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ABSTRACT

DESIGN AND MEASUREMENT OF A REAL-TIME PEER-TO-PEER GAME

Michael Simonsen

Department of Computer Science

Master of Science

Currently, multiplayer online games use the client-server architecture which

is very resource intensive, expensive, and time consuming. Peer-to-peer protocols

are a less resource intensive alternative to the client-server model. We implement a

peer-to-peer protocol called NEO in a multiplayer game and run experiments in a

lab setting and over the Internet. These experiments show us that NEO is able to

run a smooth playable game, with low unused updates and low location error. This

happens as long as the arrival delay is long enough to allow updates to arrive in the

given time limit and the round length is short enough to keep the location error down.

However, the experiments also show that NEO has scalability problems that need to

be corrected. When more than 4 clients are used the playout delay is the same length

as the round which causes high location error. Also, more clients cause more updates

to go unused which also causes high location error.
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1 Introduction

Video games have become one of the most popular uses for the home computer.

The video game industry reported sales of 7.3 billion dollars in 2004 [1], more than

double the sales in 1996. Among the people who are playing video games, 43% play

some sort of online game. These multi-player online games have become very popular

among internet users. Multi-player games range from turn-based games [2], which

are not very demanding of resources, to real-time strategy (RTS) games, which need

at least one move every 500 ms, and then to first-person role-playing (FPRP) games

that require a latency of under 100 ms to be playable [3]. The resource requirements

for these games have caused game providers to create large server farms with large

amounts of bandwidth and processing power. These server farms are necessary to

keep the games running and meeting their latency requirements. The growth of this

industry is expected to continue, so there is a need to find other ways to allow these

games to run without having to use more and more hardware.

One way to support large-scale online games without a large number of cen-

tralized resources is through the use of peer-to-peer networking. In order to use a

peer-to-peer protocol for a real-time game, the protocol will need to meet latency

requirements, be secure, and be scalable. This is a difficult thing to do because it

is hard to find the right balance between security and latency. Generally the more

security there is in the protocol, the longer it will take and the higher the latency will

be.

1.1 Current Practice

Currently most multi-player games use a client-server model for communica-

tions. In this architecture, a client sends an update to the server, which then verifies

the contents of the update and sends it to all other clients that need the information.

This architecture is very simple to implement and keep running because the server is

responsible for computations, data storage, ordering events, and security of all these

items, but this can also be quite a drain on the resources of the server.
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One of the main limitations that multi-player games have is the network. The

amount of bandwidth a game needs directly affects the number of clients that can

connect to the server at the same time. The amount of bandwidth needed for a FPRP

server is shown in Pellegrino et al. [4] to scale quadratically with the number of clients;

while in most games the bandwidth requirements do not rise this dramatically, they

are much higher than linear. Companies do the best they can to provide high-speed

connections. However, bandwidth can still be constrained by how much is available

in the geographical area in which the servers are located. While the bandwidth

requirement at the client does scale linearly, the slower speeds of connections at the

client make it so that the client is still limited in the number of updates it can receive.

Latency is another issue that multi-player games have to deal with in a client-

server architecture. The high bandwidth use can lead to queuing delays on routers

near the server, causing large and jittery latencies. Having to send all information

through a server also can cause high latencies for clients. As discussed earlier, different

kinds of games have different tolerances for different amount of latencies. First-person

games need a very small latency because the state of the game can change very rapidly;

the longer it is between updates the harder it is to make an informed decision in the

game. A RTS game can handle a much higher latency because this type of game

does not require the same level of control as a FPRP does. As long as the amount of

jitter is low, RTS games can have latencies of up to 500 milliseconds without affecting

the game [3]. Jitter is a problem because users like a game to update at constant

intervals. If the jitter is high, users feel like the game is jerky, which can be very

frustrating for the users.

The main way that companies help these games to scale is to have server farms.

These server farms are not the same kind of server farms that are used for websites.

In a website server farm, all the servers are serving the same information and any one

of the servers can process any given request. Multi-player games use different kinds

of server farms. One kind has each server running its own instance of the game; there

is no interaction between the servers. In a distributed game server farm, each server

runs a portion of the game; a player is transported from server to server when they
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move to a new area in the game [5, 6]. In addition, multiple server farms are usually

set up for a single game and each server farm is separate from the others, so there is

no communication between them. Both of these types of server farms help with the

scalability problems, but they are still limited to just a few thousand clients. In July

of 2002 Everquest had more than 400,000 active users [7]. Limiting these players to

only be able to interact with a few thousand other users takes away a large portion

of the game experience.

1.2 NEO

Peer-to-peer networks allow clients to communicate with each other directly,

instead of sending the communication through a server. This can help to alleviate

some of the strain placed on the server by real-time games. NEO [8] is an example

of a peer-to-peer architecture that was built for real-time communications. One of

NEO’s primary accomplishments is security, as it prevents several common methods

of cheating. However, the performance of NEO in a real world environment has not

previously been studied.

In this thesis our goal is to design and implement a game using the NEO

protocol. We are doing this because NEO has never been implemented in a real

game; it has only been simulated. Designing a game with NEO will help flush out

issues that may not have come up during the simulations. We are measuring NEO’s

performance so that we can determine how well it works in a real game over the

Internet. The goal is not to scale NEO to 400, 000 clients or even 2, 000 that is

used in a game like Everquest. Instead the goal is to get NEO to scale to groups of

10− 50 clients without using a central server. This thesis is limited to looking at the

communication and not the computation or storage aspects of NEO.

1.3 Thesis Summary

For this thesis, we design, implement, and measure the performance of a real-

time, peer-to-peer game using NEO for multiplayer communication. We conduct our

measurement study in both a lab environment with emulated delay and loss, as well as
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on the Internet. In both cases we use artificial intelligence to play the game remotely.

We examine many parameters to determine the feasibility of using a peer-to-peer

architecture for real-time games.

One of the contributions of this thesis is the modification of NEO to distinguish

between state-changing and positional updates. This modification is done by using

a TCP channel for state-changing moves and the regular UDP NEO channel for

positional updates. This allows NEO to not have to recover any lost update, because

an update that is lost will be out of date by the time it is recovered. It also guarantees

that the state-changing moves will arrive at the clients, this keeps the game state on

each client synchronized. Another contribution this thesis makes is NEO settings

that allow the game to be played effectively with 3− 4 players. These settings allow

the game to be played with low location error which makes the game more playable.

Obviously, if NEO can only scale to 3 or 4 players it will not be very effective as a

multiplayer protocol, so we find the problems that keep NEO from scaling and point

out ways to solve these problems.
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Figure 1: Bucket synchronization mechanism used in MiMaze. The horizontal is
time [10]

2 Related Work

Many ideas have been researched and tested which try to make peer-to-peer

games possible. We begin by examining the development of NEO, then consider

alternative approaches.

2.1 NEO

Any distributed multiplayer game needs to use a method called dead reckoning

to help overcome problems with latency [9]. Dead reckoning is a method of guessing

where the opponents will be at time t based on where they were at time t−1 and t−2.

This allows the user to react more quickly to other clients and makes for smoother

game play. It can also make wrong guesses, which cause the clients to jump around

the screen unrealistically, so using as little dead reckoning as possible is best for a

game.

One of the first distributed real-time games was MiMaze [10]. MiMaze uses

multicast as its main means of communication, and a system called bucket synchro-

nization as a way to keep the game state consistent. In bucket synchronization, shown

in Figure 1, time is broken down into periods called buckets. All events that happen
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during one of these time periods are used to compute the new game state after a

given amount of time. As seen in Figure 1, all events that happen between times a

and b are put into bucket d and used to compute the state of the game at that time.

These updates are placed in bucket d because this is the bucket which occurs after

the transmission delay time, so each update has enough time to get to its destination.

In this way all updates from other clients have time to arrive so they can be used to

compute the game state.

Bucket synchronization has two fundamental limitations. First, it is bounded

by the latency of the slowest participant because the time before a bucket is processed

needs to be long enough for the moves to arrive. Second, bucket synchronization is

also susceptible to cheating. A client can simply not send out messages for a period

of time in order to see what is going on in the game and then send out a message

with an update. Other clients will simply think that the malicious client has a poor

connection and that the update is consistent with what it was going to do all along.

