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ABSTRACT

THE LIE SYMMETRIES OF A FEW CLASSES

OF HARMONIC FUNCTIONS

W. Lauritz Petersen III

Department of Mathematics

Master of Science

In a differential geometry setting, we can analyze the solutions to systems of dif-

ferential equations in such a way as to allow us to derive entire classes of solutions

from any given solution. This process involves calculating the Lie symmetries of

a system of equations and looking at the resulting transformations. In this paper

we will give a general background of the theory necessary to develop the ideas of

working in the jet space of a given system of equations, applying this theory to

harmonic functions in the complex plane. We will consider harmonic functions in

general, harmonic functions with constant Jacobian, harmonic functions with fixed

convexity and a few other subclasses of harmonic functions.
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1 Introduction

We want to analyze the Lie symmetries of several types of harmonic functions in

the complex plane. Finding the symmetries will allow us to calculate new harmonic

functions from old ones, essentially allowing us to “flow” from one function to

another in such a way as to always force the interim functions to be harmonic.

In particular, we will consider the following classes: harmonic functions in gen-

eral, harmonic functions with constant Jacobian, harmonic functions with fixed

convexity and a few other subclasses of harmonic functions.

2 Harmonic Functions

2.1 Complex Numbers

We will use the following standard notations. We will denote the real numbers by R

and the complex numbers by C. When we write z ∈ C, we will use the convention

that z = x + iy with x, y ∈ R and will define the real part of z to be x and the

imaginary part of z to be y and use the notation Re(z) = x and Im(z) = y.

Given a point z ∈ C, we will make the identification of the complex plane with

the Cartesian plane R2, graphing the point z in R2 by giving it the coordinates

(Re(z), Im(z)) ∈ R2. Also, we define the conjugate of z, denoted z, to be z = x− iy

if z = x + iy. Two identities that will be very useful are Re(z) = x = (z+z)
2

and

Im(z) = y = (z−z)
2

. We will make constant use of these because they give us the

ability to write the real and imaginary parts of z in terms of z and z.

We will let D be the set of all complex numbers whose modulus is less than one,

yielding D = {z ∈ C
∣∣ |z| < 1}, the open unit disk with ∂D = {z

∣∣ |z| = 1}. Also

we will make the convention that a domain is an open connected subset of C and

1



that G ⊂ C is a domain.

2.2 Harmonic and Analytic Functions

Let us now consider functions from G into C. Let f : G → C be defined by

Re(f(z)) = u(z) and Im(f(z)) = v(z), where u and v are real valued functions

taking values from G to R, yielding f(z) = u(z) + iv(z).

Definition 2.1. A real valued function u : G → R is said to be harmonic if it has

continuous second partial derivatives such that

∂2u

∂x2
+
∂2u

∂y2
= 0.

Definition 2.2. A complex valued function f = u+ iv is said to be harmonic if u

and v are real valued harmonic functions.

We will adopt the standard notation of
∂f

∂x
= fx,

∂fx

∂y
= fxy, and so on, for the

partial derivatives of the function f . Recall that Theorem 13.3 of [10] gives us that

if f has continuous second derivatives then fxy = fyx. By the identities given in

Section 2.1, we can write x and y in terms z and z allowing us to find fz and fz

along with fx and fy. For example, if f(z) = z + z2 =
(
x+ x2 − y2

)
+ i (y − 2xy)

then fx = 1 + 2x− 2iy, fy = −2y − 2ix, fz = 1 and fz = 2z.

Example 2.3. Consider the real valued functions u, v1 and v2 of the complex

variable z = x + iy. Let u(z) = x2 − y2, v1(z) = 2xy and v2(z) = −2xy. We can

see that

uxx + uyy = 2 − 2 = 0

v1xx + v1yy = 0 + 0 = 0

v2xx + v2yy = 0 + 0 = 0

2



giving us that u, v1 and v2 are real valued harmonic functions. If we let f1(z) =

u(z) + iv1(z) and f2(z) = u(z) + iv2(z) then simplifying, we get that f1(z) =

x2 − y2 + i2xy = (x+ iy)2 = z2 and f2(z) = x2 − y2 − i2xy = (x− iy)2 = z2 and we

have verified that f1 and f2 are complex valued harmonic functions.

We will not typically specify whether a function is real or complex valued har-

monic because it will be clear from context. We will simply state that it is harmonic.

Definition 2.4. Two real valued harmonic functions u and v are said to be harmonic

conjugates if they are harmonic and they satisfy the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

Definition 2.5. If a function f : G → C is continuously differentiable on G then

we say f is analytic.

Theorem 2.6. If f = u+ iv is analytic then u and v satisfy the Cauchy-Riemann

equations.

Fact 2.7. Recall that if f = u + iv is analytic, we can use the Cauchy-Riemann

equations to get that

f ′(z) = ux(z) + ivx(z)

= ux(z) − iuy(z)

= vy(z) + ivx(z)

= vy(z) − iuy(z).

3



Example 2.8. Consider f1 and f2 as defined in Example 2.3. From the Cauchy-

Riemann equations we get that

ux = 2x = v1y

uy = −2y = −v1x

and

ux = 2x 6= v2y

uy = −2y 6= −v2x

and combining this with what we have from Example 2.3 we get that f1 is harmonic

and analytic but f2 is strictly harmonic.

By Theorem 2.6, Definition 2.4 and Definition 2.5, we can see that any analytic

function is harmonic. However, a harmonic function need not be analytic as shown

in Example 2.8.

Often we will want to consider the image of D under a given function or map.

To do this, we will look at the images of concentric circles and/or radial lines in the

unit disk. Consider the examples given in Figure 1(a) and Figure 1(b).

Theorem 2.9. Let u and v be real valued harmonic functions defined on G and

suppose that u and v have continuous partial derivatives. Then f : G→ C given by

f = u+ iv is analytic if and only if u and v are harmonic conjugates.

Theorem 2.10. If u : G → R is a real valued harmonic function then u has a

harmonic conjugate.

Theorem 2.11. If f = u + iv is harmonic then there exist h and g analytic such

that f = h+ g.

4
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Figure 1: Images of D under the maps z and z2 − z.

Proof. Since u and v are real valued harmonic functions then by Theorem 2.10

we have that u and v have harmonic conjugates; call them u2 and v2 respectively.

Consider that

f = u+ iv

=
u+ iu2 + u+ iu2

2
+ i

v2 + iv + v2 + iv

2i

=
u+ iu2 + v2 + iv

2
+
u+ iu2 − (v2 + iv)

2

=
(u+ v2) + i(u2 + v)

2
+

(u− v2) + i(u2 − v)

2

= h+ g

if we let h and g be defined in the obvious way. Theorem 2.9 clearly shows that h

and g are analytic. Therefore f = h+ g.

Theorem 2.12. If h and g are analytic then f = h+ g is harmonic.

Proof. Let h = h1 + ih2, g = g1 + ig2 and f = h + g. Then Re(f) = h1 + g1 and

Im(f) = h2 − g2. Since h and g are analytic then h1, h2, g1 and g2 are harmonic

5



by Theorem 2.9 and Definition 2.4 which implies that h1 + g1 and h1 − g2 are

harmonic.

Example 2.13. Consider the function f(z) = z + 1
3
z3 = x + iy + 1

3
x3 + ix2y −

xy2 − 1
3
iy3 = (x + 1

3
x3 − xy2) + i(y + x2y − 1

3
y3) recalling that z = x + iy. Let

u(z) = x + 1
3
x3 − xy2 and let v(z) = y + x2y − 1

3
y3. This gives that uxx = 2x,

uyy = −2x, vxx = 2y and vyy = −2y and it is easily verified that u and v are

harmonic and therefore f is harmonic. Now if we let h(z) = z = x + iy and

g(z) = 1
3
z3 =

(
1
3
x3 − xy2

)
+ i
(
x2y − 1

3
y3
)
, it is again easily verified that h and g

are analytic therefore yielding that f = h+ g.

Theorem 2.14. Suppose f is analytic in D. Then f has a convergent power series

expansion in D given by

f(z) =
∞∑

n=0

cnz
n where cn =

f
(n)

(0)

n!
.

Theorem 2.15. If f is analytic in D then fz(z) = 0 for all z ∈ D.

Proof. Let f be analytic in D. Then by Theorem 2.14 we have that f(z) =
∞∑

n=0

cnz
n

which implies that fz(z) = 0.

Definition 2.16. A function G is said to be subordinate to a function F , written

G ≺ F , if

G(z) = F (ω(z)), |z| < 1,

for some analytic function ω with |ω(z)| ≤ |z| where F and G are analytic on D.

Theorem 2.17. Let Dr = {z
∣∣ |z| ≤ r}. If G ≺ F then G(Dr) ⊂ F (Dr) for all

r < 1.

For more details on subordinate functions see [8].

6



3 Schlicht Functions

In our analysis of the Lie symmetries of certain functional classes we will often

restrict ourselves to the study of cases of schlicht functions. Schlicht functions are

essentially normalized univalent complex valued harmonic functions. These classes

have important applications in the field of geometric function theory, an area of

complex analysis. For more information on univalent harmonic functions see [4]

and [9].

Definition 3.1. A function f : G → C is said to be one-to-one or univalent if

f(z1) 6= f(z2) for all z1, z2 ∈ G with z1 6= z2.

Definition 3.2. A harmonic function f = h + g is called sense-preserving at a

point z0 if h′(z) 6≡ 0 and ω = g′

h′ is analytic at z0 and |ω(z0)| < 1. Similarly, f is

sense-reversing at z0 if f = g + h is sense-preserving at z0. A point z0 is a singular

point if f is neither sense-preserving nor sense-reversing at z0.

Definition 3.3. Let f(z) be defined on G. The Jacobian of f , denoted Jf , is the

determinant of the matrix




∂

∂x
Re(f)

∂

∂y
Re(f)

∂

∂x
Im(f)

∂

∂y
Im(f)


.

We say a function f is locally univalent on G if Jf 6= 0 on G. If Jf > 0 on G

then f is locally univalent and sense-preserving and if Jf < 0 on G then f is locally

univalent and sense-reversing.

If we let f = h+ g, where h = h1 + ih2 and g = g1 + ig2 are analytic, then f is

harmonic and Jf is given by Jf = |h′|2−|g′|2. To see this, use the Cauchy-Riemann

7



equations, Fact 2.7 and Definition 3.3 to get the following:

Jf =

∣∣∣∣∣∣∣∣

∂

∂x
Re(f)

∂

∂y
Re(f)

∂

∂x
Im(f)

∂

∂y
Im(f)

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

∂h1

∂x
+
∂g1

∂x

∂h1

∂y
+
∂g1

∂y
∂h2

∂x
− ∂g2

∂x

∂h2

∂y
− ∂g2

∂y

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∂h1

∂x
+
∂g1

∂x
−∂h

2

∂x
− ∂g2

∂x
∂h2

∂x
− ∂g2

∂x

∂h1

∂x
− ∂g1

∂x

∣∣∣∣∣∣∣

=

(
∂h1

∂x
+
∂g1

∂x

)(
∂h1

∂x
− ∂g1

∂x

)
−
(
−∂h

2

∂x
− ∂g2

∂x

)(
∂h2

∂x
− ∂g2

∂x

)

=

((
∂h1

∂x

)2

+

(
∂h2

∂x

)2
)

−
((

∂g1

∂x

)2

+

(
∂g2

∂x

)2
)

= |h′|2 − |g′|2.

Theorem 3.4. Let f = h+ g be harmonic. Then f is locally univalent and sense-

preserving on D if and only if |g′(z)| < |h′(z)| for all z ∈ D.

Fact 3.5. If f is sense-preserving and h′(z0) 6= 0 then Jf (z0) > 0 and if f is

sense-reversing and h′(z0) 6= 0 then Jf (z0) < 0.

Theorem 3.6 (Argument Principle for Harmonic Functions). Let f be harmonic

in D such that f is continuous and non-zero on ∂D. If f has no singular zeros in

D then f is univalent on D.

Theorem 3.6 is proven in [7], it being a standard result from complex analysis.

Definition 3.7. The family of schlicht functions (that is normalized, analytic, uni-

valent functions) is denoted by S and is defined by

S = {f : D → C
∣∣ f is analytic and univalent with f(0) = 0 and f ′(0) = 1}.

8



If f ∈ S then the power series expansion of f(z) given by Theorem 2.14 has the

general form f(z) = z + a2z
2 + a3z

3 + . . .

Example 3.8. Consider f(z) =
z

1 − z
. We can see that

z1

1 − z1

=
z2

1 − z2

implies

that z1 − z1z2 = z2 − z1z2 ⇒ z1 = z2 which gives that f is univalent. Since f is

analytic in D, f(0) = 0 and f ′(z) =
1

(1 − z)2
⇒ f ′(0) = 1 then f ∈ S. In this

example, the image of D under f is the right half-plane with boundary at x = −1
2
.

