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Abstract: Simulation modeling is useful to gain insights into driving mechanisms of diffusion of inno-
vations. This study aims to introduce automation to make identification of such mechanisms with 
agent-based simulation modeling less costly in time and labor. We present a novel automation proce-
dure in which the generation of diffusion models is automated. It comprises three phases: (1) prepro-
cessing of empirical data on the diffusion of a specific innovation, taken out be the user; (2) automated 
inverse modeling of decision models from a decision model library for their capability of explaining 
these data; (3) policy simulation automatically assesses user-chosen policy interventions in their po-
tential of influencing the spreading of the innovation. We present a working software implementation of 
this procedure. We applied this tool to data-analysis on the diffusion of a sustainable innovation, wa-
ter-saving showerheads. The proposed procedure successfully generated simulation models that ex-
plained available diffusion data. This provided a proof of concept. Further, it progresses agent-based 
modeling by providing model validation by design and by enabling detailed bottom-down modeling at 
the lower complexity of top-down modeling. We believe the proposed approach can widen the circle of 
persons that can use simulation modeling and better understand and shape innovation. 
 
Keywords: Agent-based modeling; automation; innovation diffusion; data-analysis; policy simulation 
 
 
1 INTRODUCTION 

 
Understanding the prospects of a new ideas and how they spread is powerful. Persons and organiza-
tions are often want to know “how to speed up the rate of diffusion of an innovation'' (Rogers 2003). 
Mechanistic understanding of the diffusion of an innovation can help explaining its success. Rogers' 
theory of Diffusion of Innovations (Rogers 2003) allows understanding diffusions based on mecha-
nisms of inter-personal interactions. From these mechanisms, it is possible to infer general patterns 
and key actors of diffusion. 
 
Mechanisms that drive the diffusion of an innovation can further be used to project innovation diffusion 
into the future. Agent-based modeling can simulate these mechanisms, particularly if human decision 
making is involved. It represents real-world actors with computer agents, whose actions are modeled 
by explicit decision models. It has for instance been used to simulate the diffusion of environmental-
friendly products among consumers (Schwarz2007). Additionally, it allows estimating effects of practi-
cal actions regarding an innovation (Delre et al. 2007, Jensen et al. 2016). 
 
However, mechanistic understanding is particularly challenging to gain. It is harder to achieve than 
statistical inference, which reveals co-occurrence of events in a set of observations. Requirements for 
gaining it also exceed sole causal understanding, which ‘only’ requires knowing that one event gener-
ally causes another one (Aalen et al. 2007). Instead, mechanistic understanding implies to know if one 
event “leads to a specific, deterministic behavior in another” (Leek 2015). 
 
Agent-based modeling (ABM) can illuminate mechanisms of the diffusion of innovations, but is chal-
lenged by time and labor intensive model building (van Dam et al. 2012). Via simulation, it links micro-
level actions of actors to ‘emergent dynamics’, e.g. innovation diffusion (Chappin et al. 2015). Thus, 
macro-dynamics of innovation diffusion are ‘decoded’ by being directly explained by micro-behavior of 
agents (Grimm et al. 2005, Stern et al. 2016). However, ABM is commonly more time-intensive than 
its alternatives, e.g. system dynamics (Watts & Gilbert 2016) and statistical analysis. 
 
We aim to enable agent-based modeling to overcome these limitations by speeding up model devel-
opment. We propose to hand over manual tasks to the computer. Several approaches to this exist: (1) 
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Translating simple specifications into executable models. An examples is the MAIA framework (Ghor-
bani 2006), which automatically generates simulation models from specifications by domain-experts. 
(2) Model building from existing components. A method to this idea is ‘TAPAS’,1 via which validated 
models are reused (Frenken et al. 2006). (3) Using data for model-building in a structured way. Grimm 
et al. (2005) proposed ‘Pattern-oriented Modeling’ to falsify model variants that fail to reproduce a set 
of patterns in empirical data. This replaces ad-hoc decisions and informed guesses about adequate 
model structures and parameters with rigid testing against empirical data. 
 