The lockstep protocol [11] attempts to fix the security problems in bucket

synchronization. In this protocol each client decides its next move but does not send

it to the other clients. Instead it sends out a one-way hash of the move; once a

client receives hashes from all other players the client sends out the plain text of its

move. This makes it easy for each client to verify the moves of the other clients. It

also makes it so that it is not beneficial to wait before an update is sent out. The

main problem is that the game play is still slowed down to the speed of the slowest

participant.

Some modifications have been proposed for the lockstep protocol, such as the

pipelined lockstep protocol [12]. This pipeline modification allows the protocol to

send the hash of a certain number of updates before the actual updates are sent

out. This allows the lockstep protocol to not be affected as much by the speed of

the slowest participant but it also introduces a suppressed update cheat. This means

that a malicious client can choose to not send an update until it has more information

than it should for the update it is sending.

The adaptive pipeline lockstep protocol [13] was proposed to help overcome
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the problems of the pipelined lockstep protocol. In this protocol the value of the

latency of the slowest link is used to determine the size of the pipeline to use. This

protocol helps to eliminate the problems with the pipelined lockstep protocol, but the

writers acknowledge that it is possible for this algorithm to think a client is cheating

when they are really just having temporary congestion on their link.

NEO [8] is another protocol that has been proposed to allow real time secure

communications in a peer-to-peer system. NEO is much like the lockstep protocol

except for one major difference: it is not bounded by the slowest client’s latency. This

is because NEO divides time into rounds. The round length is then the bound for the

latency of updates. If an update is not received by enough clients within the round

window it is not used to update the game state. This makes it so that each peer

does not have to have good latency to every other peer, just good latency to enough

peers so that its updates get acknowledged. Each update the peers send contains

information about whether or not the peer got an update from the other peers for

the last round. This voting system allows each peer to know if a move was accepted

by enough peers to be used.

Several optimizations improve NEO’s performance. Players can modify the

NEO round length if messages keep coming in late or all the messages are getting

in well before the time limit. This is done by another voting procedure; once the

majority of nodes agree that the round length should be changed the new round

length is set and broadcasted to all nodes. Rounds can also be pipelined like in the

pipelined lockstep protocol. This gives NEO the same benefits that pipelined lockstep

has, but it does not expose NEO to the same cheating because of the round length

waiting limit.

A recent extension to NEO adds congestion control to avoid overwhelming the

network [14]. Clients observe packet loss and then adjust the pipeline depth up or

down to increase or decrease the sending rate, again using a group voting system to

decide what to do. When changing the pipeline depth, NEO uses additive-increase

and multiplicative-decrease like that used in TCP. NEO also uses an exponentially

weighted moving average when determining when to change the pipeline depth so
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that it is not affected by sudden temporary peaks in congestion.

2.2 Other Approaches

2.2.1 Mercury

Mercury [15] is a peer-to-peer architecture that takes the reverse approach of

NEO. While NEO takes a bottom-up approach, making the architecture secure first

then dealing with scalability, Mercury is scalable but not as secure.

Mercury uses a publish-subscribe architecture that can be implemented on any

distributed hash table(DHT) such as pastry [16], chord [17], or CAN [18]. A query

language similar to SQL is used to publish and subscribe to events. In a Mercury

game a client that is in an area will publish events such as its position. When client

1 publishes its location, all other clients who are subscribed to the area that client

1 is in will receive an update message letting them know client 1’s new location.

This publish-subscribe system can be used for any type of object such as treasures or

weapons, not just locations.

The performance evaluation of Mercury shows that the delivery delay scales

linearly with the number of players. For 50 players the delay was an average of 400

ms and for 100 players the delay was an average of 500 ms. There are a few things

that can be done in the DHT to make the delay less, such as taking into account the

distances between nodes.

2.2.2 Synchronized P2P simulation

When the multiplayer portion of Age of Empires was made, the main goal

was to keep the single player game play intact while supporting up to 8 players.

This meant being able to support hundreds if not thousands of units on screen at

once. Because of bandwidth limitations, it is not possible to send information about

each unit to each player in the game. Instead each client runs its own simulation

of the game and sends the players input, such as mouse movement and key presses,

to all other clients. The clients then just have to make sure the simulations are
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synchronized. If the game becomes unsynchronized the simulation stops and must be

restarted by the players.

While this is a good solution for allowing thousands of units to be created and

used at once it does not scale very well which is one reason the game only supports

8 players. Also the simulations can only run as fast as the slowest client can process

updates and render the new game world.

2.2.3 SimMUD

SimMUD [19] is a peer-to-peer architecture that is built on Pastry and Scribe [20].

In SimMUD players are grouped together based on their location in the game space.

These groups then share updates using multicast. Because a DHT and multicast are

used the system has a high tolerance for loss and failure of nodes.

The game state is kept by nodes that are participating in the DHT network,

with a server being used for game states that are not changed very often. Game state

is also replicated onto other nodes that are not in charge of the state in case the node

that is in charge of the state fails. When this happens the replica node takes over

and the game continues without the players noticing.

SimMUD has an average latency of 200 ms which is good enough to play many

types of multiplayer games but not all. Also if too many clients are in the same group

the multicast will start to slow down causing game play to lag.

2.2.4 Sync-MS

There is another approach to peer-to-peer gaming being proposed by some

researchers which does not include a new protocol. Instead they want to add hardware

to the architecture of the internet which would make peer-to-peer gaming easier, one

such proposal is call Sync-MS [21].

Sync-MS adds nodes the network that synchronize game play. These nodes

only attempt to make the game fair, they do not attempt to lower delay. The nodes

make the game fair by delivering the message at the same time to all other nodes and

sorting out the order of player actions.
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2.2.5 Booster Boxes

Booster Boxes [22] are extra servers that are deployed throughout the network

which act the same way web caches work. They cache messages for faster responses,

they aggregate messages so less messages have to be delivered, they filter messages so

that only clients that need the messages get them, and they route messages so delay

is minimized.

This allows a lot of the load to be removed from the server and distributed

around the network while not putting the load on the clients. This also keeps the

network more secure than a regular peer-to-peer network would be.
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3 Implementation of a Peer-to-Peer game using NEO

The first thing we did was implement NEO with both a peer-to-peer and client-

server network architecture. We did this so that game performance, using statistics

such as latency, bandwidth, and playout delay, could be compared between the two

types of architectures. Doing this involved creating an efficient game loop and dead

reckoning algorithm. We also had to create the client-server architecture and work

out the details of how to implement NEO for a real game.
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3.1 Building an Online Multiplayer Game

3.1.1 Eater Game

We implemented a Pacman-like game that was called the Eater Game. This

game, shown in Figure 2, uses Windows Forms and consists of a randomly generated

maze and a few randomly placed stones. A new stone is randomly regenerated each

time one is eaten so that there will always be a consistent number of stones on the

board. The code base for this game comes from www.c-sharpcorner.com [23],but it

was modified considerably to make it more suitable for the experiments. The object

model and the way rendering was handled were modified to make them more efficient.

Also multi-player support and network communication were added.

The maze for this game is generated by first creating a number of cells that

cover the game board. Then starting with the cell in the top left corner a neighbor

to that cell which has all walls still intact is randomly chosen. The wall between the

two cells is then knocked down and the new cell is placed on the stack. This process

is then repeated starting from the cell that was chosen. If the starting cell does not

have any neighbors that still have all walls, a cell is popped off the stack and it is

used as the starting cell. This process is continued until all cells have been visited.

The algorithm then randomly chooses a number of cells and knocks down a few more

walls. This is done to make the maze easier to navigate through.

The game is played by artificial agents using a modified A* algorithm. The

first thing that the algorithm does is determine which are the five closest stones,

ignoring walls. Next from those five it determines which is the closest, taking walls

into consideration. If the closest stone is significantly closer than the other stones,

the agent goes for the closest stone. This is done so that a agent will not turn away

from a stone that is right next to its location. If it is not significantly closer, the agent

randomly chooses a stone out of the five and uses the A* algorithm to determine the

best path to take to get to the stone. The random picking from the top five stones is

done so that if two agents are in the same cell they will not follow each other around

the whole game. The agent is moved at a rate of 3 pixels every 50 milliseconds.
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Figure 2: A screenshot of the Eater game
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The goal of this game is simply to get the most stones in a specified amount

of time, for our experiments this time was two to five minutes. The goal of the

experiments is to observe the network communication and game performance, so

while how many stones were eaten and who won the game is tracked while the game

is played, these statistics were not saved for consideration in the results.

