
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2006-03-16 

Analysis of Viscous Drag Reduction and Thermal Transport Analysis of Viscous Drag Reduction and Thermal Transport 

Effects for Microengineered Ultrahydrophobic Surfaces Effects for Microengineered Ultrahydrophobic Surfaces 

Jason W. Davies 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Mechanical Engineering Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Davies, Jason W., "Analysis of Viscous Drag Reduction and Thermal Transport Effects for 
Microengineered Ultrahydrophobic Surfaces" (2006). Theses and Dissertations. 368. 
https://scholarsarchive.byu.edu/etd/368 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/368?utm_source=scholarsarchive.byu.edu%2Fetd%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


 

 

 

ANALYSIS OF VISCOUS DRAG REDUCTION AND THERMAL           

TRANSPORT EFFECTS FOR MICROENGINEERED               

ULTRAHYDROPHOBIC SURFACES 

 

by 

Jason W. Davies 

 

 

A thesis submitted to the faculty of  

Brigham Young University  

in partial fulfillment of the requirements for the degree of  

 

 

Master of Science 

 

 

Department of Mechanical Engineering 

Brigham Young University 

April 2006 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

COPYRIGHT © 2005 Jason W. Davies 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

BRIGHAM YOUNG UNIVERSITY 

 

GRADUATE COMMITTEE APPROVAL 

 

 

of a thesis submitted by 

Jason W. Davies 

 
 
This thesis has been read by each member of the following graduate committee and by 
majority vote has been found to be satisfactory. 
 
 
 
 
Date 

 

 R. Daniel Maynes, Chair 

Date 

 

 Brent W. Webb 

Date 

 

 Jeffrey P. Bons 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

BRIGHAM YOUNG UNIVERSITY 
 
 
 

As chair of the candidate’s graduate committee, I have read the thesis of Jason W. 
Davies in its final form and have found that (1) its format, citations, and bibliographical 
style are consistent and acceptable and fulfill university and department style 
requirements; (2) its illustrative materials including figures, tables, and charts are in 
place; and (3) the final manuscript is satisfactory to the graduate committee and is ready 
for submission to the university library. 
 
 
 
   
Date  R. Daniel Maynes 

Chair, Graduate Committee 
 
 
 
 
 

  

Accepted for the Department   
   
  Matthew R. Jones 

Graduate Coordinator 
 
 
 
 
Accepted for the College 

  

   
  Alan R. Parkinson 

Dean, Ira A. Fulton College of Engineering and 
Technology 

 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ABSTRACT 

 

ANALYSIS OF VISCOUS DRAG REDUCTION AND THERMAL  

TRANSPORT EFFECTS FOR MICROENGINEERED  

ULTRAHYDROPHOBIC SURFACES 

 

Jason W. Davies 

Department of Mechanical Engineering 

Master of Science 

 

One approach recently proposed for reducing the frictional resistance to liquid 

flow in microchannels is the patterning of micro-ribs and cavities on the channel walls.  

When treated with a hydrophobic coating, the liquid flowing in the microchannel wets 

only the top surfaces of the ribs, and does not penetrate into the cavities, provided the 

pressure is not too high.  The net result is a reduction in the surface contact area between 

channel walls and the flowing liquid.  For micro-ribs and cavities that are aligned normal 

to the channel axis (principal flow direction), these micropatterns form a repeating, 

periodic structure.  This thesis presents numerical results of a study exploring the 

momentum and thermal transport in a parallel plate microchannel with such  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

microengineered walls.  The liquid-vapor interface (meniscus) in the cavity regions is 

approximated as flat in the numerical analysis.  Two conditions are explored with regard 

to the cavity region:  1) The liquid flow at the liquid-vapor interface is treated as shear-

free (vanishing viscosity in the vapor region), and 2) the liquid flow in the microchannel 

core and the vapor flow within the cavity are coupled through the velocity and shear 

stress matching at the interface.  Predictions reveal that significant reductions in the 

frictional pressure drop (as large as 80%) can be achieved relative to the classical smooth 

channel Stokes flow.  In general, reductions in the friction factor-Reynolds number 

product (fRe) are greater as the cavity-to-rib length ratio is increased (increasing shear-

free fraction), as the relative module length (length of a rib-cavity module over the 

channel hydraulic diameter) is increased, as the Reynolds number decreases, and as the 

vapor cavity depth increases.  The thermal transport results predict lower average Nusselt 

(Nu) numbers as the cavity-to-rib length ratio is increased (increasing shear-free fraction), 

as the relative module length (is increased, and as the Reynolds number decreases with 

little dependence on cavity depth.  The ratio of Nu to fRe was evaluated to characterize 

the relative change in heat transfer with respect to the reduction in driving pressure.  

Results show that the benefits of reduction in driving pressure outweigh the cost of 

reduction in heat transfer at higher Reynolds numbers and narrower relative channel 

widths. 
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1 

1 INTRODUCTION 

1.1 INTRODUCTION TO DRAG REDUCTION 

During the past decade the field of microfluidics has developed dramatically.  

What was once a novel idea for scientists and engineers has become an integral part in 

the development of drug research, genetic research, and even inkjet technology.  As this 

field has developed there have been several challenges encountered along the way.  One 

of these challenges is the significant amount of required pressure increase for small scale 

flows through channels.  For (∆P~1/D4, for equivalent flow rates, the increase in driving 

pressure is proportional to the inverse of the diameter of the channel raised to the fourth 

power).  The required driving pressure gradient is a direct result of the viscous drag 

exerted on the walls of the duct.  One focus of this thesis will be on characterizing a 

relatively new method proposed for significant reductions in the pressure losses due to 

frictional drag for special cases.  While any reduction in pressure is an extreme advantage 

in these situations, some undesirable influences may result.  In microfluidic applications 

heat transfer is frequently important (e.g., integrated cooling of computer chips) and 

when the frictional drag is changed the heat transfer is affected.  Along with the study of 

frictional drag, this thesis will focus on a parametric study to help understand and predict 

trends in heat transfer behavior.   

This study will not only be important to the field of microfluidics, but it will also 

be applicable to many fields where viscous drag is significant and must be overcome.  
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Within these fields any reduction in drag is of great benefit.  The cost to overcome the 

effects of drag is power use and as drag is reduced, less work is needed for the system, 

resulting in more efficient and less costly designs. 

To date there is very little work that undertakes this type of problem.  General 

trends are understood, but there has been no comprehensive study.  One of the objectives 

of this work is to provide a fundamental and detailed understanding of the flow physics 

and thermal transport using such surfaces.  The literature review will explain previous 

related work and will describe how this work represents a significant contribution to this 

field. 

1.2 DRAG REDUCTION FUNDAMENTALS 

Any object moving through a fluid will experience a drag, or a net force exerted 

by the fluid on the object.  Drag can be divided into two categories: pressure drag and 

viscous drag.  Pressure or form drag is drag that comes directly from the pressure on the 

object.  Viscous or frictional drag is caused by the shear stress on the object.  Usually 

pressure drag is dominant in external flows unless the object is highly streamlined.  In 

internal flows through straight constant-area channels viscous drag dominates and the 

driving force, or the pressure gradient, is required to overcome the shear force of the fluid 

on the wall.   

By way of review, a laminar parallel plate channel flow will illustrate the key 

components of frictional drag and will help introduce the method this study explores to 

reduce drag.  Figure 1.1 illustrates the fully-developed velocity profile of laminar flow 

through infinite parallel plates.  In this figure the walls are depicted at the top and bottom  
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Figure 1.1: Velocity profile for fully-developed laminar flow through infinite parallel plates. 

of the schematic and it is at these boundaries that the no-slip condition exists.  The flow  

profile is parabolic with the maximum velocity (umc) at the centerline and is directed in 

the x-direction.  Under the influence of an applied pressure gradient fluid motion will 

result.  When steady conditions are attained, the force from the applied pressure gradient 

must be balanced with the force required to shear the fluid.  The drag force is equal to the 

integral of the product of the shear stress at the wall and the differential area over which 

the shear stress acts. 
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In the fully-developed case the velocity profile will not change over the length of 

the pipe and for a specific fluid, a given pressure gradient, a specified channel height, and 
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a specified length the drag will always be the same value.  For such a scenario the only 

way to reduce drag without changing the geometry would be to change the velocity 

profile and/or area over which the shear stress acts. 

1.3 DRAG REDUCING SURFACES 

New surfaces have recently been engineered [1] that can result in drag reduction 

by both reducing the area in contact with the fluid and changing the velocity gradient at 

the wall.  When coated with a hydrophobic coating the surfaces become highly liquid 

repellant.  These surfaces have been termed ultrahydrophobic [2], which implies a high 

degree of non-wetting, such that if a droplet were placed on the surface, not only would it 

bead up, but it would have little resistance to motion on the surface.  Such surfaces will 

only reduce drag for unique scenarios (i.e., a non-wetting surface with the appropriate 

liquid flowing over it).   

Figure 1.2 shows an electron microscope image of one example of this type of 

surface and will help illustrate how drag is reduced.   The view in Fig. 1.2 shows the top 

of the ultrahydrophobic surface and the edge (the darker region at the bottom of the 

image).  The surface is made up of a silicon substrate with a layer of SU-8 photoresist on 

top into which the microcavities have been etched.  The rectangular protrusions are called 

microribs. 

A typical ultrahydrophobic surface will have many microscale cavities that are 

etched into it.  These cavities must be small (in Fig. 1.2 the cavities are 8 µm deep by 4 

µm wide) to prevent the liquid from entering into them.  One method for creating these 
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Figure 1.2: Microengineered surface with microribs 8 µm tall by 4 µm wide and cavities 4 µm wide. 

surfaces uses a photolithographic process.  In this process a negative photoresist (SU-8 

25) is spun onto silicon wafers and a mask exhibiting the desired microrib/cavity 

dimensions was used to develop the microstructure patterns with light of the appropriate 

wavelength.  An SU-8 developer solution was then used to treat the wafer, leaving the 

desired microstructure rib/ cavity geometry on the surface.  Once hard-baked, SU-8 

adheres permanently to the silicon substrate.  After thermal treatment of the SU-8, the 

wafers were coated with a hydrophobic solution [3].  An initial visual evaluation of these 

surfaces may make it seem counter-intuitive that the added “roughness” on the surface 

helps reduce viscous drag.  This phenomenon can be explained.  Roughness increases the 

viscous drag on surfaces when the fluid is present over the entire surface.  In the case of 

ultrahydrophobic surfaces the small size of the cavities and the hydrophobic coating 

prevent liquid from entering into the cavity regions, provided the local pressure is not too 
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high.  The cavity regions are filled with gas and the liquid does not cover the entire 

surface.  Figure 1.3 shows schematically an ultrahydrophobic surface with liquid on top 

of it. 
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Figure 1.3: Schematic of liquid over a Microengineered surface with gas-filled cavities. 

Gas-filled cavities are the critical factor in reducing drag along the surface.  It can 

be seen that the area of fluid in contact with the solid surface has been reduced.  This 

unique configuration also changes the velocity profile.  The combination of these two 

conditions can reduce the net drag force on the surface.  Because of the no-slip condition, 

the velocity of the liquid in contact with the top of the rib must be zero, but at the gas-

liquid interface the liquid velocity need not be zero.    The gas at the interface is free to 

move and because of the difference in viscosities between gases and liquids the shear 

stress at the interface will be very small.  Air, for example, exhibits viscosity three orders 
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of magnitude smaller than typical liquids.  At this liquid-gas interface two kinematic 

conditions must be satisfied, the fluid velocities and the shear stresses must be equal at 

the interface.   

It should be noted that this type of significant drag reduction is unique only to 

scenarios where the fluid flowing through the channel is a liquid and the cavities are 

filled with gas.  For scenarios where the cavity is filled with liquid and the fluid moving 

through the channel is gas the difference in viscosities and densities would not permit 

high velocities at the gas-liquid interface and the reduction in drag would be small.  In 

addition to having a relatively low density and low viscosity fluid in the cavities the 

surface must be hydrophobic or non-wetting.  If the fluid is not repelled by the surface 

then it can wet the cavity and the likely result would be an increase in drag.  The wetting 

characteristics are determined by the surface tensions at the liquid-solid-gas interfaces.  

Optimization of the hydrophobic coating with the solid surface material and the liquid 

flowing over it is necessary for maximum effect. 

Drag reduction could potentially be very dependent on the geometry of the 

surface and microcavities and the bulk fluid velocity above the surface.  Figure 1.2 

illustrates only one configuration for an ultrahydrophobic surface.  The surface could be 

modified in many ways to obtain different results in drag reduction.  For example, the 

cavities could be wider or they could be made deeper.  Instead of microribs being formed 

on the surface, microposts (square protrusions) could be formed, further minimizing the 

contact area.  An unlimited number of geometries exist, each having a different effect on 

the velocity of the fluid above and net force or drag on the surface.  Not only will surface 
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geometry be important in reducing drag, but the bulk velocity of the fluid could also have 

an effect on the overall drag exhibited by the surface. 

In addition to reducing drag, ultrahydrophobic surfaces will have an effect on the 

overall heat transfer of the surface.  Heat transfer from a surface is extremely dependent 

on the velocity field of the fluid moving over it.  The geometry of the microribs, the 

barrier of the gas-filled cavities, and the change in the velocity field above the surface 

will all affect the thermal transport of the surface, potentially decreasing its effectiveness 

at transferring heat.  In microfluidic applications where heat transfer is important, 

ultrahydrophobic surfaces have the benefit of reducing drag, but may come at the cost of 

reducing thermal transport. 

1.4 RESEARCH FOCUS 

This study will explore the heat transfer properties and flow characteristics for 

surfaces with microribs and flows moving in a direction perpendicular to the 

microcavities.  The study is limited to the two-dimensional parallel plate channel case 

with liquid flowing between the surfaces.  A parametric investigation of the important 

relevant dimensional parameters that influence this flow will be conducted.  Namely the 

influence of the following parameters will be explored: 

• Relative size of cavity to rib surface 

• Reynolds number based on the channel hydraulic diameter 

• Relative cavity depth 

• Relative length of a module length (one rib and one cavity), or ratio of the 

module length over the hydraulic diameter 
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Reynolds numbers in the laminar region will be explored and heat transfer will be 

analyzed assuming a constant wall temperature.  This research will be limited to the 

scenario where the cavities are filled with air and the liquid moving through the channel 

is water.  Different results would be expected for different mixtures of fluids and gases.  