We can define a super class of S by relaxing the requirement of analyticity to

complex valued harmonic. We will denote this class as SH and define it by

SH = {f : D → C
∣∣ f is harmonic and univalent with f(0) = 0 and fz(0) = 1}.

Therefore, if f ∈ SH then f = h+ g where h and g are analytic and we get that h

and g have power series expansions of the form given by h(z) = z+a2z
2 +a3z

3 + . . .

and g(z) = b1z + b2z
2 + b3z

3 + . . . That is f(z) = z + a2z
2 + . . .+ b1z + b2z

2 + . . .

Now define SO
H , a subclass of SH by

SO
H = {f ∈ SH

∣∣ fz(0) = 0}.

For any f ∈ SO
H we get a power series expansion of the form f(z) = z + a2z

2 +

a3z
3 + . . .+ b2z

2 + b3z
3 + . . .

From these definitions, we can see that S ⊂ SO
H ⊂ SH . The following example

will show us that the containments are proper.

Example 3.9. Let f1(z) = z, f2(z) = z+ 1
2
z2 and f3(z) = z+ 1

2
z. By the definitions

of S, SO
H and SH and Theorem 3.6, we see that f1 ∈ S, f2 ∈ SO

H and f3 ∈ SH and

f2 /∈ S and f3 /∈ SO
H . Therefore S ( SO

H ( SH .

The graphs of the unit circle under each of f1, f2 and f3 are given in Figure 2(a),

Figure 2(b) and Figure 2(c), respectively.

9
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(a) Image of concentric
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(c) Image of concentric

circles and radial lines in

D under f3(z) = z + 1
2
z.

Figure 2: Images of D under the maps f1, f2 and f3.

When we perform our analysis of the Lie symmetry groups, we will take into

account several examples of schlicht functions and apply our findings to these classes

of functions.

When considering functions in SH , many times we will want to consider some

geometric property of the image of D under the function. Here we define one of

those properties.

Definition 3.10. A domain Ω is said to be convex in the direction of eiϕ for a given

ϕ ∈ [0, π) if for every a ∈ C the set

Ω ∩ {a+ teiϕ
∣∣ t ∈ R}

is either connected or empty. We say that Ω is convex in the direction of the real

axis if every line parallel to the real axis has an empty or connected intersection

with Ω.

We will call a function f convex in the direction of eiϕ, f ∈ CD(ϕ) if f(D) is

convex in the direction of eiϕ. If a function f is convex in every direction then we

10



will call it convex.

Definition 3.11. A domain Ω is said to be close-to-convex if the complement of Ω

can be written as the union of non-crossing rays.

A function f will be said to be close-to-convex if f(D) is close-to-convex. It is

true that if f is convex in some direction, then it is close-to-convex. If f is convex

then it is clearly convex in some direction and therefore close-to-convex.

Now consider the plot of concentric circles and radial lines for f2(z) = z + 1
2
z2

as shown in Figure 2(b). Upon inspection, we can see that f2 ∈ CD(0) but f2 /∈

CD
(

π
2

)
because f(D)∩{−0.6+ tei π

2

∣∣ t ∈ R} has two disjoint components. Each of

Figure 2(a) and Figure 2(c) are convex in every direction giving us that f1(z) = z

and f3(z) = z + 1
2
z are convex in every direction as well.

In [4], J. Clunie and T. Sheil-Small state and prove Theorem 3.12, Theorem 3.13

and Theorem 3.14.

Theorem 3.12. A harmonic function f = h+ g which is locally univalent in D is

a univalent mapping of D convex in the direction of the real axis if and only if h− g

is a univalent mapping of D convex in the direction of the real axis.

Theorem 3.13. Let f = h+ g be locally univalent in D and suppose that for some

ε with |ε| ≤ 1 we have that h+ εg is convex. Then f is univalent close-to-convex.

Theorem 3.14. A function f = h + g is in SH and is convex if and only if the

analytic functions

h(z) − e2iϕg(z) with 0 ≤ ϕ < π

are convex in the direction eiϕ with f suitably normalized.

11



4 Fundamentals of Differential Geometry

In order to understand the process of finding the Lie symmetry groups of systems

of differential equations, we need to understand some of the basics of differential

geometry. This will allow us to interpret differential equations in a geometric setting.

We begin with the basic definitions and a few examples to help familiarize ourselves

with geometric structures. For a general text on differentiable manifolds, see [2].

4.1 Basic Differential Geometry

Definition 4.1. A topological manifold M of dimension n, or n-manifold, is a

topological space with the following properties:

(i) M is Hausdorff,

(ii) M is locally Euclidean of dimension n, and

(iii) M has a countable basis of open sets.

Definition 4.2. If M is a topological n-manifold then a coordinate neighborhood

or coordinate chart of M is a pair U,ϕ where U is an open set of M and ϕ is a

homeomorphism of U to an open subset of Rn. To q ∈ U we assign the n coordinates

x1(q), . . . , xn(q) of its image ϕ(q) in Rn where each xi(q) is a real-valued function

on U called the ith coordinate function.

When thinking about a topological n-manifoldM , we will refer to the set ϕ(U) ⊂

Rn as the local coordinates of M allowing us to look at neighborhoods of M as if

they were in Rn and not necessarily some abstract space.

12



Definition 4.3. A function F : U ⊂ Rn → Rm with U open, is a diffeomorphism

if it is an infinitely differentiable homeomorphism and F−1 is also infinitely differ-

entiable.

Definition 4.4. Let U,ϕ and V, ψ be coordinate neighborhoods of an n-manifold

M . We say that U,ϕ and V, ψ are C∞-compatible if U ∩V 6= ∅ implies that ϕ◦ψ−1

and ψ ◦ϕ−1 are diffeomorphisms of the open subsets ϕ(U ∩V ) and ψ(U ∩V ) of Rn.

Definition 4.5. A differentiable or smooth structure on a topological manifold M

is a family or coordinate atlas U = {Uα, ϕα} of coordinate neighborhoods such that

(i) the Uα cover M ,

(ii) for any α, β the neighborhoods Uα, ϕα and Uβ, ϕβ are C∞-compatible,

(iii) any coordinate neighborhood V, ψ compatible with every Uα, ϕα ∈ U is itself

in U .

The set of all coordinate neighborhoods or charts is referred to as the coordinate

atlas.

A differentiable or smooth manifold (or simply manifold) is a topological manifold

together with a differentiable structure.

Theorem 4.6. Let M be a Hausdorff space with a countable basis of open sets. If

{Vβ, ψβ} is a covering of M by C∞-compatible coordinate neighborhoods, then there

is a unique C∞ structure on M containing these coordinate neighborhoods.

A proof of Theorem 4.6 is given in Boothby ([2]) on page 54.

Definition 4.7. Let M and N be (smooth) manifolds of dimensions m and n,

respectively. We say a function F : M → N is a smooth mapping or diffeomorphism

13



if given any coordinate neighborhood U,ϕ of M and V, ψ of N , we have that ψ ◦

F ◦ ϕ−1 : ϕ(U) ⊂ Rm → Rn is a diffeomorphism as defined in Definition 4.3.

Definition 4.8. Let F : M → N be a smooth mapping from an m-dimensional

manifold M to an n-dimensional manifold N . The rank of F at a point x ∈ M is

the rank of the n×m Jacobian matrix [aij] where aij =
∂F i

∂xj
at x, where y = F (x) is

expressed in any convenient local coordinates near x. The mapping F is of maximal

rank on a subset S ⊂M if for each x ∈ S the rank of F is as large as possible (i.e.

the minimum of m and n).

Theorem 4.9. Let F : M → N be of maximal rank at x0 ∈M where the dimensions

of M and N are m and n, respectively. Then there are local coordinates x =

(x1, . . . , xm) near x0, and y = (y1, . . . , yn) near y0 = F (x0) such that in these

coordinates F has the simple form

y = (x1, . . . , xm, 0, . . . , 0), if n > m,

or

y = (x1, . . . , xn), if n ≤ m.

For a proof of Theorem 4.9, see [2], pages 47 to 49.

Definition 4.10. Let M be a (smooth) manifold. A submanifold of M is a subset

N ⊂ M , together with a smooth, one-to-one map ϕ : Ñ → N ⊂ M satisfying the

maximal rank condition everywhere, where the parameter space Ñ is some other

manifold and N is the image of ϕ, that is N = ϕ(Ñ). In particular, the dimension

of N is the same as that of Ñ and does not exceed the dimension of M .

This map ϕ is called an immersion and defines a parametrization of the sub-

manifold N . We may refer to N as an immersed submanifold.
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Definition 4.11. A regular submanifold N of a manifold M is a submanifold pa-

rameterized by ϕ : Ñ → M with the property that for each x ∈ N there exist

arbitrarily small open neighborhoods U of x in M such that ϕ−1(U ∩N) is a con-

nected open subset of Ñ .

Example 4.12. Let’s consider an example of a submanifold of R2 that is not

regular. Let ϕ be defined by ϕ(t) = (sin(2 arctan t), 2 sin(4 arctan t)). Figure 3

shows ϕ(R) and it can be verified that R, ϕ is a submanifold of R2. If we let Br be

an open ball of radius r centered at (0, 0) then for sufficiently small r we see that

ϕ−1(Br) = (−∞, a) ∪ (b, c) ∪ (d,∞) where a < b < 0 < c < d. This gives that

ϕ−1(Br) is disjoint for some r and therefore is not a regular submanifold of R2.

Figure 3: Plot of ϕ(R)

Theorem 4.13. Let M be a smooth m-dimensional manifold, and F : M → Rn,

n ≤ m, be a smooth map. If F is of maximal rank on the subset N = {x ∈

M
∣∣ F (x) = 0}, then N is a regular, (m− n)-dimensional submanifold of M .

Example 4.14. The complex plane, C, is a manifold of dimension 2 as shown

in Figure 4. If we consider the open sets given by the standard Euclidean metric

defined by the norm on C, we can see that C is Hausdorff, locally Euclidean and has

a countable basis therefore giving us a topological 2-manifold. Take V = C to be

the open set and ϕ : V → R2 given by ϕ(x+ iy) = (x, y) to be the homeomorphism

from C to R2. By Theorem 4.6, we see that V, ϕ determines a unique differential
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structure on C. It is clear that ϕ◦ϕ−1(x, y) = (x, y) which is infinitely differentiable

yielding a diffeomorphism from R2 to R2. Therefore, we can see that C is a manifold

of dimension 2.

Figure 4: Plot of C

Example 4.15. The unit sphere in R3 as shown in Figure 5 and defined by

S2 = {(x, y, z)
∣∣ x2 + y2 + z2 = 1} is a manifold of dimension 2 with a pos-

sible set of coordinate charts given by U = {(x, y, z) ∈ S2
∣∣ z 6= 1}, ϕ and

V = {(x, y, z) ∈ S2
∣∣ z 6= −1}, ψ where ϕ and ψ are the stereographic projec-

tions onto the plane {(x, y, 0)
∣∣ (x, y) ∈ R2} ⊂ R3. We can see that ϕ is given by

ϕ(x, y, z) =

(
x

1 − z
,

y

1 − z

)
and ψ is given by ψ(x, y, z) =

(
x

1 + z
,

y

1 + z

)
where

(x, y, z) ∈ S2 and U and V are open in the Euclidean subspace topology of S2

considered as a subspace of R3. Now choose any (a, b) ∈ R2 and consider the

point (x1, y1, z1) =

(
2a

a2 + b2 + 1
,

2b

a2 + b2 + 1
,
a2 + b2 − 1

a2 + b2 + 1

)
in S2. By the following

calculation we can see that (x1, y1, z1) ∈ S2. Consider that

x2
1 + y2

1 + z2
1 =

4a2

(a2 + b2 + 1)2
+

4b2

(a2 + b2 + 1)2
+
a4 + b4 + 2a2b2 − 2a2 − 2b2 + 1

(a2 + b2 + 1)2

=
a4 + b4 + 2a2b2 + 2a2 + 2b2 + 1

(a2 + b2 + 1)2

=
(a2 + b2 + 1)2

(a2 + b2 + 1)2
= 1
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Now consider that

ϕ(x1, y1, z1) =

(
2a

a2+b2+1

1 − a2+b2−1
a2+b2+1

,
2b

a2+b2+1

1 − a2+b2−1
a2+b2+1

)

=

(
2a

a2+b2+1
2

a2+b2+1

,
2b

a2+b2+1
2

a2+b2+1

)

= (a, b)

This gives us that ϕ is surjective, that is, ϕ(U) = R2. A similar set of calculations

give us that ψ(V ) = R2. It is clear that U ∪ V = S2 and in order to finish verifying

that S2 is a manifold with the given coordinate atlas, we must verify that ϕ and

ψ are compatible on U ∩ V meaning that ϕ ◦ ψ−1 : R2 \ (0, 0) → R2 and ψ ◦ ϕ−1 :

R2 \ (0, 0) → R2 are infinitely differentiable and are therefore diffeomorphisms of

R2 \ (0, 0) to R2 \ (0, 0). Consider that

ϕ ◦ ψ−1(x, y) = ϕ

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
1 − x2 − y2

x2 + y2 + 1

)

=

(
2x

x2+y2+1

1 − 1−x2−y2

x2+y2+1

,

2y

x2+y2+1

1 − 1−x2−y2

x2+y2+1

)

=

(
x

x2 + y2
,

y

x2 + y2

)

which we can see is infinitely differentiable on R2 \ (0, 0). Similarly we can show

that

ψ ◦ ϕ−1(x, y) =

(
x

x2 + y2
,

y

x2 + y2

)

which yields that ψ ◦ ϕ−1 is infinitely differentiable on R2 \ (0, 0) as well. We have

thus verified that ϕ and ψ are compatible on U ∩ V giving us that S2 is a manifold

with an atlas determined by the given atlas by Theorem 4.6.

