
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2006-03-05

Automatic Geometric Data Migration Throughout Views of a Automatic Geometric Data Migration Throughout Views of a

Model Fidelity Family Model Fidelity Family

Hans L. Soderquist
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Soderquist, Hans L., "Automatic Geometric Data Migration Throughout Views of a Model Fidelity Family"
(2006). Theses and Dissertations. 360.
https://scholarsarchive.byu.edu/etd/360

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/360?utm_source=scholarsarchive.byu.edu%2Fetd%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

AUTOMATIC GEOMETRIC DATA MIGRATION
THROUGHOUT VIEWS OF A MODEL FIDELITY FAMLY

by

Hans Lars Soderquist

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

April 2006

Copyright © 2006 Hans Lars Soderquist

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Hans Lars Soderquist

This thesis has been read by each member of the following graduate committee and by
majority vote has been found to be satisfactory.

Date C. Greg Jensen, Chair

Date Spencer P. Magleby

Date Jordan J. Cox

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Hans Lars
Soderquist in its final form and have found that (1) its format, citations, and
bibliographical style are consistent and acceptable and fulfill university and department
style requirements: (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate committee and is ready
for submission to the university library.

Date C. Greg Jensen
 Chair, Graduate Committee

Accepted for the Department

 Matthew R. Jones
 Graduate Coordinator

Accepted for the College

 Alan R. Parkinson
 Dean, Ira A. Fulton College of Engineering and
 Technology

ABSTRACT

AUTOMATIC DATA MIGRATION THROUGHOUT
VIEWS OF A MODEL FIDELITY FAMILY

Hans Lars Soderquist

Department of Mechanical Engineering

Master of Science

Changes in geometric model parameters are constant throughout the design

process. Each group in an organization needs different model information at varying

times during the design process. As a result many different models of the same part or

assembly arise for the needs and use of each group in each design phase (from conceptual

design to full product definition). When one group makes changes to a model, those

changes need to be reflected in all of the models which describe the product in all groups

and design phases in order for those changes to be verified against all design criteria that

were set, and for those changes to be seen by downstream users in the design process.

This thesis describes a method for linking these models together which will provide

revision control, assuming all models can be updated from any of the other models which

define the product and allow for these models to be parameterized using different

schemes.

ACKNOWLEDGEMENTS

My sincere thanks go to my wife Natalie and my daughter Adalyn for their

patience. My appreciation also goes to Paul Nelson, Dr. C. Greg Jensen, Dr. Spencer

Magleby, Dr. Jordan Cox, Diane Emmerson and Robert Kline for their technical help and

support.

 vii

TABLE OF CONTENTS

List of Figures ... ix
CHAPTER 1: Introduction...1

1.1 Problem Statement.. 2
1.2 Thesis Objective .. 3
1.3 Delimitation of the Problem... 4

CHAPTER 2: Background.. 5
2.1 Knowledge Based Engineering .. 5

2.1.1 Parametric Models ... 6
2.1.2 Inter-model Relations... 7

2.1.2.1 Inter-model Geometry... 7
2.1.2.2 Inter-model Parameters .. 8

2.2 Design Processes.. 9
2.2.1 Linear Design Process.. 10
2.2.2 Non-linear Design Process... 11

2.3 Constraint Solvers... 12
2.3.1 Numeric & Geometric Constraint Solvers... 12
2.3.2 Two Dimensional and Three Dimensional Constraint Solvers........................ 13

CHAPTER 3: Literature Review..15
3.1 Data Reuse ... 15
3.2 Model Views .. 16

3.2.1 Cellular Models.. 17
3.2.2 Master Models ... 18

3.3 Concurrent Engineering... 20
3.3.1 Process Flow Software... 20
3.3.2 PLM Solutions ... 20
3.3.3 Integrated PLM Solutions .. 21

CHAPTER 4: Method ... 23
4.1 Assumptions... 24
4.2 General Approach... 25
4.3 Data Storage .. 25

4.3.1 Model Geometry .. 26
4.3.2 Model Fidelity Family Links ... 27
4.3.3 Unconventional Constraints for Model Fidelity Family Members.................. 28

 viii

4.3.3.1 Fixed Value Constraints ... 29
4.3.3.2 Proportional Constraints .. 31
4.3.3.3 Relative Point Constraints .. 31

4.4 Link Resolution ... 32
4.5 CAx Integration .. 36

4.5.1 Read/Write Capabilities ... 36
4.5.2 Update .. 36

4.6 Sub-objectives.. 38
4.6.1 Revision Control .. 38
4.6.2 Different Parameterization Schemes.. 38
4.6.3 Multi-Directional Dependancies.. 38

CHAPTER 5: Results and Discussion of Results.....................................41
5.1 Specific Objectives .. 41
5.2 Approach ... 42
5.3 The Geometric Fidelity Linker .. 42

5.3.1 Creating a Model Fidelity Family Using the Geometric Fidelity Linker 44
5.3.2 Updating a Model Fidelity Family Using the Geometric Fidelity Linker 45
5.3.3 Test Cases .. 46

5.3.3.1 Corners Models... 46
5.3.3.2 Turbine Cases of a Gas-turbine Engine.. 48

5.3.4 Updating According to Design Intent .. 50
5.3.5 API Problems ... 51

5.4 Analysis of Revision Control.. 51
5.5 Analysis of Different Parameterization Schemes... 52
5.6 Analysis of Multi-directional Dependencies ... 53

CHAPTER 6: Conclusion..55
6.1 Automatic Updating of a Model Fidelity Family ... 55

6.1.1 Revision Control .. 56
6.1.2 Different Parameterization Schemes.. 56
6.1.3 Multi-directional Dependencies... 57

6.2 Projected Contributions ... 57
6.3 Future Work.. 58

6.3.1 Directional constraints to absolve the problems with multiple solutions to
constraints ... 59
6.3.2 Indication that geometry models are fully constrained.................................... 60
6.3.3 Expressions resolution ... 60
6.3.4 3D implementation... 61
6.3.5 Management scheme for when updates are accepted into the database 62
6.3.6 Homogenous transformations for differently oriented models. 62
6.3.7 Assemblies ... 63
6.3.8 Topology changes .. 63
6.3.9 Model Attributes .. 63
6.3.10 Other Engineering Applications .. 63

References...65
Appendix A: Graphical User Interface ...71
Appendix B: Geometric Fidelity Linker Code..75

 ix

LIST OF FIGURES

Figure 1: Parametric block showing the driving parameters ... 6
Figure 2: Panel assembly created using inter-model geometry ... 8
Figure 3: Inter-part expressions example -- the blades of a gas-turbine engine 9
Figure 4: An idealized, linear design process (arrows show dependency) 10
Figure 5: A more realistic design process view (arrows show dependancy)................... 11
Figure 6: An example of model views... 17
Figure 7: Master model architecture with client views (Hoffman [18]).......................... 19
Figure 8: Representation of a bezier curve as its control points as opposed to

points along the curve .. 26
Figure 9: The linking structure of a model fidelity family .. 27
Figure 10: Models of varying specificity with varying topology 29
Figure 11: Fixed value constraint and their inherent problem... 30
Figure 12: Proportional constraint example... 31
Figure 13: Relative point constraint example .. 32
Figure 14: Two models from a model fidelity family to illustrate the transfer

functions... 33
Figure 15: The data structure used in the Geometric Fidelity Linker.............................. 43
Figure 16: Polymorphing of classes from the data domain to the NX2 domain.............. 44
Figure 17: The three corners models ... 47
Figure 18: The results of a spatial change in position for the turbine cases case

study. .. 49
Figure 19: The problem of multiple solutions of a given constraint................................ 59
Figure 20: An example of a directional constraint... 59
Figure 21: Example of how expressions work... 61
Figure 22: Initial Option GUI .. 71
Figure 24: Model Selection GUI.. 72
Figure 25: Link Constraints GUI ... 73

1

CHAPTER 1: INTRODUCTION

The challenge to create new and innovative products in a shorter amount of time

is constantly increasing. Companies continually search for methods to increase

productivity and decrease design cycle times. Modern computer technology has allowed

for rapid creation of geometric models and their analyses. Parametric technology has

allowed quick iterations of those models and analyses for optimization. However, a

product needs to be optimized and checked for conformance to company design rules at

all phases of the design cycle. This means that each group in an organization has to share

the changes that occur in that group with all other groups responsible for the definition of

the product. Also, each group in an organization needs different model information at

varying times. As a result many different models of the same part or assembly arise for

the needs and use of each group. These models may be specific in one area of the model

and less specific in others. For preliminary design the model may be defined by primitive

shapes, whereas for final design a detailed model over the entire product is required.

These varying levels of specificity may be considered varying levels of model fidelity,

and all of these models together may be considered a model fidelity family.

2

1.1 Problem Statement

Each group in an organization may play a specific role in the creation and form of

the product. As one group needs to make changes to a model (i.e. move a wall out or

make a boss thinner), the other groups need to see that change, in order for them to

provide feedback. Propagation of these changes throughout a model fidelity family needs

to occur in order to maintain model design consistency in the various groups, even when

communications between the groups is infrequent. All models in the model fidelity

family must be constantly validated against the design criteria which have been set for

that product at each step of the design process.

Current parametric technology allows for the rapid updating and changing of

model parameters. However, many models of a fidelity family may not be parameterized

similarly. This is because each group designs their models with a different intent.

Models which represent the same product for one group may have a completely different

use in another group. This inconsistency in parameterization schemes creates problems

when one group “simply” changes a parameter in their model, where other groups may

take hours to make the same change in their models due to the parameterization scheme.

 The production of multiple models in a fidelity family also leads to a problem

with revision control. Each member of the family is owned by the group which uses that

model. However, multiple users of the model in a group will tend to have multiple copies

of the same family member model. As a result, confusion can arise as to which model is

the actual master, and what its final parameter set is as the model’s data is passed to other

groups for further product definition. If the wrong data leaves the group, this can be very

costly to an organization.

3

 Another problem that arises with current parametric technology is the dependence

of one model on another. There are many methods in commercially available CAD

packages which allow the user to link one model to another (i.e. inter-part expressions,

linked geometric entities, etc.). However, these methods require that one model be

dependant on another. This unidirectional dependence is undesirable. Often changes

made at a detailed design stage need to be seen at the preliminary design stage in order to

verify that those changes do not affect the system-wide performance of the product. This

unidirectional dependence can also create problems when two groups need to work on

their individual models at the same time, independent of one another, yet one model is

dependant on the other. Thus, a means must be provided for constraining the various

models in a model fidelity family to one another while maintaining model independence.