3.1.2 The Game Loop

The game loop is a very important part of building an efficient game. The

game loop is what handles the order of processing events and updating the game state

and rendering the game to the screen. A basic game loop looks like this:

Algorithm 1 A Basic Game Loop

while gameIsRunning do
Process User Inputs
Update Game State
Render to screen

end while

This algorithm has been shown to be the most efficient way of processing game

state and updating the graphics for games. This is because there is one process doing

all the work so there will be no fighting for processor time with other processes. If

there are multiple agents on the screen at one time the process is able to update the

information from all of them and then update the screen once. This is best because

the updating of the screen is usually the most time consuming operation for the

algorithm. If each agent instead uses it’s own process to update the clients state and

call for the screen to be redrawn, the redrawing will happen much more often and

just a few agents will quickly overwhelm the computer, causing the game to run very

slowly.
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Figure 3: Example of how dead reckoning can help game play. The top line of images
shows what is seen on the local client. The bottom line is what is seen on a remote
client when dead reckoning is not used. If dead reckoning is used the top and the
bottom images will be the same.
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3.1.3 Dead Reckoning

One of the most important parts of a multiplayer network game is dead reck-

oning. As shown in Figure 3, dead reckoning allows each player to see the same game

state at the same time. Basic dead reckoning is done by assuming that the distance

and direction that an agent will move from time t − 1 to time t is the same as the

distance and direction that the agent moved from t− 2 to t− 1.

We tried several methods to ensure good quality dead reckoning in the game.

First, we used the basic dead reckoning approach which works well for games with

agents like race cars that have to accelerate, but in a maze game like Pacman, in

which the agents can stop and turn without any notice, this type of dead reckoning

is not sufficient because it makes the agents appear to go through walls.

Our second attempt at dead reckoning in a maze was done using the A*

algorithm to tell the dead reckoning algorithm which direction to go. This was not a

good approach because a human user or even an AI algorithm with randomness will

not always select the same stone that the A* algorithm does. This causes a lot of

wrong guesses and ends up making the game look bad.

The third attempt was a combination of the first two. The A* algorithm is

only consulted when the agent is in the middle of a square. This did not work because

when the agent was in the middle of a square the A* might guess that the agent would

go up, but instead the agent goes to the right. In the next square the A* guesses

that the agent will turn around in order to go back to the square it had originally

guessed, but again the agent moves to the right. So this hybrid method did not guess

right very often and when it was wrong it would continue to be wrong for a number

of guesses.

The method that was finally used was also a hybrid method but it has more

conditions on when the A* is used. In this method the basic dead reckoning method is

used unless the agent is in the center of a square and the agent’s current direction will

take the agent into a wall. Otherwise the A* method is used to see which direction

that agent should turn. From our view this method turns out to work quite well in

the limitations of a maze, because it keeps the agent from running into walls and
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guesses pretty well when it needs to.
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Figure 4: Update processing in the client server architecture.

3.2 Client Server

We implemented a client-server network interface so that its performance can

be compared with the peer-to-peer architecture. Most online games use this model

because the server is a central authority for the game. This makes it easier to manage

the game because security, event ordering, data storage, and non-player characters

are all controlled in the same central location. The second reason is that the updates

can be processed at the client very quickly. All the client has to do is process the

updates with the exact information that the server has sent to the client. This allows

the client to spend very little time processing the messages and more time accepting

user input and updating the screen. All messages in the client-server architecture are

sent using UDP so that the comparison with NEO is more accurate; NEO uses UDP.

The simple client-server architecture we built is shown in Figure 4. The client

only does a quick check to make sure the move is valid before it sends the update

to the server; a valid move is one that doesn’t go through a wall. When the server

receives an update, it verifies that the update is valid and that the update has arrived

in the right order. The server then sends the update to all agents except for the one

it received the update from.

When the server checks an update, it looks for collisions with stones and walls.
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An update that causes the agent to run into a wall is discarded. If an update causes

the agent to run into a stone the stone is considered to have been picked up by the

agent. When this happens, the server has to send a remove stone message to every

client that is participating in the game. This is done by piggybacking the message on

the update message that is already being sent to the clients. When there is a stone

message going out with the update, the update is sent to all clients so that the client

who sent the update will get a confirmation that it did pick up the stone.

When the update is checked, the server also makes sure that the update is

not an old update, this is done by looking at the sequence number. Updates can

arrive out of order because we are using UDP, if the update is late or out of order,

the update is checked to see if the client picked up a stone and if that stone has not

already been picked up by another client. If there is a need to send stone information

out to the clients the server sends that information, otherwise the update information

is discarded.

The way threads are used in the game is very important; if there are too few

threads then the client will not be able to get every thing done in a timely manner.

If the client uses too many threads, a race condition will develop, with one or more

threads getting little to no processing time, which makes the process not able to get

everything done that needs to be done. In the Eater game, the client has separate

threads for the game loop thread, the network listen thread, and the update process

thread.

The game loop thread is the main processing loop in the game. This loop is

responsible for doing the calculations to determine where the agent should move. It

then moves the agent and sends the update information to the server, it then updates

the screen with the positions for all agents. This thread is also responsible for sending

the statistics to the server at the end of each game.

The network listen thread listens for incoming updates and puts the new up-

date on a queue for the update process thread to use. When there are updates on

the queue, the update process thread pops one update off the queue on a first in first

out basis. This update is then processed and the game state is updated with the new
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information. Finally, the update process thread saves the statistics used for the game

trace.

The server uses three types of threads: the stats thread, the server thread,

and the update processing threads. The stats thread listens for statistics information

coming in from the clients and compiles this statistics information. When the game

is over it saves the statistics to the hard drive so it can be analyzed later.

The server thread listens for messages from the clients and puts them on a

queue for processing and sending on to other clients; there is one queue for each

client playing the game. There is also one update processing thread for each client;

this allows the server to keep track of sequence numbers easier and it allows the

server to process stone pick ups easier. The update processing threads pop messages

off their queue on a first in first out basis. Then the thread processes the update

information checking for valid updates and looking for stone pickups and sends the

update information to the other clients.
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Figure 5: NEO rounds and pipeline depth description [8].

3.3 NEO

NEO is a peer-to-peer architecture that has been developed to allow real-time

games to be played while not allowing cheating. Shown in Figure 5, NEO divides

time up into rounds and adds a pipelined depth. NEO sends one update via UDP per

round and depth. We added a TCP channel to NEO so that state changing moves

could be sent with a guarantee of arriving and so that lost updates would not have

to be resent over the UDP channel.

3.3.1 Positional vs. State Changing Updates

When designing NEO into our game we decided that no messages would be

recovered. This choice was made because the number of messages that would need to

be recovered would be so much lower than the number of messages that could end up

being recovered. Our method uses voting only for message acceptance, if a message

is on time it is voted for and if a message receives at least half the votes it could get

it is accepted otherwise it is discarded.

In order to make sure important messages still got through a server was used

to send the stone update messages. This server communicated with the clients using

TCP to make sure no updates would be lost. Since this these updates are a very
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Figure 6: Message recovery situation. It can be seen that when client 1 resends
update 5 it arrives too late to be useful, because update 6 has already arrived.

small portion of the overall update it has very little affect on the NEO system except

that it allows us not to have to recover messages.

NEO uses a message recovery system that allows it to always have the infor-

mation it needs for the voting to work. This is done by including a resend update

flag in a the next update. When a client finds this flag in an update the last update

will be automatically resent to the requesting client. This system requires all lost

messages to be recovered so that the voting can be accurate. However, recovering

some messages can take more effort than it is worth because most messages will be

out of date by the time they arrive at the client and so the message will be thrown

out anyway. An example of this in the Eater game is shown in Figure 6, since up-

date number 5 gets lost a resend flag is set in update number 6, this causes client

1 to resend update 5. When update 5 arrives at client 2 update 6 has already been

processed so processing update 5 would only cause the eater to jump backwards and

then forwards.

Since not all messages need to be recovered in order to allow the game to run
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correctly a system was devised to allow only the important messages be recovered. In

the case of the Eater game the important messages are those which contain informa-

tion about stone placement or removal. This system put a flag in the messages letting

the clients know that the message was needed and should be recovered. This flag was

to be put in the actual message and in the voting messages. This way if a message was

lost the client could still tell if the message should be recovered. A problem occurs if

two messages are lost, because the recover flag would be lost also. So the choice was

do we add the recovery flag to the next n messages, n being a number that we are

confident would not get lost in a row, or do we recover all messages. Since we did not

want to recover all lost messages and recovering only certain messages was proving

to be very complicated, we decided to go with the separate TCP channel which was

described earlier.