Example 4.16. Let M and N be manifolds of dimensions m and n, respectively

and let {Uα, ϕα} and {Vβ, ψβ} be smooth atlases for M and N , respectively. It is a
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Figure 5: Plot of S2

standard result from topology that the Cartesian product M × N is a topological

manifold. Choose some U,ϕ ∈ {Uα, ϕα} and V, ψ ∈ {Vβ, ψβ}. Define W, θ on

M ×N by W = U × V and θ : W → Rm+n by θ(p, q) = ϕ(p) × ψ(q) for (p, q) ∈W

where ϕ(p) × ψ(q) =
(
ϕ1(p), . . . , ϕm(p);ψ1(q), . . . , ψn(q)

)
. Choose U1, ϕ1;U2, ϕ2 ∈

{Uα, ϕα} and V1, ψ1;V2, ψ2 ∈ {Vβ, ψβ} such that U1 ∩ U2 6= ∅ and V1 ∩ V2 6= ∅ let

W1 = U1 × V1 and W2 = U2 × V2 and note that W1 ∩W2 6= ∅. Let θ1 and θ2 be the

corresponding local coordinate maps from W1 and W2 to Rm+n respectively defined

by θ1(p, q) = ϕ1(p) × ψ1(q) and θ2(p, q) = ϕ2(p) × ψ2(q). Consider the map

θ1 ◦ θ−1
2 : θ2(W1 ∩W2) ⊂ Rm+n → Rm+n.

Choose some (p, q) ∈ θ2(W1 ∩W2) and consider that

θ1 ◦ θ−1
2 (p, q) = (ϕ1 × ψ1) ◦ (ϕ2 × ψ2)

−1(p, q)

= (ϕ1 × ψ1) ◦ (ϕ−1
2 (p) × ψ−1

2 (q))

= (ϕ1 ◦ ϕ−1
2 (p)) × (ψ1 ◦ ψ−1

2 (q))

which is infinitely differentiable since ϕ1 is smoothly compatible with ϕ2, and sim-

ilarly ψ1 with ψ2, thus giving us that θ1 ◦ θ−1
2 is a diffeomorphism. A similar

calculation will show that θ2 ◦ θ−1
1 is a diffeomorphism as well. Together, these give
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us that W1, θ1 and W2, θ2 are C∞-compatible. Therefore, M ×N is a manifold with

coordinates atlas as defined above.

4.2 Vector Fields on Manifolds

When we have an abstract manifoldM of dimensionm, we may not have an ambient

space that M is living in. We want to develop the ideas that allow us to talk about

paths and tangent vectors on M without requiring that M be strictly embedded in

Rn.

Suppose Γ is a smooth curve on a manifold M of dimension m, parameterized

by φ : I → M where I is a subinterval of R. In local coordinates x = (x1, . . . , xm),

Γ is given by m smooth functions φ(ε) = (φ1(ε), . . . , φm(ε)) of the real variable ε.

Definition 4.17. With the above considerations, at each point x = φ(ε) of Γ the

curve has a tangent vector, namely the derivative φ̇(ε) =
dφ

dε
= (φ̇1(ε), . . . , φ̇m(ε))

which has the notation of

v|x = φ̇(ε) = (φ̇1(ε), . . . , φ̇m(ε)) = φ̇1(ε)
∂

∂x1
+ φ̇2(ε)

∂

∂x2
+ . . .+ φ̇m(ε)

∂

∂xm
.

This notation may seem strange but will prove itself extremely useful when we

introduce Lie derivatives. This notation will also allow us to distinguish between

the tangent vectors and the local coordinates of the manifold. Simply think of

the differential operators as basis vectors, that is, when we’re considering R2 as a

manifold, any tangent vector can be written as a linear combination of the basis

vectors

{
∂

∂x
,
∂

∂y

}
just as any element in R2 can be written as a linear combination

of the basis elements {(1, 0), (0, 1)}.

Example 4.18. Consider the helix as a 1-dimensional submanifold of R3. We can

describe the helix by φ(ε) = (cos ε, sin ε, ε) in R3 with coordinates (x, y, z). The
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tangent vector φ̇(ε) is given by

φ̇(ε) =
d

dε

(
φ1(ε)

) ∂

∂x
+

d

dε

(
φ2(ε)

) ∂
∂y

+
d

dε

(
φ3(ε)

) ∂
∂z

= − sin ε
∂

∂x
+ cos ε

∂

∂y
+

∂

∂z

= −y ∂
∂x

+ x
∂

∂y
+

∂

∂z

at the point (x, y, z) = φ(ε) = (cos ε, sin ε, ε).

Definition 4.19. The collection of all tangent vectors to all possible curves passing

through a given point x ∈M is called the tangent space to M at x and is denoted

by TM |x.

If M is an m-dimensional manifold then TM |x is an m-dimensional vector space

over R with

{
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xm

}
providing a basis for TM |x in the given local

coordinates.

Definition 4.20. A vector field v on an m-dimensional manifold M assigns a

tangent vector v|x ∈ TM |x to each point x ∈ M , with v|x varying smoothly from

point to point.

In local coordinates (x1, . . . , xm), a vector field has the form

v|x = ξ1(x)
∂

∂x1
+ ξ2(x)

∂

∂x2
+ . . .+ ξm(x)

∂

∂xm
,

where each ξi(x) is a smooth function of x. There is a subtlety here that we will

ignore and that is namely that each
∂

∂xi
in the above expression is an element of

TM |x and therefore changes for each x ∈M but this distinction will be clear from

context.

Definition 4.21. An integral curve of a vector field v is a smooth parameterized

curve x = φ(ε) whose tangent vector at any point is equal to the value of v at that

point. This means that φ̇(ε) = v|φ(ε) for all ε.
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If we consider an integral curve φ(ε) = (φ1(ε), . . . , φm(ε)) in local coordinates, we

get that φ(ε) must be a solution to the autonomous system of ordinary differential

equations given by

dxi

dε
= ξi(x), i = 1, . . . ,m,

where ξi(x) are the coefficients of v at x. Since ξi(x) are smooth functions then

the standard existence and uniqueness theorems apply with initial condition given

by φ(0) = x0. This implies that there is a unique maximal integral curve passing

through any given point x0 ∈M, where maximal means that no other integral curve

through x0 properly contains this unique curve.

Definition 4.22. If v is a vector field on an m-dimensional manifold M , we denote

the parameterized maximal integral curve passing through x ∈ M by Ψ(ε, x) and

call Ψ the flow generated by v.

From Definition 4.22 we see that for each x ∈ M and interval Ix containing 0

with ε ∈ Ix, Ψ(ε, x) will be a point on the integral curve passing through x ∈ M .

The flow of a vector field has the basic properties that

Ψ(δ,Ψ(ε, x)) = Ψ(δ + ε, x), x ∈M

for all δ, ε ∈ R such that both sides of the above equation are defined,

Ψ(0, x) = x,

and

d

dε
Ψ(ε, x) = v|Ψ(ε,x)

for all ε where defined.
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5 Lie Symmetry Groups

The vast majority of the information in this section was taken from Applications

of Lie Groups to Differential Equations by Peter J. Olver [12]. In this book he

gives the groundwork which will be employed in this paper for our analysis of the

Lie symmetries of some classes of harmonic functions. Another resource for general

information about Lie symmetry groups is [14].

5.1 Abstract Groups

Definition 5.1. A group is a set G together with a group operation ⋆ such that for

any two elements g, h ∈ G, the product g ⋆ h is again an element of G. The group

operation is required to satisfy the following axioms:

(i) Associativity. If g, h, k ∈ G then g ⋆ (h ⋆ k) = (g ⋆ h) ⋆ k.

(ii) Identity Element. There is a unique element e ∈ G called the identity element,

such that e ⋆ g = g ⋆ e = g for all g ∈ G.

(iii) Inverses. For each g ∈ G, there exists an inverse in G, denoted g−1 such that

g ⋆ g−1 = g−1 ⋆ g = e.

Often we denote the product of g, h ∈ G by gh, g · h or g+ h, depending on the

group.

Definition 5.2. A group is said to be abelian if the group operation is commutative,

meaning that g · h = h · g for all g, h ∈ G.
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5.2 Lie Symmetry Groups

Definition 5.3. An r-parameter Lie group is a group G with operation · which

also carries the structure of an r-dimensional (smooth) manifold in such a way that

both the group operation

m : G×G→ G, m(g, h) = g · h, g, h ∈ G

and the inversion

i : G→ G, i(g) = g−1, g ∈ G

are smooth (infinitely differentiable) maps between manifolds.

Definition 5.4. Let G and H be groups with operations ∗ and ⋆, respectively. A

function ϕ : G→ H is said to be a group homomorphism if ϕ(g1∗g2) = ϕ(g1)⋆ϕ(g2)

for all g1, g2 ∈ G. If ϕ is injective and surjective, then ϕ is called an isomorphism

and we say that G and H are isomorphic if there exists an isomorphism between

them. If G and H are isomorphic, we will notate this as G ∼= H. For two Lie groups

to be isomorphic, the isomorphism must be a smooth map between them.

Example 5.5. Consider the manifold R+ = {x ∈ R
∣∣ x > 0} and consider it as a

group under multiplication. The multiplication map m : R+ × R+ → R+ is defined

by m(x, y) = x · y and the inversion map i : R+ → R+ is defined by i(x) = 1/x,

both maps are seen to be diffeomorphisms, the first one being a diffeomorphism

from R+ × R+ (a 2-manifold by Example 4.16) onto R+ and the second from R+

onto R+. Therefore, by definition R+ is a Lie Group. With the homomorphism

ϕ(t) = ln t we can show that R+ is isomorphic to R as a group under +. Clearly R

is a Lie group under + and we can see that given s, t ∈ R+ we have that

ϕ(s · t) = ln(s · t) = ln s+ ln t = ϕ(s) + ϕ(t)
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showing that ϕ is a homomorphism. It is easily verified that ϕ is surjective and

injective and that it is a smooth map yielding that R+ and R are isomorphic as Lie

groups.

Example 5.6. Consider the manifold SO(2), the set of all 2 × 2 real orthogonal

matrices of determinant 1. SO(2) is given by the set

SO(2) =








cos θ − sin θ

sin θ cos θ




∣∣∣∣∣ θ ∈ R





under the operation of matrix multiplication. So given



cos θ − sin θ

sin θ cos θ


 ,




cosφ − sinφ

sinφ cosφ


 ∈ SO(2)

we have that



cos θ − sin θ

sin θ cos θ


 ·




cosφ − sinφ

sinφ cosφ




=




cos θ cosφ− sin θ sinφ − cos θ sinφ− sin θ cosφ

sin θ cosφ+ cos θ sinφ cos θ cosφ− sin θ sinφ




=




cos(θ + φ) − sin(θ + φ)

sin(θ + φ) cos(θ + φ)




With this multiplication in mind, we see that there is a natural isomorphism from

the groups {SO(2), ·} onto {R2π,+} where R2π = {θ (mod 2π)
∣∣ θ ∈ R}. The

group R2π is simply R under addition with the modular arithmetic defined in such

a way as to make 2πk = 0 for all k ∈ Z, for example, π+ 3π = 0 in R2π. The group

isomorphism is given by

ϕ







cos θ − sin θ

sin θ cos θ





 = θ.
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Given x =




cos θ − sin θ

sin θ cos θ


 , y =




cosφ − sinφ

sinφ cosφ


 ∈ SO(2), from the previous

calculation we can see that

ϕ(x · y) = ϕ







cos(θ + φ) − sin(θ + φ)

sin(θ + φ) cos(θ + φ)





 = θ + φ = ϕ(x) + ϕ(y)

showing that ϕ is indeed a homomorphism of these two groups. It can be verified

that ϕ is well-defined, surjective and injective and is a smooth map between SO(2)

and R2π being careful to consider equivalence classes as the elements of R2π and not

the individual elements of R. Therefore ϕ is an isomorphism of Lie groups.

Fact 5.7. There are only two connected 1-parameter Lie groups, namely {SO(2), ·} ∼=

{R2π,+} and {R,+} ∼= {R+, ·}.

We will make extensive use of the Lie group {R,+}. When we consider Lie

symmetry groups of certain differential equations, this is the Lie group we will use.