We thus aim to automate model building in ABM for the purposes of: (1) extracting driving mecha-
nisms from empirical observations on innovation diffusion; (2) projecting the innovation diffusions into 
the future; (3) assessing of effect of real-world actions and policies ex-ante, via simulation. This study 
aims to answer the questions: “Can automated generation of agent-based models on the diffusion of 
innovation be achieved and how could this be useful?” We propose a procedure by which this task can 
be undertaken. Proof of concept is provided: an application case on the diffusion of sustainable prod-
ucts among households. 
 
 
2 AGENT-BASED MODELING OF INNOVATION DIFFUSION 
 
This section will provide details on agent-based modeling of innovation diffusion, which is the applica-
tion domain of the proposed automation procedure. We argue that increased automation can be aided 
by increased standardization of input and content of modeled systems.  
 
Dynamic simulation models are useful to understand innovation diffusion. Because innovation itself is 
process of change, it should be analyzed as a dynamic process (Kiesling et al. 2012). Consequently, 
simulation of innovation should use models that are dynamic. According to Geels and Johnson (2015), 
there are four general types of innovation diffusion models. (1) Adoption models capture spreading of 
an innovation among potential adopters, e.g. how user base of a new product increases via word-of-
mouth. (2) Models of up-scaling and system buildings describe a small system expanding to a larger 
one, e.g. an electricity system expanding from a decentralized one to a single centralized system. (3) 
Replication and circulation models emphasize the replication of an adoption during its circulation to 
other location.  Considering replication emphasizes adapting an innovation to other local conditions. 
(4) Societal embedding model considers the embedding of an innovation in business, societal, policy, 
and user environments. 
 
This study focuses on ‘adoption’ type models. This is because their modeling of “independent 
adopters making (adoption) decisions” (Geels 2015, p.12) fits well with the approach of actor-centric 
perspective of agent-based modeling. Such models are represented by ‘aggregated’ and ‘individual 
level’ models (Kiesling et al. 2012). Aggregated models directly model the overall adoption dynamics 
in a population. This approach is represented by the Bass model and commonly modeled with system 
dynamics (Kiesling et al. 2012). Conversely, ‘individual level’ models model the adoption decisions of 
individuals in a population, from which overall adoption dynamics ‘emerges’.  
 
In this study, we will focus on the individual level models, because of their capability to incorporate 
more aspects of reality. According to Kiesling et al. (2012), ‘individual level’ models are superior to 
‘aggregated’ ones (such as system dynamics) for several reasons: (1) Explanatory power is greater for 
‘individual level’ models, because they explicitly connect behavior and decisions of agents with aggre-
gated diffusion dynamics. (2) Population heterogeneity can be captured more detailed in ‘individual 
level’ models. (3) Social processes (e.g. interaction between consumers) are modeled explicitly. This 
is a process that can have great impact on diffusion success (Delre 2007). Among ‘individual level’ 
models, ABM is particularly suited to model social interactions. In contrast to discrete-event simulation, 
it is capable of modeling detailed social interaction topologies in a computationally efficient way (Watts 
& Gilbert 2014). Thus, this study will focus on innovation diffusion models that are agent-based. 
 
Automating the building of agent-based innovation diffusion models is facilitated by their similarity. 
This simplifies automated model generation, because there is less variation in input data and less 
structure variation that an automation procedure needs to tackle. According to a review by Kiesling et 
al. (2012, Fig. 2), most ‘individual level’ diffusion models have a common structure. They comprise of 

                                                
1 ‘TAPAS’ abbreviates “Take A Previous model and Add Something”. 
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the following elements: (1) Consumer agents define the individual entities that can adopt an innova-
tion. This can be individual persons, households, or groups of households. (2) Social structure is the 
heterogeneity of consumer agents, e.g. dividing them in different consumer groups. (3) Decision mak-
ing processes are the key actions of consumer agents to model the adoption of an innovation. (4) So-
cial influence between agents often affects decision making processes and is commonly modeled as a 
social network graph. Models vary in the range at which social influence is exceeded. This can be 
influence from direct peers, from the respective social group or the entire population of agents. All 
these ranges of influence can be modeled as a social network graph. 
 