3.3.2 Sending Updates

There are several specifics of the NEO protocol that had to be worked out so

that NEO could be taken from theory to an implementation. The first is making sure

that a move is sent out right at the beginning of the round so that it is sure to have

the best chance of arriving on time at the other clients. The original method used

to accomplish this was to queue up the next move during the preceding move. This

method was good at getting the update to the other clients as quickly as possible but

it was not a good method because the updates were more out of date than they had

to be, moves could be as high as 1000 ms apart and the agents state is updated every

50 ms.

The method which was finally used was to split the sending of updates out to

its own thread. This made it so that one thread was used to process AI input and

update the game state, while another thread was used to send the agents position at

the required time. This worked quite well because the sending of the updates was

the only thing the thread had to do, so it was able to send the update at the very

start of the round allowing the update to have the best chance of reaching the other

clients within the time limit.
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3.3.3 Storing Updates

The second thing that we added and designed for NEO was a system for storing

updates. As specified by its designers NEO must keep all updates because they may

need to be resent at any time. Since our modified NEO does not allow updates to

be resent the only reason to keep the updates is so they can be sent in plain text

with the next update. Even with the original version of the protocol a game will

probably not need to keep all the updates that it has sent. With this in mind we

developed an algorithm that keeps updates for a specified number of rounds before

they are discarded. In our case the number was set at five to be sure that the updates

were not discarded too soon. In the original protocol this number should probably

be set to a much higher number, like 100, and a system would have to be added to

the protocol which would inform a client that the update it is requesting has been

discarded.

3.3.4 Vote Processing and Counting

Another item that needed to be created was the way voting was taken care of.

How many votes update needs to be accepted was the main issue involved in voting;

in the case of the Eater game this was set at 50%. The next thing that needed to be

taken care of was how to store and retrieve votes efficiently so that the voting system

does not cause lag on the update processing.

Using a threshold of 50% for the amount of votes needed causes an interesting

side effect, when using 4 clients or less each update received by client A within the

time limit will be accepted no matter how the other clients vote. This is because

when an update is sent by client B and received by client A it is assumed that client

B votes for it because it is the one who sent it and as long as it is received on time

client A votes for the update. These two votes are the 50% needed for the update to

be used. This situation makes the voting system break down for 4 clients and under,

because when an update is received at client A it automatically receives 2 votes, one

for the sender and one for the receiver, which is enough to pass the vote threshold.

We see that in this case client B would only have to send a message to client A and
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the message would be accepted even if client B did not send the message to the other

two clients. One way to fix this situation is to not count a vote from the client that

the update was sent from. This would make it so that a client needs to know that at

least one other client has received the update for it to be accepted. For the purposes

of this experiment it was decided that allowing a vote from the sending client was

reasonable because the main goal was to test the protocol’s speed and not its security.

The storing and retrieving of votes is done by checking an updates for votes

as soon as it comes in. When an update has votes on it for other updates the votes

are immediately recorded to the update they belong to, which is being stored for to

be used in the round it belongs to. This allows for easy retrieving of votes because

when an update is being processed it will have the votes with it making the votes

easy to count.

3.3.5 Processing Updates

When and how updates are processed are two other items that needed to be

examined. It was decided that updates should be processed if one of two things

happens. The first thing that can trigger the processing of updates is if the round

the update is part of is over. The second thing is if all the updates for a round have

been received there is no reason to wait for the end of the round so the updates are

processed.

How updates are processed is a more complicated process. Each client is

running one thread for each other client which is in charge of accepting updates from

another client. When an update is received from a client it is placed on a stack which

contains messages for that round. The messages stay on this stack until one of the

two conditions mentioned above is met. At this point the messages are popped off

of the stack and placed on a processing stack, there is one processing stack for each

client the updates are coming from. When a message is pushed on the processing

stack it is a signal to the processing thread to pop it off and begin processing the

update.

The first thing that is done shown on line 1 of Algorithm 2 is to make sure the
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Figure 7: Flow chart of the implementation of the NEO protocol.

Algorithm 2 NEO’s processing an update algorithm

1: if # of votes is above threshold then
2: plainTextMove← Decrypt(encryptedMove)
3: hashOfMove← Hash(plainTextMove)
4: if hashOfMove == receivedHash then
5: Update game state
6: Store update for future hash reference
7: end if
8: end if
9: Remove old updates from storage
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update has the minimum number of votes. If it does not have the minimum number

of votes there is no need to examine to update any further. After the voting has been

checked the next thing that needs to be done is to check that the hash of the update

that was received with the last update is equal to the hash of the plain text received

with this update. To do this we first have to decrypt the move information from the

update into a plain text move. We then hash the plain text move and compare it

with the hash received earlier, this is shown in lines 2 − 4. Once the update passed

this test it is ready to be used to update the state of the game and be stored so the

hash of the next move can be referenced when it comes time to verify that move. The

last thing that is always done is the old updates are removed from storage, this is so

that the storage does not become too large.

The next thing that needed to be worked out was what to do with late mes-

sages, should they be processed, stored, or just thrown out. It was decided that late

messages would be stored so the information could be used in the following rounds

but nothing else would be done with them.

3.3.6 Time Synchronization

Timing is very important to the NEO protocol because rounds have to be sent

and received within a certain amount of time. If the clocks are not synchronized the

receiving client could think that the update was late when in fact it is on time. When

a client needs to send an update every 50 ms it can be hard for the algorithm to get

it exactly right. So an update may be sent out every 55 ms, after a short time this

would result in an update being sent out just a few milliseconds before it needs to be

arriving or this might result is an update being sent after it is supposed to arrive.

In order to fix this we developed an algorithm that checks to make sure the

update being sent out has the right round number. If this algorithm notices that the

round is starting to be offset, it will adjust the round number so that the updates

are sent within the right time window. This can cause some updates to be skipped

when the round number is being adjusted but this result is preferred over having all

the updates arrive late, causing them all to be rejected.
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We synchronize the clocks by integrating the Simple Network Time Proto-

col [24], as described in RFC 2030 [25], into the game. SNTP is a protocol that uses

a time server to tell the client how far off its clock is from the server. Since SNTP

is not perfect our game will use SNTP to contact the time server several times and

average the responses. This makes the clocks better synchronized and allows more

accurate measurements of latency.
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Variable Lab Distributed
Number of clients 2− 4 2− 5
Use of encryption yes/no yes

Round length 50, 100, 250, 500, 1000 50, 100, 250, 500, 1000
Pipeline depth 1, 2, 3, 4, 5, 10, 20 1, 2, 3, 4, 5, 10, 20

Table 1: NEO Experiment Parameters

4 Experimental Setup

We conducted the experiments on a local area network in our lab environment

and over the Internet. For the lab experiments we emulated the delays and losses one

would typically experience over the internet. This allows us to run experiments in a

controlled environment where they are easier to validate and debug.

4.1 Data Collection

These experiments have a number of parameters that control NEO’s behavior.

These parameters are shown in Table 1.

In the lab, we ran two sets of experiments, one with encryption and one without

encryption,to examine the effect of encryption on update processing time. In these

experiments we observe that the average time to encrypt or decrypt an update is

about 2 milliseconds. Because this does not change the overall performance of the

protocol, our results use only the experiments without encryption.

We vary the round length and pipeline depth of NEO so we can test a range

of arrival delays. The arrival delay is the time between updates arriving at the client;

it can be obtained by dividing the round length by the round depth. We only use

settings such that the arrival delay is as least 50 ms. There is no need to have an

arrival delay below 50 milliseconds because the client only updates the screen every 50

milliseconds. We also vary the number of players in the game between 2− 5. We did

not go to 6 clients in the distributed experiments because the protocol was already

having significant difficulties with 5 clients so there was no need to go on to 6.

For each experiment we save a trace of all game activity. At the end of each
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Update sent time Time the update left the source client
Update arrival time Time the update arrived at the

destination client
Update size Size in bytes of the update
Update source client id The id of the client that

sent the message
Update sequence number The id of the update unique

to the client which sent the update
Time message was processed The time the processing

of the message started
Time processing message takes The amount of time in milliseconds

taken to process the message

Table 2: Update information that is saved in the trace of the experiments

Was the update on time Boolean value stating if the update
arrived at the client within the round length.

