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Time Invariance and Liquid State Machines

Eric Goodman and Dan Ventura

Computer Science Department, Brigham Young University, Provo, UT 84602
ericgoodman((tb:yu.edu, ventura/ttcs.byu.edu

Abstract

Time invariant recognition of spatiotcmporal pat­
terns is a common tt4sk of signal processing. Liquid
state machines (LSrv'Is) arc a paradigm which ro­
bustly handle this type of dt""sificatioll. Using an
artificial datth'Sct with target pattern lengths ranging
from O.l to 1.0 seconds. we train an LSM to find the
start of the pattern with a meaIl absolute eITor of
O.18 seconds. Also, LSMs can be trained to identify
spoken digits, 1-9, with an accuracy of 97.6%, even
with scaling by factors ranging from 0.5 to 1.5.

Keywords: Timc-invariancc, Liquid State rv'Ia­
chines, Pattern RecognitioIl) Spiking NeuroIls.

1 Introduction

Signals, which arc any time-varying phenomenon,
pervade and permeate the world we live in. The se­
ries of images that fttkshes across the retina of the
human eye is a signal, as is the succession of sounds
heard by the car. Signals often contain spatiotempo­
ral patterns that occur frequently and have a partic­
ular meaning. These pattenls can exhibit a large de­
gree of variation, but despite these diffenmces, identi­
fication is still necessary. This paper focuses on time­
invariant classification of spatiotemporal patterns.

Formally, a signal is simply a function of time,
J: : T ~ I? A spatiotemporal pattern, ():, is a tu­
ple (n" n r , {J:(t)}I~::+"~) where

• C);s E T is start time of the pattenl
• C);T E I? is the temporal length of the pattern
• and {J:(t)}I~::+(h is the signal J: between times

C);s and C);s + C);T'

Signal J: is said to contain pattern C);.

It is also convenient to talk about classes of pat­
terns, which arc defined tiS any arbitrary set of spa­
tiotemporal patterns. A classifier, r : X ~ {T x I? x
C}, is a function that takes tiS input signals J: E X
and returns sets of tuples of the form (s, 7, c), where
sET is the start time of a spatiotemporal pattern,
7 E I? is the duration, and c E C is the cltiSS of the

patten!. A classifier r is said to recognize a pattern
C); belonging to CltiSS c and contained in signal J: if
(C);s, C);T, c) E r(J:). Also, a cltissifier r is said to recog­
nize a class c if for all J: E X and for all C); E c, if J:

contains ():, (C);s, OCT' c) E r(J:).

In this paper we are interested in time-invariant
cltkSSes of patterns, i.e. patterns that arc the same ex­
cept for location in time and scaling along the time di­
mension. For clarity, these two idetis shall be referred
to tiS time-shift and time-scale invariance. p'/lon: pre­
cisely, a class c is said to be time-shift invariant, if
given any patterns ():, ,8 E c contained in signals J:

and u, respectively, C);T = ,8T and for all f E [O,O'T],
J:(C);s + f) = utBs + f). A cltiSS c is time-scale irwari­
ant if J:(n, + f) = l1C8, + kf) for all f E [0, nfa,,] and
for any k > O. Of course for prtictical purposes, k
will most likely be restricted to some range, but the
objective is to have tiS a large a range tiS possible.

This paper demonstrates that a paradigm known
as liquid state madlines (LSMs) [2] [5] [6] can adlieve
cltkssification for both t:)1)es of time-invariance. Sec­
tion 2 gives a brief introduction to LSrv'Is. Sections
3 and 4 present the results LSrv'Is tidlieve on two
datasets which exhibit time variance. Section 5 then
wraps up with some conclusions and idetts for future
work.

2 Liquid State Machines

To understand the btisic idea behind LSrv'Is, imagine a
pool of water into which various objects arc dropped
[6]. As the objects plunge into the liquid, they per­
turb the surface of the liquid, resulting in complex
pattenls. These pattenls provide a history and de­
scribe both temporally and spatially how the objects
entered the liquid. Stated another way, we have a sig­
nal J:, which is transfonned into another signal with a
function d that encapsulates the dynamics of the liq­
uid. Then a readout function r can then be trained
from the transformed signal d(J:) to cla,ssify the in­
puts.

Now, instead of a pool of water, consider for a mo­
ment the human brain tiS a liquid. Inputs enter the
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Figure 1: Training a Liquid State Machine - First an input signal (a) is transformed into spikes trains via some encoding
process (b) (black dots represent times when a neuron spiked). The spikes then stimulate the liquid (c), which in this case is a
neural microcircuit. At regular intervals, the state of the liquid is transformed into a multi-dimensional state vector (d). From
the sequence of state vectors (d), a training algorithm can be employed to classify the input data, in this case linear regression.

brain through a variety of sources - through eyes and
ears and any of the other senses. These inputs are
encoded via spike trains, or in other words, series of
electrical impulses which form the basis of communi­
cation between neurons. These input spikes in turn
cause a cascade of spikes within the brain, producing
complex interactions, analogous to the ripples and
interference patterns produced in the pool of water.

