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Abstract- Image interpolation algorithms try to fit a function
to a matrix of samples in a "natural-looking" way. This paper
presents edge inference, an algorithm that does this by mixing
neural network regression with standard image interpolation
techniques. Results on gray level images are presented, and it is
demonstrated that edge inference is capable of producing sharp,
natural-looking results. A technique for reintroducing noise is
given, and it is shown that, with noise added using a bicubic
interpolant, edge inference can be regarded as a generalization
of bicubic interpolation. Extension into RGB color space and
additional applications of the algorithm are discussed, and some
tips for optimization are given.

I. INTRODUCTION
The goal of image interpolation is to infer a continuous

function f(x, y) from a given m x n matrix of quantized
samples [1]. Though the density and equal spacing of the
samples simplifies the mechanics of this process, the human
eye is picky-which gives rise to the quest to find techniques
that yield ever-more "natural-looking" fits. In machine learning
terms, the objective is to find an algorithm with a bias that
approximates that of human image interpretation.

This paper presents edge inference, an algorithm that uses
many simple neural networks to infer edges from blocks of
neighboring samples and combines their outputs using bicubic
interpolation. The result is a natural-looking fit that achieves
much sharper output than standard interpolation algorithms but
with much less blockiness.
Edge inference is similar to edge-directed interpola-

tion [2] [3] [4], but with a crucial difference. Edge-directed
methods regard an edge as a discontinuity between two areas
of different value, and use thresholds to determine which
discontinuities are significant. They then use the edges to
guide a more standard interpolation algorithm. Edge inference
regards an edge as a gradient between two areas of different
value and uses the gradient as a model of the underlying image,
avoiding thresholding altogether.
Edge inference may also be regarded as a reconstruction

technique. It fits geometric primitives to samples and combines
them to produce the final output. Data-directed triangulation
(DDT) [5] is similar, with triangles as its geometric primitives.
DDT is computationally demanding, and while edge inference
produces output that is qualitatively similar to DDT's, it
produces it much more quickly.

Edge-directed methods provide sharpness control in a post-
processing stage, and DDT currently provides none. With edge

inference, users have control over a sharpness factor: a sliding
scale between the output of bicubic interpolation (which is
"fuzzy") and edge inference of any sharpness.

Please note that all matrices are assumed column-major.
This is for notational convenience only, as the algorithm works
just as well with row-major matrices.

II. THE EDGE INFERENCE ALGORITHM

In short, edge inference performs regression using multiple
neural network basis functions, and combines their outputs
using a piecewise bicubic interpolant.
The image samples are given in an m x n matrix M of

gray-level pixel values, normalized to the interval [-1, 1]. Each
sample has a location (x, y) and a value Mxy.
A. Neural Network Basis Functions
An m x n matrix F contains the basis functions, for a one-

to-one correspondence with the samples. (This is not strictly
necessary, but has given the best results so far.) It may be
helpful to think of the neural networks as being placed on the
image itself.

0
|41

A1 |fW2\\3
x y 1

Fig. 1. The simple two-layer network

Figure 1 shows the simple two-layer network that this
algorithm uses. Each trains on the sample it is associated with
and its eight nearest neighbors (or fewer, if the sample lies on
an image boundary). The instances in the training set are in
the form

(x, y) -MXsys
where (x,, y8) is the location of the sample, and (x, y) is the
location of the sample relative to the neural network. That
is, if (u, v) is the location of the network, x = x- u, and
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Y = Ys- v. Each neural network represents a function in this
form:

FU(x, y) = tanh(wix +w2y + W3)W4 + W5 (1)
Figure 2 shows the sigmoidal surface that results from fitting

one of these simple neural networks to a 3 x 3 block of
samples.

remainder of this paper, assume that all cubics mentioned are
cubic B-splines.

This section describes only what is necessary to implement
bicubic interpolation. For a fuller treatment, see [1].

-2 -1 0 1 2

j.; 1.O

(b) tanh(2x + 2y + 0)(1) + 0

Fig. 2. Fitting a sigmoidal surface to a 3 x 3 block of samples

Unlike with most neural networks, the weights can be
interpreted to have specific, geometric meanings. The equation

WlX+W2Y +W3 = 0

gives the orientation of the inferred edge as a line in implicit
form. The gradient of FU, is

a[9F,U/0Zlx1 [wi(1-tanh2(wIX +w2y + W3))
VF.v [aFUV/IOY [W2(1 tanh2(wiX + W2y + W3))]
Because the steepest slope of tanh(x) is at x = 0, VFU, is at
its greatest magnitude when W1X + W2Y + W3 = 0:

[wi*_F (1tnh_(O))] FWIUV- [W2(1-tanh2(0))] [W2]

Therefore, the steepest slope of Equation is given by

ivF* |l=

which can be interpreted as the sharpness of the inferred edge.
The values -W4 +W5 and W4 +W5 approximate the gray-level
values on each side of the edge, and W5 is the gray-level value
along the line defining the edge.