Was the update accepted Boolean value stating if the update
was accepted by the client

Encryption delay Time in milliseconds it takes to decrypt
the update

Update round and depth Used in place of a sequence number,
used to determine the order of the updates

Update vote array List of clients that this update is voting for

Table 3: NEO Update information that is saved in the trace of the experiments

game, a client sends its trace information to the bootstrap server, which then saves

the data to a file for inspection. These traces contain the information show in Table 2,

and Table 3.

In addition to this information, the trace files contain a log of where the client

is located and where the client thinks the other players are located. This allows us

to compare logs and compute the location errors and to determine which settings are

the best at keeping the game states equal across clients.
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Not on time vote The majority of clients say the update
arrived late

Bad hash The update plain text did not hash to the
same value as received in the previous round.

Do not have the move The move never arrived
Do not have the move The move before this one did not arrive
before this one so there is nothing to compare it to
Not processed The client did not have time to process the update

Table 4: Reasons an update can be rejected by NEO.

4.2 Lab Experiments

We conduct lab experiments on two 3Ghz Intel machines with 1GB of RAM.

These computers are connected through a 100Mbps local area network. Each com-

puter runs a maximum of 3 clients and the games are played using the modified A*

algorithm described earlier.

Since there is typically no loss or delay on a local area network, we emulate wide

area network conditions based on data from the NLANR [26] site, which measures

Internet activity between several sites throughout the United States. The emulation

module emulates network delay and loss rates by using an exponential distribution

around the average latency obtained from NLANR to artificially delay the updates.

The average latencies range from 14 ms at the server to 45 ms. The loss is emulated

using a random number generator, if the number is lower than the average number

of lost packets obtained from NLANR the update is dropped.

We install a launching program on each computer and have it connect to a

server. The server then sends a message to the client machine telling it to start a

game, along with the parameters of the game. These parameters are shown in Table 5.

When the launching program gets a message from the server it writes out an

application configuration file that contains the parameters of the game, then launches

the game process.

31



Number of clients to start Each client machine can start more than
one client, this is used in the lab experiments
in the distributed experiments only
one client per machine was used.

Game length in minutes Number of minutes the game will last.
Round length The length of each round for this game.
Round depth The depth of each round for this game.
Is peer-to-peer Boolean value stating if this is a

peer-to-peer game or a client-server game.
Use dead-reckoning Should dead-reckoning be used.
Use encryption Should encryption be used, in the

distributed experiments this is always true.
Emulate delay and loss Should the network be emulated

Table 5: Parameters sent to each client at the start of each game.

4.3 Distributed Experiments

We conduct distributed experiments so that the game could be observed in

play over the Internet. The NEO protocol is designed to be resilient to the loss and

delay that happens on the Internet, so the distributed experiments were conducted

to show how well NEO performs. We run the distributed experiments using the same

launcher program to start the experiments and the same AI to play the game.

We distributed the game by asking friends and family to install it on their home

computers. People who install the game have to be able to forward the UDP ports

being used for the game from their cable modem to their computer. The installer

creates a registry entry on the machine so that the launcher program starts when the

computer is started.

The machines in these experiments are all relatively new, and they all run on

high speed connection such as cable or DSL. The computers are:

• Intel 3 Ghz - 512 Mb RAM

• Intel 3 Ghz - 1 Gb RAM

• Intel 3 Ghz - 1 Gb RAM

• Intel 2.8 Ghz - 1 Gb RAM
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• Athlon 1 Ghz - 512 Mb RAM
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5 Results

NEO is able to sustain playable game throughput when there are 3 or less

clients and the arrival delay is greater than 62 ms. This is because NEO has a hard

time scaling to many more clients than 3 and a higher arrival delay causes problems

such as high location error which can make for poor game play. The bandwidth

requirements at these settings are around 125 kbps, which can be accomplished using

high speed internet connection.

However, if the number of clients is raised to 4 the bandwidth usage jumps to

about 250 kbps. This is starting to be too high for most connections to maintain,

which would cause the game to be unplayable because messages will get dropped

and the location error will go up. Also, if the arrival delay is dropped below 62 ms

the most updates will not make it to there destination on time, causing them to be

rejected by the NEO algorithm.

We evaluate the results of our experiments by looking at the statistics that

were gathered. These statistics show us that NEO has problems with short arrival

delays causing packets to be rejected. The distributed experiments show us that

highly variable internet delays cause the clients to have to hold onto updates while

they wait for all updates to arrive; this causes long playout delays. We also see that

lab experiments are possible, as long as the emulation accounts for latency, processing

speeds, and connection speeds. We also see that NEO has a problem scaling beyond

about 5 clients.

The experiment metrics that we used are location error, lost updates, unused

updates, playout delay, latency, waiting delay, process delay, and arrival delay. Lo-

cation error is the difference in pixels from where a client’s character is and where it

should be. This is caused by errors in dead-reckoning. Lost updates are the number

of updates that are sent but do not arrive at their destination. Unused updates are

updates that are not used due to being lost or rejected by the NEO algorithm. Play-

out delay, shown in Figure 8, is the amount of time from when an update leaves the

source client to when it is finished being processed at the destination client. Latency

is the amount of time, in milliseconds, from when an update leaves the source client
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Location Error The difference in pixels from where a clients
character is and where it should be.
This is caused by errors in dead-reckoning.

Lost Updates The number of updates that are sent
but do not arrive at their destination.

Unused Updates Updates that are not used due to being
lost or rejected by the NEO algorithm.

Playout Delay The amount of time from when
an update leaves the source client
to when it is finished being processed
at the destination client.

Latency The amount of time, in milliseconds,
from when an update leaves the source
client to the time it the time it
arrives at the destination.

Waiting Delay The amount of time between when an update
arrives at its destination and when the
update starts being processed.

Process Delay The amount of time it takes a client
to process the update.

Arrival Delay The time between when two messages arrive
at a client. In NEO it is found by dividing
the round length by the round depth.
Different arrival delays are created by
varying the round length and round depth.

Table 6: Experiment Metrics

to the time it the time it arrives at the destination, this is the first portion of the

playout delay. Waiting Delay is the amount of time between when an update arrives

at its destination and when the update starts being processed, this is the second por-

tion of playout delay. Process Delay is the amount of time it takes a client to process

the update and is the final portion of the playout delay. Arrival Delay is the time

between when two messages arrive at a client. In NEO it is found by dividing the

round length by the round depth. Different arrival delays are created by varying the

round length and round depth.
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Figure 8: The time an update is in the system is broken into latency , waiting delay,
and process delay; together they add up to the playout delay.

5.1 Lab Experiments

The lab experiments use two machines, with several clients on each, that

are connected through a LAN. Since there is little to no latency in a LAN, we use

emulation to simulate the internet environment. As discussed earlier, a multiplayer

network game needs low latency to keep the game playable from the users perspective.

In the client-server model, there is no waiting delay, so that low latency directly

translates into low playout delay. This allows a client-server game to update the

game state faster, so that clients all have the same game state. The goal for NEO is

to keep playout delay as low as possible, while avoiding a centralized server and still

keeping the game secure.

5.1.1 Short Arrival Delays

One requirement of a real-time game is for updates to arrive quickly so that

the user perceives real-time actions. In NEO the arrival delay is given by dividing

the round length by the pipeline depth, so a game with a round length of 250 ms

and a depth of 5 has an arrival delay of 50 ms. Ideally, the arrival delay should be

as small as possible, however this increases the amount of unused updates and uses

more bandwidth. To examine how much we can reduce arrival delay, we examined
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Figure 9: Location error, NEO LAN experiments

all combinations of round length and pipeline depth with a resulting arrival delay

greater than or equal to 50 ms.

The main benefit of having a lower arrival delay is that the location error goes

down. Figure 9 shows location error averaged over all players as a function of arrival

delay. While there is some variability, in general the location error decreases as the

arrival delay decreases. The variability is caused by the arrival delays coming from

different combinations of round lengths and depths. For instance an arrival delay of

250 ms may result from a round length of 250 ms and a depth of 1 or from a round

length of 500 ms and a depth of 2 or from a round length of 1000 ms and depth of

4. In other cases, the arrival delay comes from a unique combination of parameters.

The arrival delay of 333 ms is only created by a round length of 1000 and a depth

of 3. As a result arrival delays that are composed of lower round lengths have less

variability. At 50 ms the location error starts to climb because there are a lot of lost

and unused updates at this setting.

37



Figure 10: Percentage of unused updates, NEO LAN Experiments.