The liquid we use in this paper attempts to model
the complex behavior of the brain with a recurrently­
connected spiking neural network, often called a neu­
ral microcircuit (the modeling software is from [7]).
A spiking neural network consists of a finite set V of
spiking neurons, a set E ~ V x V of synapses, a weight
wu,v 2:: a and a response junction cu,v : n+ -+ n for
each synapse (u, v) E E, and a threshold junction
E>v : n+ -+ n+ for each neuron v E V. For more
information on spiking networks, see [1] and [4].

Unlike many artificial neuron models in use today,
(e.g. perceptrons and sigmoidal units), the neurons
in a neural microcircuit actually model the spiking
behavior of real biological neurons. Aside from pro­
viding many more degrees of freedom, spiking neu­
rons can naturally represent time-varying functions,
since by definition they are a temporal phenomenon.
Also, neural microcircuits have the potential to re­
tain information from inputs far in the past, allowing
inputs to be integrated together over time.

As stated before, a readout function r is trained on
the output of the liquid, d(x). However, since the liq­
uid we use is a neural microcircuit, often x must first
be encoded as spike trains with some function e in
order to interact with neurons of the circuit. Also, to
enable the use of a wide variety of training algorithms
which can not directly use spikes, samples of the state
of the liquid are taken and form a series of vectors,
called state vectors, which can then be used to train
a readout function. This sampling process will be de­
noted by a function s. All together, the application
of an LSM to a signal x can be described by the ex-

pression r(s(d(e(x)))). Figure 1 displays graphically
how an LSM works.

For the most part, the default parameters of the
modeling software are used, except as explicitly
stated in each individual section. However, all experi­
ments have the following parameters settings in com­
mon. Linear least-squares regression, a fairly sim­
ple algorithm limited in its representational power,
is chosen for the training of the readout function so
that results can be attributed more to the circuit and
its ability to simplify the task of classification rather
than to the power of the learning algorithm. Also,
both experiments use a network size of 135 neurons,
with the topology of the circuit being a square column
of dimension 3 x 3 x 15 neurons. The state vectors
are composed of 135 elements, one element for each
neuron in the circuit. Each element is a rough ap­
proximation of firing rate of the neuron at the time
of the sample.

3 Boundary Detection

This first problem tests both the time-shift and time­
scale invariant properties of the LSM on an artifi­
cial dataset that mimics real world problems. The
basic problem can be described as follows. There
is a set of time-shift and time-scale invariant pat­
tern classes, C = {CO,Cl' ... ,cn }, and a set of sig­
nals, X = {XO,Xl' ••. ,xm }. The task is to find the
as and aT of any pattern a E C contained in some
Xi EX. The problem we solve here is somewhat
simplified in that we only consider one pattern class,
C = {co}, and signals which have the general form
Xi = [Oi, ai, ¢i], i.e. the pattern ai E Co is sand­
wiched between two portions of the signal which are
completely random, Oi and ¢i.

The artificial dataset is created in the following
manner. A template of 100 points is created, drawn
from a uniform distribution ranging from -1 to 1.



This template, considered to be of length 0.55 sec­
onds, is then scaled along the time dimension to cre­
ate 100 instances or target pattern Cli'S between 0.1
seconds to 1 second in length, again using a uniform
distribution. Each of the 100 Cli'S is also sandwiched
between two random signals, i.e. (}i and ¢>i' Every (}i

and ¢>i is created uniquely, though in a similar man­
ner to how the template that formed the basis for
each of the Cli is created. Like the template, each ran­
dom piece is created from 100 points, drawn from the
same uniform distribution. Also like the template,
they are considered to be of length 0.55 seconds and
then scaled to the range between 0.1 seconds and 1
second in length. The only difference being that each
random piece is created uniquely and never repeated,
not within the same signal nor in any other Xi. Fi­
nally, each instance is then sampled at a rate of 100
samples per second, using linear interpolation to find
the values between points.

Each Xi is translated into spikes in the following
manner. A number of input neurons, nin is chosen
that will represent the signal over time, for these ex­
periments nin = 10. Now, each of the input neu­
rons is assigned to cover a portion of the range of
the signal. The assigned range for each neuron, Tj, is
calculated with following formula:

l::;j<nin

j = nin

wherell is the maximum value in the range and w is
the minimum value. Then for each time t correspond­
ing to a discrete point in the signal having value Xi(t),

the neuron j that has Xi(t) E Tj would fire at time t.

The dataset is divided into ten different randomly
generated subdivisions of 80% for training and 20%
for validation. From each of the training subdivi­
sions, a linear regressive model is trained on the state
vectors, which is then tested on the validation set.
An example application of a model to an instance is
shown in Figure 2.