It is from this parametric study that the general trends in drag and heat transfer will be 

understood. 
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2 LITERATURE REVIEW 

2.1 PREVIOUS WORK 

2.1.1 Liquid Droplet Dynamics 

Much work has been performed on the development of ultrahydrophobic surfaces 

with the driving force being the recognized influence this technology could have on the 

microfluidics and MEMS fields.  Methods used to produce these surfaces have been 

continually improving and developing and the technology has been improved to the point 

where most patterns (i.e., micro-ribs or microposts) with dimensions in the micrometer 

range can be created [1].  Some limitations do exist as to how deep the micro-cavities can 

be fabricated, depending on the process employed.  

One example of the evolution of this field is the work done by Jansen et al. and 

Kim et al. [4,5].  A well-known characteristic of deep reactive ion etching (RIE) has been 

used to their advantage in producing surfaces with ultrahydrophobic properties.  During a 

typical deep RIE process unwanted silicon structures on the nanometer scale are formed.  

They are formed as a byproduct when etching deep into material.  Native oxide, dust, or 

other impurities can act as micromasks and nanoscale spikes or needles of silicon can 

form [4].  Kim has utilized this unique byproduct of deep RIE, or the black silicon 

method, to produce surfaces covered with nanoscale spikes, or NanoTurf [5].  When 

these surfaces are coated with a hydrophobic coating, NanoTurf has the advantage that 
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when a liquid droplet is placed on it, the liquid will only come in contact with the tips of 

the silicon spikes, therefore exhibiting a very small liquid-solid contact.   

The majority of prior work on ultrahydrophobic surfaces focuses on liquid droplet 

behavior exposed to the surface [2,6-10].  An important parameter related to the 

hydrophobicity of the surface is the contact angle of the water droplet.  The contact angle 

(φ ) is the angle between the surface and the edge of the water droplet as shown in Figure 

2.1.   

 

 

Contact Angle

Water Droplet

φ

 

Figure 2.1: Schematic illustrating how the contact angle is measured. 

With increasing hydrophobicity the contact angle of the water droplet approaches 

180o and there is less resistance to motion of the droplet.  In fact, a NanoTurf surface has 

achieved contact angles approaching the limit of 180o corresponding to a droplet flow 

resistance reduction of 99% compared to a silicon surface without microstructures or a 

hydrophobic coating [5].   
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Flow resistance of these surfaces is measured using a simple tilting experiment.  

In this experiment the angle of the surface at which the droplet begins to move is 

recorded.  The tilting angle can be compared between an ultrahydrophobic surface and an 

untreated surface to measure the flow resistance reduction.  Kim et al. also performed a 

tilting experiment for a water droplet in a microchannel made of two ultrahydrophobic 

surfaces which resulted in a droplet flow resistance reduction of 95% [5].   

A study performed by Bico et al. [11] observed contact angles approaching 180o 

for a water droplet placed on a hydrophobic rough substrate.  Different microstructured 

hydrophobic surfaces were analyzed (spikes, shallow cavities, and microribs).  In this 

study the prediction of the contact angle was found to be most dependent on the fraction 

of the solid surface actually in contact with the liquid.  In addition to the area of the 

surface in contact with the liquid the surface tension was important.  The value of the 

surface tension depends on the solid, the liquid, and the vapor.  A similar study was 

performed by Oner et al. [2] in which contact angles were measured for different surface 

configurations.   

Of particular interest concerning droplet research is finding ways to move and 

manipulate individual droplets.  There are potentially many microfluidic applications 

where this technology could be utilized.  The ability to move small quantities of fluid and 

combine them contributes to miniaturizing laboratory analyses.  Electrowetting has been 

used to accomplish this.  Surface tension is highly sensitive and can be controlled 

electrically; electrowetting electrically adjusts the surface tension of the liquid.  A change 

in the surface tension between the solid and the liquid changes the contact angle and 
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leads to fluid motion.  This type of micro-liquid handling has been explored by Lee et al. 

[12]. 

2.1.2 Flow of a Liquid Continuum 

Beyond the research addressing liquid droplet dynamics, there is significant 

interest in the dynamics of a liquid continuum between two ultrahydrophobic surfaces.  

This is a fascinating new field where only limited previous work has taken place.  The 

alternating no-slip/no-shear regions create a unique flow.  Far downstream of the 

microchannel inlet the flow may ideally reach a periodically fully-developed condition.  

To date only three researchers have reported experimental work in this field.  The 

first is from Ou et al. [1].  In this study significant drag reduction was observed for flow 

of a continuous liquid through a parallel plate microchannel constructed with 

ultrahydrophobic surfaces.  The ultrahydrophobic surfaces were fabricated using 

photolithography to create uniform microribs or microposts on the surface.  The surfaces 

were then coated with a hydrophobic coating which prevented the liquid from penetrating 

and wetting the cavities formed by the microribs and microposts. Ou showed that it was 

the combination of both the surface roughness and the hydrophobic coating that reduced 

the drag.  By preventing the liquid from entering the cavities there exists less liquid-solid 

contact area and more liquid-gas contact area.  The no-slip condition applied requires a 

zero velocity at the solid surface while the liquid at the liquid-gas interface experiences a 

much smaller shear stress.  The shear stress at this interface is proportional to the ratio of 

viscosities. 

A channel was created to measure the effect these surfaces would have on 

pressure drop in continuous flow.  In the experimental setup only one of the surfaces was 
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ultrahydrophobic while the other surface was made of a smooth hydrophilic glass.  The 

motivation behind having one glass no-slip surface was to allow optical access to 

measure the air-water interface profile suspended between the microposts.  The pressure 

decrease in the direction of the flow was measured for various micropost and microrib 

configurations and flow rates.  In each case the dimensions of the microposts were 30 µm 

by 30 µm square and the spacing between microposts varied for each surface from 30 µm 

to 150 µm.  It was observed that surfaces with larger spacing between microposts caused 

more reduction in pressure drop, as much as 40%.  The pressure drop was found to 

increase linearly with flow rate and the magnitude of the reduction in the pressure drop 

increased monotonically with increased spacing between microposts.  

The effect of the channel wall spacing, or the spacing between the 

ultrahydrophobic surface and the hydrophilic surface, was also studied.  An average 

pressure drop reduction was calculated over a range of flow rates for different channel 

depths, holding the aspect ratio of the channel cross section to a constant value.  It was 

found that the pressure drop increased linearly with increasing channel depth.  In other 

words, as the channel depth was made larger the ultrahydrophobic surfaces affected the 

reduction in pressure drop less.  In the limit, the ultrahydrophobic surfaces exerted 

negligible influence for channels with large hydraulic diameters. 

Choi et al. has also contributed experimentally to understand the drag reduction 

associated with ultrahydrophobic surfaces in channel flow of a continuous liquid [13].  In 

this study both surfaces of the microchannel were ultrahydrophobic and they report 

preliminary results in the overall drag reduction of approximately 20%~30%.  In these 

previous studies no extensive research was conducted on the optimization of the channel 
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configuration to reduce drag nor were the thermal transport dynamics investigated.  

Knowledge of heat transfer could be important to the field of microfluidic devices.   

Most recently work done by Woolford et al. [3] has shown analytical and 

experimental results in this field.  One significant difference in this work is the cavities 

and ribs are oriented longitudinally or in the direction of the flow.  The results showed 

that the reductions in the total frictional resistance increases as the channel hydraulic 

diameter and/or microrib width are reduced.  Drag reductions of up to 27% were 

measured experimentally.  Analytical predictions show drag reductions of up to 90%.  

The results also showed significant correlation between the analytical and experimental 

results with dynamically similar conditions.  Greater deviation was observed with 

increasing relative size of the shear-free regions.   

One of the difficulties with using microscale heat exchangers is the required 

pressure drop to move fluid through the system.  If ultrahydrophobic surfaces could be 

used in this application, there would be a large benefit in the pressure drag reduction, but 

it is critical to also understand how the heat transfer characteristics will be affected. 

Previous analytical research on this topic has also been limited.  The studies that 

have appeared have focused only on momentum transport characteristics and, like 

experimental results, do not characterize the thermal transport behavior.  Philip [14] 

investigated eight different viscous flow problems with mixed no-slip and no-shear 

boundary conditions, and determined an analytical flow solution for each scenario.  

Having mixed no-slip/no-shear boundary conditions is a simplified model of an ideal 

ultrahydrophobic surface; the solid area in contact with the liquid has a no-slip boundary 
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condition, while the gas/liquid interface could be ideally modeled as a shear-free 

boundary.  The following cases were studied:  

1. Unbounded shear flow over a plate with a longitudinal no-shear slot  

2. Unbounded shear flow over a plate with a regular array of such slots 

3. Fully-developed flow in a circular tube with one or more longitudinal slots 

4. Fully-developed flow between two parallel plates with a longitudinal no-shear 

slot in one of them 

5. Flows between two parallel plates with a regular array of longitudinal slots on 

one plate 

6. Shear Stokes flow over a single plate with a single transverse no-shear slot 

7. Shear Stokes flow over a plate with a regular array of such slots; and Stokes 

flow due to a two-belt stirrer (two co-planar moving belts in contact with the 

fluid, one of them moves in the positive x-direction, while the other moves in 

the negative x-direction) 

The first five solutions are found by the use of conformal mapping to solve 

Laplace’s equation satisfying the mixed boundary conditions.  The Stokes flow solutions 

were found by a general method of solving the biharmonic equation in the upper half 

plane subject to the mixed boundary conditions on the real axis.  These solutions are 

given without direct characterization of the corresponding drag reduction for each 

scenario.   

The focus of this thesis is on flow through a parallel plate channel where the no-

shear slots on the surfaces are transverse, or perpendicular, to the flow direction.  Philip’s 

solution to Stokes flow over a regular array of transverse slots is most closely related to 
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this thesis.  Several significant differences between Philip’s solution and the focus of this 

thesis exist.  1. Stokes flow assumes the inertial and body forces in the Navier-Stokes 

equation are equal to zero, an assumption only correct at low Reynolds numbers.   2. 

Philip’s solution modeled flow over a single plate, while this thesis is focused on parallel 

plate channel flow.  3. No analysis of the heat transfer was performed.  4. The vapor 

space and its contribution was neglected. 

Benzi et al. [15] arrived at a similar result as Philip through a different method.  

Using a mesoscopic model of the fluid-wall interactions and solving the momentum 

equations using the Lattice Boltzman Equation (LBE) a numerical solution to parallel 

plate flow through a channel with mixed slip and no-slip conditions was obtained.  This 

study was a simplification of work done by Cottin-Bizonne et al. [16] in which molecular 

dynamics were used to solve the same problem presented by Philip.   Cottin-Bizonne is 

careful to point out that this solution holds for scenarios where the liquid does not enter 

into and wet the cavities between the microribs, i.e., there is no curvature at the liquid-gas 

interface; this will occur at low pressures.  In contrast, high pressures in the fluid create 

more force at the liquid-gas interface and result in a curved interface boundary.  Results 

by both Benzi and Cottin-Bizonne agree and match those presented by Philip.  In addition 

to showing the same streamlines as Philip they also reported a slip length for each 

scenario.  The slip length is used as a measure of drag reduction and is defined as the 

distance between the wall and the position at which the linear extrapolation of the 

velocity profile vanishes.  Although the no-slip condition will be valid at the liquid-solid 

interface, from a macroscopic viewpoint flow over an ultrahydrophobic surface appears 

to slip.  Macroscopically, the effects of both the no-shear and no-slip regions average out 
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and have the averaged effect of slip at that interface.  From this apparent slip an effective 

slip length can be calculated. 

Very few studies have attempted to model the general trends in drag reduction for 

ultrahydrophobic surfaces depending on different parameters such as Reynolds number, 

channel geometries (hydraulic diameters), and ultrahydrophobic surface geometries.  Ou 

et al. has contributed the most to the field with his experimental work on flow rates 

(Reynolds number variation), surface geometry effects (spacing of square microposts 

variation), and variation of the hydraulic diameter.  Most studies focus only on the effect 

of the ratio of no-slip area to shear-free area.  In addition to the small amount of work 

done on the hydrodynamic characteristics of this type of flow no previous work has 

considered the heat transfer implications.  

2.2 CONTRIBUTION OF THIS WORK 

The scope of this thesis is to perform a parametric study on continuous laminar 

flow through parallel plate channels with ultrahydrophobic surfaces.  As was previously 

noted, far downstream of the microchannel inlet (in relative terms), the flow may ideally 

reach a periodically fully-developed condition wherein the flow structure repeats from 

one rib/cavity module to the next with the flow moving in a direction perpendicular to the 

microcavities.  Numerical results exploring both the momentum transport and heat 

transfer will be presented for a two-dimensional periodically fully-developed condition.  

The liquid-vapor interface (meniscus) in the cavity regions is treated as ideal in the 

numerical analysis (flat).  Two conditions are explored with regard to the cavity region: 

1) The liquid flow at the liquid-vapor interface is treated as no-shear (vanishing viscosity 

in the vapor region), and 2) the liquid flow in the microchannel core and the vapor flow 
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within the cavity are coupled through matching the velocity and shear stress at the 

interface.  The geometry of the channel is shown in Fig. 2.2.  H represents the channel 

gap-width between microengineered surfaces, h represents the vapor cavity depth, lr is 

the micro-rib width, ls is the cavity width, and L is the width of one rib and one cavity 

(L=lr+ls).  The influences of four variables will be studied: channel Reynolds number, 

Re; relative cavity depth, Zc=h/ls; slip fraction, Fs=ls/L; and relative module length, L/Dh.  

The Reynolds number will be varied from 0.4 – 2000, Zc will range from 0.1 – 4, Fs from 

0 – 0.98, and L/Dh from 0.05 to 2.5.  Constant fluid properties will be imposed. 
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Figure 2.2: Schematic of the computational domain encompassing a rib/cavity module.  Flow 
direction is from left to right. 