Figure 10 shows the percentage of unused updates for NEO in these exper-

iments with 2, 3, and 4 clients. With 4 clients, the percentage of unused updates

spikes up to about 35% when the arrival delay is down to 50 ms, and it is not un-

til the arrival delay is over 100 ms that in all cases the unused updates are under

10%. This is due to the latency of the network which makes getting an update to

its destination in under 50 ms difficult if not impossible; in most cases this will not

be a problem as long as an arrival delay of 100 ms can be met. Figure 11 shows the

average Latency for the same set of experiments. The average latency for 4 clients

is about 45 ms, and the standard deviation bars show that most of the latency is

between 0− 90 ms. Hence, the main reason that unused updates spike at low arrival

delays is that the updates do not arrive on time.

Another effect of decreasing arrival delay is an increase in the bandwidth used,

as more updates are transmitted per second. Figure 12 shows the rise in bandwidth

for the same experiments. Notice that the bandwidth usage increases exponentially as

the arrival delay gets lower, and the more clients that are used the faster the increase.

38



Figure 11: Average latency, NEO LAN experiments.

Figure 12: Total Bandwidth used, NEO LAN experiments.
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Figure 13: Playout and Waiting Delay, NEO LAN experiments.

5.1.2 Increasing Round Length and Pipeline Depth

One way to provide a low arrival delay, yet allow far higher latency, is to

pipeline NEO updates. By increasing the round length and the pipeline depth, NEO

can obtain any desired arrival delay. The cost of increasing the round length however

is higher playout delays which can lead to poor game performance.

To examine the effect of increased round length, we set the round length to

1000 ms and vary the pipeline depth, using 4 clients. Making this adjustment does

not affect playout delay or waiting delay because each update still has the same round

length to get to the client; this is shown in Figure 13. However, as shown in Figure 14

adding depth significantly increases the percentage of unused updates, because the

arrival delays are getting shorter. Offsetting this disadvantage the shorter arrival

delay also causes the location error to go down. This is a huge bonus to adding

depth, because a small location error makes a game more playable.

40



Figure 14: Location Error and Unused Updates, NEO LAN experiments.

5.1.3 Best Performance

The combination of settings that give NEO its best performance is hard to pin

down exactly, but the preceding results suggest that we don’t want the arrival delay

to be lower than 100 ms and we can have a higher round length with some pipeline

depth without causing bad performance in the game. With this in mind, we believe

that a round length of 250 ms with a pipeline depth of 2 are the settings that give

NEO the best performance in this game. This combination of settings results in an

arrival delay of 125 ms, which is high enough to allow over 90% of the updates to

be used, with bandwidth usage below 15 kbps. Most importantly, the arrival delay

is low enough to keep the location error around 10 pixels. As shown in Figure 9 the

location error is still around 10 pixels at 125 ms, but soon after it begins to climb.

The best performance for this game may not necessarily translate into the best

performance for a different game. The larger an update gets, the more time it will

need to get to its destination, so the round length will need to be increased. Studies
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will need to be performed to determine if pipelining can continue to keep performance

at an acceptable level.

5.1.4 Client-Server Comparison

We compare NEO to a client-server version of the game to determine if NEO

is able to keep the same quality of game play as a client-server architecture. Latency

is one thing that improves in a peer-to-peer architecture because the updates are

passed straight to the other clients instead of through a server. The latency of the

updates in NEO is not affected by changing round length or depth; while changing the

round length and depth causes different arrival delays which can be seen in Figure 11,

there is no change in the latency of the updates. Of course, this might change if the

bandwidth gets too high, causing congestion and queueing delay in the network. This

is the same as in the client-server version, except that it uses less bandwidth since

each client only sends updates to the server.

NEO’s location error becomes worse than client-server’s location error as the

number of players increases. Figure 15 shows location error for client-server and for

NEO with a round length of 100 ms and a depth of 1. The location error for NEO

climbs at a much faster pace than the error of the client-server, with a large standard

deviation. The location error will cause the NEO version to be less enjoyable to play

because the characters shown on the screen will be out of position from where they

actually are.

In NEO high playout delay causes high location error. Figure 16 shows a

reason why the location error is increasing for the NEO version; the playout delay is

higher. Having a higher playout delay causes the client to not know where it should

render the other clients character for a longer amount of time, so the client has to

guess for a longer amount of time causing it to be wrong more often. This longer

playout delay is caused by NEO having to wait to process the message until it has

received all the messages for that round because it needs to have the votes from all

the messages, while the client-server version can just process the messages as soon as

it is received. This is shown in Figure 17 along with the processing delay which is also
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Figure 15: Average Location error, LAN experiments

always a few milliseconds longer for NEO due to the use of hashing and encryption.

To further illustrate the problem NEO has with playout delay, Table 7 shows

some interesting comparisons of NEO and client-server. This table shows the time

each part of the process takes with playout delay being a sum of the latency, waiting,

and processing time. The table shows a round length of 250 and a depth of 2 with

2, 3, and 4 clients on both NEO and client-server. As expected, NEO has a lower

latency for all clients, but NEO’s waiting delay is is 30 - 40 times higher, which causes

the playout delays to be nearly double. While the peer-to-peer NEO implementation

saves some time in transport, it loses too much time having to wait.

5.1.5 Scalability

One of the primary concerns for NEO is scalability with regard to the number

of players. NEO was designed to accommodate groups of 10− 50 players, with larger

games handled through an event hierarchy [27]. However, our experiments indicate

that playing the Eater game is feasible only for groups of 5 or less due to bandwidth
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Figure 16: Playout delay, LAN experiments

Figure 17: Waiting delay and Process delay, LAN experiments
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Clients Latency Waiting Processing Playout
NEO 2 34 50 3 87

3 42 65 4 111
4 44 80 4.5 128.5

Client-Server 2 48 2.2 0 50.2
3 59 2.4 0 61.4
4 61 2.3 0 63.3

Table 7: This is a break out of where the average time is being spent for a round
length of 250 and a depth of 2.

Clients 2 3 4 5 6 7 8 9
Kbps 13.5 20.67 31.25 44 66 99 148.5 222.75

Table 8: Bandwidth usage, upload and download, for different clients with arrival
delay of 125 ms

usage and high playout delay.

Taking a closer look at NEO with an arrival delay of 125 ms we see that NEO

does not scale very well. In Figure 12 it can be seen that NEO is behaving as would

be expected of a basic peer-to-peer protocol with the bandwidth nearly doubling for

each client added. Using these numbers Table 8 extrapolates what the bandwidth

usage would be for even more clients. It is interesting to note that with just 4 clients

the game is already having trouble being played over a modem connection, which

typically runs at < 56 Kbps. Although, on a DSL or cable connection the game will

be able to scale to about 9 clients before it starts having difficulties.

Since the Eater Game is a relatively small game with small updates, we look

at an update for a hypothetical larger game. Table 9 shows the size of a NEO update

used in our experiments and what could be the size of a NEO update in a larger game.

When a game between 2 clients is run for 5 minutes approximately 2, 400 updates

are sent with an arrival delay of 125 this is a rate of 8 per second. Using the larger

update from Table 9 this results in 21.9 kbps. This would obviously be a very big

problem if it was scaled to many more clients.

In addition to bandwidth, processing delay and ultimately playout delay also

increase slightly as more clients play the game. Recall that process delay is the amount
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Item Eater Game Larger Game
ID 1 2

Round # 4 4
Depth # 4 4
# Votes 1 1
Votes 2 10

Hash length 1 1
Hash 20 20

Move length 1 1
Move encrypted 128 300

Total(bytes) 162 343

Table 9: Size in bytes of a NEO update message.

of time it takes the client to get the information it needs out of the update, from the

time it starts looking at an update to the time it is done looking at the update.

Figure 18 shows that while the processing delay does not change with different round

lengths, it is always higher when more clients are added. This is because there are

more votes to be recorded and the client machine is doing more work at the same

time causing the processing to take longer overall.

Increased processing delay also contributes to a higher playout delay. Recall

that the playout delay is the amount of time it takes from when the update is sent to

when it is done being processed. As shown in Figure 19, the playout delay increases

by about 20 to 30 ms when the number of clients goes from 2 to 4, this is due to

several factors including longer waiting and process delays. If this trend continues,

as more clients are added it will be very difficult or impossible to get messages sent

and processed under 500 ms, which would make for a very bad user experience.