 
3 METHODS 

 
In this section, we will present the automation procedure to building agent-based innovation diffusion 
models. This procedure will be presented by first describing it conceptually and by giving details on 
how it was implemented.2 Further is presented the application case that provides a proof of concept. 
 
 
3.1 Automation procedure 

 
We coin a method as specified in Fig. 1, comprising the three phases preprocessing, inverse model-
ing, and policy simulation. For reasons of brevity, additional details will be given in Section 3.2. 
 

     
Figure 1. Overview of automation procedure (see text for details). 

 
Preprocessing. The types of input data are the following: (1) Input data is provided on agents (i.e. the 
decision-making entities in an agent-based model). For each agent, a location and a belonging to a 
social group is defined. This social group serves to enable to capture the heterogeneity of agents. 
They are defined by a CSV file with the columns ID, X and Y coordinates, and name of the social 
group they may belong to. Social influence is defined by a social network graph. This graph is provid-
ed as a CSV file with the column FROM and TO, defining directed links between two agents of given 
IDs. (2) Innovation properties are provided, which represent how an innovation is perceived by house-
holds. This idea follows Rogers (2003), according to whom diffusion success of innovations depends 
on generalizable properties. (3) Patterns are provided that characterize the dynamics of the real-world 
process that shall be modeled. These patterns are “indicators of essential underlying processes and 
structures” (Grimm et al. 2005). Each additional pattern reduces uncertainty about which mechanisms 
could explain the diffusion of an innovation. An example for a pattern is the exponentially increasing 
adoption share of a successful innovation during its initial diffusion (Rogers 2003).  Adoption decision 
models from the model library consider these. (4) A ‘matching function’ describes the desired behavior 
of an accepted simulation model in terms of the provided patterns. This function weights and com-
bines patterns to describe model output that would be considered realistic. This function assists at 
finding simulation runs that represent the empirical patterns best. 
   

                                                
2 For technical details, please contact the authors. Source code will be published online. 
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Inverse modeling. In this phase, models that satisfy the matching function are identified. Within a 
range of plausibility, models are varied structurally and in their parameter values. If a model can gen-
erate empirical patterns, then is considered a potential explanation of the input data. Due to the risk of 
‘overfitting’ at increase model complexity (Provost 2013), simple model variants are preferred. For the 
inverse modeling of potential decision models, we used the NetLogo tool BehaviorSearch. It runs each 
potential model, varies its structure and parameters, and searches for an optimal fit. This optimum is 
defined by the user-defined matching function. We ran BehaviorSearch with a simulated annealing 
optimization. Best fitness value were reported for each structural variation of each model. 
 
Policy simulation. User-defined policies are assessed semi-automatically. This is useful, first, because 
it prevents redundant manual work. Further, running the same set of policies across all plausible mod-
els increases robustness of policy assessment—also referred to as ‘bagging’ (Breiman et al. 1996). 
Policies are pre-implemented as NetLogo functions and stored as individual NetLogo source files. 
Users can choose from a set of policies that support innovation diffusion or define other policy op-
tions.3 Each policy simulations executed from an XML file with the ‘BehaviorSpace’ tool in NetLogo. 
The used model parameterizations were those that produces the best fit with the empirical data. 
 
 
3.2 Application case: diffusion of water-saving appliances 
 
We applied the presented automation procedure to the diffusion of water-saving showerheads. This is 
because there exists rich empirical data on this case. We used the proposed automation procedure to 
generate models that explain the available data. This provides a proof of concept and illustrates the 
proposed automation procedure. Also, it informs about the mechanisms with which water-saving 
showerheads spread. 
 