As with any group, there is a natural definition of a Lie subgroup.

Definition 5.8. A Lie subgroup H of a Lie group G is given by a submanifold

ϕ : H̃ → G where H̃ itself is a Lie group, H = ϕ(H̃) is the image of ϕ and ϕ is

called a Lie group homomorphism.

Theorem 5.9. Suppose G is a Lie group. If H is a closed subgroup of G, then H

is a regular submanifold of G and hence a Lie group in its own right. Conversely,

any regular Lie subgroup of G is a closed subgroup.

Many times the Lie group that we are considering may not globally define a

group structure but in some neighborhood of the identity element we have a group

structure. We call this a local Lie group and give the following definition.
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Definition 5.10. An r-parameter local Lie group consists of connected open subsets

V0 ⊂ V ⊂ Rr containing the origin 0, and smooth maps

m : V × V → Rr,

defining the group operation, and

i : V0 → V

defining the group inversion, with the following properties.

(i) Associativity. If x, y, z ∈ V and also m(x, y) and m(y, z) are in V , then

m(x,m(y, z)) = m(m(x, y), z).

(ii) Identity Element. For all x ∈ V , m(0, x) = x = m(x, 0).

(iii) Inverses. For each x ∈ V0, m(x, i(x)) = 0 = m(i(x), x).

We will continue to denote a local group operation by xy, x · y or x+ y for m(x, y)

and x−1 or −x for i(x).

Note that our definition of a local Lie group is only defined on open neighbor-

hoods of the origin in Rr for an r-parameter local Lie group. For the abstract

manifold which is a global Lie group, there is a natural way of forming a local Lie

group if the space is not already Rr. That is, take the coordinate chart of the iden-

tity and this will give a local Lie group that is a subset of Rr in local coordinates.

It is a fact that every local Lie group arises from this construction meaning that

every local Lie group is locally isomorphic to a neighborhood of the identity of some

global Lie group.
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Theorem 5.11. Let V0 ⊂ V ⊂ Rr be a local Lie group with multiplication m(x, y)

and inversion i(x). Then there exists a global Lie group G and a coordinate chart

χ : U∗ → V ∗, where U∗ contains the identity element, such that V ∗ ⊂ V0, χ(e) = 0,

and

χ(g · h) = m(χ(g), χ(h))

whenever g, h ∈ U∗ and

χ(g−1) = i(χ(g))

whenever g ∈ U∗. Also, there is a unique connected, simply-connected Lie group

G∗ having the above properties. If G is any other such Lie group, there exists a

covering map π : G∗ → G which is a local Lie group isomorphism.

Example 5.12. Let V = {x ∈ R
∣∣ |x| < 1} with group multiplication defined by

m(x, y) =
2xy − x− y

xy − 1
, x, y ∈ V

and inversion defined by

i(x) =
x

2x− 1

which is only defined for x ∈ V0 = {x
∣∣ |x| < 1

2
}. Associativity and the identity

element can be easily verified. Since i(x) only holds in V0 then this is a local Lie

group and not a global one.

Example 5.13. By Theorem 5.11, we get that the local Lie group given in Ex-

ample 5.12 must have come from a global Lie group. Since there is only one con-

nected, simply-connected one-parameter Lie group, R, then the local Lie group

in Example 5.12 must coincide with some coordinate chart of 0 of R. If we let

χ : U∗ → V ∗ ⊂ R with

χ(t) =
t

t− 1
, t ∈ U∗ = {t < 1},
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then we can see that

χ(t+ s) = m(χ(t), χ(s)) =
2χ(t)χ(s) − χ(t) − χ(s)

χ(t)χ(s) − 1

and

χ(−t) = i(χ(t)) =
χ(t)

2χ(t) − 1

where defined. Therefore χ is the coordinate chart of R that satisfies Theorem 5.11

and we can see that the above local Lie group did in fact arise from a global Lie

group.

Theorem 5.14. Let G be a connected Lie group and U ⊂ G a neighborhood of the

identity. Let Uk = {g1 ·g2 · . . . ·gk

∣∣ gi ∈ U}. So Uk is the set of all possible products

of k elements of U . Then

G =
∞⋃

k=1

Uk.

Proof. We will show that
∞⋃

k=1

Uk is both open and closed in G and since G is con-

nected then this will imply that
∞⋃

k=1

Uk = G.

Choose V ∗ ⊂ G open such that the identity element e of G is in V ∗. Let

V = V ∗ ∩ i(V ∗). Note that e ∈ V ∗ ⇒ e = e−1 ∈ i(V ∗) ⇒ e ∈ V and therefore

V 6= ∅. Since V ∗ is open and the inversion map is a diffeomorphism then i(V ∗) is

open implying that V is open, being the intersection of two open sets. Note that

V ⊂ V ∗.

Now choose some g ∈ V . This implies that g ∈ i(V ∗) which then implies that

g−1 ∈ V ∗. Now since g ∈ V ∗ ⇒ i(g) = g−1 ∈ i(V ∗) and therefore g−1 ∈

V ∗∩ i(V ∗) = V . So we have shown that V is open containing e, nonempty and that

every element in V has its inverse in V as well.

Let Vg = {g · v
∣∣ v ∈ V }. We can clearly see that g ∈ Vg since g = g · e ∈ Vg.

Choose some b ∈ Vg such that b is a boundary point of Vg. Since G is Hausdorff
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and b is a boundary point of Vg then we may form a sequence {bn} → b such

that b 6= bn and bn /∈ Vg of all n. Since b ∈ Vg, there exists a v ∈ V such that

b = g · v ⇒ g−1 · b = v. By the continuity of the group operation we have that

{g−1 · bn} → g−1 · b = v ∈ V and since V is open, there exists some i such that

g−1 · bi ∈ V . Thus bi ∈ Vg which contradicts our supposition. Therefore Vg does not

contain any of its boundary points which implies that Vg is open. We have shown

that if V ∗ is any open set containing e ∈ G then Vg is also open in G.

It can be easily verified that Uk = {g1 · g2 · . . . · gk

∣∣ gi ∈ U} =
⋃

gi∈U

giU
k−1. Since

U1 = U and U is open then a simple inductive argument gives that Uk is open for

any k. Therefore
∞⋃

k=1

Uk is open in G since each Uk is.

Now let U be an open set containing e and let U =
∞⋃

k=1

Uk and choose some

element in p ∈ U . From what has been shown previously we see that since U is

open and contains e then Up is an open set containing p and since p ∈ U then

Up ∩ U 6= ∅ which implies that there is a p0 ∈ Up ∩ U . Since p0 ∈ U then

p0 = g1 · g2 · . . . · gn ∈ Un for some n and gi ∈ U for all i = 1 . . . n. Since

g1 · g2 · . . . · gn ∈ Up then g1 · g2 · . . . · gn = p · u for some u ∈ U which implies that

p−1 ·g1 ·g2 · . . . ·gn = u ∈ U ⇒ p = g1 ·g2 · . . . ·gn ·(p−1 ·g1 ·g2 · . . . ·gn)−1 ∈ Un+1 ⊂ U

and therefore p ∈ U which implies that U = U . Therefore we have shown that

U =
∞⋃

k=1

Uk is closed. Now since
∞⋃

k=1

Uk is both open and closed in the connected

set G then G =
∞⋃

k=1

Uk.

Theorem 5.14 gives us that any open set U of a Lie group G containing the

identity element can generate a global Lie group because any element in G is simply

a finite product of elements in U . This in turn allows us, in conjunction with

Theorem 5.11, to generate a global Lie group from a local one simply by taking all
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possible words from some open set containing the identity element.

When working with Lie groups, local or global, in general we are not mainly

concerned with the group in and of itself as a self-contained entity but more im-

portantly on how the Lie group acts on another manifold. This is the main idea

of the infinitesimal analysis of a Lie group. We need a few definitions to consider

these examples. Ultimately it is these group actions that will allow us to analyze

the symmetries of sets of differential equations.

Definition 5.15. Let M be a smooth manifold. A local group of transformations

acting on M is given by a (local) Lie group G with identity e, an open set U , with

{e} ×M ⊂ U ⊂ G×M

which is the domain of definition of the group action, and a smooth map Ψ : U →M

with the following properties:

(i) If (h, x) ∈ U and (g,Ψ(h, x)) ∈ U and (g · h, x) ∈ U , then

Ψ(g,Ψ(h, x)) = Ψ(g · h, x).

(ii) For all x ∈M ,

Ψ(e, x) = x.

(iii) If (g, x) ∈ U then (g−1,Ψ(g, x)) ∈ U and

Ψ(g−1,Ψ(g, x)) = x.

Generally we will notate Ψ(g, x) as g · x. It will be clear from context that

we are considering a group action and not the group operation of the Lie group.

From Definition 5.15, it can be shown that each individual group transformation is
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a diffeomorphism, where defined, from the M component of U into M . That is to

say that for any fixed g ∈ G, ψg(x) = Ψ(g, x) is a diffeomorphism of M∗ ⊂ M into

M where M∗ = {x ∈M
∣∣ (g, x) ∈ U }. Also, if U = G×M then we call G a global

group of transformations.

We can form local Lie groups for each x ∈M by looking at the local Lie group

Gx ≡ {g ∈ G
∣∣ (g, x) ∈ U }.

It can be verified that Gx is in fact a local Lie group.

Definition 5.16. We say a local group of transformations G acting on M is called

connected if:

(i) G is a connected Lie group and M is a connected manifold,

(ii) the domain of definition U ⊂ G×M is a connected open set, and

(iii) for each x ∈M , the local group Gx is connected.

From this point on, we will only consider connected groups of transformations.

Definition 5.17. A set O ⊂ M is an orbit of a local transformation group G

provided that

(i) if x ∈ O, g ∈ G and g · x is defined, then g · x ∈ O.

(ii) if Õ ⊂ O and Õ satisfies part (i) then either Õ = O or Õ = ∅.

It is true that the orbits of a Lie group of transformations are submanifolds

of M , but they may have differing dimensions and may not necessarily be regular.

Also, if there is only one orbit then the group action is said to be transitive and that

single orbit would then be M , meaning that we could flow from any one element on

M to any other element.
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Definition 5.18. LetG be a local Lie group of transformations acting on a manifold

M and let S ⊂M . The set S is said to be G-invariant if given any g ∈ G and x ∈ S

such that g · x is defined then g · x ∈ S.

It is clear that the orbit of any element x ∈M under the action of a group G is

a G-invariant set and any union of orbits will also be a G-invariant set. It can also

be verified that any G-invariant set is the union of a collection of orbits.

From the definition of a flow, Definition 4.22, we can see that the flow, Ψ(ε, x),

generated by a vector field, v, on M is the same as a local group action of the Lie

group R on the manifold M . The vector field v is called the infinitesimal generator

of the action. The orbits of the group action are the maximal integral curves of v.

If Ψ(ε, x) is any one-parameter Lie group of transformations acting on an m-

dimensional manifold M , then the infinitesimal generator of the action is obtained

by

v|x =
m∑

i=1

(
d

dε

∣∣∣∣
ε=0

Ψi(ε, x)

)
∂

∂xi
, (1)

where Ψ(ε, x) = (Ψ1(ε, x), . . . ,Ψm(ε, x)) is the image of x ∈M under the action of

ε ∈ G. Since it will be clear that we are referring to the infinitesimal generator at

a point x ∈ M , we will usually denote the infinitesimal generator by v as opposed

to v|x.

The process of finding the one-parameter group of transformations from the

infinitesimal generator v is called exponentiating. If we make the definition that

exp(εv)x ≡ Ψ(ε, x)

for ε ∈ G then exp(εv)x is the flow of x under the Lie symmetry group. The

exponentiation is well defined since Ψ
v
(ε, x) = Ψtv

(
ε
t
, x
)

for any t 6= 0. Using this
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notation we have the properties that

exp[(δ + ε)v]x = exp(δv) exp(εv)x

whenever defined,

exp(0v)x = x, (2)

and

d

dε
[exp(εv)x] = v|exp(εv)x (3)

for all x ∈ M . We can see the parallels between the exponentiation of the infini-

tesimal generator and the properties of the exponential function, hence the name.

One common notation we will adopt for the flow of a particular element x will be

x̃, that is, Ψ(ε, x) = exp(εv)x = x̃.

Equations (2) and (3) lead us to the following technique for exponentiating

an infinitesimal generator v. Let M be an m-dimensional manifold with a one-

parameter Lie group G acting on M . Let the infinitesimal generator of ε ∈ G be

v =
m∑

i=1

ξi(x1, . . . , xm)
∂

∂xi
. In order to exponentiate v, we must solve the system of

differential equations

dx̃1

dε
= ξ1(x̃1, . . . , x̃m),

dx̃2

dε
= ξ2(x̃1, . . . , x̃m),

...

dx̃m

dε
= ξm(x̃1, . . . , x̃m)

subject to the initial conditions x̃1|ε=0 = x1, . . . , x̃m|ε=0 = xm which we will often

notate simply as x̃i|0 = xi. The solution for x̃i will be the flow from xi under the

group action and we will call this the exponentiation of x.
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Example 5.19. Let’s consider a few examples of vector fields and associated flows

found through exponentiation.