The higher processing and playout delays cause a ripple effect through the

game. The next area that feels this ripple is that of unused updates. An unused

update is an update that was either lost in transit or arrived but was not used due to

several reasons: not enough time to process the update, the update may have shown

up late, not enough votes, or the update was rejected by NEO. Figure 20 shows the

percentage of unused updates for NEO with a round length of 100 ms and a pipeline

depth of 2. Updates are sent every 50 ms, which causes many more unused updates
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Figure 18: Process Delay, NEO LAN experiments.

Figure 19: Playout Delay, NEO LAN experiments
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Figure 20: Unused updates, NEO LAN experiments

than sending updates every 100 ms. This is because the extra 50 ms allow more time

for the latency and processing of the update and so they all have a chance to be used.

Using 100 ms arrival delay causes under 10% of the updates to be unused which is

reasonable for the game we were using, but when a 50 ms arrival delay is used the

unused updates jump to over 30% which would be unreasonable for most any game.

This amount of unused updates causes the game to become unplayable because the

state of each client is too much different from each other. The amount of unused

updates also causes strain on the network that does not need to be there because the

updates being sent are not being used.

All of these scalability problems finally result in a location error issue. Location

error is the amount of pixels a dead reckoned client is off from where it really is. Shown

in Figure 21, with 4 clients the location error jumps to almost 30 pixels. The extent of

this location error problem depends on the game that is being played. For the Eater

game used in these experiments an error of around 30 pixels can be annoying but still

playable. For a first-player shooter game an error that high could result in targets
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Figure 21: Location Error, NEO LAN experiments

being missed when they looked like they would be hit, making the game unplayable.

5.2 Distributed Experiments

The distributed experiments were run on several machines within the state

of Utah, each using a different Internet Service Provider. The experiments were

conducted so that the results could be compared to the results obtained in the lab

and so that NEO could be further tested.

5.2.1 Short Arrival Delays

In the distributed experiments NEO is able to run with lower arrival delays

while keeping unused updates low. Shown in Figure 22 the unused updates only has

a problem when the arrival delay dropped to 50 ms. This indicates that the average

latency between the clients was lower than 63 ms but higher than 50 ms. Figure 23

shows latency by arrival delay, while the standard deviation is very high the average

does stay below 60 ms except for the 5 clients set, but this one stays below 70 ms. This
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Figure 22: Unused updates, NEO Internet experiments

slightly higher latency is probably more a factor of the clients that were being used

than it was a problem of scalability, because the higher latency happens at all arrival

delays. If the higher latency was due to the increased number of clients we would

expect the latency to go down as the number of clients went down. This result shows

us that the emulation module used in the lab experiments was emulating latency

correctly but it may have been dropping too many updates causing more unused

updates.

While the percentage of unused updates was better for the distributed exper-

iments the location error was higher. Shown in Figure 24, at an arrival delay of 125

ms the location error for the distributed experiments was around 30 pixels, but on

the LAN experiments the error is only about 15 pixels. This is due to the waiting

delay being higher during the distributed experiments. The average waiting delay is

not much higher in the distributed experiments than it was in the lab experiments

although it does have a higher standard deviation. The higher standard deviation

causes a higher waiting delay because if just one update is coming in slowly the entire
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Figure 23: Average latency, NEO Internet experiments

group has to wait for the slow one.

5.2.2 Increasing Round Length and Pipeline Depth

Again, we use round length and pipeline depth to try and get a low arrival

delay while allowing for higher latencies. Figure 25 shows how increasing the round

length affects the playout delay we see that with 5 clients as the round length went

up the playout delay was always as high as two round lengths with very low standard

deviation. We then looked at the effect of depth on playout delay with a round length

of 1000 ms. Shown in Figure 26, changing the depth has little on affect on the playout

delay and the playout delay of 5 clients is just above 2000 ms which is the length of

two rounds, so changing the depth has no affect on the playout delay.

Having to wait for 5 clients causes the playout delay to be the same as the

round length which in turn causes high location error. There are three components of

playout delay; latency, waiting delay, or processing delay, any of which could cause a

high playout delay. As shown in Figure 27 the latency and process delays stay constant
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Figure 24: Location Error, NEO Internet experiments

Figure 25: Average Playout delay by round length, NEO Internet experiments
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Figure 26: Average Playout delay by depth, NEO Internet experiments

while the waiting delay increases with the round length. Again, this happens because

as more clients are added there is a greater chance that one of the updates will take

the full round length to arrive or that one update will not arrive. When this happens

the clients must wait until the round is over before beginning to process the other

updates.

For a round length of 1000 ms there is high variance in playout delay until the

arrival delay is dropped to 50 ms. Shown in Figure 28, the average points generally

have no change for the first 6 depths but they have a high standard deviation, so at

times they could be performing quite well. When the depth reaches 20, taking the

arrival delay to 50 ms, the points jump up about 200 ms and the standard deviation

drops to almost nothing, meaning that it is usually going to take between 1900 and

2000 ms. This is again because the arrival delay was too low for the computers to be

able to process the updates faster than they were arriving.

High playout delay can cause high location error and unused updates. Next

we looked at the percentage of unused updates and location error associated with
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Figure 27: Multiple stats by round length with a depth of 1 using 5 clients.

Figure 28: Waiting and playout delays by depth with a round length of 1000 ms and
4 clients.
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Figure 29: Location error and unused updates by depth with a round length of 1000
ms.

increasing the depth of a 1000 ms round. Shown in Figure 29 the results were different

for the distributed experiments than they were for the lab experiments. We can see

that increasing depth causes the location error to go down until a depth of 10 which is

when the number of unused updates begins to climb. This result is expected because

as the number of unused updates goes up the client will have to use dead reckoning

more often which can raise the likelihood of there being a location error. Making the

depth 20 with a 1000 ms round length actually causes more location error than just

having a depth of 1, which means the client only sends an update every second.

5.2.3 Best Performance

It is again very hard to pin down one group of settings that is the best, for

these tests no single group performed the best in all cases. We want a group of settings

that keeps the round length and the arrival delay as small as possible without going

so low that it starts to affect performance. In the case of the distributed experiments
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Figure 30: Bandwidth, NEO Internet experiments

we have shown that the point were round length and arrival delay really start to affect

performance is when they are below 62 ms so any setting with a round length close

to that would work well.

5.2.4 Scalability

The bandwidth usage in the distributed experiments once again shows that

NEO has serious scalability problems. Figure 30, shows a worst case for NEO, an

arrival delay of 50 ms, we see that with 5 clients NEO is approaching the bandwidth

limit of most home high speed connections. As discussed earlier the amount of band-

width used is lower at an arrival delay of 125 ms, but NEO still has trouble scaling

beyond 10 clients.

As we have talked about earlier adding more clients causes the waiting delay

to go up. Figure 31 shows the waiting delay by round length with a pipeline depth

of 1, it is shown that having just 5 clients causes the average waiting delay to be

around the length of the round with very low standard deviation. This is a problem
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Figure 31: Waiting delay by round length, NEO Internet Experiments

because we have seen that raising the round length can help NEO to perform better

as long as the depth is also increased. However, Figure 32 shows the waiting delay by

depth for a round length of 1000 ms, the waiting delay does not get better by adding

depth and in some cases it actually makes the delay worse. This shows that the two

main factors that cause waiting delay are the number of clients and the length of the

round.

Longer waiting delays cause a higher playout delay which causes other prob-

lems like location error. Shown in Figure 33, as more clients are added the playout

delay goes up and the standard deviation gets smaller. This smaller standard devia-

tion means that the playout delay is more likely to be closer to the average and since

the average is higher it will cause more problems like high location error.

A high number of unused updates can cause the game to become unplayable

due to differences in the game states between clients. Shown in Figure 34, a low

arrival delay, the depth of 2, and an increasing number of clients contribute to a high

percentage of updates going unused. Also, with an arrival delay of 100 ms, increasing
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Figure 32: Waiting delay by depth, NEO Internet Experiments

Figure 33: Playout delay, NEO Internet experiments
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Figure 34: Unused updates, NEO Internet experiments

the number of clients still causes the percentage of unused updates to rise, especially

from 4 - 5 clients. At 5 clients the unused updates reaches 20% which is pushing at

the limit, anything higher than that will cause a serious problem for the game because

it will not have enough updates or consistent updates.