Empirical data on the diffusion water-saving showerheads was used, as presented by Schwarz (2007): 
(1) Agents data. Data analysis found a significant connection between lifestyle group and adoption 
behavior regarding water-saving appliances (Schwarz 2007). Accordingly, three social groups are 
distinguished: ‘Leading Lifestyles’, which are of relatively high social status, are most interested in 
adoption of the case innovation. ‘Mainstream and Traditional’ households have an intermediate inter-
est in them. ‘Hedonists’ are least interested in the innovation. (2) Innovation properties. Properties of 
water-saving showerheads and conventional showerheads were surveyed. For each lifestyle group, 
also the relative importance of these properties was surveyed. This assists modeling the attitude of 
consumer group towards the adoption of water-saving showerheads. (3) Diffusion patterns. Two em-
pirical patterns on the diffusion of water-saving showerheads showed in the available data. First, mar-
keting shares in Germany were different for the three consumer groups. Second, the adoption diffu-
sion curve during the first 15 years of innovation diffusion has an exponential shape. 
 
 
3.2.1 Existing model on showerheads diffusion 
 
An agent-based simulation model that was previously built on some of this empirical data (Schwarz 
2007), which we coin the ‘Schwarz’ model. This model describes the decision making of agents re-
garding the adoption of feedback devices. Initially, no household uses water-saving shower heads. At 
a monthly deliberation rate of 0.004, they decide whether to adopt the water-saving option. There is a 
probability that agents adopt the technology option that the majority of their peers adopt. This probabil-
ity is differentiated by the three lifestyle groups (Jensen 2015): (1) Leading Lifestyles always adopt the 
device. (2) Mainstream agents adopt devices in 50% of the cases. (3) Hedonists always imitate the 
majority of their peers. Against this model, we compared the automatically generated models. 
 
 
3.2.2 Evaluated agent-based models for application case 
 
We created a generic model library of two models. We coined these models ‘Schwarz flexible' and 
‘TPB’ (for Theory of Planned Behavior, see below). The model ‘Schwarz flexible' is generally similar to 
the ‘Schwarz’ model, but its parameterization is ‘flexible’ in two ways. First, the monthly deliberation 

                                                
3 The user is recommended to test policies for all diffusion models that resulted in sufficient fit with the 
empirical patterns. Of these models, the variants with the least complexity should be chosen. 
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rate became a flexible parameter between 0.004 and 0.04. Second, the probability of agents from 
each consumer group to adopt according to the majority of their peers also became a flexible parame-
ter between 0 and 1. The second decision model is based on Ajzen’s (1991) Theory of Planned Be-
havior (TPB). Its models adoption based on three factors: the attitude towards the product, the per-
ceived behavioral control over adopting it and the subjective norm towards adoption. For water-saving 
showerheads, this means that adoption is more likely if first, attitude towards a product is more posi-
tive, second, if the adoption is perceived as easy, and third, if more common among peers. We used 
the formalization shown in Eq. 1 (Schwarz 2007). According to this model, agents calculate utilities for 
each option and adopt the one with the highest adoption intention, based on the following factors. 
‘Attitudei’ is the product of two vectors: innovation properties and weights (i.e. importance) that a social 
group assigns to these characteristics. Example of such a characteristic is environmental-friendliness. 
‘Perceived_behavioral_controli’ is a product of innovation characteristics (that translate into the ease of 
adoption) and respective weights. An example is the purchasing cost. ‘Social_normi’ is the ratio of 
peers of a household that use product ‘i’. The parameter ‘s’ is the importance of a household to prac-
tice the same behavior as its peers, motivated by need for cohesion or uncertainty about the product. 
 

adoption_intentioni = (1 - s) * attitudei + perceived_behavioral_controli + s * social_normi     (1) 
 
We extended these two models by an optional word-of-mouth (WOM) mechanism. Without the WOM 
mechanism, all agents can deliberate on adoption. If the mechanism is active, agents only consider 
adopting feedback devices if they are ‘aware’ of them. At adoption, an agent makes the peers that it 
influences aware of the device. Activation of this mechanism thus becomes an additional degree of 
freedom in the structure of both models. 