It is intended that this thesis will add to the knowledge of the general trends in 

drag reduction characteristics of ultrahydrophobic surfaces and will clarify parametric 

effects.  Further the thermal transport will be investigated.  The results of this study will 
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assist in optimizing the surface topology for friction drag reduction and heat transfer 

characteristics in microfluidic applications.   
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3 HYDRODYNAMIC MODEL AND RESULTS 

3.1 MODEL DEVELOPMENT 

A parametric study was conducted utilizing a two-dimensional periodically fully-

developed analytical model of an ultrahydrophobic channel to obtain hydrodynamic 

results.  In the hydrodynamic results two different modeling conditions were explored.  

The first model approximated the fluid-gas interface as a full slip boundary (zero shear) 

or (du/dy = 0) at that interface (this model is abbreviated as “SF” meaning “Shear-Free”).  

Neglecting the viscosity at the liquid-vapor interface was assumed to be a reasonable 

approximation because the ratio of viscosities for the fluid and gas of interest is small, 

µair/µwater ≈ 0.02.   

The second model did not neglect the vapor space, but included a gas-filled cavity 

in the computational domain (this model is abbreviated as “AC” meaning “Air Cavity”).  

At the interface the fluid velocities and shear stresses are set equal to each other in the 

liquid and vapor phases.  The second model was used to evaluate the approximation 

made in the first model and to show the effect of the relative vapor-cavity depth, Zc.  Both 

models approximated the boundaries as perfectly hydrophobic, i.e., there was no fluid 

that entered the cavity and the meniscus shape was flat.   
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3.1.1 Metric for Comparison - fRe 

By way of comparison it is useful to compute the Darcy friction factor-Reynolds 

number product, fRe, where the Reynolds number is based on the hydraulic diameter, Dh 

(3.1).   
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The hydraulic diameter is defined as four times the cross sectional area, A, divided by the 

wetted perimeter, Pw and represents a length scale for non-circular geometries.  The 

friction factor, f, represents the integrated frictional resistance.  For the classical no-slip 

two-dimensional channel flow fRe = 96 [17] and is constant regardless of Re or H.  

Following the classical approach [17], fRe can be expressed as  
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where ∆P is the pressure drop across a rib-cavity module, u  is the average channel 

velocity, µ is the absolute viscosity of the liquid, and L is the rib-cavity module length. In 

practice a mass flow rate per unit of channel width was specified in the numerical scheme 

and iteration continued until the solution was converged. Subsequently the pressure drop 

was determined by integrating the drag over the ultrahydrophobic surface and the liquid 

vapor interface and fRe was determined from 3.2. 
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fRe serves as a valuable metric for comparing drag reduction from channels with 

ultrahydrophobic surfaces to classical no-slip channels.  Regardless of the channel 

geometry or Re the classic case has a constant fRe, which means that fRe values from 

ultrahydrophobic cases can be calculated and compared to the classical case.  If the 

ultrahydrophobic fRe is lower than 96 this would indicate that the channel reduces drag.  

fRe is also beneficial because it normalizes all scenarios from which comparisons and 

conclusions about different geometric configurations can be drawn. 

3.1.2 Periodically Fully-developed Flow 

Although the reduction in pressure drop is simple to compare between a classical 

flow and flow through microengineered channels, the fundamental momentum transport 

dynamics differ significantly. Consider the near-wall region of a channel wall that 

exhibits micro-rib structures separated by vapor-filled cavities, as illustrated in Fig. 3.1. 

Liquid is flowing over the top of the wall from left to right in the figure and 

perpendicular to the ribs at a core velocity, U∞.  The surface begins at x = 0 and boundary 

layer growth will occur on the first rib section where the wall shear stress decreases from 

its maximum value at x = 0 in the streamwise (x) direction. If the rib length is sufficiently 

large and continuum behavior is prevalent, the liquid velocity at the wall will vanish to 

satisfy the no-slip condition. For lr < x < lr + ls (the cavity region), the liquid will no 

longer be in contact with a solid surface and the liquid velocity at the vapor-liquid 

interface need not be zero.  

At the vapor-liquid interfaces several phenomena not common in traditional 

boundary layer flows are evident. First, the liquid velocity at the interfaces will increase, 
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Figure 3.1: Schematic of entrance near wall and cavity regions for liquid flow over an 
ultrahydrophobic surface exhibiting micro-rib structures                                                                     

and flow perpendicular to the ribs. 

starting from zero at the trailing edge of the micro-rib. Also, the liquid and vapor 

velocities will be equal and the shear stress at the interfaces will be small since the 

viscosity of the liquid phase will be approximately two orders of magnitude greater than 

in the vapor phase. The shape of the interface, and consequently the streamlines in the 

liquid, are dependent on the surface tension, the contact angle of the liquid-solid-vapor 

interface, and the thermodynamic pressure in both the liquid and vapor phases.  A 

convection cell will exist in the vapor cavity, driven by the induced motion at the 

interface. At the second rib (x > lr + ls) a second momentum boundary layer begins to 

grow inside of the first and the wall shear stress will again decrease along the solid rib in 

the streamwise direction, although the initial value will not be as high as for the 

preceding rib. This behavior will repeat in the streamwise direction, and provided the 

meniscus shape remains the same, far downstream from the channel inlet a periodically 

fully-developed state may be established. At this point the flow will exhibit periodic 
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variations in the x-direction across repeating modules (of length L = lr + ls) consisting of 

a single rib and cavity.  It is this periodically fully-developed condition where entry 

effects have vanished that will be modeled in this study. 

3.1.3 Solution Methodology 

A classical control volume approach was employed to characterize the 

periodically fully-developed flow through an infinitely wide channel for steady, laminar, 

conditions with constant fluid viscosity. The coupled x- and y-momentum equations and 

the equation of continuity given below for an incompressible Newtonian fluid were 

solved numerically. 
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u is the streamwise (x) velocity, v is the wall-normal (y) velocity, P is the static pressure, 

µ is the fluid viscosity and ρ is the fluid density. Equations (3.3-3.5) were solved for the 

domains illustrated schematically in Fig. 3.2 and Fig. 3.3. The figures indicate a module 

length, L, consisting of one rib and cavity section of the two-dimensional channel. The 

shape of the meniscus at the cavity interface was assumed to be perfectly flat, 

representing the limiting case of perfectly hydrophobic walls.  In reality the meniscus will  
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Figure 3.2: Schematic of the computational domain encompassing a rib/cavity module using the 
shear-free (SF) model.  Flow direction is from left to right.  The domain does not extend                  

into the gas cavity and a shear-free boundary is placed at the liquid-gas interface.  

be present, but a flat meniscus serves as a benchmark of the best case scenario. The 

micro-rib width where the no-slip condition exists is of length lr and the vapor space is of 

length ls.Symmetric boundary conditions were specified at the channel centerline, y = 

H/2 and no-slip and no-penetration at y = 0 and 0 ≤ x ≤ lr. The conditions at the upstream 

and downstream edges parallel to the y-axis were specified to be periodic, meaning u, v, 

du/dx and dv/dx were set to be equal at corresponding locations along these two faces.  At 

the liquid-vapor interface, y = 0 and lr ≤ x ≤ lr + ls two conditions were explored. First, 

the interface was specified with a vanishing shear stress (“SF” model see Fig. 3.2). The 

second treatment modeled the cavity space solving Eqs. (3.3-3.5) in both the liquid and 

vapor spaces with their appropriate transport properties (“AC” model see Fig. 3.3). For 

this scenario the solutions were coupled by matching local velocities and shear stresses at 

the interface. The liquid properties were specified to remain constant and equal to those 
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of water at standard temperature and pressure. Likewise the vapor fluid properties were 

specified to be constant at the values of air at standard conditions. 

 

 

lr

lsh

H/2Computational Boundaries

Channel
Centerline

Silicon Substrate

Gas Cavity Solid Rib

Liquid

x

y L

lr

lsh

H/2Computational Boundaries

Channel
Centerline

Silicon Substrate

Gas Cavity Solid Rib

Liquid

x

y

lr

lsh

H/2Computational Boundaries

Channel
Centerline

Silicon Substrate

Gas Cavity Solid Rib

Liquid

x

y L

 

Figure 3.3: Schematic of the computational domain encompassing a rib/cavity module using the air 
cavity (AC) model.  Flow direction is from left to right. 

Due to the non-linearity of the momentum equations, solutions to Eqs. 3.3-3.5 for 

a fixed lr, ls, and H, depend on the channel Reynolds number. The domain was discretized 

into different cells.  Each cell had a group of nodes associated with it.  The segregated 

solver was used to obtain the solution.  In this solution scheme the governing equations 

Eqs. 3.3-3.5 were solved sequentially.  Because the governing equations are non-linear 

and coupled several iterations of the solution loop must be performed before a converged 

solution is obtained.  A point implicit (Gauss-Seidel) linear equation solver was used in 

conjunction with an algebraic multigrid method to solve for the variables in the domain.   

Grid-independent solutions were obtained by successively refining the computational 

grid, using dynamic grid refinement, until the solution was independent of the grid. Cell 
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clustering was implemented near all regions of anticipated high gradients, particularly 

above the no-slip boundary and in the regions of transition between the rib and cavity.  In 

practice grid refinement was carried out until the drag on the surface no longer changed 

significantly.  In some scenarios this represented grids with up to 600,000 nodes. 

Several important non-dimensional parameters exist for the varying scenarios of 

interest, these being the relative module length, L/Dh, the slip fraction, Fs = ls/L, the 

Reynolds number, Re = ρ u Dh/µ , and the relative cavity depth, Zc = h/ls.  L/Dh and Fs 

were varied in the ranges 0.05 – 2.5 and 0 – 0.98, respectively.  Re was varied from 0.4 – 

2000 and Zc was varied from 0.1 to 2.  The range of Re was chosen to be in the laminar 

regime while the range for Fs was chosen based on manufacturing capabilities. 

3.2 DETAILED FLOW FIELD BEHAVIOR  

It is enlightening to examine closely the detailed local flow behavior throughout 

the entire flow field.  The following sections will focus on this behavior.  First, 

representative streamlines will be shown to illustrate the motion of the flow in both the 

liquid and vapor filled regions.  Second, velocity variation will be examined both in the 

wall-normal and streamwise directions, comparing the shear free (SF) model to the air 

cavity (AC) model.  Third, the wall-normal velocity data will be illustrated, and finally, 

the wall shear stress behavior on the rib and cavity sections will be shown and discussed.  

Several different cases will be used to illustrate the intricacies of the overall flow 

dynamics and how the local behavior is influenced as the parameters Fs, Re, L/Dh, and Zc 

are varied. 
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3.2.1 Representative Streamlines 

In order to illustrate more clearly the motion of the fluid as it moves through the 

computational domain Fig. 3.4 shows streamlines for two different scenarios.  The first 

scenarios is for Fs = 0.5, Re = 1000, L/Dh =0.25, and Zc = 1, while the second scenario is 

for Fs = 0.98, Re = 1000, L/Dh =0.25, and Zc = 1. Throughout the liquid region in both 

cases the streamlines far from the wall are straight, while those streamlines close to the 

wall show motion away from the wall above the rib and toward the wall in the region 

above the cavity.  The streamlines in the air cavity show a region of recirculation.  The 

difference between the two slip fractions show that there is less influence on the liquid 

flow streamlines as the slip fraction increases.  These streamlines shown in the Fig. 3.4 

are representative of streamlines for other values of Fs, Re, L/Dh, and Zc.   
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Figure 3.4: Representative streamlines for two different scenarios. 
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3.2.2 Streamwise-Velocity Field Behavior 

Streamlines are useful in showing the path of the fluid, but they are insufficient to 

illustrate the velocities of the fluid at different locations.  This section displays results 

showing how geometric parameters and the Reynolds number affect the streamwise-

velocity of the fluid.  In order to understand how the velocity changes throughout the 

geometry it must first be explained how the results are presented.  All of the velocities 

presented here will be compared to a classical fully-developed laminar parallel plate 

channel flow shown qualitatively in Fig. 3.5.  

If the velocity profile shown in Fig. 3.5 is nondimensionalized by the maximum 

centerline velocity in the classical solution (umc) and the position is nondimensionalized 

by H/2 then the velocity profile shown in Fig. 3.6 is obtained.  Notice that by taking 

advantage of symmetry only the lower half of the channel need be shown.  The range of 

both u/umc (or u*) and 2y/H (or y*) is 0 to 1.  For laminar, periodically fully-developed 

flow, all comparisons of the axial velocity will be made against this benchmark, 

regardless of the Reynolds number and axial position in the repeating channel module.   

The axial velocity behavior for the ultrahydrophobic cases will be 

nondimensionalized by the same parameters as the corresponding classical case for 

meaningful comparisons.  This form of nondimensionalization also makes it possible to 

compare flows for channels that have different geometries (i.e., L/Dh) and Reynolds 

numbers, because all data will be displayed on the same scale. 
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Figure 3.5: Velocity profile of a classical fully-developed laminar channel flow. 
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Figure 3.6: Nondimensionalized velocity profile in a fully-developed classical channel flow. 
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Also important in displaying the results is identifying how different locations 

along the channel are described.  The x-location will be specified using a percentage of 

the repeated module length, for example x/L = 0 would indicate an x-location at the inlet 

of the repeating module, while x/L = 0.50 would indicate an x-location at half the distance 

of the repeated module length.  This is illustrated in Fig. 3.7.  As was mentioned before 

when the air cavity is included in the model the data is reported as “AC” and when the 

interface above the cavity is modeled as shear-free the data is labeled as “SF”.   
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Figure 3.7: Schematic showing percentage of repeated module used in reporting velocity data. 

Shown in Fig. 3.8 are velocity profile behavior for a (SF) case where Fs=0.5, L/Dh 

=0.25, and Re=1000.  It can be seen that the velocity magnitude at all x/L locations 

appears to be unchanging far from the wall.  Indeed for y* > 0.1 the profiles look similar.  