1.2 Thesis Objective

This research will develop a means to address the various geometry models used to

describe the same product in the design process. This will lead to the creation of a model

management system for concurrent engineering which will utilize a method to allow

these changes to occur automatically. The method will allow the models to be

parameterized differently, eliminate unidirectional model dependency (allowing each

model to drive all of the other models) and provide revision control measures to eliminate

passing undesirable data to other groups.

4

1.3 Delimitation of the Problem

This research will focus on the process of automatically updating the members of a

model fidelity family. It will consider the case of 2D parametric CAD model geometry.

It will only consider 2D sketch geometry as there are no suitable 3D constraint solvers

available. Assemblies and model attributes will not be considered in this work as they

are a natural extension of the method described. Also, other CAD/CAM/CAE (CAx)

applications will not be considered. Geometry changes will be executed on the case

study, and all models of the fidelity family inspected for consistency to prove the method.

5

CHAPTER 2: BACKGROUND

An understanding of current technology and nomenclature is required in order to

link the models of a model fidelity family. This chapter is a discussion of these

technologies and will provide necessary background for the method which will be

describe in this thesis.

2.1 Knowledge Based Engineering

Most companies have certain sets of rules and methods for creating their products.

These are necessary to ensure that a product meets a company’s and customers’

expectations. With the advent of computer technology, the need to infuse those rules and

methods into the computer tools used to design a product has developed. Thus the

computer tools help engineers to design according to the “in-house” rules of the

company, maintaining product integrity. This is known as Knowledge Based

Engineering (KBE). CAD/CAM/CAE (CAx) tools have been an important set of tools

for KBE integration. CAx applications are the main means for product design,

development, manufacturing and support in industry today. In particular CAD

applications use parametric models and inter-model relations to rapidly modify and

update models according to necessary design changes [1].

6

2.1.1 Parametric Models

Parametric CAD models have greatly decreased the design time necessary for

product definition. A designer defines certain parameters for creation of a model. These

parameters are then available for change, much like variables in algebraic equations. The

designer may change these variables at will to modify a model as necessary. Figure 1

shows a parametric block and its driving parameters: Height, Length and Width. By

changing the values of these parameters, the size and shape of the block can be changed

to any desired configuration.

Figure 1: Parametric block showing the driving parameters

The parameters of a parametric model may be set equal to other parameters in the

model as well as performing computations and conditional operations. Thus

“knowledge” can be built into the parameters of a model. External applications may have

access to these model parameters and can thus be used for other calculations (to further

integrate company knowledge) or for optimization to meet certain product performance

7

standards. Other possibilities exist for integrating company knowledge into the CAD

system. These include rule-based design methods (which will not be discussed in this

thesis), inter-model relations, and others.

2.1.2 Inter-model Relations

Inter-model relations are means for relating information in one CAD model to

another. This facilitates KBE by allowing the company knowledge and methods to

trickle down through parts of an assembly or family. For purposes of this discussion, the

model where the information is defined is the parent model, and the model to which the

information is given is the child model.

2.1.2.1 Inter-model Geometry

Inter-model geometry is geometry elements which are defined in the parent model

yet visible and accessible in the child model. The inter-model geometry may be

constrained to and used as a feature for other geometries in the child model and may

include points, curves, surfaces, solids, and datums. This makes the child model

dependant on the parent model. Only changes in the parent model can facilitate a change

in the inter-model geometry in the child model. This does, however, have the advantage

of being able to drive complex assemblies with a few defining sketches.

8

Figure 2: Panel assembly created using inter-model geometry

Figure 2 is an example of a model made with inter-model geometry. The cradle assembly

on the right of Figure 2 is a model of the sketch on the left of the same figure. The

outline of the cradle panel frame is contained within the parent model which

subsequently drives the shape of the assembly parts. This assembly contains 9 parts, all

of which are dependant on the parent model.

2.1.2.2 Inter-model Parameters

Inter-model parameters are parameters defined in the child model which are set

equal to parameters defined in the parent model. Thus the child model parameter value is

set equal to the parent model parameter value and that value is updated whenever the

parent model parameter value changes. Therefore, parent model parameters drive child

model parameters.

Once again, a dependency is created. However, the child model parameter may be

set to some other value than the parent model parameter. This has the effect of breaking

the link between the parameters and making the child model independent of the parent

9

model. On the other hand, changing child model parameters would also do away with the

KBE interface between the models which was desired in the first place.

Figure 3: Inter-part expressions example -- the blades of a gas-turbine engine

Figure 3 is an example of a model with inter-model parameters. The sketch on the

left represents a 2D projection of airfoils in a gas-turbine engine compressor. The corner

points of the airfoils are defined by parameters in that model. Parameters in the 3D

blades in the model on the right of Figure 3 are set equal to those parameters in the 2D

model. Changing the parameter values in the 2D definition will automatically change the

values of the parameters in the 3D definition.

2.2 Design Processes

The creation of a product follows some process of steps, from concept initiation to

manufacturing and product support. Each of the steps taken along the path to full product

definition has its own set of methods and rules which must be followed.

10

2.2.1 Linear Design Process

Most often, the design process which is expected is a linear design process such as

in Figure 4.

Idealized Design Process

Conceptual

Preliminary

Initial

Intermediate

Final

Production

Idealized Design Process

Conceptual

Preliminary

Initial

Intermediate

Final

Production

Figure 4: An idealized, linear design process (arrows show dependency)

Each phase of the design process is only dependant on the phase before, and once a

phase is completed, it is never revisited. In the end, a product may be developed simply

by stepping through each phase of the design process until it is completed. If this design

process were followed, the KBE tools described in section 2.1 would be quite useful and

adequate. However, this process is unrealistic. Iteration and reevaluation is always

necessary in the design of a product. Models at any given phase of a design process

cannot be solely dependant on the phases before it, but must be dependant on phases

which occur after that stage of design definition.

11

2.2.2 Non-linear Design Process

A more realistic approach to understanding a design process is to understand that

each phase in the design process may in fact be dependant on every other phase (see

Figure 5).

More Realistic Design Process

Conceptual
Group A

Preliminary

Initial

Intermediate

Group A

Preliminary

Initial

Intermediate

Final

Production

Group B

Preliminary

Initial

Intermediate

Group B

Preliminary

Initial

Intermediate

Group C

Preliminary

Initial

Intermediate

Group C

Preliminary

Initial

Intermediate

Figure 5: A more realistic design process view (arrows show dependancy)

A conceptual design may be created under certain product performance

requirements. This conceptual design is then sent to various groups in the company for

further product definition. As the product becomes more defined, each model will be

checked against the performance requirements set by the conceptual design. Any

necessary changes to meet those conceptual criteria must be handled by the individual

groups again at all levels of the design definition. This process repeats itself as final and

production designs are created as well. Thus all phases of the design process are

12

dependant on all other phases of the design process. The reality of the necessity of these

interdependencies is the foundation for this thesis.

2.3 Constraint Solvers

Parametric CAD models have created the need for the integration of constraint

solvers for solving the set of parameters on the geometry as those parameters are

modified. It is the ability to solve these constraints that sets parametric CAD packages

apart from their predecessors. In order to link the members of a model fidelity family

together independently of one another, constraints between the models must be created,

which will then propagate change to the parametric model parameters and finally to the

model as a whole. Thus, a constraint solver becomes necessary.

Constraint solvers have evolved along two lines, numeric and geometric. This

section describes the constraint solvers available and being developed today.

2.3.1 Numeric & Geometric Constraint Solvers

Originally constraint solvers evolved through numeric means. The equations

defining the various geometry elements were organized in such a manner as to be solved

by direct computation. This provides solutions quickly and accurately. However, as

geometry became more complex, the numeric methods employed became either too

cumbersome or impossible to solve. This led to geometric constraint solvers.

Geometric constraint solvers employ iterative techniques to solve the geometry of a

model. This set of tools allows for solutions which are not easily computed or impossible

13

to compute by the original numeric means, and provide for a wider range of solutions and

geometry configurations.

Current constraint solvers employ both numeric and geometric techniques for

solving constraints. They combine these two fields and find the fastest solution using

whichever means necessary.

2.3.2 Two Dimensional and Three Dimensional Constraint Solvers

Two dimensional (2D) constraint solvers today are much more evolved than three

dimensional (3D) constraint solvers. 2D constraint solvers allow for updating of the

parameters of almost all 2D elements available in commercial CAD packages. The

exception is non-uniform rational b-splines (NURBS). Most commercial packages do not

have great functionality in constraining NURBS. Many researchers are working on

improving constraint solver technology [2][3][4][5][6][7].

3D constraint solvers are still lacking in their capability to solve systems of

constraints. Many solvers have the capability of constraining the same 2D elements as

the 2D solvers, except they can solve these in 3D space. However, 3D geometric

elements such as surfaces and solids have not been well integrated into 3D constraint

solvers. This is not surprising since most surfaces and solids are made of NURBS

surfaces. There are however, many 3D constraint solvers which are commercially

available that are useful in constraining assemblies. Most of these use an open loop

kinematics regression technique for solving the positions of parts, but this assumes that

all of the parts are rigid [8].

14

Because of the lack of a reasonable 3D constraint solver for surfaces and solids, the

method in this thesis will be limited to 2D geometry. However, as appropriate 3D

constraint solvers become available, the method should be extended to the 3D realm.

15

CHAPTER 3: LITERATURE REVIEW

The following is a review of existing research pertaining to the proposed research.

There is little research related directly to this topic; however there are related ideas which

contribute to this work. This reviewed research provides a framework from which the

proposed research can be accomplished. Many of these ideas will be used together to

help implement the method described in this thesis. The research was concentrated into

the following categories:

• Data Reuse

• Commercial CAD Model Linking

• Model Views

• Concurrent Engineering

3.1 Data Reuse

Reuse of model data is a concept on which there has been much research.

Altmeyer [9] states that “. . . a chance to reduce the design time is reusing existing

results.” They implemented a search algorithm that searches a database and finds models

of similar design and function as the model needed. This sets the model file as a database

16

member, and models are changed and reused. Such an algorithm would be useful for

new product definition by extracting data from the various models.

