonstrated that a robust epipolar geometry can 
be determined from a set of putative matches using 
RANSAC [7, 13]. RANSAC is an iterative algorithm, 
and the number of iterations needed can be automated 
as shown in [10]. The generation of the epipolar ge-
ometry using this algorithm also serves to effectively 
segment, or cull, correct correspondences from incor-
rect, outlying correspondences. It is for this second 
purpose that we employ the RANSAC algorithm. 

Even though the RANSAC algorithm is robust, care 
must be taken to avoid too many incorrect matches in 
the input set, as the number of iterations required will 
quickly grow very large. For instance, given an input 
set with an estimated 75% outliers, the number of itera-
tions required to ensure correct segmentation of inliers 

from outliers with 95% probability will be about 
50,000, as given by the following equation from [10]: 

75.))1(1log(/)95.1log( 7 =−−−= εεiterationsN

When generating the consensus sets during 
RANSAC culling, we intentionally use a high inlier 
error tolerance—matches within 5 pixels of their epipo-
lar lines are considered inliers. This is an important 
aspect of our algorithm. Though it results in a less ac-
curate epipolar geometry, it permits many more 
matches to be added to C. By including more matches 
in this way even if they are slightly incorrect, we speed 
up the inlier/outlier segmentation considerably, giving 
the algorithm a fast iteration cycle, and more impor-
tantly, improving the ability to grow more matches in 
the next iteration. Thus, at this stage of the algorithm, 
the set C temporarily contains a large number of incor-
rect matches due to the high error tolerance. However, 
as a result, the algorithm is able to create an average of 
50% more final correct matches in our test images than 
it does by using a low RANSAC error tolerance, such 
as .5 or .1 pixels. This is because the high error toler-
ance permits matches to expand into regions of I1 and 
I2 that otherwise would have contained fewer candidate 
matches. 

Inlier matches that survive the epipolar constraint 
are kept in the set C of current correspondences. 
Matches that fail are removed from the set, and each 
point c1i from the failed matches are placed back in the 
set P1 of feature points for future matching considera-
tion. 

It is important to note that we do not use the epipo-
lar constraint to guide the search for new matches, as it 
has been used historically. Doing so would potentially 
contaminate the correspondence set with false matches 
following an incorrectly estimated epipolar geometry. 
Rather, as explained in section 3.1, we use an approxi-
mated affine transform to guide the search, and we util-
ize the epipolar constraint to refine the augmented cor-
respondence set along the way. 

3.3. Saturation 

The correspondence expansion iterations are al-
lowed to proceed to a saturation point, when no addi-
tional matches are added to C in the aggregation step. 
This occurs when all the feature points in P1 either 
have been matched or have no correlating matches that 
can be found. We have observed that during the aggre-
gation and constraint phases, the size of C may occa-
sionally drop slightly as the matches it contains shift to 
a more accurate epipolar geometry. Immediately fol-

c1j

pi

c1i

I1 I2

?

c2j

c2i

Figure 3: The local transform is used to predict new 
match locations. The feature point pi was detected using 
the Harris corner detector, and its closest existing match-
ing point c1i provides a local rotation and scale to guide 
the search for a match for pi in I2. The local rotation is 
found by maximizing the correlation from a set of can-
didate rotations. To find the local scale around c1i, its 
closest match c1j is located, then the scale to transform pi

to I2 is computed as the ratio of the distances: 
|c2i – c2j| / | c1i – c1j|. 
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lowing such adjustments, the size of C usually in-
creases dramatically since the increased accuracy will 
admit more correct matches. To permit these desirable 
fluctuations, we allow the size of C to drop a pre-
determined number of times (we use 3) before termi-
nating the iteration cycle. This conservative termination 
criterion ensures that correspondence expansion is able 
to advance into most areas of I1 and I2 that would be 
reached by an unbounded number of iterations. 

3.4. Final Guided Matching 

At its saturation point, the current correspondence 
set C contains many more matches than it did initially; 
however, the matches do not adhere closely to the epi-
polar constraint as a result of the high error tolerance 
permitted earlier in the algorithm. As a final step, we 
wish to impose a tighter epipolar constraint to ensure a 
correct set of matches. Unfortunately, applying the 
constraint would eliminate many matches in C that are 
close to correct, but are far enough away from their 
epipolar lines to fail the epipolar constraint. 