(a) Let M = R with coordinate given by x. Let v =
∂

∂x
. In order to exponentiate

this we must satisfy the differential equation

d

dε
(x̃) = 1

subject to the initial condition x̃|0 = x. This has solution x̃ = x+ ε giving us

the exponentiation of

x̃ = exp

(
ε
∂

∂x

)
x = x+ ε

which is globally defined. If we were to define v as v = x
∂

∂x
then we get that

x̃ must satisfy
d

dε
(x̃) = x̃ subject to x̃|0 = x which yields

x̃ = exp

(
εx

∂

∂x

)
x = eεx.

(b) Let M = R2 with coordinates given by (x, y). Let v = −y ∂
∂x

+ x
∂

∂y
. If we

let (x̃, ỹ) = exp

[
ε

(
−y ∂

∂x
+ x

∂

∂y

)]
(x, y) then in order to exponentiate v we

must solve the system of differential equations

d

dε
(x̃) = −ỹ

d

dε
(ỹ) = x̃

subject to the initial conditions x̃|0 = x and ỹ|0 = y. The solution to this

system is

x̃ = x cos ε− y sin ε

ỹ = y cos ε+ x sin ε

which gives that Ψ (ε, (x, y)) = (x cos ε− y sin ε, y cos ε+ x sin ε).

34



(c) Let M = R2 with coordinates given by (x, y). Let v = x2 ∂

∂x
+ xy

∂

∂y
. Again

let x̃ and ỹ be the transformed x and y coordinates respectively. Now we must

satisfy the system

d

dε
(x̃) = x̃2

d

dε
(ỹ) = x̃ · ỹ

subject to the initial conditions x̃|0 = x and x̃|0 = y. This yields a solution of

x̃ =
x

1 − εx

ỹ =
y

1 − εx

which gives that Ψ (ε, (x, y)) =

(
x

1 − εx
,

y

1 − εx

)
.

In trying to solve the systems of differential equations generated by exponenti-

ating a given infinitesimal generator, often we will employ a computer mathematics

software package such as Maple. In the above examples, they generated simple

enough systems of differential equations to be solved by hand but in the calculation

of many Lie symmetries we will have systems of more than fifty or so equations

necessitating the usage of a computer generated solution.

Example 5.20. Here are a few examples of group transformations with their asso-

ciated infinitesimal generators.

(a) Let G = SO(2) and M = S2. As shown in Example 4.15, we see that M is a

manifold where (x, y, z) ∈M if x2 + y2 + z2 = 1. Choose some

θ =




cos θ − sin θ

sin θ cos θ


 ∈ SO(2).
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Define the group action by

Ψ(θ, (x, y, z)) = (x cos θ − y sin θ, y cos θ + x sin θ, z).

Notate the action of an element θ ∈ G on an element x ∈M by (x̃, ỹ, z̃) or by

θ · (x, y, z). Consider that

(x cos θ − y sin θ)2 + (y cos θ + x sin θ)2 + z2

= x2 cos2 θ − 2xy cos θ sin θ + y2 sin2 θ

+ y2 cos2 θ + 2xy cos θ sin θ + x2 sin2 θ

+ z2

= x2(cos2 θ + sin2 θ) + y2(cos2 θ + sin2 θ) + z2

= x2 + y2 + z2

= 1

which therefore shows that θ · (x, y, z) ∈ SO(2). We can verify that the

other axioms of Definition 5.15 hold for this group action definition as well.

In this case, SO(2) is a global group action on M . If we fix some height

α ∈ [−1, 1] and form the set Sα = {(x, y, α)
∣∣ x2 + y2 + α2 = 1} ∈M , we can

check that Sα is an orbit of the group action and in fact the collection of sets

S = {Sβ

∣∣ β ∈ [−1, 1]} forms the collection of all orbits of this group action.

Since Sα is an orbit, it is simply the flow of an element (x, y, α) ∈M under the

group G or in other words, Sα is an integral curve of the group action. Since

S has more than one element then we can see that the group action is not

transitive. Six of the orbits are shown in Figure 6. We can see that each orbit

Sα is a G-invariant set and any union of Sα’s also forms a G-invariant set. For

example, the union of the six orbits shown in Figure 6 forms a G-invariant
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set. We can calculate the infinitesimal generator by taking the derivatives of

each of the coordinate functions as given by (1) on page 32 yielding

v =

(
d

dθ

∣∣∣∣
θ=0

(x cos θ − y sin θ)

)
∂

∂x
+

(
d

dθ

∣∣∣∣
θ=0

(y cos θ + x sin θ)

)
∂

∂y

+

(
d

dθ

∣∣∣∣
θ=0

(z)

)
∂

∂z

= (−x sin 0 − y cos 0)
∂

∂x
+ (−y sin 0 + x cos 0)

∂

∂y

= −y ∂
∂x

+ x
∂

∂y
.

Figure 6: Plot of S2 with the orbits of the group action

As shown in Example 5.19(b), if we were to exponentiate v = −y ∂
∂x

+ x
∂

∂y
,

we get that x̃ = x cos θ − y sin θ and ỹ = y cos θ + x sin θ and z̃ = z arising

from
dz̃

dθ
= 0, z̃|0 = z. This gives us the group action that we started with

θ · (x, y, z) = (x cos θ − y sin θ, y cos θ + x sin θ, z).

(b) Let G = R and M = R2. Given g ∈ G, define the action of g on an element

(x, y) by g · (x, y) = (x + g, y − g). We can verify that this defines a group

action of G on M . The orbit of any element (x0, y0) ∈ R2 is the line with slope
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-1 passing through the point (x0, y0) where five orbits are shown in Figure 7.

Also each of these orbits is an integral curve or flow of the group action on

the element (x0, y0) ∈ M . Each of these orbits forms a G-invariant set and

so does any union thereof. For example, the union of the five orbits shown

in Figure 7 forms a G-invariant set. Again, we can calculate the infinitesimal

generator of this group action.

v =

(
d

dg

∣∣∣∣
g=0

(x+ g)

)
∂

∂x
+

(
d

dg

∣∣∣∣
g=0

(y − g)

)
∂

∂y

=
∂

∂x
− ∂

∂y

Figure 7: Plot of R2 with the orbits of the group action

5.3 Lie Algebras

The concept of G-invariance is an essential idea for finding the symmetries of differ-

ential equations. Once we are able to consider the set of all solutions to a system of

differential equations as a manifold in a particular Euclidean space, we will calculate

the group action that leaves this manifold invariant and thus form a solution set

from any given solution. Before beginning our infinitesimal analysis, let’s establish

a few definitions necessary to form a vector space of infinitesimal generators for a
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particular group, being the Lie algebra relative to the Lie group being studied.

Let F : M → N be a smooth map between manifolds. The map F induces

a map from TM to TN , the tangent bundles of M and N , respectively. This

map is called the differential of F , denoted dF . We can think of dF as a function

dF : TM |x → TN |F (x) given by

dF (v|x) =
n∑

j=1

v(F j(x))
∂

∂yj

where F (x) = (y1, . . . , yn) in local coordinates. We can also define dF by

dF (v|x)f(y) = v(f ◦ F )(x), y = F (x)

for all v|x ∈ TM |x and all smooth f : N → R.

Definition 5.21. Let v and w be vector fields on a manifold M . Then their Lie

bracket [v,w] is the unique vector field satisfying

[v,w](f) = v(w(f)) − w(v(f))

for all smooth f : M → R. If

v =
m∑

i=1

ξi(x)
∂

∂xi
, w =

m∑

i=1

ηi(x)
∂

∂xi
,

then

[v,w] =
m∑

i=1

{v(ηi) − w(ξi)} ∂

∂xi
.

Definition 5.22. Let G be a Lie group. For any group element g ∈ G, the right

multiplication map

Rg : G→ G

defined by

Rg(h) = h · g
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is a diffeomorphism, with inverse given by

Rg−1 = (Rg)
−1.

A vector field v on G is called right-invariant if

dRg(v|h) = v|Rg(h) = v|hg

for all g, h ∈ G. The set of all right-invariant vector fields forms a vector space over

R.

Definition 5.23. A Lie algebra is a vector space g together with a bilinear operation

[·, ·] : g × g → g,

called the Lie bracket for g, satisfying the axioms,

(i) Bilinearity

[cv + c′v′,w] = c[v,w] + c′[v′,w]

and

[v, cw + c′w] = c[v,w] + c′[v,w′]

(ii) Skew-Symmetry

[v,w] = −[w,v],

(iii) Jacobi Identity

[u, [v,w]] + [w, [u,v]] + [v, [w,u]] = 0,

for all u,v,v′,w,w′ ∈ g and c, c′ ∈ R.

With this vocabulary, when we calculate the infinitesimal generators of the Lie

symmetries of a system of differential equations, we can look at the Lie algebra

spanned by those generators. Any vector field in the span will also be the infinites-

imal generator of a Lie symmetry.
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5.4 Infinitesimal Analysis

We want to consider the effect a flow exp(εv) has on a function defined on the

manifold M of the Lie group action. In a broad sense, we want to know how a

function will change under a flow, that is, what is the function of the flow of a point

x ∈ M instead of simply what is the function of x ∈ M . In order to do this, we

need to define the Lie derivative of a function defined on M .

Let f : M → R and let v have coordinates functions given by v =
m∑

i=1

ξi(x)
∂

∂xi
.

We define the Lie derivative as follows.

Definition 5.24. The Lie derivative of a function f under an infinitesimal generator

v, denoted v(f), is a function from M into R given by

v(f)(x) =
m∑

i=1

ξi(x)
∂f

∂xi
(x),

where the ξi(x) are the local coordinate functions of v and
∂f

∂xi
is the standard

partial derivative of f with respect to xi.

From the chain rule, we can see that

d

dε
f(exp(εv)x) =

m∑

i=1

ξi(exp(εv)x)
∂f

∂xi
(exp(εv)x) = v(f)[exp(εv)x]

which gives us that

d

dε

∣∣∣∣
ε=0

f(exp(εv)x) = v(f)(x).

This justifies the notation for the basis vectors of the tangent space. In essence, we

can think of the Lie derivative as simply a directional derivative. To illustrate this,

let’s consider an integral curve Γ relative to some infinitesimal generator v. If we

apply a function f : M → R to every point x ∈ Γ and ask how f changes as we flow

along Γ infinitesimally, the answer would be the derivative of f in the direction of

Γ. This directional derivative is the Lie derivative.
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In order to calculate the symmetry group of a system of differential equations, we

need to interpret the system geometrically as a manifold embedded canonically in

a nice Euclidean space. To do this, begin with a system S of differential equations

involving p independent variables x = (x1, . . . , xp) and q dependent variables u(x) =

(u1(x), . . . , uq(x)) = (u1(x1, . . . , xp), . . . , uq(x1, . . . , xp)). A solution to S will have

the form u = f(x). Now let X = Rp with coordinates (x1, . . . , xp), represent the

space of independent variables and let U = Rq with coordinates u = (u1, . . . , uq),

represent the space of dependent variables. Let M ⊂ X × U be some open subset

of the cartesian product of X and U .

In order to understand how we transform functions under a local Lie group

of transformations, we must understand how a group transforms the graph of a

function. Let g be an element of a Lie group G of transformations of the space

X × U and let u = f(x). We will identify the function u = f(x) with its graph

Γf = {(x, f(x))
∣∣ x ∈ Ω} ⊂ X × U,

where Ω ⊂ X is the domain of definition of f . Note that Γf is a p-dimensional

submanifold of X × U . If Γf is a subset of the domain of definition of the group

transformation g, then g will transform f(x) by transforming the graph Γf . This

gives us that

g · Γf = {(x̃, ũ) = g · (x, u)
∣∣ (x, u) ∈ Γf}.

Note that the set g · Γf is not necessarily the graph of another function ũ = f̃(x̃)

for all g. Since G acts smoothly on Γf and the identity fixes Γf we may shrink the

domain of definition of the group transformation in such a way as to ensure that

g · Γf is the graph of a function. That is g · Γf = Γ ef and we call the function f̃ the

transform of f by g.
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In order to explicitly find f̃ , we will need to eliminate the variable x in the

expression of f̃ and solve in terms of x̃. We will deal strictly with projectable

transformations, meaning that the transformation can be given by

g · (x, u) = (Ξg(x),Φg(x, u)),

where Ξg and Φg are both smooth functions. Here we get that x̃ = Ξg(x) implying

that x = Ξ−1
g (x̃) = Ξ

g
−1 (x̃). We get the inverse transformation simply from the in-

verse element g−1 of g because of the properties given in Definition 5.22. This allows

us to solve f̃ as a function of x. We can see that f̃(x̃) = Φg(x, u) = Φg(Ξg
−1 (x̃), u).

Often we will adopt the notation of f̃(x) instead of the technically correct f̃ (x̃).