Also the centerline velocity of the (SF) model is slightly smaller (~3% less) than that of 

the classical case.  A smaller velocity at the centerline would be expected because the 
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ultrahydrophobic surface allows an apparent slip at the channel wall.  In order for 

continuity to hold, with greater axial velocity near the channel wall, there must therefore 

be less fluid velocity at the centerline.   

Fig. 3.8 shows that the velocity profiles for the different x/L locations deviate 

from each other near the wall of the channel.  Fig. 3.9 shows a close-up of the near-wall 

region.  For the rib region (0 < x/L < 0.50) the velocity profiles look very similar and  
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Figure 3.8: Velocity profile predictions for a (SF) case where Fs =0.5, L/Dh =0.25, and Re=1000 
compared with a classical fully-developed channel flow. 

each has a velocity at the wall of zero.  Right at x/L = 0, (the start of the rib) the velocity 

shows a distinct difference from the other locations above the rib.  The difference is due 

to the fluid in the near wall region with higher approaching momentum, since it has just 
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come from a no-shear region.  When the fluid enters the rib region the velocity at the wall 

must vanish, but momentum still exists in the fluid in the near wall region.  It takes some 

streamwise distance for viscous diffusion to slow the fluid (by approximately x/L=0.10 in 

this case). 

In the cavity region (0.50 < x/L < 1.0) the results show that as x/L increases the 

velocity at the boundary increases, as expected.  Notice that the velocity gradient with 

respect to the y-direction is zero (du/dy = 0) from the no-shear boundary condition.  

Following the rib (where the velocity at the wall was zero) the no-shear boundary 

condition allows the fluid to accelerate and the fluid axial momentum to be redistributed. 
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Figure 3.9: Near-wall velocity profile predictions for a (SF) case where Fs =0.5, L/Dh =0.25, and 
Re=1000 compared with a classical fully-developed channel flow. 
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For the (AC) model, when the cavity region is included in the model, the velocity 

profiles that result are very similar to those shown above with only minor differences in 

the region near the wall and interface observed.  Figure 3.10 shows a near-wall 
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Figure 3.10: Near-wall comparison of velocity profile predictions in the rib region for a (SF) case 
where Fs=0.5, L/Dh =0.25, and Re=1000 and a (AC) case where Fs=0.5, L/Dh =0.25, Re=1000,           

and Zc=1; both also compared to a classical fully-developed channel flow.  

comparison between the (AC) and (SF) models for the same conditions (Fs=0.5, L/Dh 

=0.25, Re=1000, and Zc=1 for (AC)) above the rib region (0< x/L < 0.50), while Fig. 3.11 

shows the near-wall comparison above the cavity region (0.50 < x/L < 1.0).   The stream-

wise velocity comparisons between the (AC) and (SF) cases show only slight differences 
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(2-4% difference in u*) and confirms that approximating the boundary to be full slip is a 

good approximation for Fs=0.5, L/Dh =0.25, Re=1000, and Zc=1 for (AC).  Although 

Figs. 3.9 and 3.10 are very similar, there is a small difference in the velocity distributions, 

arising because the air cavity is included in the model.  There will be some shear stress at 

the liquid-vapor interface and this will slow the fluid down slightly.  This is why the 

velocity profiles derived using the (AC) model are smaller than the velocity profiles 

derived using the (SF) model.    
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Figure 3.11: Near-wall comparison of velocity profile predictions in the cavity region for a (SF) case 
where Fs=0.5, L/Dh =0.25, and Re=1000 and a (AC) case where Fs=0.5, L/Dh =0.25, Re=1000, and 

Zc=1; both also compared to a classical fully-developed channel flow . 

As the slip fraction increases the differences between the (SF) model and the (AC) model 

become more apparent.  This is illustrated below in Fig. 3.12 where the channel that is 
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modeled has Fs=0.98, L/Dh =0.25, Re=1000, and Zc=1 for the (AC) model.  When Fig. 

3.12 is compared to Fig. 3.8 it can be seen how dramatically the size of the slip fraction 

length can affect the velocity profile in the channel.  Instead of a 3% reduction in velocity 

at the channel centerline shown in Fig. 3.8 where Fs=0.5, here there are reductions of 

17% and 16% for the (SF) case and the (AC) cases, respectively.  Not only is the 

centerline velocity reduced, but the shape of the curve has become more similar to a 

classical time averaged velocity profile for a turbulent channel flow.  Again, the 

reduction of velocity at the centerline occurs because the fluid is on average flowing 

faster near the wall and in order for the mass flow rate to be the same this increase in 

velocity near the wall is balanced by a decrease in velocity at the centerline. 
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Figure 3.12: Velocity profile predictions for a (SF) case where Fs=0.98, L/Dh =0.25, and Re=1000 and 
a (AC) case where Fs=0.98, L/Dh =0.25, Re=1000, and Zc=1; both also compared to a classical        

fully-developed channel flow. 
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Zooming into the near-wall region and examining the profiles located above the 

cavity region the differences between the (AC) and (SF) model can be analyzed more 

closely (see Fig. 3.13).  As expected higher velocities are shown with the (SF) model 

since there is no resistance to the liquid flow at the no-shear interface.  The velocity 

difference between the two different models is slightly more pronounced in this scenario.  

Before, where Fs = 0.5, the interface velocity difference between the two models was at a 

maximum 4% different, while in this case where Fs=0.98 the difference in interface 

velocity between the two models is as high as 5.5%.   

Not only does the model utilized (AC vs. SF) have an effect on the velocity 

profile, but each of the parameters, L/Dh, Re, and Zc affect the flow field and thus velocity 

profiles as well.  Figure 3.13 illustrates how the normalized streamwise velocity profiles 

change when the Reynolds number is decreased from Re=1000 (inertial range) to Re=0.4 

(creeping flow) for a case where Fs = 0.5.  The figure shows the near-wall region where 

the differences are most apparent.  Clearly, the creeping flow Reynolds number case 

shows that the ultrahydrophobic surfaces have a more pronounced influence on the 

resulting flow field.  The dimensionless velocity above the cavity region has a 

significantly larger magnitude (more apparent slip) for Re = 0.4.  This occurs because at a 

lower Reynolds number fluid inertia is less important and the flow is able to more easily 

adjust to the cavity region.  This trend is similar for other geometries.  For example, if a 

similar comparison was made for Fs=0.98 it would be seen that at the lower Reynolds 

number a greater dimensionless velocity in the cavity region exists.  Another interesting 
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Figure 3.13: Near-wall region of velocity profile predictions above the cavity region for a (SF) case 
where Fs=0.98, L/Dh =0.25, and Re=1000 and a (AC) case where Fs=0.98, L/Dh =0.25, Re=1000,       

and Zc=1; both also compared to a classical fully-developed channel flow . 

observation for low Reynolds number flow is that the velocity profiles are symmetric in 

the streamwise direction (i.e., the velocity field for 0.5<x/L<0.75 is a mirror image of the 

velocity field for 0.75<x/L<1) this is characteristic of low Re flow and results since 

inertia effects are negligible. 

Figure 3.14 shows how L/Dh, the normalized microrib/cavity module length, 

affects the velocity profiles when it is changed from L/Dh =0.25 (surfaces close together 

relative to the module length) to L/Dh =0.05 (surfaces are far from each other relative to 

the module length).  More data will be presented on this later, but when the value of L/Dh 

is decreased (the channel walls are moved farther apart), the ultrahydrophobic surfaces 

have less effect on the flow.  This is seen in the figure below; the velocity profiles above 
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the cavity region for the case of L/Dh =0.05 are more nearly like the velocity profile for 

the classical no-slip wall case.  This results because the ratio of the wall area to total flow 

cross-sectional area has decreased (for the volume of fluid flowing there is less wall area 

affecting it).  It is important to point out that this trend is observed for all other slip 

fractions, Fs, as well. 
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Figure 3.14: Near-wall region of velocity profile predictions above the cavity region for a (AC) case 
where Fs=0.5, L/Dh =0.25, Re=1000, and Zc=1 and a (AC) case where Fs=0.5, L/Dh =0.25, Re=0.4,     

and Zc=1 compared with a classical fully-developed channel flow. 
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Figure 3.15: Near-wall velocity profile predictions for a (SF) case where Fs=0.5, L/Dh =0.25, and 
Re=1000 and a (SF) case where Fs=0.5, L/Dh =0.05, and Re=1000. 

3.2.3 Interface and Centerline Velocity Behavior 

In the previous subsection, the impact of ultrahydrophobic walls on the 

streamwise-velocity was illustrated by displaying velocities at different x/L locations.   

This subsection shows how the velocity changes in the x-direction at two different 

locations, y*=0 and y*=1, corresponding to the interface and the centerline respectively, 

for a wide range of parameters.  Fig. 3.16 illustrates the location of these positions.   

The interface velocities for several different scenarios are shown in Fig. 3.17.  

The effects on the interface velocity can be seen in this figure for each parameter (Fs, 

L/Dh, Zc, Re, and the model AC vs. SF).  For Fs=0.5, L/Dh =0.25, Zc=2, and Re=1000, the 

interface velocity change is small (approximately 1.5% error) when comparing the two 

different models, (AC) vs. (SF).  On the other hand, when Fs=0.98, L/Dh =0.25, Zc=2, and 
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Re=1000,, the difference in interface velocity between the two models becomes more 

apparent (approximately 6% difference).  More error occurs for Fs=0.98 between a (AC) 

and a (SF) case because there is more apparent surface area over which the model is 

important, (i.e., more air in contact with the water to decelerate the fluid).   
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Figure 3.16:  Schematic illustrating the interface position (y*=0) and the centerline position (y*=1). 

It can be seen how changes in Fs affects the interface velocity, here, when 

comparing Fs=0.5 to Fs=0.982 with L/Dh =0.25, Zc=2, and Re=1000, the interface 

velocity above the cavity is more than twice the magnitude for the Fs=0.98 scenario.  The 

increase in interface velocity is due to the fact that there is more slip surface for Fs=0.98 

and the solid rib has less of a retarding effect.  Also shown in the figure is the influence 

that Re exercises.  A comparison of Re=0.4 with Re=1000 for Fs=0.98 for L/Dh =0.25, 

Zc=2, shows that a lower Re tends to increase the velocity above the cavity.  Symmetry 

above the cavity region becomes more apparent for the low Re case, where the nonlinear 
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terms of the x-momentum equation have a smaller impact.  The higher Re scenario shows 

a skewed profile caused by the significance of the momentum of the fluid.  After passing 

the rib it takes some distance above the cavity for the velocity to gain momentum.   
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Figure 3.17: Interface (y*=0) velocities in the x-direction for many scenarios, unless otherwise 
specified in the legend Re=1000, Zc=2, and L/Dh =0.25. 

 

Finally the effects of L/Dh and Zc are shown in Fig. 3.17.  Here, two scenarios 

where Fs=0.5, Zc=2, and Re=1000 are compared; L/Dh =0.05 in one case and L/Dh =0.25 
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in the other.  Decreasing L/Dh causes the interface velocity to decrease significantly and 

also to become more symmetric even though Re is the same.   This occurs because the 

apparent fractional surface area to fluid volume ratio is decreasing.   

The effect of the cavity depth, Zc, is shown for Zc=2 and Zc=0.1 with Fs=0.98, 

L/Dh =0.25, and Re=1000 for both cases.  Decreasing Zc causes the velocity above the 

cavity at the interface to decrease.  As Zc becomes smaller the interface surface is closer 

to the bottom wall of the cavity.  In the cavity the air is circulating and when the cavity 

becomes shallower, there is a larger velocity gradient, which causes more shear stress and 

therefore reduces the interface velocity.   

Figure 3.17 is descriptive and illustrates what happens to the interface velocity 

profile when one parameter is changed from case to case.  In order to get a broader 

understanding of how the interface velocity is affected by each parameter (Fs, L/Dh, Zc, 

and Re) the maximum interface velocity, u*im, will be displayed for many unique 

individual cases.  u*im represents the maximum velocity of the liquid at y*=0 normalized 

by the centerline velocity in the laminar classical channel flow case, umc.  This is 

important in showing the parametric effect and will be useful in displaying most of the 

scenarios that were studied.   

Shown in Fig. 3.18 are predictions of the maximum interface velocity u*im for 

four different values of L/Dh ranging from 0.083 to 2.5.  Each prediction is shown with an 

individual data point.  These predictions were obtained at Re=1000 and using the (SF) 

model.  This figure illustrates that as Fs decreases u*im decreases at approximately the 

same rate depending on the value of L/Dh.  Also shown in Fig. 3.19 are trend lines and 

predictions of u*im vs. L/Dh for three slip fractions, Fs = 0.5, 0.875, and 0.98.   
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Figure 3.18: Maximum dimensionless interface velocity (u* im) along the interface (y*=0) vs. Fs for 
four relative rib/cavity module sizes and at Re=1000 for a (SF) model. 
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Figure 3.19: Maximum dimensionless interface velocity (u* im) along the interface (y*=0) vs. L/Dh for 
Fs=0.98, 0.875, and 0.5 and at Re=1000 for a (SF) model. 
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For all scenarios as L/Dh decreases, u*im approaches zero.  This occurs because 

the volume to surface area has increased and the wall has less of an effect on the motion 

of the fluid.  Also for all scenarios as Fs approaches zero the interface u*im approaches 

zero too.  This occurs because an decrease in the slip fraction increases the solid-liquid 

interfacial contact area.    

Shown in Fig. 3.20 are predictions of the interface velocity u*im plotted for cases 

exhibiting different values of Zc to illustrate the influence exerted by the relative air 

cavity size.  Also, shown in the figure are the (SF) results to illustrate the comparison 

between the two different models.  u*im does not show strong dependence on cavity 

depth, Zc.  It increases slightly with increasing Zc up to about Zc=0.5, where it levels off 

to a constant value.  The constant value is dependent on Fs, L/Dh, and Re.  For Fs=0.5 the 

predictions of u*im from the (SF) model have an 8% difference from the (AC) model at 

low values of Zc and level off at 2% difference as Zc increases.  The difference is larger 

for Fs=0.98, at low values of Zc the difference in the (SF) model is 14% higher than the 

(AC) model and the difference levels off at 5.5% for large values of Zc.  The (SF) model 

underpredicts the maximum interface velocity, and more closely approximates the (AC) 

model for small values of Fs.   