Rather than discard all of these near-correct 
matches, we adjust their matched positions prior to the 

final constraint application. We use a simple guided 
search strategy that, in contrast to section 3.2, does use 
the epipolar constraint as a guide. Matched points c2i

from C in I2 are projected orthogonally to their corre-

Im#
Initial

Matches
Final

Matches
Time in 
Secs.

Itera-
tions

1 53 144 33 11 
2 25 189 29 14 
3 29 270 20 19 
4 37 480 28 17 
5 53 531 46 14 
6 53 531 55 15 
7 35 607 43 13 
8 52 661 39 13 
9 63 818 37 11 

10 98 849 48 11 
11 27 871 29 15 
12 100 908 42 12 
13 46 1208 34 13 
14 81 1307 25 10 
15 58 1401 36 18 
16 109 1916 33 13 
17 66 1942 43 17 

Table 1: Results from the correspondence expansion 
algorithm, sorted by the number of final matches found. 
The initial matches were computed using the initializa-
tion procedure of section 2. The Final Matches column 
reports the number of matches found after expansion. 
The average expansion time in seconds for all images in 
the table is 36.5 seconds; this time does not include 
finding the initial match set. The average number of 
iterations is 14. All tests were run on a 3.2 GHz Pentium 
4 CPU. 

Figure 4: Flowerbed image pair. This correspondence 
set was expanded from 35 initial matches to 931 final 
matches. The top images are the original pair, and the 
bottom image illustrates the final correspondences with 
lines. 

Figure 5: T-Rex skull image pair, expanded from 30 
initial matches to 532 final matches. Correspondences 
are shown with white lines. 
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sponding epipolar lines, then their counterpart points 
c1i are matched to points in I2 along short segments of 
the epipolar lines. Those matches with better correla-
tions replace the old matches, while those not having 
better correlations are discarded. Finally, the set C is
constrained to an epipolar geometry with a low error 
tolerance of .5 pixels to create the final correspondence 
set. 

4. Results 

We tested the correspondence expansion algorithm 
on images acquired from a variety of indoor and out-
door environments. Starting with a few dozen matches, 
our algorithm performed extremely well, expanding the 
correspondence set by approximately 3 to 30 times its 
original size. We also found that there were very few 
incorrect final matches. 

To measure the accuracy of the matches, we hand-
picked a small set of correspondences in each image 
pair to compute an accurate fundamental matrix F. We 
then started the expansion algorithm from a different, 
small set of automatically derived initial matches, and 
tested the expanded set against F to measure the match 
distances from their respective epipolar lines. We 
measured this accuracy on a set of 17 image pairs. The 
average error for the hand-picked correspondences was 
0.766 pixels, and the average error for the expanded set 
of correspondences was 1.862 pixels, with a standard 
deviation of 1.18. This indicates a high accuracy for the 
expanded correspondence set, considering that the 
point matches are not made to sub-pixel precision. 
Note also, that this measure does not check for mis-
matches which lie along correct epipolar lines. 

Table 1 reports the number of matches found, the 
expansion run-time in seconds, and the number of itera-
tions needed for the 17 images used in the accuracy 
check. Figures 4 - 6 show examples of the expansion 
algorithm finding matches in image pairs. 

5. Conclusion and Future Work 

We have presented a method to expand an initial set 
of wide baseline correspondences to many times its 
original size. Using an iterative two-step process, we 
first aggregate additional matches around existing 
“seed point” matches. An approximate affine transfor-
mation (translation, rotation, and scale) maps the points 
of the seed match and is used to predict new match 
locations. Second, we constrain the aggregated matches 
to a high error tolerance epipolar constraint using 
RANSAC. These steps are iterated until no matches are 
added to the expanded set. Using correspondence ex-

pansion successfully yields many more wide baseline 
matches than are obtained using previous methods 
alone. Our algorithm does not replace previous match-
ing algorithms; rather it augments existing methods as a 
“post-process” to increase the number of final, high 
quality correspondences. 

We presently do not consider photometric differ-
ences between most image pairs while matching. To 
match images with significant lighting change, we per-
form intensity histogram equalization in YIQ space as a 
preprocess to correspondence expansion. While this 
reduces photometric differences and performs fairly 
well in practice, we would like to use an invariant 
measure. A possible solution is to use color moments 
as in [16, 20], however any local measure will impose a 
large computational burden on our algorithm. A pre-
processed contrast and brightness normalization proce-
dure such as in [18] may be a more efficient approach. 
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