This is done for simplicity in notation and it will be clear from context what is

meant.

Example 5.25. Consider the one-parameter group of transformations where

gε : (x, t, u) 7→ (x+ 2εt, t, e−εx−ε2tu), ε ∈ R.

This example arises as a symmetry of the heat equation. If u = f(x, t) is a solution

then its transform by ε is given by

ũ = e−εx−ε2tu = e−εx−ε2tf(x, t)

which must be solved in terms of x̃ and t̃. Solving for x̃ and t̃ simply involves taking

−ε as the variable of the transform. This yields the transformed function

ũ = e−ε(ex−2εet)−ε2etf (x̃− 2εt̃, t̃
)

= e−εex+ε2etf (x̃− 2εt̃, t̃
)

which can be simply written as e−εx+ε2tf(x− 2εt, t).

This leads us to the most important definition of this paper.
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Definition 5.26. Let S be a system of differential equations. A symmetry group

of the system S is a local group of transformations G acting on an open subset

M ⊂ X × U of the space of independent and dependent variables for the system

with the property that whenever u = f(x) is a solution of S , and whenever g · f is

defined for g ∈ G, then u = g · f(x) is also a solution of the system.

In order to actually calculate the symmetries for a system of differential equa-

tions, we must extend or prolong the space of independent and dependent variables

to a space called the jet-space, consisting of the independent variables, the depen-

dent variables and all possible partial derivatives of each dependent variable with

respect to each independent variable up to the highest order given in the system

S .

LetX and U be the Euclidean spaces of p independent and q dependent variables

respectively as defined above recalling that X ∼= Rp and U ∼= Rq. We need a way of

representing all possible partial derivatives of u up to a certain order, say k. Make

the following definitions by considering their coordinates, where ui
xj

is the standard

partial derivative of the coordinate function ui with respect to xj.

U1 = {u(1) = (u1
x1
, . . . , uq

x1
;u1

x2
, . . . , uq

x2
; . . . ;u1

xp
, . . . , uq

xp
)}

U2 = {u(2) = (u1
x1x1

, . . . , uq
x1x1

;u1
x1x2

, . . . , uq
x1x2

; . . . ;u1
xpxp

, . . . , uq
xpxp

)}
...

Uk = {u(k) = (u1
x1...x1

, . . . , uq
x1...x1

; . . . ;u1
xp...xp

, . . . , uq
xp...xp

)}

(4)

Essentially the coordinates of Ui are all possible i-th order partial derivatives of

u. With these in consideration we define U (k) to be

U (k) = U × U1 × U2 × . . .× Uk,

the Cartesian product of the Ui as defined by (4). Note that U (k) is a Euclidean
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space of dimension

q



p+ n

n


 ≡ qp(n).

For example, if the independent variable were (x, y) and the dependent variable

were (u, v) then we would have:

u(1) = (ux, uy; vx, vy)

u(2) = (uxx, uxy, uyy; vxx, vxy, vyy)

u(3) = (uxxx, uxxy, uxyy, uyyy; vxxx, vxxy, vxyy, vyyy)

Since each of the partial derivatives is continuous then we have that uxy = uyx,

vxy = vyx, . . . and we need only consider one of these possibilities in the prolongation.

With the sets Ui as defined by (4), we can make the following definition.

Definition 5.27. The n-th order jet space of the underlying space X × U is the

space X × U (n) whose coordinates represent the space of independent variables,

dependent variables and all possible partial derivatives of the dependent variables

of orders up to n.

If M ⊂ X × U then we can define the n-jet space of M by

M (n) ≡M × U1 × U2 × . . .× Un.

Now that we’ve defined the prolongation of a particular space into its corre-

sponding n-th order jet space, we need to define the prolongation of a function

u = f(x) where f : X → U . The function f will induce a function, u(n) = pr(n)f(x),

called the n-th prolongation of f , from X to the space U (n) defined by all the partial

derivatives of f at the point x.

For example, if we have two independent variables (x, y) and two dependent

variables (u, v) as defined in the previous example, then pr(2)f(x, y) would be defined
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by

(u, v;ux, uy, vx, vy;uxx, uxy, uyy, vxx, vxy, vyy) =
(
f 1, f 2;

∂f 1

∂x
,
∂f 1

∂y
,
∂f 2

∂x
,
∂f 2

∂y
;
∂2f 1

∂x2
,
∂2f 1

∂x∂y
,
∂2f 1

∂y2
,
∂2f 2

∂x2
,
∂2f 2

∂x∂y
,
∂2f 2

∂y2

)
.

We can let a system S of l n-th order differential equations in p independent

and q dependent variables be given as a system of equations

∆v(x, u
(n)) = 0, v = 1, . . . , l.

The function ∆(x, u(n)) = (∆1(x, u
(n)), . . . ,∆l(x, u

(n))) will be assumed to be smooth

in its arguments which will allow us to consider ∆ as a smooth map from the jet

space X × U (n) to some l-dimensional Euclidean space. That is,

∆ : X × U (n) → Rl.

The differential equations tell where ∆ vanishes on X×U (n) and therefore determine

a subvariety

S∆ = {(x, u(n))
∣∣ ∆(x, u(n)) = 0} ⊂ X × U (n) (5)

of the total jet space.

The main point of prolongation is simply this: if we make the identification of

the system of differential equations with its corresponding subvariety then this will

allow us to interpret the differential equations as a manifold, giving us the geometric

interpretation necessary to find the symmetries of the system. Prolongation gives

us the necessary space where we can calculate the Lie symmetries of the subvariety

thus giving us the Lie symmetries of a system of differential equations.

A solution u = f(x) to the system ∆ = 0 is one such that

∆v(x, pr
(n)f(x)) = 0, v = 1, . . . , l
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whenever x lies in the domain of f . This means that the graph Γ
(n)
f of the prolonga-

tion pr(n)f(x) must lie entirely within the subvariety S∆ determined by the system

where

Γ
(n)
f ≡ {(x, pr(n)f(x))} ⊂ S∆ = {∆(x, u(n)) = 0}.

Now that we are able to prolong functions, we must define an equivalent way of

prolonging group actions so that the prolongation of a group action will act on the

prolongation of a function so as to agree with any lower dimensional prolongation.

Choose some point (x0, u
(n)
0 ) ∈ M (n) and choose any smooth function u = f(x)

defined in some neighborhood of x0 whose graph lies in M and satisfies u
(n)
0 =

pr(n)f(x0). Let g be an element of a local group G acting on M near the identity.

This implies that g · f is defined near (x0, u0) with (x̃0, ũ0) = g · (x0, u0) and u0 =

f(x0).

Definition 5.28. Define the n-th prolongation of the action of g on f by

pr(n)g · (x0, u
(n)
0 ) = (x̃0, ũ0

(n))

where

ũ0
(n) ≡ pr(n)(g · f)(x̃0).

The following theorem will establish the connection between the group action

on the subvariety and the symmetries of the corresponding system of differential

equations.

Theorem 5.29. Let M be an open subset of X×U and suppose that ∆(x, u(n)) = 0

is an n-th order system of differential equations defined over M , with corresponding

subvariety S∆ ⊂M (n). Suppose G is a local group of transformations acting on M

whose prolongation leaves S∆ invariant, meaning that whenever (x, u(n)) ∈ S∆, we
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have that pr(n)g · (x, u(n)) ∈ S∆ for all g ∈ G such that this is defined. Then G is a

symmetry group of the system of differential equations as defined in Definition 5.26.

Proof. Suppose u = f(x) is a local solution to ∆(x, u(n)) = 0. Therefore

Γ
(n)
f = {(x, pr(n)f(x))}

of the prolongation pr(n)f lies entirely within S∆. If g ∈ G is such that g · f is well

defined then the graph of its prolongation is simply the transform of the graph of

pr(n)f because

Γ
(n)
g·f = pr(n)g(Γ

(n)
f ).

Since S∆ is invariant under pr(n)g then the graph of pr(n)(g · f) is contained in S∆

which implies that g · f is a solution to the system ∆ = 0.

Now we want to define a way of prolonging the infinitesimal generator of a group

action so that the prolongation of the group action agrees with that of the associated

infinitesimal generator.

Definition 5.30. Let M ⊂ X × U be open and suppose v is a vector field on M ,

with corresponding one-parameter group action exp(εv). The n-th prolongation of

v, denoted pr(n)v, will be a vector field on the n-jet space M (n) and is defined to

be the infinitesimal generator of the corresponding prolonged one-parameter group

pr(n)[exp(εv)]. The formula for pr(n)v is given by

pr(n)v|(x,u(n)) =
d

dε

∣∣∣∣
ε=0

pr(n)[exp(εv)](x, u(n))

for any (x, u(n)) ∈M (n).

In order to simplify our notation of the prolongation of a function we will define

a total derivative.
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Definition 5.31. Let P (x, u(n)) be a smooth function defined on an open subset

M (n) ⊂ X×U (n). The total derivative of P with respect to xi is the unique smooth

function DiP (x, u(n+1)) defined on M (n+1) and depending on derivatives of u up to

order n+ 1, with the property that if u = f(x) is any smooth function then

DiP (x, pr(n+1)f(x)) =
∂

∂xi

(
P
(
x, pr(n)f(x)

))
.

This means that DiP is obtained from P by differentiating P with respect to xi

while treating all the uα and their derivatives as functions of x.

We can see that for the total derivative of φ we get that

φj(x, u(1)) = Djφ(x, u) =
∂φ

∂xj
+ uj

∂φ

∂u
.

This definition of total derivative extends naturally to functions depending on the

variables x = (x1, . . . , xp), u = (u1, . . . , uq) and the derivatives uα
J of u as defined

below.

Theorem 5.32. Given P (x, u(n)), the i-th total derivative of P has the general form

DiP =
∂P

∂xi
+

q∑

α=1

∑

J

uα
J,i

∂P

∂uα
J

,

where, for J = (j1, . . . , jk),

uα
J,i =

∂uα
J

∂xi
=

∂k+1uα

∂xi∂xj1∂xj2 . . . ∂xjk
.

The sum is over all J ’s of order #J , where 0 ≤ #J ≤ n, and n is the highest order

derivative appearing in P .

Essentially a total derivative arises as a direct application of the chain rule. Let’s

consider the following example of a total derivative. Let P be a function of (x, y)

and (u, v;ux, uy, vx, vy). Then we have the following total derivatives:

DxP =
∂P

∂x
+
∂P

∂u
· ux +

∂P

∂v
· vx +

∂P

∂ux

· uxx +
∂P

∂uy

· uyx +
∂P

∂vx

· vxx +
∂P

∂vy

· vyx
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and

DyP =
∂P

∂y
+
∂P

∂u
· uy +

∂P

∂v
· vy +

∂P

∂ux

· uxy +
∂P

∂uy

· uyy +
∂P

∂vx

· vxy +
∂P

∂vy

· vyy

So if we had a function P = x2 + y2uxuy + uv then we would have the following

total derivatives:

DxP = 2x+ v · ux + u · vx + y2uy · uxx + y2ux · uyx + 0 · vxx + 0 · vyx

= 2x+ vux + uvx + y2uyuxx + y2uxuyx

and

DyP = 2yuxuy + v · uy + u · vy + y2uy · uxy + y2ux · uyy + 0 · vxy + 0 · vyy

= 2yuxuy + vuy + uvy + y2uyuxy + y2uxuyy.

Higher order total derivatives can be taken and are simply defined recursively us-

ing Definition 5.31 meaning that DxyP = Dx (DyP ) and because of the smoothness

of the functions we have that DxyP = DyxP .

The following theorem will give us the general prolongation formula, a formula

for prolonging general vector fields. A complete proof can be found in [12].

Theorem 5.33. Let

v =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

φα(x, u)
∂

∂uα

be a vector field defined on an open subset M ⊂ X × U . The n-th prolongation of

v is the vector field

pr(n)v = v +

q∑

α=1

∑

J

φJ
α(x, u(n))

∂

∂uα
J

defined on the corresponding jet space M (n) ⊂ X×U (n), the second summation being

over all (unordered) multi-indices J = (j1, . . . , jk), with 1 ≤ jk ≤ p, 1 ≤ k ≤ n
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where p is the order of x = (x1, . . . , xp) and q is the order of u = (u1, . . . , uq). The

coefficient functions φJ
α of pr(n)v are given by the formula:

φJ
α(x, u(n)) = DJ

(
φα −

p∑

i=1

ξiuα
i

)
+

p∑

i=1

ξiuα
J,i,

where uα
i =

∂uα

∂xi
and uα

J,i =
∂uα

J

∂xi
.

This prolongation formula will allow us to symbolically represent the n-th pro-

longation of a general infinitesimal generator.

Now we need a way of discussing the rank of a system of differential equations.