These scaling problems are finally manifest in the form of location error. Shown

in Figure 35, the location error of 4 clients is around 100 pixels while the location

error of 5 clients is about 200 pixels. As discussed earlier this can be corrected by

lengthening the round length, but longer round lengths also cause problems with

location error, so there is no easy solution. Although as we have shown it is better to

stay away from a very low arrival delay especially if there is going to be more than 3

or 4 clients.
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Figure 35: Location Error, NEO Internet experiments
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6 Conclusions

We have found that NEO is able to run effectively when 2− 4 clients are used

and the arrival delay is short enough to keep the location error down, while being long

enough to allow the updates to get to the client in the given time. Our results show

that an arrival delay of 62 ms to 125 ms performed the best but the best performance

will be different for each game.

Our results also show that NEO has a problem scaling beyond 4 clients. After

4 clients the bandwidth usage starts getting so high that most high speed Internet

connections would not be able to support the game. Using a higher number of clients

also causes NEO to not use updates because they are late, or the client does not have

enough time to process the update. These unused updates lead to location errors

that are so high they make the game unplayable.

Lowering the waiting delay is the best way to improve the playout delay of the

NEO protocol. As mentioned earlier a system of processing an update as soon as it

has enough votes could lower the waiting delay but it might not lower it enough to

make a significate difference. In this case the next best thing would be to keep the

round length down, because the waiting delay is never much higher than the round

length.

Both sets of results, lab and distributed, were similar enough to show that a

simulator can produce results very close to those that exist in the real world. The

simulator will need to be able to simulate different connection speeds and latencies

as well as simulating different computer speeds. We saw in these experiments that

computer speeds do matter because one of our distributed test machine was consid-

erably slower than the rest of the machines and it had the most problems keeping

up when the arrival delays were low. Also the simulator should be run on more than

one machine which communicate over a LAN because it is hard for one machine to

simulate enough clients to determine if the protocol is having trouble scaling.

Overall NEO performed very well with very few updates being rejected and

when updates were rejected it was because the round length was so short that the

updates could not get to their destination on time, or the arrival delay was so low

61



that the client was being overwhelmed with updates.

The item that caused the most problems for NEO was the waiting delay.

Updates spent a lot of time sitting at the client not being processed especially with

a long round length and a larger amount of clients. Something needs to be done to

lower this waiting delay, this can be done by keeping the round length low or allowing

an update to be processed when it has enough votes to be accepted instead of waiting

for all the other updates to arrive.

Finally, NEO has a significant amount of overhead such as larger packet size,

waiting for rounds to be done to process moves, and problems getting UDP port

forwarding setup. These items seem to take away from the bonuses that a peer-to-

peer real-time system gives. In the end this causes NEO to be right on par with

client-server architectures because they both have pluses and minuses. Each solution

has to be looked at carefully to see if it is meeting the requirements of the project

well enough for the benefits to outweigh the negatives.

6.1 Protocol Issues

From our experience building a game using NEO, we have made a number of

observations. First, the main benefit to using UDP over TCP is that if an packet is

slowed down or lost for some reason the next packet UDP is delivered as soon as it

arrives, whereas when TCP is used the next packet will not be delivered until the

missing packet has been requested and arrives. This is a large benefit to a game that

needs fast updates more than it needs constant updates. Such is the case in the game

used in this work, if it misses one update it can continue on without it and the game

play is barely affected, unless it is an important move like one that changes the state

of a stone.

The primary drawback of using UDP is that it forces the application developer

to design reliability and congestion control for the application. Using TCP solves this

problem because it already has many of the mechanisms that are being developed for

NEO, such as message recovery, congestion control, and working through a firewall or

a router. In addition most personal computers today do not have public IP addresses,
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instead a modem or router has a public IP and it assigns a private IP to the computer.

This is not a problem for a protocol like TCP which establishes an outgoing connection

through the firewall which can then be used to receive incoming messages through

the firewall but for a connectionless protocol this causes the packets to have to be

forwarded from the router to the computer. In order to forward a packet from the

router to the computer the user needs to enter the information into the router, which

can be a daunting task for someone who does not feel comfortable around computers.

Currently many games use TCP as their network transport so that users do not have

to change settings in their router. This could be the biggest drawback of the NEO

protocol because users do not want to have to change settings on their computer every

time they want to install a new application.

Another problem with NEO as talked about earlier is that many updates spend

a lot of time just sitting at the destination waiting for the rest of the updates to arrive.

When a 4 or more clients are used the playout delay is always the same length as

the round length. This causes higher playout delays and in turn causes high location

errors which lead to poor game play. This is not a problem with client-server because

updates are processed as soon as they arrive at the client.

Another challenge for NEO is clock synchronization. Clock synchronization is

very important to NEO and can be much harder to accomplish than it seems. If the

games clocks are not synchronized NEO will believe that some updates are late when

they are not or NEO will believe that updates are on time when they are not. In our

game we used the SNTP to find out how far off the client machines clock was from

the real time. This gives an accuracy of within 5 ms which is good enough to keep

NEO working correctly.

The final issue that came up with NEO is a hole in the security. It was noticed

that while a client can not send out false moves to other clients when using NEO a

client could send out different moves to each client. This could cause the cheating

player to have an advantage over the other players because it would allow him to be

in more than one place at a time. While this would be a fairly complicated cheat,

people playing games have been known to go to great lengths to get the upper hand
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in a game. This cheat could be overcome by having client A verify the hash that was

received from client B with the hash that client C received from client B.

6.2 Potential Improvements

With the large number of combination of NEO settings, network conditions,

and game types it is hard to know what settings should be used when. We believe

that a machine learning algorithm could be trained to recognize the network and

game conditions and adjust the round length and depth to an optimal setting. Some

research would need to be done to determine what are the optimal settings for different

kinds of network and game conditions. When this work is completed it will make

implementing NEO into a game much more effective.

One issue that needs to be worked on is making NEO consume less bandwidth

as it scales to more clients. The use of a multicast network is a possible solution

to this problem. Multicast would give NEO greater scalability but it would have a

problem with security, because the updates would be passed through intermediate

nodes. More research would be needed to come up with a solution for this.

Earlier we talked about different peer-to-peer systems such as Mercury which

try to make peer-to-peer games scalable by using a DHT. It seems that a combination

of NEO and a DHT could actually perform quite well, NEO having the security and

the DHT having the scalability. If NEO was to use a DHT for its node management

and message passing infrastructure scalability would not be an issue and NEO could

still have all the security it needs.

There is an extension to NEO being worked on that would allow for greater

scalability. This extension includes creating NEO groups, these groups would grow

in size from the clients in the same room with you to all the clients in the game.

This would make NEO more scalable because a client would not have to send every

outgoing update to every other client in the game. Instead each client would only

send the updates to the clients that are part of the group that the update affects.

Although our research shows that the group which receives the most updates will not

be able to be much bigger than 5 clients.
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The last item that can be looked at is to compare and contrast a TCP version

of NEO with the UDP version. As mentioned earlier TCP has many features built into

it that NEO is implementing. It would be interesting to see if TCP can accomplish

that goals of NEO while keeping playout delay and location error down. This would

make NEO easier to implement and install and therefore more likely to be used.
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7 Appendices

7.1 The Mono Project

The Mono Project [28] is an open source implementation of the .NET architec-

ture. It was used to compile and run the application on Linux machines. The reason

for wanting to use the Mono project was to have this application put onto Planet

Lab [29]. Planet lab is a group of Linux machines distributed around the world which

would be a perfect test bed for this application. Unfortunately, the Mono project is

still a very young project and so it has some problems that made it impossible to use

and still get reliable results.

The first problem that was run into with the Mono Project was that it will not

compile on a network share. This was easily fixed by moving the project to a local

directory, but the real issue was that the Mono Project was having trouble writing

a file to a network share. While this was not an overwhelming problem it did make

debugging difficult because the game writes an error log and if the game is not able

to write the error to the file debugging is almost impossible.

There was another problem with the networking aspect of the Mono Project.

The problem was that when trying to use the same UDP socket to send out connec-

tionless messages to all other clients in the game, the Mono Project implementation

would close the socket after it sent one message. This problem was overcome by

creating a UDP client for each other client and opening a connection to that client.

The final issue is the one that lead to the implementation of an encryption

flag as one of the game parameters. This is because the RSA decryption in the Mono

Project took on average 300 milliseconds, compared to Microsoft .NET where the

RSA decryption takes < 10 milliseconds. This adversely affects the playout delay of

NEO and may make some of the results look worse than they really would be.

Overall, the problems that were encountered with the Mono Project made its

use infeasible due to the unreliability of the results and the difficulty in debugging. So

the Linux version was thrown out and the project was installed on friends machines

instead.
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