 
 

3.2.3 Automated policy simulation 
 
The proposed procedure can automatically project the impact of policies on diffusion. This automation 
phase only uses those models that were found sufficiently plausible in the inverse modeling phase. 
For innovation diffusion, policies often aim to speed up spreading of an innovation. As a policy to be 
tested, we chose the strategy of giving away free products: at the beginning of innovation diffusion, 
10% of households receive a free water-saving shower head. This has the potential to promote further 
adoption of this product by social influence and WOM. 
 
 
4 RESULTS AND DISCUSSION 
 
We conducted two simulation experiments, each representing one of the two automated phases of the 
procedure. Experiment 1 simulates the simulation models from the model library and compares simu-
lation results to the original ‘Schwarz’ model. Experiment 2 demonstrates automated policy simulation.   
 
 
4.1 Experiment 1: Inverse modeling 
 
In this experiment, the models ‘Schwarz flexible’ and ‘TPB’ were tested for their ability to explain the 
diffusion of water-saving showerheads. Each of these two models was modeled in two structural varia-
tions: both with and without the WOM mechanism. In the ‘inverse modeling’ phase of the proposed 
procedure, simulation results were tested against the two empirical patterns of an exponential takeoff 
of adoption and the empirical market shares of the three consumer groups after 15 years.  
 
The provided matching function – used to identify realistic models – is shown in Eq. 2. Mainly, the 
simulated and empirical market shares for the 3 consumer groups are compared. The inverse model-
ing phase searches model variants that minimize this mismatching. Further, if the shape of the adop-
tion curve is not exponential, then a significant penalty is added to the matching function. Basis for this 
is the overall adoption share over all agents and the length of a simulation run of 180 months. Match-
ing results (i.e. best fitness and according parameters) are shown in Table 2.  
 
                                       Minimize { ‘adoption shares’ + 1000 * ‘exponential’ }                                    (2) 
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Results of best matches, shown in Fig. 2, revealed that model versions without WOM were less able 
to match the patterns: the ‘Schwarz flexible’ model, was not able to generate an exponential pattern; 
the ‘TPB’ model could generate exponential increase in adoption, but was not able to match the adop-
tion data at the same time. With the WOM mechanism being active, both models were able to match 
both patterns – with the only limitation being a relatively bad reproduction of the empirical market 
shares of the ‘Hedonists’ group. Based on these results, we regard both simulated models generally 
suited to explain the diffusion of water-saving showerheads, but only if the WOM mechanism is in-
cluded. 
 

Table 2. Results of inverse modeling phase: best fit and parameterizations. 
Model WOM Fitness delta_alpha sLL sMS sHD 

Schwarz No - 0.004 0 0.5 1 
Schwarz flexible No 1008.71 0.013 0.591 1 0.839 
Schwarz flexible Yes 6.79 0.015 0.085 0.673 1 

TPB No 31.18 0.005 0.607 0.277 0.006 
TPB Yes 7.18 0.015 0.086 0.413 0.743 

 

Figure 2. Average adoption of water-saving showerheads, as simulated by the tested models at best 
matching parameters. Hollow points show empirical market shares after 15 years of diffusion. For the 
consumer groups ‘Leading Lifestyle’ and ‘Mainstream’, two market share data points were used, each. 

 
 
4.2 Experiment 2: Policy simulation 
 
In this experiment, we applied the proposed procedure to automatically assess the impact of a policy 
on innovation diffusion. This assessment only based on those model variants that were found ‘plausi-
ble’ in the inverse modeling experiment. The simulated policy is to give away free water-saving show-
erheads to 10% of agents at the beginning the diffusion of this innovation (see Section 3.2.3). 
 

      
Figure 3. Simulation results of the four tested model structures at best performing parameterizations. 
 