Speed is critical in most image processing applications.
Though these neural networks are small, special care must be
taken in setting the training parameters and setting stopping
criteria. The appendix describes our current implementation,
and the techniques and parameters we used to reduce training
time.

B. Bicubic "Distance Weighting"

Edge inference uses an inexact cubic B-spline interpolant
to combine the outputs of the neural networks. Other cubic
interpolants exist and may be desirable for some images [1],
[6], but in our experiments, B-splines tended to produce
the best results in photographs and cartoon images. For the

Fig. 3. B-spline kemel function

Figure 3 shows a plot of the cubic B-spline's kernel func-
tion:

( 31X13 - 6IX12 + 4 0 < lxI < 1
B(x) =- X-13 + 61xl2 -121xl + 8 : 1 < lx < 2 [1]

61 0: 2<lxl
which can be used much like a distance metric. If (x, y) is the
point in question, and

z0 = max([xj -1,1)
xi = min(LxJ + 2, m)
yo = max([yJ-1, 1)
Yi = min([yJ + 2, n)
c (= 1- xo +1)(Yi -o +1)

(where (x0,yo) is one corner of the surrounding samples,
(xi, Yi) is the opposite corner, and c is the number of
surrounding samples), then the interpolated value is given by

16 x1 YI
b(x,y) = , 1 Mu,B(x-u)B(y-v) (2)

u=Xo V=Yo

where b is a C2-continuous function over the image domain.
The term 16 scales the result according to the number of
surrounding samples, to avoid vignette effects (fuzzy, dark
borders) on the image boundaries. Each of the 16 (or fewer)
nearest neighbors makes a weighted contribution to the inter-
polated value.
What if, instead of contributing a constant value, the nearest

neighbors contributed an estimate of the value at (x, y)? Under
the right circumstances, this should result in more detail.
Fortunately, the matrix of neural networks, F, provides a way

to make these estimates.
Given the same definitions for xo, xl, Yo, Yl, and c above,

edge inference's interpolated values are given by

16 xl Yi
v(z, y) =- E Fuv(x-u, y-v)B(x-u)B(y-v)

U=lO V=Y0
(3)

1783

(a) A 3 x 3 block of sam-
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(a) Nearest-neighbor (to emphasize samples)

(d) Bicubic interpolation (e) Full edge inference (with noise), s = 1 (f) Full edge inference (with noise), s = 2

Fig. 4. 128 x 128 crop of "Man" from the USC-SIPI Image Database, scaled to 1024 x 1024 (8 x 8)

where v is also a C2-continuous function over the image
domain. In a sense, edge inference interpolates over super-
pixels, which have not just a single value, but two values and
an oriented edge between them.

With this intuition, it is easy to see why edge inference is
capable of sharper edges than bicubic interpolation. Suppose a
small local area of samples has a sharp edge running through
it. Multiple neural networks on either side of the edge are
likely to fit to that edge, especially if it is the strongest feature
in their training sets. Thus, at interpolated points near the edge,
nearest neighbors from both sides of the edge contribute the
correct value. With standard bicubic interpolation, this is not
possible.

Figure 4 demonstrates that this is often the case. It shows
the output of edge inference applied to a 128 x 128 image of
an unfortunate actor from the USC-SIPI Image Database [7],
and used to magnify the image to 1024 x 1024. Figure 4(a)
shows the original image magnified using nearest-neighbor
interpolation to emphasize the original samples. Figure 4(d)
shows the output of Equation 2, and Figure 4(b) shows the
output of Equation 3. Notice how much sharper the edges are
in Figure 4(b).

C. Post-traininlg Sharpness Control

Modifying Equation I to become

Ft,, = tanh(s(wix + W2Y + W3))W4 + W5 (4)

introduces a new sharpness factor, s. This is similar to gain,
except it is held constant equal to I during training, and may
only be changed afterward.
Now, when wIX + w2y + W3 = 0, aFUV/1x = sw1 and

aFUV/aY = sw2. The steepest slope is given by

IVF*,l = |[S2 1 l s 2 +2S2W= S

LSW2
2 +W

Thus, s is a constant multiplier to the steepest slope. Fig-
ure 4(c) shows the output of Equation 3 with s = 2, which is
even sharper than Figure 4(b).