The effect of Re on the maximum interface velocity u*im is shown in Fig. 3.21 for 

Fs=0.98 and 0.5.  The figure shows that as the Re increases the maximum interface 

velocity u*im decreases.  This result is expected because at higher Re the influence of 

momentum forces are dominant and the influence of the boundary is lessened.  
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Figure 3.20: Maximum dimensionless interface velocity (u* im) along the interface (y*=0) vs. Zc for 
Fs=0.98 and 0.5, where Re=1000, and L/Dh =0.25 for both a (AC) and a (SF) model. 
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Figure 3.21: Maximum dimensionless interface velocity (u*im) along the interface (y*=0) vs. Re for 
Zc=2 for Fs=0.98 and 0.5, where Re=1000, and L/Dh =.25 for both a (AC) and a (SF) model. 
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The normalized centerline (y*=1) velocity, u*cl, behavior for each of the cases 

discussed and shown in Fig. 3.17 is shown in Fig. 3.22.  In this figure the normalized 

centerline velocity, u*cl, is plotted versus the streamwise direction.  When comparing Fig. 

3.16 and 3.22, each case that had a higher average interface velocity corresponds to a 

lower average centerline velocity.  This result occurs because mass was conserved.  The 

normalized centerline velocity remains relatively constant at different streamwise 

locations of the channel.    
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Figure 3.22: Dimensionless centerline (y*=1) velocities in the x-direction for many scenarios, unless 
otherwise specified in the legend Re=1000, Zc=2, and L/Dh =0.25. 

To illustrate more clearly how the dimensionless centerline velocity, u*cl, varies 

with different geometries it is plotted in Fig. 3.23 as a function of Fs for four different 
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relative module lengths, L/Dh =2.5, 1.0, 0.0625, and 0.05.  As the slip fraction increases 

the centerline velocity decreases because there is more fluid moving in the near wall 

region.  As the relative module length increases the centerline velocity decreases.  Again, 

large relative module lengths are representative of large surface area to volume ratios and 

the ultrahydrophobic surface has more of an influence on the fluid.  Alternatively as the 

relative module length, L/Dh, decreases the centerline velocity approaches the same value 

as in the classical scenario, indicating that the ultrahydrophobic surface has less of an 

influence on the fluid. 

 

 

0.7

0.75

0.8

0.85

0.9

0.95

1

0.5 0.6 0.7 0.8 0.9 1

L/D
h
=2.5

L/D
h
=1.0

L/D
h
=0.0625

L/D
h
=0.05

u*
cl

F
s  

Figure 3.23: Dimensionless centerline velocity (u* cl) along the centerline (y*=1) vs. Fs for four 
relative rib/cavity module sizes and at Re=1000 for a (SF) model. 
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Figure 3.24 illustrates the influence of the relative cavity depth, Zc.  For each 

scenario shown in the figure Re=1000 and L/Dh =0.25.  Two slip fractions are studied 

Fs=0.98 and Fs=0.5.  The figure shows that for Zc>0.5 the influence of the relative cavity 

depth on the centerline velocity vanishes for Fs=0.98.  This also shows that for Fs=0.5 the 

centerline velocity was not influenced by the value of the relative cavity depth for the 

cases studied.  Analytical results from both the (AC) model and the (SF) model are 

presented and show that in all cases the (AC) model predicts faster centerline velocities.  

This occurs because in the (AC) model the vapor cavity will slow the fluid in the near 

wall region and when the fluid is slower in the near wall region it is faster in the 

centerline.   
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Figure 3.24: Dimensionless centerline velocity (u* cl) along the centerline (y*=1) vs. Zc for Fs=0.98 and 
0.5, where Re=1000, and L/Dh =.25 for both a (AC) and a (SF) model. 
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The magnitude of the Reynolds number also has an influence on the centerline 

velocity.  Figure 3.25 shows results for two slip fractions, Fs=0.98 and Fs=0.5, for 

Reynolds numbers ranging between 0.4 and 2000.  Both the (AC) and the (SF) model are 

presented.  For all models L/Dh =0.25 and for the (AC) model Zc=2.  The calculations 

show that as Re increases the dimensionless centerline velocity increases, but for Re<40 

the centerline velocity is independent of Re.  For Fs=0.5 there was no significant 

difference in the centerline velocity when the air cavity was modeled, but for Fs=0.98 

there was a difference between the (AC) and (SF) models.  For Fs=0.98 the (AC) model 

had centerline velocities 1.6% larger than the (SF) model.   
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Figure 3.25: Dimensionless centerline velocity (u*cl) along the centerline (y*=1) vs. Re for Zc=2 for 
Fs=0.98 and 0.5, and L/Dh =.25 for both a (AC) and a (SF) model. 
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The details shown in the centerline and interface streamwise velocity calculations 

will assist in understanding the trends associated with drag reduction for microengineered 

ultrahydrophobic surfaces.   

3.2.4 Wall-normal Velocity Behavior 

In classical fully-developed laminar parallel plate flow the wall-normal 

component of velocity vanishes.  However, when ultrahydrophobic surfaces are present it 

does exist.  In the previous subsection (3.2.1) the x-velocity profiles from 

ultrahydrophobic channels showed variations of the streamwise-velocity in the near-wall 

region.  For a flow that is incompressible, this can only happen if there is fluid motion in 

the wall-normal direction, to satisfy the equation of continuity (3.4).  Figure 3.26 shows 

the normalized wall-normal component of velocity (v*=v/umc) at ten different x/L 

locations for a case where Fs=0.5, Re=1000, L/Dh =0.25, and Zc = 1.  At x/L=0, just after 

fluid has moved past the cavity region and above the rib region, the wall-normal velocity 

is positive in the near wall region and decreases to zero far from the wall.  Further 

downstream the magnitude of the wall-normal velocity decreases in the near wall region.  

When the fluid moves over the cavity region (x/L=0.5) there exists a negative wall-

normal velocity.  The magnitude of the negative wall-normal velocity decreases further 

downstream. 

At the entrance to the cavity region, where the fluid near the wall is accelerating 

in the streamwise direction, the wall-normal velocity is negative (i.e., fluid is moving 

towards the wall from the channel core).  In order for the streamwise-component of 

velocity to accelerate, fluid in the near-wall region must be replaced.  As the next rib is  
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Figure 3.26: Wall-normal velocity profile predictions for a (AC) case where Fs=0.5, L/Dh =0.25, Zc=2, 
and Re=1000. 

approached, where the streamwise-velocity decelerates, there exists a positive wall-

normal velocity.  The results for all other cases show similar behavior.  The magnitude of 

the wall-normal velocity is relatively small; this figure shows the maximum wall-normal 

velocity being 3% of umc.  As expected, the wall-normal velocity vanishes far from the 

wall for all scenarios. 

3.2.5 Shear Stress Predictions for Rib Surface and Liquid-Gas Interface 

Predictions of the normalized wall shear stress are shown in Fig. 3.27.  The 

results, shown as a ratio of local shear stress (τw) to that for a classical laminar channel 

flow (τw classical), reveal as expected that the location where the shear stress is highest is at 
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Figure 3.27: Shear stress predictions for (AC) cases where Fs=0.5, L/Dh =0.25, and Re=1000; Fs=0.5, 
L/Dh =0.25, and Re=0.4; and Fs=0.98, L/Dh =0.25, and Re=1000. 

the leading edge of the rib.  The shear stress is highest in this region because the fluid 

decelerates from a finite velocity just upstream of the rib to zero at the rib, creating a very 

large velocity gradient.  Figure 3.27 is plotted on a semi-log scale to more fully illustrate 

the shear stress behavior and magnitude at the liquid-vapor interface.  The wall shear 

stress on the rib region is larger at all x/L locations compared to the shear stress on the 

wall in the classical case.  However, the integrated influence is not sufficient to make the 

total pressure drop through the channel greater than for the classical case.  The shear 

stress at the vapor-liquid interface for the Fs=0.98 is larger than the shear stress above the 

cavity region for Fs=0.5.   

 In general, as the slip fraction increases the shear stress above the rib increases.  

This is why, as will be shown in the next section, the drag reduction does not exhibit a 
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simple proportional relationship with the slip fraction.  Shear stress increases as the 

Reynolds number increases and as the relative module length decreases.  When the 

relative cavity depth is small (Zc<.5) there is more shear stress above the cavity region 

than for cases with large relative cavity depths. 

3.3 GENERAL RESULTS OF THE DARCY FRICTION FACTOR – REYNOLDS NUMBER 
PRODUCT 

One of the advantages of looking at the detailed flow field and seeing how 

velocities change depending on certain parameters is that it helps to understand trends in 

the general sense (i.e., why fRe behaves the way it does when parameters are changed).  

In a global view, how much of an influence ultrahydrophobic surfaces have on the overall 

drag or pressure drop is more important.  Shown in Fig. 3.28 are predictions of the fRe 

product as a function of the slip fraction, Fs, for five values of the relative module length, 

L/Dh, ranging from 0.05 to 2.5 using a (SF) model. Each data point is shown along with 

corresponding trend lines.  Also shown in Fig. 3.29 are predictions of fRe displayed vs. 

L/Dh for three slip fractions, Fs = 0.5, 0.875, and 0.98. Note again that increasing Fs 

results in greater relative shear-free (or reduced shear) area on the microchannel wall. 

The Reynolds number for all predictions shown in Figs. 3.28 and 3.29 was Re = 1000 and 

it should be underlined that the simulations are dependent on Re as will be shown later. 

The boundary condition specified at the liquid-vapor interface for the data of Figs. 3.28 

and 3.29 was the zero shear stress condition. The influence of the vapor phase on the 

overall fRe will be explored in a section to follow. For all scenarios as the slip fraction 

approaches zero, fRe approaches 96, the classical value for laminar flow in a parallel  
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Figure 3.28: Predictions of fRe vs. Fs in a parallel plate channel with ultrahydrophobic walls and 
microrib/cavity structures oriented perpendicular to the flow direction for five relative          

rib/cavity module sizes and at Re=1000 (SF) model. 

plate channel. As Fs increases, (as the relative size of the cavity increases with respect to 

the module length) the predicted value of fRe decreases monotonically as expected since 

the liquid-solid contact area is decreasing. As illustrated in 3.1 the average velocity is 

inversely proportional to fRe, and therefore, reductions in fRe may be interpreted as 

increases in the mass flow rate for a given applied driving pressure. The decrease in fRe 

is more dramatic, both in magnitude and rate of decrease, as the relative 

module length increases, corresponding to larger values of L/Dh. The implication is that 

greater reduction can be achieved for smaller microchannels where the required driving 

pressure would otherwise approach extreme levels. Note that a reduction in the frictional 

resistance as high as 80% is observed for the scenario where Fs = 0.98 and L/Dh = 2.5 
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(corresponding to fRe = 19). In practice this scenario would be realized, for example, 

with a microchannel of hydraulic diameter Dh ~ 10 µm exhibiting micro-rib and cavity 

widths of lr = 0.5 and ls = 25 µm, respectively. By contrast a channel with the same 

rib/cavity dimensions but of hydraulic diameter, Dh ~ 510 µm, would yield L/Dh = 0.05 

and a reduction in the frictional resistance of 26% is predicted (corresponding to fRe = 

71). 
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Figure 3.29: Predictions of fRe vs. relative rib/cavity module size for slip fractions of 0.98, 0.875, and 
0.5 and at Re=1000 (SF) model. 

The influence of the vapor cavity on fRe is illustrated in Fig. 3.30 where fRe is 

plotted as a function of the relative cavity depth, Zc = h/ls, for the L/Dh = 0.25 channel at 
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Re = 1000 and at two slip fractions of 0.98 and 0.5. For these scenarios the vapor space 

was rigorously modeled in the simulations and coupled with the liquid phase by matching 

the velocities and shear stresses at the liquid-vapor interface. The fRe results 

corresponding to the no-shear boundary condition are nominally 46 and 87 for the Fs = 

0.98 and 0.5 cases, respectively, and are also shown on Fig. 3.30.  The predictions of Fig. 

3.30 reveal that the vapor cavity does exercise influence on the magnitude of fRe with a  

notable increase above the value of 46 for Fs=0.98, but exerts little effect for Fs=0.5. 
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Figure 3.30: Dependence of fRe on the depth of the vapor cavity for the L/Dh =0.25 channel at 
Re=1000 and at slip fractions of Fs=0.98 and 0.5. 
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Further, the influence is dependent on the depth of the vapor cavity with cavities of 

relative depth smaller than Zc = 0.25 (i.e., h = 6 µm with Dh = 10 µm and ls = 25 µm) 

exhibiting a marked increase in the magnitude of fRe. The results further show that as the 

relative depth of the cavity increases above Zc ~ 0.25 the predicted values of fRe become 

independent of the cavity depth. For scenarios with cavities of Zc > 1, the magnitudes of 

fRe asymptote to 50 and 87.5 for the Fs = 0.98 and 0.5 cases, respectively. These 

magnitudes are, respectively, 8% and 0.1% greater than the predictions where the 

interface boundary condition was specified as zero shear. 

As noted previously, due to the non-linear convective acceleration terms in the 

momentum equations (Eqs.3.3-3.4) the fRe behavior for the transverse rib orientation is 

expected to exhibit dependence on Re. This dependence is illustrated in Fig. 3.31 where 

the fRe product for the extreme slip fractions of 0.98 and 0.5 are plotted as a function of 

Re for the L/Dh = 0.25 channel. Note that both vapor-liquid interface boundary condition 

scenarios are shown for comparative purpose. For the predictions where the liquid and 

vapor spaces were coupled, the relative depth of the cavity was Zc = 2. As discussed 

above and illustrated in Fig. 3.30 for Zc > 1 the relative cavity depth is sufficient such that 

the fRe product is independent of the relative cavity depth. As Re approaches zero the fRe 

product for the two different imposed boundary conditions at the vapor-liquid interface 

asymptote to constant values of 82 and 86 for the Fs = 0.5 scenarios, and 34.5 and 45 for 

the Fs = 0.98 scenarios. Of course this behavior is expected since as Re approaches zero 

the flow is creeping and the non-linear terms of Eqs. (3.2) and (3.3) become negligibly 

small. At all Re, the fRe product is greater when the vapor cavity is coupled with the 
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Figure 3.31: Variation of fRe with Reynolds number for the L/Dh =0.25 channel, slip fractions of 0.02 
and 0.5, and for both the (SF) interface and coupled vapor cavity interface conditions. 

liquid phase in the model. Furthermore, the variation between the fRe product for the two 

interface conditions shows little dependence on the Reynolds number. For the Fs = 0.98 

scenario, the relative difference in fRe between the no-shear and modeled interface 

scenarios varies from approximately 10 at Re 0 to nominally 6 at Re ~ 2000. Above a 

Reynolds number of about 10 the fRe product begins to increase in magnitude with 

increasing Re. This increase results from the added pressure required to accelerate the 

flow over successive rib elements and it is thus more pronounced as the average velocity 

magnitude increases.  