Figure 3 shows the impact of the assessed policy, which revealed the following findings. First, impacts 
for the two models are relatively similar: giving away free devices at the beginning of product diffusion 
makes the scenarios with and without policy intervention diverge quickly. Following the interventions, 
the innovation spreads at a higher rate. Overall, the similar additional impact for the two models under-
lines the robustness of the proposed procedure. 
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4.3 Limitations 
 
Discussion of limitations will focus on two aspects of the proposed automation procedure. (1) The 
proposed automation procedure might not be applicable to very uncertain processes or models. It 
appears limited to cases where potential explanations are restricted to a bounded space of options. 
This is e.g. the case for innovation diffusion, where a relatively standardized model structure meets 
many cases. For innovation diffusion, the proposed procedure has shown able to handle structural 
uncertainty. But to which limit such uncertainty can be managed is not known yet. (2) The proposed 
procedure can not easily be applied by every user, because it requires data processing skill in the 
preprocessing phase. This might limit the circle of potential users. Yet, the procedure still widens this 
circle of users, compared to prevailing model building ‘from scratch’. 
 
 
5  CONCLUSION 
 
Experiments of this study showed that the automation procedure was applicable to the diffusion of 
water-saving showerheads. It further increased efficiency of time and labor in the model building pro-
cess. This serves as a proof of concept and adds weight of evidence to its suitability to automate the 
identification of decision models in agent-based models of innovation diffusion. For the diffusion of 
water-saving heads, some potential decisions models could be falsified. Conversely, word-of-mouth 
marketing between consumers was found a potentially crucial process in their diffusion. This supports 
importance of future marketing efforts to leverage word-of-mouth. 
 
The rigid use of data in the proposed procedure creates model validation by design. The procedure is 
driven by comparing model output to empirical data, which is central to validation (Rand & Rust 2011). 
Further, comparing multiple mechanisms (or models, theories) enables the good scientific practice of 
being able to falsify those that can not explain empirical data. Overall, this has the potential to make 
agent-based modeling more rigorous than in common practice (Grimm et al. 2006). 
 
The presented approach to agent-based modeling further combines the advantages of top-down and 
bottom-up simulation modeling. In a top-down way, the user only provides key data on a system. This 
reduces complexity and labor-demand for the user. The advantages of bottom-up modeling are pro-
vided by the automated search for decision models that explain these data. Bottom-up modeling fur-
ther makes the driving mechanisms transparent and thus enables mechanistic understanding. In com-
bination, useful mechanistic understanding is thus provided at low effort and complexity. 
 
We expect the proposed automation structure to help at increasing the circle of persons that can build 
simulation models on innovation diffusion. We see the classical role of the modeler being extended by 
the role of the user. A user could build and execute useful models without requiring highly developed 
modeling or simulation skills. Such user should be skilled in data processing—to process and provide 
the required input data. A user would likely also be interested in identifying the best policy actions to 
shape the fate of an innovation. 
 
We suggest to progress this study in two directions. (1) The central phase of inverse modeling is cru-
cial to the proposed automation procedure and could be improved. We propose to support anticipated 
users of this automation procedure to make good matching function choices. For this, different design 
of the inverse modeling phase should be compared. Those designs that are robust in providing good 
results over several applications case should be preferred. (2) User-friendliness of the procedure can 
be increased by accepting unstructured input data. The presented application case used structured 
empirical data. Approaches from data science might allow to execute the procedure with unstructured 
data could be integrated. Overall, increased user-friendliness further increase the circle of potential 
users. 
 
Finally, we suggest to expand the application of the proposed automation procedure to more cases of 
diffusions and to more decision models. This could help establishing reference models on the diffusion 
of innovations, which can further speed up the development of sound innovation diffusion models. We 
further suggest to explore ways for the automation procedure to be as generally applicable as reason-
ably possible. Trust in this will likely encourage more non-modelers to apply the proposed automation 
approach and to exploit the merits of agent-based modeling of innovation diffusion. 
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