D. Reinterpreting Noise
A problem with Figures 4(b) and 4(c) is that parts that, in the

original image, have fine detail-especially the headdress-
are flat and uninteresting. The neural networks have learned
the edges very well and disregarded noise. (We define "noise"
somewhat circularly as every feature the neural networks fail
to learn.) However, the "noise" clearly contains significant

1784

(b) Edge inference, s = 1 (c) Edge inference, s = 2



(c) N.,

Fig. 5. Calculation of the noise image

features that would be desirable to have in the interpolated
image.
A simple way to keep those features is to add the noise

directly to the interpolated image. Let N be an m x n matrix,
defined by

N., = M., - F., (°, 0) (5)

In other words, each element in the noise matrix N contains
the signed difference between the sample and the correspond-
ing neural network's estimate of the sample. Figure 5 shows
the calculation of N and the result: a low-contrast image with
values in the range [-2, 2].
The noise image is then scaled and added directly to

the interpolated image. This is easy to combine with edge
inference as it is defined so far. Adding the right side of
Equation 2 (with N substituted for M) to the right side of
Equation 3 results in

f (X, Y) =
16 XIj
- , (N,uv +Fv(x-u,y-v))B(x -u)B(y - v)

U=X0 V=yo

This finally completes the algorithm. Figures 4(e) and 4(f)
show the results of applying it to the 128 x 128 "Man"
image. Both seem to be fuller and have more depth than their
counterparts, Figures 4(b) and 4(c). In particular, the parts of
the image which contain high-frequency structure, such as the
feathers and hair, have regained lost features.

Figure 6 gives edge inference in high-level pseudocode.
Notice that the noise value is calculated only after the neural
network's sharpness is set, because any NUV depends on the
value of F,,(0, 0), which depends on the sharpness. Of course,
if the sharpness is changed later on, the noise value will have
to be recalculated.
One very useful property of this formulation is that it turns

edge inference into a generalization of bicubic interpolation.

Specifically, from Equation 4, when s = 0,
FU_ = tanh(0(wlx + w2y + w3))w4 + w5

= (O)w4 + w5
= w5

Equation 5 becomes

Nuv = Muv-W5
and the term (Nu +Fu (x - u, y - v)) in Equation 6 becomes
MUV-W5 + W5 = Muv, yielding

16 x' Yi
f8=o(x,y) =- MuvB(- u)B(y - v)

U=X0 V=YO
which is the same as Equation 2. Therefore, when s = 0, edge
inference with a bicubic weighting function behaves exactly
as bicubic interpolation. (In fact, when s = 0, edge inference
with any interpolant's weighting function behaves exactly as
that interpolant.)

This means that users of edge inference get a sliding
scale between bicubic interpolation and edge inference of any
sharpness. A much weaker but still important result is that, as
long as a human being has control over the value of s, it is
impossible for edge inference to perform subjectively worse
than bicubic interpolation.

III. EDGE INFERENCE WITH COLOR IMAGES
Edge inference will work on RGB images with very little

change, by treating each color plane as a separate image.
However, it can be done much more quickly and with less
memory by making one simplifying assumption: that the edges
in each color plane are oriented approximately the same way.
Thus, the neural network matrix F is defined by

[w4- [w71
FUV (x, y) = tanh(s(wix +w2y +w3)) w5 +± 8 (7)

[w6J [Wg
as shown in Figure 7. It is easy to verify that the functions b
(Equation 2) and f (Equation 6) do not have to be altered to
use vectors as matrix elements.

1785
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Fig. 6. Edge inference in pseudocode

Notice that Figure 7 implies that the neural network trains
in YCrCb color space [8] rather than in RGB. The neural
networks consistently produce better fits in YCrCb color space
than they do in RGB color space. This is likely because the
luminance plane (Y) offers the neural network a very strong,
single feature to train on when learning data from photographic
images.

ry 1

Fig. 7. The three-output network

Figure 8 shows the results of applying edge inference to
"Peppers" from the USC-SIPI Image Database [7], which has
been shrunk to 128 x 128 and then scaled to 512 x 512. It also
demonstrates using the sliding sharpness scale, from s = 0 to
s = 3.

IV. ADDITIONAL APPLICATIONS
Only image superscaling has been presented here, but there

are many other possible applications of edge inference. In
particular, many image transformations and distortions [8] can

make good use of well-interpolated sub-pixel values. Besides
those, however, there are two more applications that arise
from the mechanics of edge inference: noise reduction and
sharpening.