In summary the following conclusions can be made about drag reduction for 

channels with ultrahydrophobic surfaces. 

 Increasing slip fraction decreases fRe 
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 Increasing dimensionless module length decreases fRe 

 Decreasing Reynolds number decreases fRe 

 Small dimensionless air cavities increase fRe 

 A model that includes the vapor cavity has larger fRe than a model that assumes a 

shear free boundary condition at the liquid-vapor interface 
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4 CONSTANT WALL TEMPERATURE THERMAL                       

TRANSPORT RESULTS 

4.1 THERMAL MODEL DEVELOPMENT 

In addition to the hydrodynamic study of the previous chapter a parametric study 

was also conducted on the same periodically fully-developed model of an 

ultrahydrophobic channel to obtain thermal transport results.  In the hydrodynamic results 

two different models were used, (SF) and (AC) (with air cavity), this was possible 

because the ratio of viscosities for the fluid and gas of interest is small, µair/µwater = 0.02.  

The thermal transport results, however, could not be simplified because the boundary 

condition at the liquid-gas interface was unknown.   This requires that in each of the 

cases where the thermal transport results are displayed, the air cavity be included in the 

model.  The surface of the silicon substrate was modeled to be at a constant temperature.  

Each repeated module was modeled to be thermally periodically fully-developed.  

4.1.1 Thermally Periodically Fully-developed 

To further explain the concept of a thermally fully-developed flow a classical 

fully-developed laminar parallel plate flow will be reviewed.  In this scenario where the 

wall or surface temperature, Ts, is constant, and the fluid moves through the channel, in 

the x-direction the bulk mean temperature, Tm (see 4.1) will increase, eventually 

asymptoting to the wall temperature.   
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Figure 4.1 illustrates how the temperatures, Tm and Ts, change with axial position 

for the classical constant wall temperature fully-developed scenario. 
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Ac is the cross sectional area through which the fluid passes, u and T are the velocity and 

temperature of the fluid respectively at different locations on that area, and  u  is the 

average velocity.  Tm is the fluid mixed mean temperature characterizes the average 

thermal energy state of the fluid at a specific streamwise location [18].  
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Figure 4.1: Qualitative variation of the bulk mean temperature, Tm, changes for a fully-developed 
laminar parallel plate flow with walls at a constant temperature, Ts. 
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Initially it may not appear that a temperature distribution such as this could yield a 

fully-developed behavior since the temperature changes at a different rate in the axial 

direction of the channel.  A thermally fully-developed condition, however, is one where 

the dimensionless temperature does not change in the axial direction (see 4.2 below).   
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where θ is defined as the dimensionless temperature and is given in 4.3. 

 

ms

s

TT
TT

−
−

=θ                   (4.3) 

 

To more clearly illustrate a fully-developed temperature profile, Fig. 4.2 shows 

actual temperature profiles in a channel at two different axial or x-locations for a classical 

fully-developed parallel plate flow with the walls at a constant temperature.  In this figure 

y* again indicates the dimensionless position in the channel normal to the wall.  In this 

scenario the fluid in the channel is cooler than the wall temperature and increases in bulk 

temperature as it moves in the axial direction.   

The wall temperature is at 300 K, and it can be seen that the two profiles at 

different x-locations are not identical.  The profile for T2 is located downstream of the 

profile for T1, which is why the temperature is larger across the channel cross section.   
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Figure 4.2: Temperature profiles at two different x-locations in a fully-developed laminar parallel 
plate flow with walls at a constant temperature, Ts=300K. 
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Figure 4.3: Dimensionless temperature, θ, profiles at two different x-locations in a fully-developed 
laminar parallel plate flow with walls at a constant temperature, Ts=300K. 
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Although, the temperature distributions are not the same, the dimensionless temperature, 

θ, for the two profiles are identical (See Fig. 4.3).  This is what is meant by thermally 

fully-developed, the profile of θ remains constant at different axial locations along the 

channel. 

Several differences from classical fully-developed duct flow exist with regard to 

the thermal transport for flow through microengineered channels.  Just as was shown in 

Fig. 3.1, Fig. 4.4 shows the near-wall region of a channel that exhibits micro-rib 

structures separated by vapor-filled cavities. Liquid is flowing over the top of the wall 

from left to right in the figure and perpendicular to the ribs at a core velocity, U∞ and 

upstream temperature T∞.  Not only will a velocity boundary layer begin to grow at x = 0, 

but a thermal boundary layer (δt) will also begin to grow at this locale.  Also, the fluid 

temperature at the wall will be the same as the wall temperature, given that continuum  
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Figure 4.4: Schematic of the entrance wall and cavity regions for liquid flow over an ultra-
hydrophobic surface exhibiting micro-rib structures and flow perpendicular to the ribs.                

Both hydrodynamic and thermal boundary layers are shown as well as how the                         
constant wall temperature is imposed. 
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behavior is prevalent.  For lr < x < lr + ls (the cavity region), the liquid will no longer be 

in contact with a solid surface and the liquid temperature at the vapor-liquid interface 

need not be the same as the wall temperature.  

At the vapor-liquid interfaces several phenomena not common in traditional 

boundary layer flows are evident. First, the thermal boundary layer will continue to 

develop, but it will be at a much different rate and will be coupled to the vapor cavity 

thermal dynamics.  The liquid and vapor temperatures will be equal, as will the heat flux 

in both phases at the interface be the same. At the second rib (x > lr + ls) a second 

thermal boundary layer begins to grow inside of the first and the wall heat flux will again 

decrease along the solid rib in the streamwise direction, although the initial value will not 

be as high as for the preceding rib. This behavior will repeat in the streamwise direction, 

and provided the meniscus shape remains the same, far downstream from the channel 

inlet a periodically thermally fully-developed state may be established. At this point the 

dimensionless temperature, θ, will exhibit periodic variations in the x-direction across 

repeating modules (of length L = lr + ls) consisting of a single rib and cavity.  It is this 

thermally periodically fully-developed state that will be modeled in this study. 

4.1.2 Metric for Comparison – Average Nusselt Number 

To compare the ultrahydrophobic channels with those of a classical flow it is 

useful to compute the average Nusselt number, Nu shown in 4.4.  

 

k
hDNu h=             (4.4) 

 



71 

Where h is the average heat transfer coefficient at the wall, Dh is the hydraulic diameter, 

and k is the thermal conductivity of the fluid. Just as the fRe value was constant for a 

classical flow, the value of Nu is also constant in the laminar fully-developed region for 

classical no-slip two-dimensional channel flow.  Values for steady laminar flow through 

rectangular channels of varying aspect ratio have been tabulated by several investigators 

[17].  Following the classical approach [18-19], Nu can be derived for a constant wall 

temperature fully-developed laminar flow. From an energy balance on a channel the 

classical solution for the variation of mean temperature for constant wall temperature is 

logarithmic (see 4.5-4.6). 
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Where m is the mass flow rate through the channel, cp is the specific heat of the fluid, Tmi 

and Tmo are the bulk mean temperatures at the inlet and outlet of L respectively, Ts is the 

surface or wall temperature, L is the rib-cavity module length, and B is the width of the 

cross-sectional area (and in the case of infinite parallel plates B→∞).  These equations 

can be combined and from 4.4 the average Nusselt number, Nu, can be derived (see 4.7). 
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For a classical two-dimensional parallel plate laminar flow with a constant wall 

temperature the value of the average Nusselt number is a constant (4.8), and will remain 

constant regardless of the Reynolds number (assuming it is laminar) or the relative 

module length, L/Dh.   

 

54.7=Nu                        (4.8) 

 

Even though with the existence of ultrahydrophobic surfaces the bulk mean 

temperature does not vary with a smooth logarithmic function, the average Nu over the 

module length will be calculated using 4.7, and it will allow a direct comparison to the 

classical case.  The Nu reported for channels with ultrahydrophobic surfaces is not 

technically the average Nusselt number of the channel, (i.e., it is not calculated by taking 

an average value of the heat transfer coefficient along the wall).  Instead the apparent 

average Nu is calculated using the mean bulk outlet temperature of the fluid.  Direct 

comparison with the classical condition is possible.  When Nu is lower than 7.54, then 

this scenario exhibits poorer heat transfer than would occur in the classical constant 

temperature wall channel.  The difficulty in calculating the average heat transfer 

coefficient stems from the fact that the wall has cavities and ribs with different phases 

present. 

4.1.3 Solution Methodology 

Following a similar approach used for the hydrodynamic calculations, the thermal 

transport results were obtained. A classical control volume approach was employed to 

characterize the periodically fully-developed thermal transport through an infinitely wide 
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channel for steady, laminar, conditions with constant fluid properties [19]. The energy 

equation given below for an incompressible Newtonian fluid was solved numerically.  
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Where T is the temperature, u is the streamwise velocity, v is the wall-normal 

velocity, Φ is the viscous dissipation term, k is the thermal conductivity, cp is the specific 

heat and ρ is the fluid density.  The viscous dissipation term becomes more significant for  

scenarios where the viscosity of the fluid is large (like the viscosity of oils) and the 

temperature gradients are small.  In this study the viscous dissipation was neglected 

because it was assumed that the temperature differences were significantly greater than 

the viscous dissipation term for a low viscosity fluid like water.  To determine the 

significance of radiation a thermal transport estimate was calculated using a two surface 

black enclosure.  The radiative heat transfer within the cavity was estimated to be the 

same magnitude as the thermal transport from convection at the liquid-vapor interface; 

however the total thermal transport was estimated to be two orders of magnitude larger.  

For this reason radiation was neglected in the model.  Equation 4.9 was solved for the 

domain illustrated schematically in Fig. 4.5. As for the hydrodynamic results, the figure 

indicates a module length consisting of one rib and cavity section of the two-dimensional 

channel. The shape of the meniscus at the cavity interface was assumed to be perfectly 

flat, representing the limiting case of perfectly hydrophobic walls. The vapor space is of 

length ls and the micro-rib width where the no-slip condition exists is of length lr.  
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In addition to the boundary conditions specified for the hydrodynamic cases the thermal 

boundary conditions were imposed.  Symmetric boundary conditions were specified at 

the channel centerline, y = H/2; constant wall temperature at on the surface of the 

hydrophobic channel as illustrated in Fig. 4.5. The conditions at the upstream and 

downstream edges parallel to the y-axis were specified to be thermally periodic, meaning 

θ, ∂θ/∂x, and ∂θ/∂y, were set to be equal at corresponding locations along these two 

faces.  At the liquid-vapor interface, y = 0 and lr ≤ x ≤ lr + ls the solutions were coupled 

by matching local temperatures and heat fluxes at the interface. The liquid properties 

were specified to remain constant and equal those of water at standard temperature and 

pressure. Likewise the vapor fluid properties were specified to be constant and be the 

values of air at standard conditions. 
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Figure 4.5: Schematic of the computational domain encompassing a rib/cavity module.  Flow 
direction is from left to right.  The domain extends into the gas cavity and the temperature                

of all the walls is indicated as Ts. 
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The thermal transport solution was obtained after the hydrodynamic solution was 

found.  Occasionally, more grid refinement was necessary for the thermal transport 

solution because the grid-independent hydrodynamic solution was not grid-independent 

for the thermal solution.  This was expected because the gradients were different between 

the thermal and hydrodynamic cases.  For water, Pr = 7, which indicates that the thermal 

boundary layer, δt, will be smaller than the hydrodynamic boundary layer, δ, and to 

obtain an accurate solution more refinement is necessary.  In practice after the grid was 

refined the hydrodynamic solution was solved followed by the thermal transport solution.  

The process of grid refinement, solving the hydrodynamic problem, and then solving the 

thermal transport problem had to be repeated several times in some scenarios. 

4.2 THERMAL CONTOUR PLOTS 

It is valuable to examine several different contour plots of temperature to show 

how it varies spatially.  Here the temperature has been normalized with the wall 

temperature, Ts, and the mean outlet temperature, Tmo (see 4.10). 
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The normalized temperature, Ω, is different from θ in that for a classical scenario 

the temperature will change at different streamwise locations.  This is advantageous in 

showing how the temperature changes in the domain and in showing the growth of the 

thermal boundary layer δt.  It is also illustrative in obtaining a general idea of how the 
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temperature field in the computational domain is changing.  In the following contour 

plots the temperature of the wall is higher than the temperature of the fluid. 