Koegst [10] propose a method which builds off Altmeyer’s method by using not

only models, but procedures as well. The models and procedures are instantiated into

new configurations and procedures which are in turn stored in a library for future

reference and use. The reuse of procedures is a common practice in commercial

engineering, and in fact it is the insertion of proprietary procedures or “knowledge”

which is the basis for knowledge based engineering (see Section 2.1).

Hayes [11] propose a method for tracking the changes made to a model and the

rationale for those changes. They are vague in proposing applications of these changes.

Having a knowledge of these changes and their rationale can provide a starting point for

future models and products as well as exploration of design options previously not

considered.

The reuse of data is the foundation of parametric modeling. Parametric models are

reused time and again to produce a new product which is similar to others. The methods

described above allow the user to make a decision as to which models or data should be

modified in order to create a new product. In the production of that product, a model

fidelity family could be used and modified, or perhaps models added to the family to

further the design process.

3.2 Model Views

A view is a data or model subset of the total product definition. It is often

described as the product model as seen by varying engineering tools (CAD, CAM, FEA,

17

CFD, etc.). Each tool needs a different set of information in order to perform its specific

task. One of the tasks for the development of concurrent engineering is to develop a

method for updating views automatically.

Figure 6: An example of model views

3.2.1 Cellular Models

Bronsvoort [12] introduced a method of understanding models called a cellular

model. The models are made up of cells and the cells are described as “. . . volumetric;

they can have overlapping boundaries, but they cannot have overlapping volumes. They

reflect all feature intersections, and therefore can have an arbitrary shape.” Cells are

distinguished from model features in that features make up the boundaries of the volumes

which define the cells. They state that the cellular model will be better suited for feature

operations than the traditional history based feature model which has been predominant

in commercial feature based operations. This allows a feature to retain its intent as

opposed to being dumb geometry and has been explored extensively by Bidarra

[13][14][15].

Design
View

FEA
View

Manufacturing
View

18

de Kraker [16] expanded the usefulness of cellular models to multiple view

applications. They show that links between views allow users in each view to modify the

geometry in that view and have that geometry changed in all other views. They

incorporated means including constraint solvers to propagate this inter-view information.

Bronsvoort [17] continued the expansion of de Kraker’s idea by developing a

method for updating assembly and part views. Bronsvoort’s method includes views for

conceptual design, assembly design, detail design, and manufacturing. The proposed

methods described the connectivity of the assembly at each successive level.

 The cells of the model are used as a check after the views have been updated for

consistency between model views. Although the assembly portion of the method is able

to consider geometry from earlier design phases than detail design, they admit that they

are lacking in a method updating consistency for those earlier phases. The views that

have been incorporated using the cellular model could be considered a model fidelity

family. The method that will be described in this thesis could be used, along with the

methods developed by de Kraker to propagate the data of the models throughout the

database. In other words, the cellular models already created could be a foundation upon

which the method in this thesis could be used.

3.2.2 Master Models

Hoffman [18] developed the idea of a product master model. He states that a

“master model is an object-oriented repository that provides essential mechanisms for

maintaining the integrity and consistency of the deposited information structures.” The

information structures include the net shape of the model, analysis solutions, model

19

attributes, material properties, etc. They propose that the master model be stored within a

database structure that is accessible to all views in which the model may be used.

Figure 7: Master model architecture with client views (Hoffman [18])

Views may include design, manufacturing, analysis, etc. The database would

extract the model data necessary for the given application and create an instance of that

model in the application view. For example, if a user wanted to look at the model in a

given CAD package, the model would be extracted specifically for that package, and the

user could then view and update the model as necessary. The model information would

then be stored again in the master model repository upon saving the model.

Several methods of providing consistency between views are given in [18] and

[19]. They include reconciling the differences in shape outside the CAx tool, resolving

constraint schemes within the CAD package, and redefining features as necessary. These

20

methods deal solely with models which represent the same net shape, and reconciling the

differences between the two.

3.3 Concurrent Engineering

Concurrent engineering focuses on simultaneous use of data by various users for

product development.

3.3.1 Process Flow Software

Commercially available packages such as Fiper [20] look at the design process.

Process flow diagrams allow the engineer to define how a product should be developed.

Once one task is completed, downstream tasks are cued automatically, and the

appropriate application or engineer is notified for the next set of tasks to be set in motion.

These process flow methods assume a quasi-linear relationship between processes. They

allow for iterating sections of the overall process, but do not allow the flexibility of any

process lending information to any other. This may be a desirable trait in order to ensure

engineering standard practices are met. However, it may be a hindrance to the

communication needed between the groups of an organization which are working on a

particular product.

3.3.2 PLM Solutions

Product Lifecycle Management (PLM) tools such as Teamcenter Engineering [21]

are other commercially available products which try to address the concurrent

engineering problem. Teamcenter Engineering’s approach is to split a product into

21

different models which are accessible by the various design groups. This is similar to

Broonsvort’s views in that they are split into manifestation (tool path), specification

(drawings and documentation), and alt rep (variants of the base model), as well as the

base model itself. Teamcenter Engineering holds the models in a database and requires

those who wish to modify them to check them out, thus preventing confusion when

models are updated. The main problem with this is that a model may only be checked out

by one person at a time. Thus, as the product definition continues, only one group can

modify the model at any particular time. This does not allow for ownership of the model

by any group or true concurrent engineering since only one group can work on a model at

a time. It does, however, keep a sacred model as a master.

3.3.3 Integrated PLM Solutions

Recent research efforts in concurrent engineering have tried to combine these two

methods. Fife [22] has proposed a framework for the integration of the process flow

methods found in Fiper into the PLM framework. He proposes organizing the work flow

with the data and models stored in the PLM system, and using that same system to notify

engineers and automatically run processes. This allows an organization wide

implementation of a process.

Lund [23] has proposed a less specific method by combining the ideas of PLM and

[18] and [19]. He would store CAx and other parametric models as data in the PLM

framework and create instantiations of those models in whatever client was pertinent to

the group accessing the data (i.e. CAx, spreadsheets, etc.). A base instantiation would be

saved in the native model form, and variants stored as metadata in the database. This

22

would allow for quick retrieval, representation and manipulation of the data, without the

mass storage of proprietary tools.

23

CHAPTER 4: METHOD

 This thesis proposes a method for linking the various members of a model fidelity

family. This section describes the steps and tools necessary to implement this method.

In addition to linking the various members of a model fidelity family, there are

several sub-objectives which are necessary for this method to be useful in a company

which uses parametric CAD.

The method needs to incorporate some means of revision control so that there is a

model which represents what all other groups in the company will see, and that represents

the true state of the product as the design process progresses. Without this, there would

be no means of controlling which group’s model was the true model, and severe

confusion could ensue.

The method must be able to handle models that have been parameterized

differently. If all of the models were parameterized the same, a simple updating of the

expressions would be applicable, and there would be no merit to this thesis. Allowing the

models to be parameterized differently will preserve the original design intent of the

model. This is important because an engineer may have critical parameters on which a

given model is based, and these are the driving parameters for that model. Thus the

model has an intended design and the designer has a design intent for that model. Many

24

members of a model fidelity family will have specific design intents for the functionality

of that model within the various groups which will contribute to the overall product

definition. These intents must be preserved in order for the models to be functional, and

thus the models must be allowed to be parameterized differently.

The method also needs to be able to update all of the models in the model fidelity

family from any of the other models in the family. This is important because of the non-

linear nature of the design process used in companies today.

4.1 Assumptions

This method assumes that the organization which will use it has a well defined

design scope. Thus they have set forth specific design criteria which they are trying to

meet. It is these design criteria against which all models of a model fidelity family must

be verified. The method also assumes that there is a seed file for creating the model

fidelity family. Models may be added to or removed from the family as design decisions

may require. Ideally, all members of the model fidelity family would be created at the

time of product inception, but this may not be a realistic expectation.

The method also assumes an intimate understanding of the design process and

scope. Model designers know the design intent of individual models within that family.

Certain designers also have to know how two particular models relate to one another, and

can use this understanding of the models’ design intents to create a link which will be

created between them. This link will define how the models relate and change relative to

one another. Thus this method makes no attempt to define the intent of the link between

25

the models, but uses the directions implicit in the constraints which will be applied

between the two models.

4.2 General Approach

After a user has made design changes to a member of a model fidelity family in the

CAx package of his or her choice, propagation of those changes to all members of the

family will be accomplished in the following manner:

1. Model geometry is extracted from the CAx application into a data storage

scheme which holds model geometry and links between model fidelity

family members.

2. The links between model fidelity family members are resolved.

3. Necessary methods are implemented to integrate other information from the

CAx package into the data storage scheme (i.e. parameters in parametric

CAD models).

4.3 Data Storage

A storage system needs to be created in order to contain all of the information to

define a model fidelity family. This system needs to store the members of the family as

well as links between the members which will describe how the models relate to each

other.

26

4.3.1 Model Geometry

Model geometry will need to be stored in such a way as to represent the geometry

and be able to recreate the geometry in any model view which may be used by a

company. Geometry may be stored as representative values for the definition of a full

geometric feature. It would be impractical to try to store the thousands of data points

which would define a curve to a reasonable definition. Instead, curve control points

should be stored, from which any point on a curve could be calculated and constructed.

Figure 8 shows a Bezier curve which can be defined at any point by the four points which

make up the control structure of the curve. These four points are all that are necessary to

store.

Figure 8: Representation of a bezier curve as its control points as opposed to points along the curve

A data repository as described in [18] and [19] or [23] would serve as an appropriate

storage method. This repository will provide the necessary revision control to protect the

developing product from being incidentally misrepresented to other groups.

27

4.3.2 Model Fidelity Family Links

In order to maintain the independence of each member of a model fidelity family

(i.e. the model may be completely changed, independent of any other members of the

model fidelity family) and to allow all members of the family to be updated by any single

member of the family, links between members of the family need to be created. It would

be impractical to create a link between one model and every other model in the family,

since a model fidelity family could potentially contain hundreds of models. However, it

is quite practical that each member of a model fidelity family be constrained to one other

member in the family. This will allow all of the members of the model fidelity family to

be linked to each other through all of the other members (see Figure 9).

Figure 9: The linking structure of a model fidelity family

This allows the designer to choose the model which is most like the model he or she

wishes to add to the model fidelity family. This will reduce the complexity of the link

and make the process much quicker. Also, the ability to create unique constraint schemes

Model
10

Model
6

Model
1

Model
8

Model
5

Model
7

Model
3

Model
12

Model
2

Model
11

Model
4

Model
9

Model
13

Model
14

Model
15

28

between models allows a designer to introduce a distinct method for one model to update

relative to another. This provides another means by which design intent could be placed

into a model. Perhaps driving parameters in one model would be critical to driving

parameters in another model. The links created within a model fidelity family could

define the relationship between those two sets of driving parameters and provide a

structured means for models to interrelate.