A. Noise Reduction
If one makes the assumption that "noise" is every feature

the neural networks fail to learn, it is possible to use edge

inference to remove noise from images. The output image, I,
is given by

I., = kN.v + F., (°, °)

where k is a constant noise factor in the range [0,1]: a sliding
scale between the original image and the noise-reduced image.
Figures 5(a) and 5(b) demonstrate the ends of this scale, as

k = 0 and k = 1, respectively.

B. Sharpening
In image processing, sharpening an image without enhanc-

ing noise is a difficult problem [8]. Using edge inference while
constraining the output image to the same dimensions as the
input image is one possible solution. Figure 9(b) shows the
result, with s = 4.

(a) Original image (b) Sharpened image (s = 4)

Fig. 9. Sharpening with edge inference

Note that some of the detail is lost. This might be com-

pensated for by inferring edges of more complex shapes than

simple lines, such as quadratic curves.

V. CONCLUSION

Edge inference achieves sharp, natural-looking interpolation

by using neural networks to fit a sigmoidal surface to every

3 x 3 block of samples in an image and combining the neural

networks' outputs using bicubic interpolation. Scaling every

neural network's inputs by a constant multiplier changes the

sharpness of the result. When noise is reintroduced, users of

the algorithm have a sliding scale between bicubic interpola-
tion and edge inference of any sharpness.

Besides providing a good interpolation method when edge

preservation is desired, edge inference naturally separates
photographic images into structure and noise. This separation
can be exploited to perform noise reduction without blurring,

or sharpening without enhancing noise. The algorithm also
extenids naturally to RGB images.

VI. APPENDIX: IMPLEMENTATION DETAILS

Our current implementation employs a number of tech-

niques to train the neural networks quickly and cause them
to return consistent results. It is fully deterministic and, in our

tests, averages about 20 seconds to train on 1024 x 768 RGB

images on a 2 GHz Intel processor.

The details discussed in this section only apply to the

YCrCb version of edge inference.

1786

function learnFunctions(M, m, n, sharpness)
F <- new mxn matrix of neural networks
N <- new mxn matrix of values
for x from 1 to m

for y from 1 to n
F[x,y].train(x, y, M, m, n)
F[x,y].s = sharpness
N[x,y] = M[x,y] - F[x,y](0,0)

return F, N

function getInterpolatedValue(F, N, m, n, x, y)
xO=max (floor(x) -1,1)
xl=min(floor(x)+2,m)
yO=max(floor(y)-1,1)
yl=min(floor(y)+2,n)
c=(xl-xO+1)*(yl-yO+l)
value=O
for u from xO to xl

for v from yO to yl
value=value+(N[u,v]+F[u,v](x-u,y-v))*

B (x-u) *B (y-v)
return 16*value/c



(b) s = 0 (bicubic interpolation)

(e) s= 1.0 (f) s= 1.5 (g) s = 2.0 (h) s = 3.0

Fig. 8. Scaling the 128 x 128 "Peppers" image to 512 x 512, from s = 0 to s = 3

A. Determinism
Edge inference should always infer the same f(x,y) for

each image. To achieve this, the weights are initialized to
constant values. We determined experimentally that

Wl =W2 =W7-W8 =W9 0

W3 = W4 = W5 -W6 = 0.002

tends to produce good results. Also, the neural networks are
trained in batch mode to avoid randomizing the order of the
training set for each epoch.

B. Training Parameters
The momentum term is 0.9. The learning rates are per-

weight, with

W, = W2 = W3 = 0.4

r1W4 = W5 = W6 = 0.2

In our implementation, weights W7, w8 and w9 are not trained,
but are solved after every epoch (see next subsection).
We found that having good stopping criteria was the best

way to speed up training over the entire image. When the
majority of the neural networks in F train in fewer than
25 epochs, the algorithm runs very quickly. In our current
implementation, the neural networks train for at least five
epochs, and no longer than 300. They stop training when the
largest weight update is smaller than 0.002.

C. Other Time-Reducing Techniques
The tanh function is implemented with a lookup table to

speed up training and querying. We also derive the error func-
tion in terms of each weight, and use those partial derivatives

to perform gradient descent. This uses fewer floating-point
operations than backpropagation, and allows those operations
to be arranged for better temporal locality. It also allows W7,
w8 and w9 to be solved for the minimum sum squared error
directly.
Our current implementation of neural network training is

written in C, and located at

http://axon.cs.byu.edu/-neil/edge_function/

along with a PDF file giving all the partial derivatives and
solutions for W7, w8, and w9.
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(a) Nearest-neighbor (c) s = 0.25 (d) s = 0.5
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