Definition 5.34. Let

∆v(x, u
(n)) = 0, v = 1, . . . , l,

be a system of differential equations. The system is said to be of maximal rank if

the l × (p+ qp(n)) Jacobian matrix defined by

J∆(x, u(n)) =

(
∂∆v

∂xi
,
∂∆v

∂uα
J

)

of ∆ with respect to all the variables (x, u(n)) is of rank l whenever ∆(x, u(n)) = 0,

where p are q are the numbers of independent and dependent variables, respectively,

and p(n) =



p+ n

n


.

The next theorem will give us the infinitesimal criterion for an infinitesimal

generator, allowing us to calculate the Lie symmetries of a system of differential

equations.

Theorem 5.35. Suppose

∆v(x, u
(n)) = 0, v = 1, . . . , l,
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is a system of differential equations of maximal rank defined over M ⊂ X × U . If

G is a local group of transformations acting on M , and

pr(n)v[∆v(x, u
(n))] = 0, v = 1, . . . , l whenever ∆(x, u(n)) = 0,

for every infinitesimal generator v of G, then G is a symmetry group of the system

of differential equations.

Theorem 5.36. Let ∆ = 0 be a system of differential equations of maximal rank

defined over M ⊂ X × U . The set of all infinitesimal symmetries of this system

forms a Lie algebra of vector fields on M as defined in Section 5.3. Moreover, if

this Lie algebra is finite-dimensional, the (connected component of the) symmetry

group of the system is a local Lie group of transformations acting on M .

Now we have all the tools necessary to calculate the Lie symmetries of the

harmonic functions of interest to us. Also notice that if we can satisfy Theorem 5.35

by the set of infinitesimal generators that span the associated Lie algebra given

by Theorem 5.36, then any infinitesimal generator will hold in the infinitesimal

criterion because it is simply some combination (scalar multiplication, addition and

Lie bracket) of the spanning set of infinitesimal generators, which each individually

hold in the criterion.

6 Overview of Main Results

The Lie symmetries for functions satisfying Laplace’s equation have been known for

some time. We are interested in a subfamily of this. In particular, we will consider

the symmetries of planar harmonic functions expressed in the form f = h + g and

some of their subclasses. We often make the convention that if f = f 1 + if 2 is
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analytic then f 1(z) = f 1(x, y) and f 2(z) = f 2(x, y) are harmonic conjugates. Since

f 1 and f 2 are real valued harmonic, we will consider f 1 and f 2 as maps from R2 to R

or as maps from C to R interchangeably without explanation when the substitution

is made.

The results in the following sections are the application of all the background

information given up to this point. We have applied these techniques to systems of

differential equations that represent certain properties such as harmonic, harmonic

area-preserving or harmonic and convex in some direction. All calculations are

given in the appendices. The broad picture now is that we want to analyze the

transformed function f̃ which arises as the transform of f under the Lie symmetries.

Our transformed function f̃ is guaranteed to have the properties described by the

system of differential equations ∆ = 0 because it is in the flow of one function that

satisfies ∆ = 0. The broad picture becomes more and more clear as we look at the

results.

In the following sections, we consider the symmetries of harmonic functions,

area-preserving harmonic functions and harmonic functions with certain convexity.

Along with the general symmetries we consider a few important subcases which

have applications to some previously published results.
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7 Harmonic Univalent Functions

Let f = h + g where h and g are analytic, notating Re(h) = h1, Im(h) = h2,

Re(g) = g1 and Im(g) = g2 with z = x+ iy. Let ∆ be defined as

∆ =




h1
x − h2

y

h1
y + h2

x

g1
x − g2

y

g1
y + g2

y




.

We see that ∆ = 0 represents the Cauchy-Riemann equations for h and g giving that

h and g are analytic. Now let v be the infinitesimal generator of the Lie symmetries

of ∆ defined on the space X × U where X has coordinates {(x, y)} and U has

coordinates {(h1, h2, g1, g2)}; that is X × U is the 0-th order jet space, the space

of independent and dependent variables. Let a1, a2, . . . , a6 be general functions of

x, y, h1, h2, g1 and g2. In generic form, v is given by

v = a1 ∂

∂x
+ a2 ∂

∂y
+ a3 ∂

∂h1
+ a4 ∂

∂h2
+ a5 ∂

∂g1
+ a6 ∂

∂g2
.

From the calculations of v as given explicitly in Appendix A, we can see that

a1 + ia2, a3 + ia4 and a5 + ia6 are each analytic in z, h and g where we define

analytic in h to mean that ai
h1 = ai+1

h2 and ai
h2 = −ai+1

h1 for i = 1, 3, 5 and analytic in

g meaning the same only in terms of g = g1+ig2. Therefore we are defining analytic

in z, h and g to mean that ai and ai+1 for i = 1, 3, 5 satisfy the Cauchy-Riemann

equations in the complex variables x+ iy,h1 + ih2 and g1 + ig2. A simple example

of this is the function

(a1 + ia2)(z, h) = z2 + h2 = x2 − y2 + (h1)2 − (h2)2 + i
(
2ixy + 2ih1h2

)

yielding

a1(z, h) = x2 − y2 + (h1)2 − (h2)2
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and

a2(z, h) = 2xy + 2h1h2.

It is easily verified that

a1
x = a2

y

a1
y = −a2

x

a1
h1 = a2

h2

a1
h2 = −a2

h2

thus showing that a1 + ia2 is analytic in z and h. In this context, we are thinking of

h and g as though they are independent of z making the above informal definition

of “analytic in” appropriate.

Since a1, a2 and a3, a4 and a5, a6 are each as a pair independent of the other

pairs then we can represent a spanning set of generators for the Lie algebra of the

Lie symmetries by the generators

v1 = a1 ∂

∂x
+ a2 ∂

∂y

v2 = a3 ∂

∂h1
+ a4 ∂

∂h2

v3 = a5 ∂

∂g1
+ a6 ∂

∂g2

where a1 + ia2, a3 + ia4 and a5 + ia6 have the properties as described above.

7.1 Reparametrization of the Domain

Let a1 + ia2 be an arbitrary analytic function of only z = x+ iy. Consider

v1 = a1(x, y)
∂

∂x
+ a2(x, y)

∂

∂y

55



as an infinitesimal generator of a subalgebra of the Lie algebra of the associated

symmetries. This is not the most general case calculated by the infinitesimal cri-

terion but it is the first case that we want to consider. If we let x̃ and ỹ be the

transformed independent variables under the action of ε ∈ R then to solve for x̃

and ỹ we need to solve the ordinary system of differential equations

dx̃

dε
= a1(x̃, ỹ)

dỹ

dε
= a2(x̃, ỹ)

subject to the initial conditions x̃|ε=0 = x and ỹ|ε=0 = y. This may or may not be

easily solved. Whatever the solution may be, we can see that the transform z 7→ z̃

where z̃ = x̃ + iỹ is simply a reparametrization of the domain of the transformed

function. So if f(z) = h(z) + g(z) is a harmonic function then under the Lie

symmetries we get that (f ◦ z̃)(z) also satisfies the system ∆ = 0, meaning that

f ◦ z̃ also is a harmonic function of z. Let’s consider a few examples showing that

the transformed function is harmonic. We denote the transformed functions by

f̃ = h̃+ g̃.

Example 7.1. For each of the following examples, we will calculate the transformed

function f̃ under the infinitesimal generator v1.

(a) Let a1(z) = x and a2(z) = y implying that (a1 + ia2)(z) = x + iy = z which

is analytic. So we are considering the infinitesimal generator x
∂

∂x
+ y

∂

∂y
and

in order to exponentiate this we must solve

dx̃

dε
= x̃

dỹ

dε
= ỹ

with x̃ = x and ỹ = y when ε = 0. The above system has solution x̃ = xeε

and ỹ = yeε and hence z̃ = eε(x+ iy) = eεz which is a scaling of the domain.
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Therefore if f(z) is a harmonic function then f̃(z) = f (eεz) is also harmonic.

When ε = 0 we can see that f̃ = f which is the initial element in the flow of

the group action on the function f . As ε flows in some interval around 0 ∈ R,

the group action guarantees that f̃ is harmonic.

(b) Let’s consider another similar example. Let a1(z) = −y and a2(z) = x,

implying that (a1 + ia2)(z) = (−y + ix) = i(x + iy) = iz, which is analytic.

The corresponding infinitesimal generator is −y ∂
∂x

+ x
∂

∂y
. Exponentiating

this infinitesimal generator gives us that x̃ = x cos ε−y sin ε and ỹ = y cos ε+

x sin ε. We can easily see that x̃ = x and ỹ = y when ε = 0 and that

appropriately differentiating we get the infinitesimal generator given above.

Therefore the transform of z is

z̃ = x̃+ iỹ

= x cos ε− y sin ε+ i(y cos ε+ x sin ε)

= x(cos ε+ i sin ε) + iy(cos ε+ i sin ε)

= eiε(x+ iy)

= eiεz,

which gives a rotation of the domain. This gives us that if f(z) is a harmonic

function then f̃(z) = f(eiεz) is also a harmonic function.

(c) Since the set of infinitesimal generators forms a Lie algebra over R we can

combine these generators through addition, scalar multiplication and the Lie

bracket. This allows us to compose these two transformations. In the first

example we get that z 7→ eε1z and in the second z 7→ eiε2z. Since these flows

are independent of each other then the epsilons do not relate and we will

notate this by assigning subscripts. Therefore, through composing these we
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get that z 7→ eiε2z 7→ eε1
(
eiε2z

)
= eε1+iε2z or simply z 7→ reiεz where r > 0

and r and ε are independent of each other. Therefore if f(z) is a harmonic

function then f̃(z) = f
(
reiεz

)
is also harmonic.

Of course in Example 7.1 we have only considered very basic functions a1 +

ia2, but regardless of what analytic function we let this be, it will simply be a

reparametrization of the domain of the function that we want to transform in the

“direction” of a1 + ia2 in the jet-space.

7.2 Flow in h and g

Let’s consider v2 = a3 ∂

∂h1
+ a4 ∂

∂h2
and v3 = a5 ∂

∂g1
+ a6 ∂

∂g2
, two infinitesimal

generators of the Lie algebra of associated symmetries. Since a3 and a4 are inde-

pendent of a5 and a6 we can consider v2 and v3 completely independent of each

other. Let’s first consider the exponentiation of v2. Let a3 + ia4 be an arbitrary

analytic function b(z). The exponentiation of v2 would yield that h̃1 = εa1 + h1

and h̃2 = εa2 + h2 which would imply that

h̃ = h̃1 + ih̃2

= εa1 + h1 + i(εa2 + h2)

= εb+ h.

Similarly if we let a5 + ia6 be an arbitrary analytic function c(z) then exponen-

tiating v3 gives us that g̃ = εc + g. We may compose these just as we did in

Example 7.1 (c). In order to simplify the composition, we need not consider an ε1

and ε2 but just simply ε in the composition even though they are independent of

each other. Therefore if f = h+ g is a harmonic function then

f̃(z) = εb(z) + h(z) + εc(z) + g(z) = h(z) + g(z) + εd(z) = f(z) + εd(z)
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where d(z) is any arbitrary harmonic function. This shows us that the group action

is transitive. Given any two harmonic functions f1(z) = h1(z) + g1(z) and f2(z) =

h2(z)+ g2(z), we can flow from one to the other. Consider, for example, d = f2 −f1

which is clearly harmonic. We can flow from f1 to f2 by letting ε flow from 0 to 1.

With f̃1(z) = f1(z)+ε (f2(z) − f1(z)), we can see that if ε = 0 then f̃1(z) = f1(z) as

it should be and if ε = 1 we get that f̃1(z) = f2(z) thus giving us the desired flow.

This result is trivial since the above flow can easily be proven to be harmonic for

any ε independent of the fact that it is a flow in a Lie symmetry which guarantees

its harmonicity but it is meant to be a simple result of looking at the Lie symmetries

of harmonic functions.

7.3 Flow with a Normalization

Let’s consider the vector field v = g1 ∂

∂h1
+g2 ∂

∂h2
+h1 ∂

∂g1
+h2 ∂

∂g2
. This arises from

the general infinitesimal generator by letting a1+ia2 ≡ 0, (a3+ia4)(g) = g1+ig2 = g

and (a5 + ia6)(h) = h1 + ih2 = h each of which are clearly analytic in g and h and

therefore satisfy the requirements of the coordinate functions as given in Section 7.

Therefore the exponentiation will yield a harmonic function. The exponentiation

of v yields

h̃(z) = h(z) cosh ε+ g(z) sinh ε

g̃(z) = g(z) cosh ε+ h(z) sinh ε

giving us that

f̃(z) = h̃(z) + g̃(z)

= h(z) cosh ε+ g(z) sinh ε+ g(z) cosh ε+ h(z) sinh ε

= cosh ε
(
h(z) + g(z) tanh ε+ g(z) + h(z) tanh ε

)
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is harmonic. Since the scalar multiple of any harmonic function is harmonic then

f̂(z) = h(z) + g(z) tanh ε + g(z) + h(z) tanh ε is harmonic. Let’s define ĥ(z) =

h(z) + g(z) tanh ε and ĝ(z) = g(z) + h(z) tanh ε thus giving us that f̂ = ĥ + ĝ is

harmonic. With this definition, let’s examine what properties f̂ has given certain

properties of f .