A link between two models of a model fidelity family needs to contain the

following information:

1. The models which are to be linked together

2. A set of constraints between geometry in the models

These links should be stored in the data repository that holds all of the models in the

model fidelity family.

4.3.3 Unconventional Constraints for Model Fidelity Family Members

Because the goal of this method is to link models of varying specificity, not all

members of a model’s topology in a more complex model will be fully described by the

topology of the less specific model (see Figure 10).

29

Figure 10: Models of varying specificity with varying topology

In the case that the model which has already changed is the more specific model, and the

model which is to be changed is the less specific model, this would most likely not be

problematic as long as there are no constraints between the geometry in the less specific

model and the extra geometry in the more specific model. However, in the reverse

situation all of the topology of the updating model would not be constrained to the

topology of the changed model. This situation must be resolved. Following are several

possibilities for fixing this problem. This does not represent a complete set of constraints

to solve this problem, but just a few solutions which could be implemented.

4.3.3.1 Fixed Value Constraints

One method for resolving this geometry which is defined in one model and not in

the other is to fix the position of the feature in the more specific model relative to another

feature in either of the models. This would always give a position for the free geometry.

30

Figure 11: Fixed value constraint and their inherent problem

However, if this fixed value is too large for the geometry to which the feature is attached,

this could cause impossible geometry configurations and will most likely cause severe

errors in a CAx tool (see Figure 11).

31

4.3.3.2 Proportional Constraints

Another possibility for solving this problem is proportional constraints. This sets

the position or size value of a constraint proportional to the value of some other feature in

one of the models (see Figure 12).

Figure 12: Proportional constraint example

This constraint will only have problems if the value goes to zero and is the value of an

arc, cylinder, etc. However, this would require that the value of the feature to which it is

constrained also goes to zero.

4.3.3.3 Relative Point Constraints

Still another possibility for a constraint is a relative point constraint. This type of

constraint allows certain points on one model to be constrained to points on the other

x

x

y

y

x

y

y

x

y = kx k is a constant

x

x

y

y

x

y

y

x

y = kx k is a constanty = kx k is a constant

32

model (see Figure 13). This will be a very generic type of constraint and could have

many configurations including points in directions, points on curves with parameter

values, etc.

Figure 13: Relative point constraint example

4.4 Link Resolution

As design changes are made, the propagation of those design changes to all

members of a model fidelity family will be accomplished by resolving the links between

the members of the model fidelity family.

As was implied in section 4.3.1, model geometry elements (curves, surfaces, solids,

etc.) need not be stored as thousands of points which approximate the true nature of the

element. Instead they can be stored as a set of data from which the element can be

calculated at all points. This not only allows for less storage, but allows for computation

of links between the models. Thus a model can be represented by a set of points Mi from

which the entire model may be described. In a second model in the model fidelity family,

the model may be described by the points Mj. The object of a link is to map the geometry

Relative Point Constraint

33

changes of one model to those of another. Thus with when a link is applied, a transfer

function between Mi and Mj is implemented as:

jjii MAM = (1)

Conversely a change in Mj would create a change in Mi such that:

 iijj MAM = (2)

Aji and Aij are not the same because the models are not of the same fidelity. Thus Mi ≠Mj,

and the two transfer functions are unique. A simple example illustrates the problem.

Figure 14: Two models from a model fidelity family to illustrate the transfer functions

Figure 14 shows an example of two models which could be members of the same model

fidelity family. The points P0
0 and P1

0 and the points P0
1 and P1

1 are constrained

coincident to one another respectively. P1
2 and P1

3 are constrained as shown. If Model 1

is modified, (1) becomes:

1100 MAM = (3)

Which can be rewritten as:

Model 0 Model 1

x

x

½ x

d

P0
0 P0

1 P1
1P1

0

P1
3

P1
2

x

x

½ x

d

P0
0 P0

1 P1
1P1

0

P1
3

P1
2

x

½ x

d

P0
0 P0

1 P1
1P1

0

P1
3

P1
2

34

13

3

3

2

2

2

1

1

1

0

0

0

01

1

1

0

0

0

000000100000
000000010000
000000001000
000000000100
000000000010
000000000001

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

•

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

z
y
x
z
y
x
z
y
x
z
y
x

z
y
x
z
y
x

 (4)

Notice that M0 is independent of points P1
2 and P1

3. If Model 0 were changed instead,

A01 would be:

0

1

1

1

0

0

0

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

13

3

3

2

2

2

1

1

1

0

0

0

1

00000
0000

00000
00000
00000
00000
0100000
0010000
0001000
0000100
0000010
0000001

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

•

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

z
y
x
z
y
x

d
z
y
x
z
y
x
z
y
x
z
y
x

 (5)

Notice in the case of (5) that P1
2 and P1

3 are dependant on M0. Also notice that there is a

1 in M0 to accommodate for the constant d. From this it can be seen that Aij and Aji are

not invertable, and must be determined for each case since not all members of Mi may be

dependant on Mj and vice versa.

35

If the model that is desired to be viewed is not directly linked to the model that is

modified, a transfer function between the two models must be identified. This can be

found by use of the transfer functions that exist between each of the models inbetween

the two models in question. Thus, for the configuration shown in Figure 9, if Model 1 is

changed, the solution for Model 8 is:

1188 PAP = (6)

15165688 PAAAP = (7)

Thus in order for a model fidelity family to be linked solutions for all of the Aijs in

the family must be found. For the example in Figure 14, the transfer functions are easily

found through linear means. However, as models become increasingly complex, linear

transfer functions become inadequate. Thus a geometric constraint solver which uses

both linear and iterative means provides the transfer functions each time a link between

members of a model fidelity family is solved.

The geometry of both models will be extracted into the constraint solver domain.

This provides all necessary references and geometry for solving the set of constraints

within the links. The model which has already been updated according to the design

changes will have all of its geometry fixed. The model which is to be updated will be

drawn such that geometric constraints within that model remain in effect (i.e. if two

surfaces are constrained within the model as being parallel, those surfaces should remain

parallel after design changes are made). This allows the design intent of the model to be

preserved. It may also reduce the number of constraints needed to fully define the link

between two models.

36

Once the constraint solver has finished solving the system, the geometry is

extracted from the constraint solver and the data storage scheme is updated with the

geometric data.

4.5 CAx Integration

The methods proposed by Hoffman and Lund provide the ability to extract

geometric data from any CAx application into the database and to use that data to

recreate the geometry in any view. The method proposed in this thesis will have this

functionality as well, and Lund’s and Hoffman’s works are the basis for how the method

will be implemented.

4.5.1 Read/Write Capabilities

The method must have the capability to read and write (or extract and draw)

geometry to the CAx packages that will be used to define and modify the geometry of the

model fidelity family. The method must be able to translate the geometry into a data

structure which can exactly recreate that geometry in the CAx tool in which it was

created as well as any other CAx tool which will be used to view the geometry. This

process must be automatic and seamless in order for members of a model fidelity family

to be added, redrawn, updated, etc.

4.5.2 Update

Updating the geometry of a model fidelity family which will satisfy the objectives

and sub-objectives outlined earlier in this chapter provides a unique challenge. Because

37

state-of-the-art CAx tools are often parametric in nature, simply recreating the geometry

within the CAx application may not be enough. Thus, a means must be provided for

updating the geometry while preserving the parametric constraints of the geometry within

the CAx tool. This may be accomplished by several means. Ideally, the constraints

which have been imposed on the geometry would be removed, the geometry moved to

where it needs to be to satisfy the constraints of the model fidelity family, and the

constraints re-imposed. Constraints with numeric values will be updated with the new

values.

Because this method can be problematic with various CAx applications in the way

that they create and update models (usually a historical feature creation), other methods

become much more practical. Another option which can be utilized is to recreate the

model geometry completely and replace the original model file with the newly created

one. This method, however creates problems with database storage and maintenance. It

is desirable to preserve the original model and update it in a new configuration.

Yet another option for updating a model is to recreate the model in a different file

and extract the model parameters out of the file. The new parameters are then used to

update the original model file. This preserves the original model file and uses a

mechanism that parametric CAx applications provide for changing the configuration of a

model. Thus it becomes a natural extension of the CAx tool and a non-destructive way of

updating model geometry.

There is a problem which comes into play when using parametric CAx applications

which allow for knowledge between parameters. Examples of this include expressions

based on other expressions. This problem is further discussed in section 6.2.1 Expression

38

Resolution, and no attempt will be made to solve this problem within the scope of this

thesis.

4.6 Sub-objectives

In addition to satisfying the main objective of transferring data between all

members of a model fidelity family, the sub-objectives must also be realized.

4.6.1 Revision Control

The data storage scheme stores the model fidelity family as data outside of the CAx

framework. Only when an update of the model fidelity family is called will the data

which is stored in the database change. Thus a user may change a model independent of

the true state of that model in the design process. This provides an organization a means

of revision control and they must determine when a model fidelity family will be

updated.

4.6.2 Different Parameterization Schemes

The ability to read and write to a CAx package means the ability to recreate a

model with all of its constraints intact. This allows the user to create a unique

parameterization scheme for each model within a model fidelity family.

4.6.3 Multi-Directional Dependancies

The link system as described earlier in this chapter is what allows the multi-

directional dependencies. The transfer functions which arise from the use of the

Comment [CGJ1]: The next page is blank is this
correct?

Comment [HLS2]: This is a formatting thing.

39

geometric constraint solvers allows any member of a model fidelity family to update all

other members of that family.

40

41

CHAPTER 5: RESULTS AND DISCUSSION OF RESULTS

This chapter discusses the results obtained from the implementation of the method

described in this thesis. The objective of the method is to create a tool which will link the

members of a model fidelity family such that changes made on one member of the family

are reflected in all other members of the family. The name of the tool that was

implemented is the Geometric Fidelity Linker (GFL).

5.1 Specific Objectives

In addition to performing the previously stated main objective of the method

described in this thesis, GFL must also satisfy the following sub-objectives:

1. The method must be able to handle models that have been parameterized

differently.

2. The method needs to be able to update all of the models in the model fidelity

family from any of the other models in the family in order to accommodate the

non-linear nature of the design process.