Figure 4.6 shows a Ω contour plot for a slip fraction of 0.5, a relative module 

length of 0.25, a relative cavity depth of 1, and a Reynolds number of 1000.  In this 

example the walls are at a higher temperature than the fluid.  From 4.10 when Ω =0 the 

temperature of the fluid is at the temperature of the wall and is shown in red.  The 

maximum value of Ω occurs at the centerline of the channel because this is the region 

where the temperature difference between the fluid and the wall is the highest.  In this 

scenario Ω does not change significantly in the streamwise direction for regions far from 

the rib.  The only apparent streamwise variation in Ω occurs near the rib wall and near the 

 

 

6.78

6.27

6.11

5.75

5.39

5.08

4.73

4.42

4.06

3.75

3.39

3.03

2.72

2.36

2.05

1.69

1.34

1.03

0.67

0.36

0.00

6.78

6.27

6.11

5.75

5.39

5.08

4.73

4.42

4.06

3.75

3.39

3.03

2.72

2.36

2.05

1.69

1.34

1.03

0.67

0.36

0.00

6.78

6.27

6.11

5.75

5.39

5.08

4.73

4.42

4.06

3.75

3.39

3.03

2.72

2.36

2.05

1.69

1.34

1.03

0.67

0.36

0.00

6.78

6.27

6.11

5.75

5.39

5.08

4.73

4.42

4.06

3.75

3.39

3.03

2.72

2.36

2.05

1.69

1.34

1.03

0.67

0.36

0.00

 

Figure 4.6: Contour plot of Ω for Fs=0.5, Zc=1, L/Dh =0.25, and Re=1000. 
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gas-liquid interface.   In general, Ω  decreases as the fluid moves along the top of the rib 

and increases at the gas-liquid interface.  This means that the fluid is increasing in 

temperature in the near wall region above the rib and then it is convected into a cooler 

region above the gas-liquid interface.  At the outlet the bulk mean temperature is larger 

than it was at the inlet. 

For a smaller Re the contours of Ω change significantly.  This is shown in Fig. 4.7 

where Fs=0.5, Zc=1, L/Dh =0.25, and Re=0.4.  In this scenario throughout the entire 

channel, except for the region near the gas-liquid interface, Ω is increasing in the 

streamwise direction.  It does not appear periodic because of the definition of Ω, the 

mean temperature is always increasing so Ω  will always increase.  At the gas-liquid 

interface the cavity region has an insulating effect between the wall and the liquid, which 

is why there is a cooler region above the gas cavity into which hotter fluid is convected.  

The maximum value of Ω has changed, nearly doubling in value compared to the 

previous scenario where Re=1000.  This happened because at low Re the temperature 

difference between the surface, Ts, and the bulk mean outlet temperature, Tmo, has 

decreased which effectively increases the maximum value of Ω .  Even though the 

maximum value has changed this does not necessarily correlate to larger value of Nu.  

Recall that Nu is dependent on the change in temperature and on u . 

The influence of the slip fraction is shown in Fig. 4.8 where Fs=0.98, Zc=1, L/Dh 

=0.25, and Re=1000.  The most significant difference between this contour plot and Fig. 

4.6 is the maximum Ω has changed from 6.78 to 1.26 indicating that there is less thermal 

transport occurring in this scenario.   This effect is to be expected as the slip fraction has 

increased significantly and there is less wall contacting the liquid moving in the channel.   
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Figure 4.7: Contour plot of Ω for Fs=0.5, Zc=1, L/Dh =0.25, and Re=0.4. 
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Figure 4.8: Contour plot of Ω for Fs=0.98, Zc=1, L/Dh =0.25, and Re=1000. 
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The final contour plot is shown in Fig. 4.9.  In this scenario Fs=0.5, Zc=2, L/Dh 

=0.05, and Re=0.4.  This figure shows the effect of changing the relative module length, 

L/Dh.  When compared to Fig. 4.7 this shows that a change in the relative module length 

decreased the maximum value of Ω from 13.59 to 1.62 indicating less thermal transport 

exists for this scenario.  It is important to notice that even though the maximum value of 

Ω decreased, the thermal boundary layer appears to grow in the same fashion as it did in 

Fig. 4.7.   

 

 

 

Figure 4.9: Contour plot of Ω for Fs=0.5, Zc=2, L/Dh =0.05, and Re=0.4. 
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4.3 DETAILED THERMAL TRANSPORT PHYSICS  

In section 4.1.1 it was seen that for a classical channel flow the profile of the 

dimensionless temperature remains constant at different locations within the channel.  In 

this section the dimensionless temperature profiles of θ will be shown at various axial 

channel locations and will be compared to the classical case.  Also, the effect of geometry 

and Reynolds number will be shown.   

As was previously done, results will be presented at different x/L locations 

illustrated in Fig. 4.10.  The value of θ will be calculated using the local fluid 

temperature, T, at different y-locations along the specific x/L location; Ts, the specified 

wall temperature; and Tm, the value of the bulk fluid temperature at that particular x/L 

location.  Tm changes with x/L location, thus a new Tm must be calculated at each 

streamwise position to determine θ. 
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Figure 4.10: Schematic showing percentage of repeated module and mixed mean temperature Tm 
used in reporting dimensionless temperature data. 
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In practice the constant wall temperature boundary condition shown in Fig. 4.10 

may be difficult to obtain, but it serves as a comparison to a classically studied situation.  

A more realistic scenario would be to model the bottom side of the silicon as having a 

constant temperature or constant heat flux.  This would be a recommendation for further 

study but is beyond the scope of this thesis.  

In Fig. 4.11, one example of how the dimensionless temperature, θ, changes for a 

fully-developed flow through a channel with ultrahydrophobic surfaces is shown.  The 

results shown correspond to the scenario: Fs=0.5, Re=1000, L/Dh =0.25, and Zc=2.  The 

data show that for this case the θ profile exhibits only minor deviation from the classical 

case.  This deviation occurs in the near wall region.  The value of θ for the 
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Figure 4.11: Schematic showing dimensionless temperature, θ, for a case where Fs=0.5, Re=1000, 
L/Dh =.25, and Zc=2 compared to a classical case. 
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ultrahydrophobic case is always greater than θ for the classical case.  From 4.3 this 

implies the result shown in 4.11 below.  The implication is that the value of the local 

fluid temperature, T, throughout the domain is not as high in the ultrahydrophobic case as 

it is in the classical case.    This is rigorously true only if Tm is the same for both 

scenarios. 
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Greater detail of what is occurring in the near-wall region is shown in Fig. 4.12 

(20% of channel shown).  For the regions along the surface of the rib (0 < x/L < 0.5 at y* 

= 0) the value of θ vanishes as in the classical case, since the wall temperature is 

specified at that point.  Further from the rib wall θ increases with a steeper gradient than 

for the classical case.  Along the interface between the liquid and the vapor (0.5 < x/L < 

1) the value of θ need not vanish at y* = 0.  The vapor cavity acts as an insulator between 

the fluid and the wall temperature.  The liquid-vapor interface has a larger value of θ 

because T is smaller.  The profile of θ for x/L = 0 closely follows the profile of θ for x/L 

above the cavity regions because the fluid at x/L = 0 has just come from a previous cavity 

region.  The profiles will be the same at x/L = 0 and x/L = 1 because of the imposed 

periodically fully-developed thermal boundary condition.  It is important to highlight that 

there is a steeper dimensionless temperature gradient above the rib than in the classical 

scenario and there is a smaller gradient above the cavity than in the classical scenario. 
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Figure 4.12: Schematic showing the near-wall region of dimensionless temperature, θ, for a case 
where Fs=0.5, Re=1000, L/Dh =.25, and Zc=2; compared to a classical case.  

This means that the thermal transport is high above the rib where the liquid is in direct 

contact with the wall and the velocity gradients are the highest.  A smaller gradient above 

the cavity indicates that the thermal transport in this area is reduced.   

4.3.1 Influence of Fs on θ 

The slip fraction Fs plays an important role in the behavior of the local normalized 

temperature θ.  As the slip fraction increases the profiles of θ deviate significantly from 

the classical case.  Shown below in Fig. 4.13 are normalized temperature profiles for two 

slip fractions. Both cases are at Re=1000, L/Dh =0.25, and Zc=2.  The only difference is 

that for one scenario Fs=0.5,  and for the second Fs=0.98.  Fig. 4.13 shows that near the 

wall (above rib) the fluid in the 98% slip fraction channel has a much larger value of θ 
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than in the 50% slip fraction channel.  Also the local wall-normal gradient is much 

greater resulting in high thermal transport in this region.  Near the channel centerline, 

however, the value of θ for the 98% slip fraction channel is smaller.  In the 98% slip 

fraction channel there is very little contact with the solid rib because of its characteristic 

small surface area.  Although there is little solid-liquid contact at these interfaces a much 

smaller thermal boundary layer results, and the wall-normal gradient of θ is much greater.   
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Figure 4.13: Schematic showing comparison θ profiles where Fs=0.5 and Fs=0.98 while Re=1000, L/Dh 
=0.25, and Zc=2.  Also shown is θ for a classical scenario. 

More detail of the near-wall region is shown in Fig. 4.14.  Here it can be seen that 

after the fluid is transported above the cavity region the thermal energy of the fluid 

diffuses and the distribution of θ becomes more uniform.  Another cause of the uniform 
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profile is due to the lower temperature air in the cavity.  The air is not at the same 

temperature as the wall because of the motion of the air in the cavity, and the temperature 

gradient at the liquid-vapor interface.   
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Figure 4.14: Schematic showing the near-wall region (20% of channel) of a comparison of θ profiles 
where Fs=0.5 and Fs=0.98 while Re=1000, L/Dh =0.25, and Zc=2.  Also shown is θ for the classical 

scenario. 

4.3.2 Influence of Re on θ 

The channel Reynolds number also exercises a large influence on the behavior of 

the local fluid temperature, θ, and the overall thermal transport.  The reason for the 
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influence is because of the nonlinear nature of the momentum equations and the fact that 

the velocity profiles vary with Re.  The local velocity greatly influences the thermal 

transport.  In the classical scenario profile, θ does not change as the Reynolds number 

varies in the laminar flow regime unless the flow transitions to turbulent behavior, or if 

the Pe << 1 (low Pe flows were not considered here).   The Peclet number, Pe, is the 

product of the Reynolds number, Re, and the Prandtl number, Pr, and indicates the 

significance of axial conduction.  At high values of Pe axial conduction is insignificant, 

since at very high Re the convective terms in 4.9 dominate the thermal transport in the 

system.  On the contrary, low values of Pe make the conduction terms in 4.9 more 

significant and axial conduction cannot be neglected in the analysis.   

An example of the effect of Reynolds number variation on the local temperature field is 

shown in Fig. 4.15.  Here results from two different Reynolds numbers, Re = 1000 and 

Re = 4 are compared.  The geometric parameters are the same for the two cases; Fs = 

0.98, L/Dh = 0.25, and Zc = 2.  For this channel geometry a lower Reynolds number tends 

to shift the temperature profile to be more nearly uniform in the wall-normal direction.  

Even though the Reynolds number is low (Re = 4), Pe is not low enough such that there 

will be significant axial conduction.  It is low enough, however, such that the wall-normal 

conduction is much greater.  At higher Reynolds numbers convection is more dominant 

and the diffusion of heat into the channel centerline is less significant compared to the 

convection.  It should be pointed out that although there is a difference in the velocity 

profiles from the hydrodynamic results, the difference is small and is not sufficient to 

explain this behavior.  
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Figure 4.15: Schematic showing effect of Re on the θ profile.  A classical case is shown with two 
ultrahydrophobic cases where Re=1000 and Re=4 for Fs=0.98, L/Dh =0.25, and Zc=2. 

A near-wall region view of the temperature profiles in Fig. 4.15 is shown in Fig. 

4.16 (inner 10% shown).  The geometry of each scenario is Fs = 0.98, L/Dh = 0.25, and Zc 

= 2 while Re = 1000 for one scenario and Re = 4 for the other.  In this figure more detail 

of the near-wall region is shown and the steep temperature gradient above the rib in the 

high Re scenario becomes more evident.  Larger temperature gradients are indicative of 

more thermal transport.  For both Re the gradient above the cavity region is small, but it 

is even smaller for the low Re scenario.   
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Figure 4.16: Near-wall region showing the effect of Re on the θ profile.  A classical case is shown with 
two ultrahydrophobic cases where Re=1000 and Re=4 for Fs=0.98, L/Dh =0.25, and Zc=2.  

4.3.3 Influence of L/Dh on θ 

An interesting pattern was observed in the velocity profiles when the relative 

module length was decreased, the velocity profiles in the channel became more like those 

of a classical channel.  Here, as the value of L/Dh, the dimensionless module length, 

decreases the thermal transport follows the same pattern; the ultrahydrophobic surface 

tends to have less of an effect on the profiles of θ.  This can be seen below in Fig. 4.17 

where results for two different values of L/Dh are shown, L/Dh =0.05 and L/Dh =2.5 for 

Fs=0.5, Re=1000, and Zc=2.  The scenario with L/Dh = 2.5 shows a large deviation in θ at 



89 

two x/L locations shown.  Conversely, the case where L/Dh = 0.05 shows a θ profile very 

similar to the classical case.  The reason for this behavior is because as the relative 

module length increases there is more surface area to volume ratio.  At a greater surface 

area to volume ratio the insulating effect of the gas cavity is increased and small 

temperature gradients are seen above the cavity region, indicative of less thermal 

transport.  
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Figure 4.17: Schematic showing the effect of L/Dh on the θ profile.  A classical case is shown with 
three ultrahydrophobic cases where L/Dh =0.05 and L/Dh =2.5 for Fs=0.5, Re=1000, and Zc=2. 
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4.3.4 Influence of Zc on θ 

Surprisingly, the value of Zc did not have a noticeable effect on the θ profiles.  

Recall that minor differences were noticed in the velocity profiles. Although the velocity 

differences were small, the cavity depth, Zc, did not appear to affect θ significantly.   

4.3.5 Heat Flux at the Interface and Rib Wall 

This subsection focuses on showing how the heat flux at the rib wall and the 

liquid-vapor interface varies depending on the parameters Fs, L/Dh, Re, and Zc.  The heat 

flux has been normalized according to 4.12,   

)TT(k
D"q

mos

h

−
=

2

ζ          (4.12) 

where q” is the heat flux, Dh is the hydraulic diameter, k is the thermal conductivity of 

the liquid, Ts is the wall temperature, and Tmo is the bulk mean temperature of the fluid as 

it leaves the channel.  Fig. 4.18 shows the effect of Re on the dimensionless heat flux, ζ, 

for Fs=0.5, L/Dh =0.25, and Zc=2.  The heat flux at the beginning of the rib is extremely 

high because of the nearly infinite temperature gradient at that location (i.e., cool fluid in 

direct contact with a hot surface).  The heat flux above the rib is larger for Re=1000 than 

it is for Re=4, whereas above the cavity region the opposite is true.  The profiles also 

appear more symmetric, meaning that the heat flux in the first half of the rib is symmetric 

with the last half of the rib (the same is true for the cavity), for the lower Re scenario.   
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Figure 4.18: Normalized heat flux at the rib wall and interface for two ultrahydrophobic cases where 
Re=1000 and Re=4 for Fs=0.5, L/Dh =0.25, and Zc=2. 