As stated earlier, samples of the circui t, state vec­
tors, are taken at periodic intervals and a determina­
tion is made by the readout function as to whether
that sample point belongs to the target pattern class.
A moving average is used to approximate Cli, and Cli<

for each signal Xi. More specifically, given a sequence
vo, VI, ... ,Vn , of state vectors, a readout function T, a
window size 0, and a threshold fl, the following for­
mulae describe how Cli, and Cli< are approximated:
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Figure 2: Grignal signal and output of a trained
model applied to it - The dark colored diamonds in­
dicate the output of the model. A 1 denotes the model
believes the patteJ'n is present; a ZeJ'O denotes otherwise.
The vertical dashed lines represent when the patteJ'n is
actually OCCUlTing, while the stars indicate the estinlated
start and stop times of the target pattern

(

H8(' )T vkl
t r = argfirst L -0- < fl

t,<rSn k=j

ai, = Ws)

iii< = Wr) - Ws)

where the function ~ : Z --t T gives the time at which
the jUt state vector is sampled.

After the start and end times of the pattern are es­
timated on the training data, the median error is used
to offset the estimation. For example, the adjustment
for the start times is accomplished by

est(i) = est(i) - rnedian(c)

where est(i) signifies the estimated start time for sig­
nal Xi and c represents the set of start errors from
the initial estimation. Similarly, the end times are
adjusted. As a general rule, the LSM has a tendency
to be late in its prediction, so subtracting the median
error helps to correct this fault.

Experiment 1 2 3

Mean Syn. Delay(s) default om 0.55

Train Error Start (s) 0.21 (0.02) 0.23 (0.03) 0.16 (0.02)

Train Error Stop (s) 0.19 (0.03) 0.19 (0.02) 0.16 (0.02)

Val. Error Start (s) 0.30 (0.06) 0.22 (0.0'1) 0.18 (0.03)

Val. Error Stop (s) 0.25 (0.06) 0.19 (0.03) 0.15 (0.04)

Table 1: Average enor u'om tluee e..xpeJ·iments on the
bOUlldary detection problem. Numbers in parenthesis de­
note standard deviations.

Table 1 shows the results on the dataset for three
different tests. In all three cases, the circuit is sam­
pled every 0.01 seconds. The only parameter that is
varied in each of the three tests is the mean delay



4 Spoken Digit Recognition

R t •. (t' _ mfcci(t)
.a c, ) - ((1 ' ,AfaJ:Rate

'- i wd

where 0i is the largest 'i fh mfcc, Wi is the smallest 'ith

mfcc. and where the maximum rate is set to 200 Hz
Experiment 1 2 3
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LSrv'Is provide a robust way of handling signals that
require time-invariant clnssification of spatiotempo­
ral patterns. The first artificial datttset provides evi­
dence that LSrv'Is can give good accuracy even when
there e"Aists a large amount of time-shift and time­
scale variance in the data. The more realistic problem
of identifying digits further shows that LSrv'Is have the
potential to solve real-world problems that demon­
strate time-scale variance.

Better methods for determining Ctij and Ct T need to
be e"Al)lored; the naive approach of using a moving
average worked well for a first attempt, but could
be much improved, perhaps \vith statistical meth­
ods. Also, further study is required to understand
how delay times affect the ttccuracy of the LSrv'I. Re­
sults from both datasets hint that long mean delay
times somehow increttse accuracy_ but how and why
remains Une"Al)lained.

vVe thank Sandia National Laboratories for partially
funding this research.

98.20(1.05)

97.59(2.11)

0.5

97.79(0.59)90.40(a.41)

default

80.00(5JiI)Val. Acc.(%)

'I'rain Ace (%)

!vlean SYll. DeJay(s)

time of the s:ynapses. The first test uses the default
mean delay time, which varies from 8e-4 to l.fx1-3 sec­
onds, depending on the type of synapse. The second
test sets the mean delay time for all S}'1HlpSeS to 0.01
seconds, and the final test hth'S it at 0.55 seconds.

Table 2: Average accuracy for three experiments on the
speech data. Numbers in parenthesis denote standard
deviations.

Table 2 displays the results obtained on the speech
data. Three experiments arc conducted, each with
varying mean delay times. The sample rate is held
constant, sampling every 0.1 seconds. As with the
previous experiment, ten iterations arc run on ten
diffenmt subdivisions of the dataset, with 80% used
for training and 20% used for validation.

This ne"A't problem tests the time-scale invariant prop­
erties of the LSrv'I using a sample of spoken digits.
The ta,sk is to be able to identify the spoken digits,
1-9, despite time-scaling variances. Two examples of
each digit are selected from the TIDIGITS corpus [3]
and any silence is removed so that just the speech
signal remains. To test the time-scale invariance, nu­
merous additional instances arc created by shorten­
ing and lengthening the original signals by a factor
C E {O.5, 0.55, 0.60, ... , lAO, 1.45, 1.5}. The resultant
datttset is of size 378 instances.

The translation process into spikes differs from
what is used in the previous example. Each instance
is first translated into series of 13 rv'Iel frequency cep­
stral coefficients (mfccs). The frame size,nij' which
is the number of points used to compute the Fourier
transform, is set to be the largest number of points
which is both a power of two and less than 30 ms.
The frame rate, or how often mfccs arc calculated, is
then set to be T' Ettch of the 13 mfccs is ttssigned its
own neuron to represent it. The maximum and mini­
mum values of each the mfccs across all instances arc
found. From these maximum and minimum values,
the firing rate of of each of the 13 neurons is deter­
mined by the following equation:
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