3. The method needs to incorporate revision control to eliminate confusion as to the

true description of the product at the current state of the design phase.

42

5.2 Approach

The Geometric Fidelity Linker (GFL) was created according to the method

described in chapter four of this thesis for the implementation of the method.

5.3 The Geometric Fidelity Linker

A data structure was created to contain the geometric information which would be

used in GFL. This was necessary because the implementation of Hoffman’s method was

unavailable, and Lund’s implementation was incomplete at the time this implementation

was done. This data structure was created in an object oriented C++ environment.

Classes were created to mimic the structure of a feature based CAD application. Models

contained expressions and features, and features were polymorphed into their respective

definitions (i.e. curves, datums, sketches, etc.). A linker class was created to represent

the entire model fidelity family which held the model members and the links between the

models. Links contained pointers to models in the model fidelity family and the

constraints between those two models (see Figure 15).

43

Data Domain

Linker

hModel*hModel*hModel*Model

hLink*hLink*hLink*

Model

hModel*hModel*hModel*Feature

hModel*hModel*hModel*Expression

Curve

Datum

Sketch

Surface

Solid

Arc

Conic

Line

NURBS

Point

Link

(Model 1)

hModel*hModel*hModel*Constraint

(Model 2)Link

Denotes Polymorph
() Denotes a Pointer

Data Domain

Linker

hModel*hModel*hModel*Model

hLink*hLink*hLink*

Model

hModel*hModel*hModel*Feature
hModel*hModel*hModel*Feature

hModel*hModel*hModel*Expression
hModel*hModel*hModel*Expression

Curve

Datum

Sketch

Surface

Solid

Arc

Conic

Line

NURBS

Point

Link

(Model 1)

hModel*hModel*hModel*Constraint
hModel*hModel*hModel*Constraint

(Model 2)Link

Denotes Polymorph
() Denotes a Pointer

Denotes PolymorphDenotes Polymorph
() Denotes a Pointer

Figure 15: The data structure used in the Geometric Fidelity Linker

These classes were polymorphed into application specific classes to accommodate

the CAx tool and the constraint solver. The CAD package used for this implementation

was Unigraphics NX2 (NX2). Figure 16 illustrates the polymorphing from the data

domain to the NX2 domain. The NX2 classes provide the capability of drawing,

extracting and updating the geometric data classes in GFL.

Because there was no appropriate 3D constraint solver available to implement this

thesis, the constraint solver inherent in NX2 was utilized. Thus the geometry was

restricted to 2D planar geometric elements including curves, lines, arcs, points, planes,

axes and sketches. GFL has the ability to extract the information directly from a NX2

model and store it in a GFL library. For this implementation, the library took the form of

a text file, but integration into a true database as Lund and Hoffman proposed would

follow directly. However, it was not the intent of this thesis to prove database

44

integration, but rather the updating of model fidelity family members from prescribed

constraints.

Unigraphics ViewData Domain

Linker

Feature

Sketch

Point

Curve

Datum

Line

Arc

ugLinker

ugModel

ugDatum

ugFeature

ugPoint

ugCurve

ugSketch

ugLine

ugArc

Model

Denotes Polymorph

Unigraphics ViewData Domain

Linker

Feature

Sketch

Point

Curve

Datum

Line

Arc

ugLinker

ugModel

ugDatum

ugFeature

ugPoint

ugCurve

ugSketch

ugLine

ugArc

Model

Denotes PolymorphDenotes Polymorph

Figure 16: Polymorphing of classes from the data domain to the NX2 domain.

5.3.1 Creating a Model Fidelity Family Using the Geometric Fidelity Linker

Using NX2 as a geometry viewer, GFL allows a user to create a model fidelity

family by adding a model to the a GFL library, and then linking other models to the

members of that family. Adding a model consists of the following steps:

1. Chose a model fidelity family to add a model to.

2. Chose a model in the family to constrain the new model to.

3. The geometries of both models are extracted into the GFL data structure.

45

4. The geometries are drawn on top of one another and constraints added between

the two models. As constraints are added, the new model is updated according

to the topological configuration already in the family.

5. The new model and the constraints between the models are then saved in the

library and the application completes.

This method allows a model to be constrained to exactly one other model in the

model fidelity family. Because there is no set model to which a new model must be

constrained (i.e. the model of least or highest fidelity), there is flexibility in how

models may be constrained to one another.

5.3.2 Updating a Model Fidelity Family Using the Geometric Fidelity Linker

Once a model is added to the library, any member of the family may cause an

update for the entire family. The updating of the model fidelity family occurs in

the following manner:

1. A user modifies a member of a model fidelity family.

2. Once the user is done with modifications, the GFL tool is loaded as a user

function within NX2. The GFL tool uses model attributes to determine which

family a model belongs to.

3. The model geometry is then extracted and the library updated according to the

new model geometry.

4. With the updated data, GFL uses the NX2 constraint solver to again overlay the

models to which the modified model is linked and update the linked models

46

according to the modified model geometry. A recursive algorithm continues

through all of the links to solve the model fidelity family for the new geometric

configuration.

5. Once all of the models in the model fidelity family have been updated, the

library is then saved with the new data.

6. All of the members of the model fidelity family are then opened in their

respective NX2 models and the models updated according to the new data.

This is accomplished by recreating the geometry with its respective constraints,

extracting the expressions of the model and updating the model with the new

expressions.

5.3.3 Test Cases

Two test cases were run to prove the method described in this thesis. First was a

set of corners models, and second a pair of turbine case models of a gas-turbine engine.

5.3.3.1 Corners Models

The corners models are a set of three models based on a corner which may be found

in any geometric model. The geometry is shown in Figure 17.

47

Figure 17: The three corners models

Models 2 and 3 were both linked to model 1. The start points (red) and end points

(blue) were constrained coincident to one another. The angled portions (green) were

constrained collinearly. The fillets (yellow) were constrained with a fixed radius, and the

boss element (pink) was constrained proportionally to the length of the horizontal portion

(black).

The models were flexed by changing the angle of the angled portions, the length of

the horizontal portion, and the spatial position of the model relative to the WCS of the

models. The results and a discussion of those results follow.

5.3.3.1.1 Changing the Angle of the Angled Portions

The models responded well to the change in the angle of the angled portions of the

model fidelity family. The entire family updated as expected for each of the members of

the family being chosen as the driving model.

Model 1 Model 3Model 2

48

5.3.3.1.2 Changing the Length of the Horizontal Portions

Changes in the length of the horizontal portions were more problematic. If the

length of the horizontal portion is increased, the models behaved well and updated as

expected. However, if the lengths were decreased, the models failed to update as

expected. Model 1 updated as expected no matter which model was the driving model,

however Models 2 and 3 had problems. The fillet has two possibilities which satisfy the

geometric constraints imposed on fillets (coincidence and tangency). In the case where

the length of the horizontal portions was shortened, the wrong option was often solved

for. All of the constraints were solved for correctly as far as the constraint solver was

able, however, it was not sufficient to produce the desired update in model geometry.

5.3.3.1.3 Changing the Spatial Positions of the Models

The problems with the fillets being solved for the unintended case continued in

the portion where the spatial position of the model was changed. Also, other situations

arose where the wrong case was solved for. For instance a horizontal dimensional

constraint was solved for 1 inch on the wrong side of the datum to which it was

constrained. This caused the horizontal portion of Model 2 to be 2 inches longer than

anticipated. Again, all of the constraints were solved correctly for the constraint solver’s

ability to do so, but not as desired for this method.

5.3.3.2 Turbine Cases of a Gas-turbine Engine

These constraint solver problems persisted in the second case study, except the

complexity of the models increased the complexity of the solutions. This caused

49

completely unusable models. Figure 18 shows the results of a change in spatial position

of the models.

Figure 18: The results of a spatial change in position for the turbine cases case study.

Model 1

Model 2

Model 2 After Spatial Change

Model 1

Model 2

Model 2 After Spatial Change

50

5.3.4 Updating According to Design Intent

The method described in this thesis would be useless if it did not preserve the

original design intent of a given model. To this extent, the method allows the models that

make up a model fidelity family to be parameterized in unique ways. This preserves the

original design intent of the model as it was created. Also, the ability to create

constraints between two members of a model fidelity family in unique configurations

provides an additional means to preserve design intent of the models which are linked

together. See Section 4.1 for a further discussion of design intent in model fidelity

families.

The corners models test case helps to show the preservation of the design intent.

Changing the angle of the angled portions of the model fidelity family shows that the

model updated according to the constraints imposed and the design intent of the link

between the two models was preserved. However subsequent tests on the case study

showed that there were problems with the method as implemented. Section 5.3.5 is a

discussion of these problems.

5.3.4.1.1 Time Performance

For test cases, GFL took about 30 seconds to update the entire family for any given

change in a member of the family. The time required to update an arbitrary family is

dependant on the number of models in that family and the complexity of the models and

the links between the models.

51

5.3.5 API Problems

In order to integrate GFL into NX2, GFL was written as a user function within the

NX2 Application Protocol Interface (API), which is a set of precompiled library files

which allow access to most of the functionality of NX2. However, because access to

NX2 is limited to API functions and NX2 naturally desires to maintain proprietary

definitions to themselves, the ability to integrate into the NX2 environment to the extent

desired for the implementation of GFL was not available. Manipulation of geometric

data was easily facilitated by the API, however access to the constraint solver in NX2

was very limited. In order to use the constraint solver, all of the geometry had to be

defined within a sketch. This forces all geometry within a model to one plane. Ideally

the geometry would be created in a constraint solver, and solved without constraints

imposed by working within a sketch.

Another problem that arose from working within the NX2 environment was the

inability to fully control how the geometry updated. Models of a family would update

correctly when the geometrically constrained geometry was solved, but when the

parameters were solved, the constraint solver would find an alternate solution for the

geometry. Thus all of the constraints were solved for, but the wrong solution was found.

5.4 Analysis of Revision Control

GFL itself is not absolutely tied with any CAx application. It was written

specifically for NX2, but is not limited to that application alone. Only the data which

defines a model fidelity family is stored in the GFL library. Thus any changes made to a

52

model in a CAx tool would not be reflected in the GFL library unless the library is

updated. If changes are made and these changes are not saved into the library and the

model fidelity family updated according to the model, the model will remain as it is

defined by the data in the GFL library. Thus the GFL library defines the true state of the

models which it defines. Only when the library is updated are the models changed. Thus

the engineering groups which own the models are free to make changes to those models

without affecting the data in the GFL library. The models are in no way restricted by the

links which bind them to the other members of the model fidelity family until an update

to the family is instantiated. Thus the GFL library defines the true state of the model

fidelity family, and any models only define proposed design changes. Final design

changes will be integrated into the model fidelity family with a GFL update.