Shown in Fig. 4.19 are predicted heat fluxes for L/Dh =0.25 and L/Dh =0.05 where 

Fs=0.5, Re=4 and Zc=2.  The results show a much larger heat flux above both the rib and 

the cavity region for the scenario where L/Dh =0.05 than for L/Dh =0.25.  This difference 

occurs because the ratio of volume to surface area is higher for low values of L/Dh, 

meaning that there is more fluid in the domain in contact with the wall that is at a 

different temperature (either cold or hot).  For L/Dh =0.05 the heat flux decreases above 

the rib, which is more characteristic of a classical constant temperature heat flux profile.  

Subsequently, as the fluid moves above the cavity the heat flux drops significantly for 

both cases.  It is interesting to note that for a high value of L/Dh the heat flux profiles are 

more nearly symmetric in the streamwise direction in this scenario. 



92 

0.01

0.1

1

10

100

1000

104

0 0.2 0.4 0.6 0.8 1

L/D
h
=0.25

L/D
h
=0.05

ζ

x/L  

Figure 4.19: Normalized heat flux at the rib wall and interface for two ultrahydrophobic cases where 
L/Dh =0.25 and L/Dh =0.05 for Fs=0.5, Re=4, and Zc=2. 
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Figure 4.20: Normalized heat flux at the rib wall and interface for two ultrahydrophobic cases where 
Zc=2 and Zc=0.1 for Fs=0.98, Re=1000, and L/Dh =0.25 
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Fig. 4.20 shows the effect of changing Zc from 2 to 0.1.  The only noticeable 

affect is in the heat flux above the cavity region.  The heat flux is larger for a smaller 

value of Zc because the relative air cavity depth is smaller and the hot wall is closer to the 

fluid, thereby increasing the heat flux.  Even though the heat flux varies with the relative 

cavity depth it is so small that the θ profiles of section 4.3.4 showed no difference. 

4.4 AVERAGE NUSSELT NUMBER RESULTS 

For the cases studied in this section, once a grid-independent solution was 

obtained the inlet and outlet bulk mean temperatures (Tmi and Tmo) could be reported.  

This information along with the other parameters such as channel geometry and Reynolds 

number could be used with 4.7 to calculate the average Nusselt number for each scenario.  

Trends in the average Nusselt number indicate that ultrahydrophobic surfaces decrease 

the overall thermal transport performance.  As a general rule, when the frictional pressure 

drop was reduced so was the heat transfer, although not necessarily at a proportional rate.   

Fig. 4.21 shows the effect of Reynolds number on Nu at a low value of L/Dh.  The 

results show that as the Reynolds number increases the average Nusselt number increases 

monotonically.  This behavior is more consistent with external boundary layer flows than 

it is for fully-developed internal flows.  Also shown is the improvement that can be 

expected as the value of Fs decreases.  The reason for the improvement in Reynolds 

number for a smaller slip fraction is due to the fact that the liquid is in contact with more 

surface area of the heated rib.  This increases the heat transfer and results in a larger 

Nusselt number.   
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When the same study was performed at a different relative module length (L/Dh 

=2.5), the variation in Nu with Reynolds number is greater.  These results are shown in 

Fig. 4.18.  Here as the Reynolds number increases the average Nusselt number increases 

as well. The reason Nu varies more with Re at a larger relative module length as shown in 

Fig. 4.22 compared with Fig. 4.21 is because a larger relative module length corresponds 

to a larger surface area to volume ratio.  Larger Re create smaller thermal boundary layers 

and causing the heat flux to increase.  It is the combination of both the Re effect and the 

L/Dh effect that make the variance on Nu greater in Fig. 4.22 than in Fig. 4.21. 
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Figure 4.21: Schematic showing effect of Re on Nu for Fs=0.98 and Fs=0.5 where L/Dh =0.25, and 
Zc=2. 
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Figure 4.22: Schematic showing effect of Re on Nu for Fs=0.98 and Fs=0.5 where L/Dh =2.5, and Zc=2. 

 The influence that Fs exerts on the average Nusselt number is shown in Fig. 4.23 

for two different values of L/Dh, 0.05 and 2.5.  For all scenarios in the figure Re=1000 

and Zc=2.  The figure shows that for small relative module lengths, L/Dh =0.05 (large 

channel spacing), large slip fractions (Fs > 0.9) lead to a decrease in the thermal transport, 

although below a slip fraction of 0.9 the average Nusselt number does not change 

significantly.  At a small value of L/Dh the change in average Nusselt number was much 

smaller regardless of the slip fraction.   
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Figure 4.23: Schematic showing effect of Fs on Nu for L/Dh =0.05 and L/Dh =2.5 where Re=1000, and 
Zc=2. 

In summary the following conclusions can be made about thermal transport for a 

constant temperature channel with ultrahydrophobic surfaces. 

 Increasing the slip fraction decreases Nu 

 Increasing the dimensionless module length decreases Nu 

 Decreasing the Reynolds number decreases Nu 

 Relative cavity depth had no significant effect on Nu 
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4.5 COMBINED EFFECT OF AVERAGE NUSSELT NUMBER AND DARCY FRICTION 
FACTOR – REYNOLDS NUMBER PRODUCT 

It has been shown that the average Nusselt number is decreased by using 

ultrahydrophobic surfaces and it has been shown that the required pressure drop along the 

channel can be decreased by using these surfaces.  In applications where high heat 

transfer is important as well as having a low pressure drop in the channel, the effect of 

ultrahydrophobic surfaces are competing, i.e., they help lower the pressure drop, but at 

the same time they can degrade the heat transfer.  Although the two are competing 

factors, the benefits of the reduction in pressure may outweigh the cost of the reduction in 

heat transfer.   

One way to quantify this difference is to compare ratios of the Nu to fRe between 

the ultrahydrophobic case and a classical scenario, (Nu/fRe)/(Nu/fRe)classical .  When this 

ratio is greater than unity, it would indicate that the ultrahydrophobic surface has more 

benefit than the classical surface, or the loss in heat transfer compared to the gain in 

reduction in pressure is better than the classical case. 

Fig. 4.24 shows the effect of Reynolds number on (Nu/fRe)/(Nu/fRe)classical at low 

and high values of L/Dh (2.5 and 0.25) for two different slip fractions (Fs=0.98 and 0.5) 

where Zc=2.  The results show that as the Reynolds number increases the 

ultrahydrophobic surface performs better than a classical scenario.  Significant benefit is 

shown for a large slip fraction (Fs=0.02).  This plot shows that for Fs=0.5 and L/Dh =0.25 

performance is worse than a classical wall.  
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Figure 4.24: Schematic showing effect of Re on (Nu/fRe)/(Nu/fRe)classical for Fs=0.98 and Fs=0.5 where 
L/Dh =2.5 and 0.25, and Zc=2. 

 The effect of Fns on (Nu/fRe)/(Nu/fRe)classical is shown in Fig. 4.25 for two 

different values of L/Dh, L/Dh =0.05 and L/Dh =2.5, and for all scenarios in the figure 

Re=1000 and Zc=2.  The figure shows that for L/Dh =0.05, as the slip fraction decreases 

the performance of the ultrahydrophobic surface relative to the classical scenario 

decreases, but in all cases studied for L/Dh =0.05 the performance is better.  The reason 

performance was found to be higher is because of the large effect of the pressure drop 

that a large relative module length, L/Dh, had.  The rate of improvement for fRe was 

greater than the rate of improvement for Nu.  For L/Dh =2.5 the performance is worse 

than the classical case and the slip fraction was predicted to have little effect on the 

performance. 
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Figure 4.25: Schematic showing effect of Fs on (Nu/fRe)/(Nu/fRe)classical for L/Dh =0.05 and L/Dh =2.5 
where Re=1000, and Zc=2. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

Results of an analytical investigation of the laminar, periodically fully-developed 

flow in a parallel plate microchannel with ultrahydrophobic walls are reported in this 

thesis. The ultrahydrophobic surfaces were modeled with microrib and cavity structures 

oriented perpendicular (transverse) to the flow direction where the walls are treated with 

a hydrophobic coating. Two conditions were explored with regard to the cavity region: 1) 

The liquid flow at the liquid-vapor interface was treated ideally as shear-free (vanishing 

viscosity in the vapor region), and 2) the liquid flow in the microchannel core and the 

vapor flow within the cavity were coupled through the velocity and shear stress matching 

at the interface.  Velocities, both streamwise and wall-normal, were predicted and 

compared between the two different cases.  The average streamwise velocity was found 

to be slightly smaller when the vapor flow was modeled.  The streamwise centerline 

velocity was smaller than the classical centerline velocity because there was more motion 

of the fluid near the wall.  The wall shear stress was predicted at the rib wall and liquid-

vapor interface from which the average pressure drop was determined.  The wall shear 

stress above the rib was predicted to be larger than the wall shear stress for the classical 

scenario, while the shear stress at the liquid-vapor interface was predicted to be much 

smaller.   
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Predictions reveal that significant reductions in the frictional pressure drop can be 

achieved relative to the classical smooth channel flow. Reductions in the friction factor 

are greater (up to 90% reduction) as the cavity-to-rib length ratio is increased (increasing 

slip fraction) and as the relative module length is increased. The results also show that the 

average friction factor – Reynolds number product exhibits a flow Reynolds number 

dependence, where increasing Reynolds numbers increase the friction factor. 

Furthermore, the predictions reveal the impact of the vapor cavity regions on the overall 

frictional resistance, showing that small relative cavity depths increase the friction factor. 

In addition to a hydrodynamic study of channel flow through ultrahydrophobic 

surfaces, the thermal transport was studied as well.  A channel was analyzed with a 

constant wall temperature boundary condition.  The model was assumed to be 

periodically thermally developed.  Temperature contours were shown as well as 

dimensionless temperature profiles and these were discussed to show the effects of 

ultrahydrophobic surfaces.  Significant differences were seen in these profiles; an 

increase in relative module length and a reduction in Reynolds number tends to cause the 

temperature profile to be more uniform in the wall normal direction.   

The dimensionless heat flux was predicted along the rib and liquid-vapor 

interface.  The results showed that, low Reynolds numbers, small relative module lengths, 

and small relative cavity depths increased the heat flux.  The average Nusselt number was 

predicted and results show that as the cavity-to-rib length ratio is increased and the 

relative module length is increased the average Nusselt number is reduced.  An increase 

in the Reynolds number was predicted to increase the Nusselt number and to improve 

heat transfer.  An increase in the relative module length was shown to lower the average 



103 

Nusselt number.  For the scenarios studied, the relative cavity depth had no apparent 

effect on the average Nusselt number.  In all cases studied it was shown that the vapor 

cavity decreases heat transfer performance for ultrahydrophobic surfaces compared to 

fully-developed classical parallel plate channel flow. 

A measure of the combined effect of the benefit of drag reduction and the cost of 

thermal transport compared to a classical scenario was calculated.  The results show that 

as the Reynolds number and slip fraction increase the ultrahydrophobic surface performs 

better than a classical scenario.  This means that the cost of a reduction in heat transfer is 

outweighed by the benefit of drag reduction.   

5.2 RECOMMENDATIONS 

It is recommended that additional work be conducted with a different heat transfer 

boundary condition.  One suggestion is to include the ultrahydrophobic surface in the 

computational domain and to study both a constant temperature and a constant heat flux 

on this boundary.  These results could then be compared to results tabulated in the 

literature for both of these classical scenarios in the classical case.  It is also 

recommended that the similar studies be performed using other fluids to show the 

significance of ratio of viscosities and thermal conductivities in both fRe and Nu.  

Experimental data needs to be gathered to validate the model.  It is also recommended 

that low values of Zc be resolved to show in greater detail what causes the increase in fRe 

from that parameter.  In general there are many combinations of parameters that can be 

studied and can add greater detail to what has been predicted here.   
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APPENDIX A – USER DEFINED FUNCTION USED FOR NUMERICAL 
MODELING 

/*** UDF used in specifying boundary conditions at the liquid-gas interface for 
FLUENT.  When imposed at the wall boundaries of the gas and the liquid, this UDF 
matches velocities and shear stresses at this interface.  In other words at each point along 
the gas-liquid interface the velocity and shear stress of the gas is equal to the velocity and 
shear stress of the liquid.   In this case the Zone ID of the wall adjacent to gas is 1, while 
the Zone ID of the wall adjacent to liquid is 2.  These values must be changed to the 
corresponding Zone ID of each wall.  The liquid profile must be used in setting the X-
Component of the shear stress for the liquid wall.  The gas profile must be used in setting 
the X-Velocity Component for the moving wall velocity of the gas wall. ***/ 
 
#include "udf.h" 
 
static real mu = 1.7894e-05  /***  viscosity of gas (in this case air) ***/ 
 
DEFINE_PROFILE(liquid, t, i) 
{ 
  face_t f; 
  cell_t c; 
  Thread *gaswall, *cellthread; 
  Domain *d; 
  int zone_ID = 1; 
  d = Get_Domain(1);   /*** returns fluid domain pointer ***/ 
  airwall = Lookup_Thread(d,zone_ID);  
   
  begin_f_loop(f, t) 
    { 
      c = F_C0(f,gaswall); 
      cellthread = THREAD_T0(gaswall); 
      F_PROFILE(f, t, i) = -mu*C_U_G(c,cellthread)[1]; 
    } 
  end_f_loop(f, t) 
} 
 
 
DEFINE_PROFILE(gas, t, i) 
{ 
  face_t f; 
  Thread *liquidwall; 
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  Domain *d; 
  int zone_ID = 2; 
  d = Get_Domain(1);   /* returns fluid domain pointer */ 
  waterwall = Lookup_Thread(d,zone_ID);  
   
  begin_f_loop(f, t) 
    { 
      F_PROFILE(f, t, i) = F_U(f,waterwall); 
    } 
  end_f_loop(f, t) 
} 
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