5.5 Analysis of Different Parameterization Schemes

Excluding the issues addressed in Section 5.3.5 regarding the constraint solver, the

models in the test case updated correctly with the model fidelity family. The

parameterization schemes of the various models remained intact and GFL was able to

update the library despite the variation in parameterizations.

In light of the issues arising from multiple solutions by the constraint solvers, it

may be possible to constrain the models in a model fidelity family in such a way as to

produce a unique solution every time the family is updated. This requires an intimate

understanding of the problems associated with this multiple solution problem. It may

also take away from the model designer the freedom to parameterize a model in such a

way as to include the design intent of the model. The inclusion of design intent in the

53

model is the driving factor which necessitates members of a model fidelity family being

parameterized differently. Thus this situation was not explored further.

5.6 Analysis of Multi-directional Dependencies

The corners model fidelity family consisted of three models linked together. The

model fidelity family updated no matter which model was modified, despite the fact that

the geometry did not update as desired. Thus GFL provides a way for models to update

independent of addition order to the model fidelity family or any fidelity level structure

which would be assumed. Each model can facilitate change in the entire model fidelity

family.

54

55

CHAPTER 6: CONCLUSION

The main objective of this thesis is to provide a method for propagating changes in

one member of a model fidelity family throughout the entire family. Additionally, the

method should do this regardless of the way in which the design intent was prescribed or

the models were parameterized, allowing any of the members of the family to be the

modified model which drives change in all other members of the family, and provide a

means for controlling the true definition of a product as it develops. This section draws

conclusions about the proposed method and gives suggestions for further research and

possibilities.

6.1 Automatic Updating of a Model Fidelity Family

The implementation of the method described in this thesis shows that members of a

model fidelity family may be tied together through geometric links. This method

demonstrated that geometric model changes are distributed throughout the model fidelity

family in a manner of seconds or minutes as opposed to the hours or days that it could

take to update those models manually.

56

6.1.1 Revision Control

The method described in this thesis provides the means for working on a member

of a model fidelity family without affecting the model stored in the database. This allows

a group to work on its model independent of the model fidelity family. In fact it is not

until a user updates the model fidelity family that the data which has changed in a group’s

model will be distributed to the family. Thus changes can be carefully considered before

they become final and are distributed into the library. Each revision of a model fidelity

family may be saved in the database, and the ability to revert to previous family

configurations provides another means of revision control. Further methods should be

employed to manage how and when the model fidelity family will be updated to reflect

changes which any group may make. This will depend on the way that an organization

works and how they would individually use this method.

6.1.2 Different Parameterization Schemes

The ability of a group to determine the driving parameters of a model and how

those parameters will determine the final outcome of that model allows the designer to

place the design intent into the model. The method described in this thesis allows this to

occur. As the implementation now stands, it may be possible to parameterize the models

of a model fidelity family such that they would update without the multiple solution

problems encountered, but this does not allow the user the freedom of using the

parameterization schemes to define a model’s design intent. The development of

directional constraints may alleviate this problem. See Section 6.1.4 for a discussion of

directional constraints.

57

6.1.3 Multi-directional Dependencies

Removing the strict dependency of higher fidelity models on lower fidelity models

allows all phases and levels of design to happen simultaneously and give input

simultaneously. This can create organizational problems. However the organization

which uses this method will have to decide on how best to resolve the true design

process. This method allows flexibility in defining that design process, instead of forcing

the organization into a predefined design method.

6.2 Projected Contributions

The implementation of the method presented in this thesis could have an incredible

impact if used in a commercial setting. This method would allow an initial definition of a

product at the conceptual level. Other models within the model fidelity family which

already exists for further product definition will automatically reflect the conceptual

design. Immediately work could begin on those other models at all levels as the

organization’s design process prescribes. As more information becomes available, the

model fidelity family will be updated. Geometry checks of the model fidelity family

against design criteria can be made by the organization outside of this method at all levels

of design from conceptual to final and even manufacturing. These changes can be shown

immediately in the model fidelity family with this method. This increases the ability of

groups within a corporation to communicate and share information. This also facilitates

the propagation of this information automatically, decreasing the need for manually

updating those models in the family. This eliminates potentially hundreds of man hours

58

in mundane parameter entry and calculation and eliminates many potential mistakes that

would occur due to human error in the updating process.

This method can be extended to other CAx applications. The model information

saved in the database can also be extended to spreadsheets, documents, manufacturing

applications and even proprietary applications which require the geometric data within

the database. This would further eliminate the time spent in mundane data entry tasks

and help eliminate the human errors which accompany the manual data entry. The

potential for time savings due to automatic data migration and rework due to mistakes is

incalculable.

This thesis shows the usability of the proposed work. Much work still remains in

order to make it a commercially viable method. However, as constraint, database and

CAx technology advance into the realms needed to fully implement this method into a

useful solid geometry tool (as those are their current directions) the full potential of the

method described in this thesis may be realized.

6.3 Future Work

Future work on this method may be done in the areas of directional constraints to

absolve the problem with multiple solutions to constraints, indication that geometry

models are fully constrained, expression resolution, 3D implementation, management

scheme for when updates are accepted into the database, homogeneous transformations

for differently oriented models, assemblies, topology changes, model attributes, and other

engineering applications.

59

6.3.1 Directional constraints to absolve the problems with multiple solutions to
constraints

As it currently stands, NX2 does not support directional constraints within its

sketching environment. A directional constraint differs from a conventional constraint in

that the constraint has an origin and direction. This lack of directionality allows for

multiple solutions within the constraint solver.

Figure 19: The problem of multiple solutions of a given constraint

Figure 19 shows an example of how a conventionally constrained horizontal line can

have two solutions which satisfy the constraints. Figure 20 shows the same horizontal

line constrained with directional constraints.

Figure 20: An example of a directional constraint

X = 1 X = 1

X = 1 X = -1

60

In order for the configuration on the right in Figure 19 to be realized, the value of the X

would have to be –1 as shown by the configuration on the right of Figure 20. Thus a

directional constraint gives a unique solution for a constraint scheme. Because NX2 does

not support directional constraints, either the models must be constrained such that the

design space of the model will not allow for multiple configurations, or the risk of an

undesirable configuration must be accepted. If directional constraints were available in

future constraint solvers, this could solve the main issues which arose in the

implementation of this thesis (see Section 5.3.7).

6.3.2 Indication that geometry models are fully constrained

The method as it was implemented in this thesis made no attempt to ascertain

whether or not the models were fully constrained to one another, but assumed that the

user was able to intuitively know when they were. This works fine for very simple

models, but as the models become more complex, it becomes necessary to know if the

models are fully constrained or not. This should be implemented into the method.

6.3.3 Expressions resolution

The method described in this thesis does not take into account the use of logic in

expressions. This logic takes the forms of algebraic, trigonometric and logic functions

which relate expressions to one another. Thus an expression which defines the physical

position of an element in a geometric model may be the computation of a function

involving one or more other expressions. The method in this thesis begins with this

numeric value, and the numeric values of the expressions which make up the function

61

must be solved for. For example, if the constraint x in Figure 21 had the value of y + 5

instead of a purely numeric value, y would have to be solved for as well. In this example,

the solution is straightforward and simple. However, a means needs to be created to

resolve all of the parameters defined within the CAx application to update that particular

model.

Figure 21: Example of how expressions work

6.3.4 3D implementation

The ability to implement this method in three dimensional space is the basis for its

greater usefulness. The 2D implementation itself is insufficient to prove its usefulness in

solid modeling applications. However, as explained in Section 2.3.2, no appropriate

constraint solver exists at this time. As constraint solver technology advances, especially

in the 3D realm, efforts should be made to implement this method with those constraint

solvers to realize the full potential of this method.

y = 2

x = 7

y = 2

x = 7

62

6.3.5 Management scheme for when updates are accepted into the database

There are no control measures taken to control when a model fidelity family is

updated according to changes in a member model. Implementation into methods such as

Hoffman[18] and [19] or Lund[23] should include a management method for this type of

updating. Also, the management and organization of a corporation could determine how

the model fidelity family would be updated. Without this, any group could update the

model fidelity family at any time, regardless of any other groups’ needed changes,

undoing important additions to a product and hindering work. This would simply result

in chaos within the corporation.

6.3.6 Homogenous transformations for differently oriented models.

There is no guarantee that members of a model fidelity family will be oriented the

same in relation to the world coordinate system (WCS) of the model. The WCS is the

origin and XYZ directions which define the space in which a model is created. How a

designer orients a model relative to that WCS is dependant on such things as ease of

model creation, company standards and personal preference. A provision needs to be

made to orient the models such that they are in the same coordinate system. This can be

resolved by means of a homogenous transformation which describes the rotation and

displacement necessary to place the models in the same space and orientation.

63

6.3.7 Assemblies

This thesis did not consider assemblies, however expansion of this method to

assemblies would be a natural extension, and should be considered for practical industrial

applications. The extension to assemblies would be rather straight forward.

6.3.8 Topology changes

This method does not consider topology changes except that if topology changes

are made, the model whose topology changed could become another member of the

model fidelity family and the old model removed from the family. However, a more user

friendly method would be to allow those changes and the reapplication of constraints to

the model fidelity family.

6.3.9 Model Attributes

The method implemented in this thesis made no attempt to account for model

attributes, but only considered geometry. However, attributes are an important aspect of

parametric modeling, and should be incorporated into this method. Several researchers

have created methods for automatically mapping attributes between models, and these

methods could be used to incorporate attributes into this method [24][25][26].

6.3.10 Other Engineering Applications

This method can be applied to many other engineering applications than CAx tools.

For instance, model parameters may be saved in spreadsheets, databases and proprietary

applications. This method could be extended to include all of these and potentially many

64

others. The ramifications of extending this method to other engineering applications

would mean even greater fluidity in data migration throughout a corporation. The

constraint solver could be one which is not devoted solely to geometric applications, or

several different constraint solvers could be used, depending on the type of data which is

to be incorporated into a model fidelity family.

65

REFERENCES

[1] www.ugs.com/products/nx, Posted Sept. 2004.

[2] W. Bouma, et al., “Geometric constraint solver,” Computer Aided Design, vol. 27,

no. 6, pp487-501, 1995.

[3] I. Fudos and C. M. Hoffman, “Correctness proof of a geometric constraint solver,”

International Journal of Computational Geometry & Applications, vol. 6, no. 4, pp
405-420, 1996.

[4] Christoph M. Hoffman, et al., “Making constraint solvers more usable:

overconstraint problem.” Computer Aided Design, vol. 36, no. 6, pp. 377-399,
2004.

[5] A Ershov, et al., “LGS: Geometric constraint solver,” Lecture Notes in Computer

Science, vol. 2890, pp. 423-430.

[6] K. Y. Lee, et al., “A hybrid approach to geometric constraint solving with graph

analysis and reduction”, Advances in Engineering Software, vol. 34, no. 2, pp. 103-
113, 2003

[7] C. Castro and E. Monfroy, “Basic operators for solving constraints via collaboration

of solvers,” Journal of Computer Science and Technology, vol. 17, no. 3, pp. 314-
323, 2002.

[8] J.S. Kim, et al., “Solving 3D geometric constraints for closed-loop assemblies,”

International Journal of advanced Manufacturing Technology, vol. 23, no. 9-10, pp.
755-761, 2004.

[9] Joachim Altmeyer, et al., “Reuse of Design Object in CAD Frameworks,”
IEEE/ACM International Conference on Computer Aided Design, Digest of
Technical Papers, pp. 754-761, 1997.

[10] M. Koegst, et al., “A Systematic Analysis of Reuse Strategies for Design of

Electronic Circuits,” Proceedings of the Conference on Design, Automation and Test
in Europe, pp. 292-296, 1998.

66

[11] Erik E. Hayes, et al., “Representation of Temporal Change in Solid Models,”

Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, pp.
317-318, 2001.

[12] Bronsvoort, et al., “Multiple-view feature modeling and conversion,” Geometric

Modelling: Theory and Practice – The State of the Art, pp. 159-174 1997.

[13] R. Bidarra and W. F. Bronsvoort, “History-independent boundary evaluation for

feature modeling,” CD-ROM Proceedings of the 1999 ASME Design Engineering
Technical Conferences, 1999.

[14] R. Bidarra and W. F. Bronsvoort, “On families of objects and their semantics,”

Proceedings of Geometric Modeling and Processing 2000 – Theory and
Applications, pp. 101-111, 2000.

[15] R. Bidarra, et al., “Boundary evaluation for a cellular model,” CD-ROM

Proceedings of the 2003 ASME Design Engineering Technical Conferences &
Computer and Information in Engineering Conference, 2003.

[16] K. J. de Kraker, et al., “Maintaining multiple views in feature modeling,”

Proceedings Solid Modelling ’97, Fourth ACM Symposium on Solid Modelling and
Applications, pp. 123-130, 1997.

[17] W. F. Bronsvoort and A. Noort, “Multiple-view feature modeling for integral
product development,” Computer-Aided Design, vol. 36, no. 10, pp. 929-946, 2004.

[18] Christoph M. Hoffman and Robert Joan-Arinyo, “CAD and the product master
model,” Computer-Aided Design, vol. 30, no. 11, pp. 905-918, 1998.

[19] Christoph M. Hoffman and Robert Joan-Arinyo, “Distributed maintenance of
multiple product views,” Computer-Aided Design, vol. 32, no. 7, pp. 421-431, 2000.

[20] www.engineous.com/product_FIPER.htm, Posted Feb. 2005.

[21] www.ugs.com/products/teamcenter, Posted Sept. 2004.

[22] Nathanial Luke Fife, “Developing a design space model using a multidisciplinary

design optimization schema in a product lifecycle management system to capture
knowledge for reuse,” M.S. thesis, Brigham Young University, Provo, 2005.

[23] Jonathan Lund, “Parametric Product Lifecycle Management” M.S. thesis,
 BrighamYoung University, Provo, 2005.

[24] Matthew King, “A CAD-centric Approach to CFD Analysis With Discrete Features”

M.S thesis, Brigham Young University, Provo, 2005.

67

[25] Tyson Baker, “Attribution Standardization for Integrated Concurrent Engineering”
M.S. thesis, Brigham Young University, Provo, 2005.

[26] Jonathan Shelley, “Incorporating Computational Fluid Dynamics Into The

Preliminary Design Cycle” M.S. thesis, Brigham Young University, Provo, 2005.

68

69

APPENDIX

70

71

APPENDIX A: GRAPHICAL USER INTERFACE

 This appendix shows the graphical user interface (GUI) for the Geometric Fidelity

Linker (GFL). If the user selects the Add Model selection in Figure 22, the GUIs shown

in Figures 23-25 follow, leading the user to add a model to a model fidelity family. If the

Update Library option in Figure 22 is chosen, the library is automatically updated and the

GUI is exited. If the Create Library option is chosen in Figure 22, the user is prompted

for a library name and a model to start the library with and then the GUI is exited.

Figure 22: Initial Option GUI

72

Figure 24: Model Selection GUI

Figure 23: Library Selection GUI

73

Figure 25: Link Constraints GUI

74

75

APPENDIX B: GEOMETRIC FIDELITY LINKER CODE

This appendix contains pertinent header file and code to help in understanding the

structure of the Geometric Fidelity Linker (GFL). Figure 15 shows a graphical view of

this code.

hLinker Object Header File:
#ifndef HLINKER_HPP_INCLUDE
#define HLINKER_HPP_INCLUDE

#include "lgsLink.hpp"
#include "hModel.hpp"
#include "hLibrary.hpp"

class hLinker : public hTypeBase
{
public:
 hLinker(void);
 ~hLinker(void);

public:
 //--//
 // Functions which can be Overridden //
 //--//

 virtual bool initializeCADFiles(vector<string> fileNames);
 virtual bool initializeConstraintSolver(){return false;};
 virtual void createLinkingModel(){};
 virtual void readLibrary(string fileName);
 virtual void writeLibrary(string fileName = "");

 //--//
 // Class Specific Functions //
 //--//

 bool initialize(string libraryFileName);
 string getLibraryName();

 void addModel(hModel* model);

76

 hModel* getModel(int which);
 int getModelNum(hModel* model);
 void setModel(int which, hModel* model);
 void removeModel(int which);
 int getNumModels(void);

 void addLink(hLink* link);
 void setLink(hLink* link, int which);
 hLink* getLink(int which);
 void removeLink(int which);
 int getNumLinks(void);

 void setLinkingModel(hModel* linkingModel);
 hModel* getLinkingModel(void);

 void setNewModel(hModel* newModel);
 hModel* getNewModel(void);

 void solve(hModel* lastUpdatedModel);

protected:

 vector<hModel*> mModels;
 vector<hLink*> mLinks;
 hLibrary mLibrary;
 hModel* mLinkingModel;
 hModel* mNewModel;
};

#endif //HLINKER_HPP_INCLUDE

hLink Object Header File:
#ifndef HLINK_HPP_INCLUDE
#define HLINK_HPP_INCLUDE

#include "hConstraint.hpp"
#include "hModel.hpp"

class hLink
{
public:
 hLink(void);
 hLink(hModel* model1, hModel* model2);
 ~hLink(void);

 void addConstraint(hConstraint* constraint);
 void updateConstraints(void);
 void removeConstraint(hConstraint* constraint);
 void removeConstraint(unsigned int which);
 hConstraint* getConstraint(int which);
 int getNumConstraints(void);

virtual bool solveSystem(int

whichModelHasAlreadyChanged){return false;};

77

 virtual bool solveSystem(string
modelNameThatHasAlreadyChanged){return false;};

 virtual void read(hLibrary& library);
 void write(hLibrary& library);

 void addModel(hModel *model);
 void setModel(int which, hModel *model);
 hModel* getModel(int which);

protected:
 int findConstraint(hConstraint* constraint);

 hModel* mModels[2];
 vector<hConstraint*> mConstraints;
};

#endif //HLINK_HPP_INCLUDE

hConstraint Object Header File:

#ifndef HCONSTRAINT_HPP_INCLUDE
#define HCONSTRAINT_HPP_INCLUDE

#include "cppInclude.hpp"
#include "hLibrary.hpp"
#include "hFeature.hpp"
#include "hExpression.hpp"
#include "hPoint.hpp"

enum GFL_CONSTRAINT_TYPE {GFL_NO_CONSTRAINT = -1,
 GFL_FIXED,
 GFL_HORIZONTAL,
 GFL_VERTICAL,
 GFL_PARALLEL,
 GFL_PERPENDICULAR,
 GFL_COLLINEAR,
 GFL_EQUAL_LENGTH,
 GFL_CONSTANT_ANGLE,
 GFL_COINCIDENT,
 GFL_CONCENTRIC,
 GFL_MIRROR,
 GFL_POINT_ON_CURVE,
 GFL_MIDPOINT,
 GFL_TANGENT,
 GFL_RADIUS_DIM,
 GFL_DIAMETER_DIM,
 GFL_HORIZONTAL_DIM,
 GFL_VERTICAL_DIM,
 GFL_PARALLEL_DIM,

 GFL_PERPENDICULAR_DIM,
 GFL_ANGULAR_DIM,
 GFL_POINT_ON_STRING,
 GFL_SLOPE,
 GFL_UNIFORM_SCALED,

78

 GFL_PERIMETER_DIM,
 GFL_FIXED_RADIUS,
 GFL_PROPORTIONAL,
 GFL_FIXED_VALUE};

enum GFL_CONSTRAINT_CATEGORY {GFL_NO_CATEGORY = -1,
 GFL_GEOMETRIC_CONSTRAINT,
 GFL_DIMENSIONAL_CONSTRAINT};

enum GFL_VERTEX_TYPE {GFL_NO_VERTEX = -1,

 GFL_START_VERTEX,
 GFL_END_VERTEX,
 GFL_CENTER_VERTEX,

 GFL_SPLINE_DEFINING_POINT_VERTEX,
 GFL_ANCHOR_VERTEX,
 GFL_TANGENT_VERTEX,
 GFL_END_OF_VERTEX_TYPES};

class hConstraint : public hTypeBase
{
public:
 hConstraint(void);
 ~hConstraint(void);

 //functions to be overriden in derived constraint classes
 GFL_CONSTRAINT_TYPE getConstraintType();
 virtual void

 setConstraintType(GFL_CONSTRAINT_TYPE type);

 virtual GFL_CONSTRAINT_CATEGORY getConstraintCategory(void);
 void addFeature(hFeature* feature);
 void setFeature(hFeature* feature, int which=0);
 hFeature* getFeature(int which=0);
 vector<hFeature*> getFeatures(void);

 void setVertex(enum GFL_VERTEX_TYPE type, int which = 0);
 GFL_VERTEX_TYPE getVertex(int which = 0);

 void setIndexParameter(int parameter, int which = 0);
 int getIndexParameter(int which);

 void setUseHelp(int useHelp, int which = 0);
 int getUseHelp(int which = 0);

 void setHelpPoint(hPoint pt, int which = 0);
 hPoint getHelpPoint(int which = 0);

 void setHelpParameter(double val, int which = 0);
 double getHelpParameter(int which = 0);

 void setExpression(hExpression* expression);
 hExpression* getExpression(void);

 void setValue(double val);
 double getValue(void);

 string getDiscriptorString(void);

79

 virtual void read(string& line, vector<unsigned int> &featureIDs,

vector<unsigned int> &modelIDs, int
*expressionLinkerID = NULL);

 virtual string write(void);

 virtual bool operator==(hConstraint* constraint);
 virtual void operator=(hConstraint* constraint);

protected:
 vector<hFeature*> mFeatures;
 vector<GFL_VERTEX_TYPE> mVertices;
 vector<int> mIndexParameters;
 vector<int> mUseHelps;
 vector<hPoint> mHelpPoints;
 vector<double> mHelpParameters;
 GFL_CONSTRAINT_TYPE mConstraintType;
 hExpression* mExpression;
 double mValue;
};

#endif //HCONSTRAINT_HPP_INCLUDE

hModel Object Header File:

/***/
/* hModel.hpp */
/* Definition of the GFL hModel class - can also be thought */
/* of as an assembly or part. It allows for having hModels */
/* inside it to facilitate both UG and CATIA assembly schemes */
/* */
/* Created by: Hans Soderquist */
/* Created on: November 29, 2004 */
/* Last Revised: November 29, 2004 */
/***/

#ifndef HMODEL_HPP_INCLUDE
#define HMODEL_HPP_INCLUDE

#include "cppInclude.hpp"
#include "hPoint.hpp"
#include "hLine.hpp"
#include "hArc.hpp"
#include "hExpression.hpp"
#include "hTypeBase.hpp"

enum GFL_OBJECT_TYPE {GFL_NO_OBJECT = -1,
 GFL_OBJ_POINT,
 GFL_OBJ_LINE,
 GFL_OBJ_ARC,
 GFL_OBJ_CONIC,
 GFL_OBJ_SPLINE};

class hModel : public hTypeBase
{

80

public:
 hModel(void);
 ~hModel(void);

public:
 virtual void read(hLibrary& library);
 virtual void write(hLibrary& library);

 virtual void setLinkerID(unsigned int linkerID);

 void addFeature(hFeature* comp);
 void deleteFeature(int which);
 hFeature* getFeature(int which);
 int getFeature(hFeature* feature);
 vector<hFeature*> getFeatures(void);
 bool setFeature(int which, hFeature* comp);
 int getNumFeatures();

 void setModelName(string name);
 string getModelName();
 void addModel(hModel* model);
 hModel* getModel(int which);
 int getNumModels(void);

 void addExpression(hExpression* expression);
 hExpression* getExpression(int which);
 vector<hExpression*> getExpressions(void);
 int getNumExpressions(void);

 void operator<<(hModel*);
 virtual void operator=(hModel*);

 void updateFromSolver(hModel* model);

protected:
 string mModelName;
 vector<hFeature*> mFeatures;
 vector<hModel*> mModels;
 vector<hExpression*> MExpressions;

private:
 hFeature* setFeaturePolymorph(hFeature* feature, int type);
 hFeature* setCurvePolymorph(hFeature* curve, int type);
};

#endif //HMODEL_HPP_INCLUDE

hFeature Object Header File:

#ifndef HFEATURE_HPP_INCLUDE
#define HFEATURE_HPP_INCLUDE

#include "hExpression.hpp"
#include "hTypeBase.hpp"

81

enum GFL_FEATURE_TYPE {GFL_NO_FEATURE = -1,
 GFL_POINT_FEATURE,
 GFL_CURVE_FEATURE,
 GFL_CONTOUR_FEATURE,
 GFL_SKETCH_FEATURE,
 GFL_DATUM_FEATURE,
 GFL_SOLID_FEATURE,
 GFL_SURFACE_FEATURE,
 GFL_CSYS_FEATURE};

class hFeature : public hTypeBase
{
public:
 hFeature(void){};
 ~hFeature(void){};

 virtual void read(hLibrary& library){};
 virtual void write(hLibrary& library){};
 virtual void read(string& line){};
 virtual string write(void){return "";};

 virtual GFL_FEATURE_TYPE getType(void){return GFL_NO_FEATURE;};

 virtual void setFeature(hFeature* feature, int

which){};
 virtual void

 setFeatures(vector<hFeature*> features){};
virtual vector<hFeature*> getFeatures(void){vector<hFeature*>

features;return features;};

 virtual void setCurves(vector<hFeature*> curves){};
 virtual void setExpressions(vector<hExpression*> expressions){};
 virtual void setInt(int num){};
 virtual void setBool(bool val){};

 virtual void getDirection(double dir[3]){};

 virtual void setName(string name){mName = name;};
 virtual string getName(void){return mName;};

 virtual bool isContainer(void){return false;};

 virtual bool operator== (hFeature* feature){return false;};
 virtual void operator= (hFeature* feature){};

 void setOwningModel(int modelNumber)

 {mOwningModel = modelNumber;};
 int getOwningModel(void){return mOwningModel;};

protected:
 string mName;
 int mOwningModel;
};

#endif //HFEATURE_HPP_INCLUDE

82

hExpression Object Header File:
#ifndef HEXPRESSION_HPP_INCLUDE
#define HEXPRESSION_HPP_INCLUDE

#include "hTypeBase.hpp"

class hExpression : public hTypeBase
{
public:
 hExpression(void);
 ~hExpression(void);

 virtual void read(string &line);
 virtual string write(void);

 //to be overriden in child classes
 virtual void updateExpressionName(void){};

 void setName(string name);
 string getName(void);
 void setValue(string value);
 string getValue(void);

 bool askIsOwned(void);
 void setIsOwned(bool owned);

 string getExpression(void);

 bool operator==(hExpression* expression);
 void operator=(hExpression* expression);

protected:
 string mName;
 string mValue;
 bool isOwned;
};

#endif //HEXPRESSION_HPP_INCLUDE

	Automatic Geometric Data Migration Throughout Views of a Model Fidelity Family
	BYU ScholarsArchive Citation

	Title Page
	Copyright Page
	Graduate Committee Approval
	University Approval
	Abstract
	Acknowledgements
	Table of Contents
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	1.1 Problem Statement
	1.2 Thesis Objective
	1.3 Delimitation of the Problem

	CHAPTER 2: BACKGROUND
	2.1 Knowledge Based Engineering
	2.1.1 Parametric Models
	2.1.2 Inter-model Relations
	2.1.2.1 Inter-model Geometry
	2.1.2.2 Inter-model Parameters

	2.2 Design Processes
	2.2.1 Linear Design Process
	2.2.2 Non-linear Design Process

	2.3 Constraint Solvers
	2.3.1 Numeric & Geometric Constraint Solvers
	2.3.2 Two Dimensional and Three Dimensional Constraint Solvers

	CHAPTER 3: LITERATURE REVIEW
	3.1 Data Reuse
	3.2 Model Views
	3.2.1 Cellular Models
	3.2.2 Master Models

	3.3 Concurrent Engineering
	3.3.1 Process Flow Software
	3.3.2 PLM Solutions
	3.3.3 Integrated PLM Solutions

	CHAPTER 4: METHOD
	4.1 Assumptions
	4.2 General Approach
	4.3 Data Storage
	4.3.1 Model Geometry
	4.3.2 Model Fidelity Family Links
	4.3.3 Unconventional Constraints for Model Fidelity Family Members
	4.3.3.1 Fixed Value Constraints
	4.3.3.2 Proportional Constraints
	4.3.3.3 Relative Point Constraints

	4.4 Link Resolution
	4.5 CAx Integration
	4.5.1 Read/Write Capabilities
	4.5.2 Update

	4.6 Sub-objectives
	4.6.1 Revision Control
	4.6.2 Different Parameterization Schemes
	4.6.3 Multi-Directional Dependancies

	CHAPTER 5: RESULTS AND DISCUSSION OF RESULTS
	5.1 Specific Objectives
	5.2 Approach
	5.3 The Geometric Fidelity Linker
	5.3.1 Creating a Model Fidelity Family Using the Geometric Fidelity Linker
	5.3.2 Updating a Model Fidelity Family Using the Geometric Fidelity Linker
	5.3.3 Test Cases
	5.3.3.1 Corners Models
	5.3.3.1.1 Changing the Angle of the Angled Portions
	5.3.3.1.2 Changing the Length of the Horizontal Portions
	5.3.3.1.3 Changing the Spatial Positions of the Models

	5.3.3.2 Turbine Cases of a Gas-turbine Engine

	5.3.4 Updating According to Design Intent
	5.3.4.1 Time Performance

	5.3.5 API Problems

	5.4 Analysis of Revision Control
	5.5 Analysis of Different Parameterization Schemes
	5.6 Analysis of Multi-directional Dependencies

	CHAPTER 6: CONCLUSION
	6.1 Automatic Updating of a Model Fidelity Family
	6.1.1 Revision Control
	6.1.2 Different Parameterization Schemes
	6.1.3 Multi-directional Dependencies

	6.2 Projected Contributions
	6.3 Future Work
	6.3.1 Directional constraints to absolve the problems with multiple solutions to constraints
	6.3.2 Indication that geometry models are fully constrained
	6.3.3 Expressions resolution
	6.3.4 3D implementation
	6.3.5 Management scheme for when updates are accepted into the database
	6.3.6 Homogenous transformations for differently oriented models.
	6.3.7 Assemblies
	6.3.8 Topology changes
	6.3.9 Model Attributes
	6.3.10 Other Engineering Applications

	REFERENCES
	APPENDIX
	APPENDIX A: GRAPHICAL USER INTERFACE
	APPENDIX B: GEOMETRIC FIDELITY LINKER CODE