Suppose that f = h + g ∈ SO
H then we have that f(0) = 0, fz(0) = 1 and

fz(0) = 0. We claim that f̂ ∈ SH . First, let’s show that f̂ is univalent if f

is univalent. Suppose that there exist two distinct points z1, z2 ∈ D such that

f̂(z1) = f̂(z2). If we equate real and imaginary parts we get that

h1(z1)(1 + tanh ε) + g1(z1)(1 + tanh ε) = h1(z2)(1 + tanh ε) + g1(z2)(1 + tanh ε)

and

h2(z1)(1 − tanh ε) − g2(z1)(1 − tanh ε) = h2(z2)(1 − tanh ε) − g2(z2)(1 − tanh ε)

imply that

h1(z1) + g1(z1) = h1(z2) + g1(z2)

and

h2(z1) − g2(z1) = h2(z2) − g2(z2)

since | tanh ε| < 1 for all ε ∈ R. Now we have that Re (f(z1)) = Re (f(z2))

and Im (f(z1)) = Im (f(z2)) which contradicts our supposition that f is univalent.

Therefore if f is univalent then f̂ is univalent as well.

Now, since f(0) = 0, fz(0) = 1 and fz(0) = 0 then it can be verified that

f̂(0) = 0, f̂z(0) = 1 but f̂z(0) = tanh ε 6= 0 when ε 6= 0. Therefore if f ∈ SO
H then

f̂ ∈ SH and furthermore, when ε 6= 0 then f̂ ∈ SH \ SO
H . We can see that if we

begin with f ∈ SH \ SO
H then fz(0) = b 6= 0 and we would need to renormalize f̂
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to give f̂ ∈ SH . We have that f̂z(0) = h′(0) + g′(0) tanh ε = 1 + b tanh ε giving the

factor that must be divided by in order to yield f̂ ∈ SH .

We further claim that if f is locally univalent and g′(0) = 0 then f̂ will be

locally univalent as well. To see this, suppose that f and is locally univalent and

that g′(0) = 0. Then Theorem 3.4 gives us that |g′(z)| < |h′(z)|.

Consider that

∣∣∣∣∣
ĝ′(z)

ĥ′(z)

∣∣∣∣∣ =

∣∣∣∣
g′(z) + h′(z) tanh ε

h′(z) + g′(z) tanh ε

∣∣∣∣

=

∣∣∣∣∣∣

h′(z)
(
tanh ε+ g′(z)

h′(z)

)

h′(z)
(
1 + g′(z)

h′(z)
tanh ε

)

∣∣∣∣∣∣

=

∣∣∣∣∣
tanh ε+ g′(z)

h′(z)

1 + g′(z)
h′(z)

tanh ε

∣∣∣∣∣

because h′(z) 6= 0. Now let ω(z) =
g′(z)

h′(z)
, G(z) =

tanh ε+ ω(z)

1 + ω(z) tanh ε
and F (z) =

tanh ε+ z

1 + z tanh ε
. Note that |ω(z)| =

∣∣∣∣
g′(z)

h′(z)

∣∣∣∣ < 1 by supposition and that |F (z)| < 1

for all |z| < 1 and F is analytic in D by a classical result from complex analysis

and the fact that | tanh ε| < 1 for all ε ∈ R. Since h and g are analytic, h′ and

g′ are analytic. Also since h′ is nonzero on D, ω is analytic on D. Consider that

|1+ω(z) tanh ε| ≥ 1−|ω(z)|| tanh ε| > 0 because |ω(z)|, | tanh ε| < 1 which therefore

implies that G(z) is analytic in D as well. So we have that G,F and ω are analytic

in D and that G(z) = F (ω(z)).

Since g′(0) = 0 then ω(0) = 0 and since |ω(z)| < 1, by Schwarz Lemma we have

that |ω(z)| < |z| for all |z| < 1 since ω(z) 6= z. Therefore by Definition 2.16 we

have that G is subordinate to F . By Theorem 2.17 we have that G(Dr) ⊂ F (Dr)

for all r < 1 and since |F (z)| < 1 for all |z| < 1 then F (D) ⊂ D implying that
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G(D) ⊆ F (D) ⊂ D; that is, |G(z)| < 1 for all |z| < 1. Therefore

∣∣∣∣∣
ĝ′(z)

ĥ′(z)

∣∣∣∣∣ =

∣∣∣∣
g′(z) + h′(z) tanh ε

h′(z) + g′(z) tanh ε

∣∣∣∣ = |G(z)| < 1

giving us that |ĝ′(z)| <
∣∣∣ĥ′(z)

∣∣∣ for all z ∈ D meaning that f̂ is locally univalent.

Therefore we have shown that if f is locally univalent and g′(0) = 0 then f̂ is

also locally univalent.

With f̂(z) = h(z) + g(z) tanh ε + g(z) + h(z) tanh ε, let’s consider the limit-

ing case. If ε → ∞ we have that tanh ε → 1 which would imply that f̂(z) =

h(z) + g(z) + g(z) + h(z) = 2(h1(z) + g1(z)) = 2 Re(f(z)) which is a real valued

harmonic function. If we let ε → −∞ we have that tanh ε → −1 giving us that

f̂(z) = 2i(h2(z)−g2(z)) = 2i Im(f(z)) which is a purely imaginary valued harmonic

function.

Let’s consider some properties of convexity. Suppose f ∈ SO
H is convex in the

direction of the real axis. Then by Theorem 3.12 we have that h − g is convex in

the direction of the real axis. It can be easily verified that for any real value α we

have that α(h− g) is also convex in the direction of the real axis. Therefore

(1 − tanh ε)(h− g) = (h+ g tanh ε) − (g + h tanh ε) = ĥ− ĝ

is convex in the direction of the real axis implying that h+g tanh ε+g + h tanh ε =

ĥ+ ĝ = f̂ is as well by Theorem 3.12. Therefore we have proven the following two

results.

Theorem 7.2. Let f = h + g and f̂ = ĥ + ĝ where ĥ(z) = h(z) + g(z) tanh ε and

ĝ(z) = g(z) + h(z) tanh ε. Then if f ∈ SO
H then f̂ ∈ SH for any ε ∈ R.

Theorem 7.3. Let f and f̂ be defined as in Theorem 7.2. Then if f ∈ CD(0) and

is univalent then f̂ ∈ CD(0) and is univalent.
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To see the effects of this Lie symmetry on the plot of the function f(z) = z+ 1
3
z3,

let’s view several steps in the flow of f̂ as ε ranges from −2
3

to 2
3

where h(z) = z

and g(z) = 1
3
z3. These are given in Figure 8 as the plots of four concentric circles

in D under f̂ .

1.5

1.5

1

1

0.5

0
0.5

-0.5

-1

0

-1.5

-0.5-1-1.5

(a) ε = −2
3

1.5

1.5

1

1

0.5

0
0.5

-0.5

-1

0

-1.5

-0.5-1-1.5

(b) ε = −1
3

1.5

1.5

1

1

0.5

0
0.5

-0.5

-1

0

-1.5

-0.5-1-1.5

(c) ε = 0

1.5

1.5

1

1

0.5

0
0.5

-0.5

-1

0

-1.5

-0.5-1-1.5

(d) ε = 1
3

1.5

1.5

1

1

0.5

0
0.5

-0.5

-1

0

-1.5

-0.5-1-1.5

(e) ε = 2
3

Figure 8: Images of D under the map f̂ = h + g tanh ε + g + h tanh ε

for several values of ε where f(z) = h(z) + g(z) = z + 1
3
z3.

If we consider the effects of this Lie symmetry on the plot of f̂ where h(z) = z

and g(z) = 1
2
z2, we can see that we preserve the convexity in the direction of the

real axis as we had proven earlier. This is shown for ε = −1
2
, 0, 1

2
in Figure 9. Again

the plots of four concentric circles in D are shown.
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(c) ε = 1
2

Figure 9: Images of D under the map f̂ = h + g tanh ε + g + h tanh ε

for ε = −1
2
, 0, 1

2
where f(z) = h(z) + g(z) = z + 1

2
z2.
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7.4 Flow with Applications to Minimal Surfaces

Without giving any indepth background on the theory of minimal surfaces, we will

give a flow that when “lifted” to a minimal surface at every stage in the flow will give

all the classical associated families of surfaces to that particular surface. Begin with

the infinitesimal generator v = −g2 ∂

∂g1
+ g1 ∂

∂g2
. We can see that this generator

arises from a1 + ia2 ≡ 0, a3 + ia4 ≡ 0 and (a5 + ia6)(g) = −g2 + ig1 = ig which is

analytic in g. The generator has an exponentiation of h̃ = h and

g̃ = (g1 cos ε− g2 sin ε) + i(g2 cos ε+ g1 cos ε)

= g1(cos ε+ i sin ε) + ig2(cos ε+ i sin ε)

= eiεg

and therefore f̃(z) = h(z) + eiεg(z). Let’s look at the projection of Scherk’s doubly

periodic surface and the flow from this under the Lie symmetry to the classically

associated surface which is Scherk’s singly periodic. The projection of the doubly

periodic surface comes from the harmonic function f = h+ g where

h(z) =
1

4
ln

(
1 + z

1 − z

)
− i

4
ln

(
1 + iz

1 − iz

)

g(z) = −1

4
ln

(
1 + z

1 − z

)
− i

4
ln

(
1 + iz

1 − iz

)
.

Let’s consider the flow of f̃ = h+eiεg as ε ranges from 0 to π as shown in Figure 10.

At each step in the flow, the image may be lifted to a minimal surface.

The Lie symmetries that yield the associated surfaces were originally calculated

in Robert Berry’s Master’s Thesis. Previosly, Necklets B̂ılă [1] had considered the

Lie symmetries of the minimal surface equation but the associated surfaces did not

arise as a Lie symmetry in this case. In Berry’s thesis, when he analyzed the Lie

symmetries of complex valued harmonic functions expressed as f = u + iv, where
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Figure 10: Images of D under the map f̂ = h+eiεg for ε ranging from 0

to π where f = h+g = 1
4
ln
(

1+z
1−z

)
− i

4
ln
(

1+iz
1−iz

)
+−1

4
ln
(

1+z
1−z

)
− i

4
ln
(

1+iz
1−iz

)
.

u and v are real valued harmonic, he was able to show that the associated surfaces

arise as part of the symmetries of harmonic functions with a few restrictions on the

transformed functions applied after their calculation such as normalization. In our

analysis using harmonic functions of the form f = h + g, the associated surfaces

arise as a direct result of the symmetries. In order for f = h+g to lift to a minimal

surface, it must be true that
√
h′g′ must be analytic in D meaning that h′g′ must be

a perfect square. If this is true, then we can see from the Lie symmetry f̃ = h+eiεg

that we will get f̃ lifting to a minimal surface if f does.
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8 Harmonic Area-Preserving Functions

Let’s continue with f = h + g being harmonic with constant Jacobian on D; that

is, Jf = k for some k ∈ R on D. For example, if Jf = 1 on D then f is said to

be an area-preserving harmonic function. Again consider the generic infinitesimal

generator

v = a1 ∂

∂x
+ a2 ∂

∂y
+ a3 ∂

∂h1
+ a4 ∂

∂h2
+ a5 ∂

∂g1
+ a6 ∂

∂g2

where a1, . . . , a6 are general functions of x, y, h1, h2, g1 and g2. In Appendix B we

calculate what the ai’s must be in order for v to be an infinitesimal generator of

the Lie symmetries of

∆ =




h1
x − h2

y

h1
y + h2

x

g1
x − g2

y

g1
y + g2

y

(h1
x + g1

x)(h
2
y − g2

y) − (h1
y + g1

y)(h
2
x − g2

x) − k




= 0.

We can see that ∆ = 0 gives us that h and g are analytic and Jf = k.

As shown in Appendix B, we get a finite dimensional Lie algebra spanned by

v1 =
∂

∂x
v7 = −y ∂

∂x
+ x

∂

∂y

v2 =
∂

∂y
v8 = −h2 ∂

∂h1
+ h1 ∂

∂h2

v3 =
∂

∂h1
v9 = −g2 ∂

∂g1
+ g1 ∂

∂g2

v4 =
∂

∂h2
v10 = x

∂

∂x
+ y

∂

∂y
+ h1 ∂

∂h1
+ h2 ∂

∂h2
+ g1 ∂

∂g1
+ g2 ∂

∂g2

v5 =
∂

∂g1
v11 = g2 ∂

∂h1
− g1 ∂

∂h2
− h2 ∂

∂g1
+ h1 ∂

∂g2

v6 =
∂

∂g2
v12 = g1 ∂

∂h1
+ g2 ∂

∂h2
+ h1 ∂

∂g1
+ h2 ∂

∂g2

66



The exponentiations of each of the vi are given in Appendix B and can be

composed in any way yielding an area-preserving harmonic function. If f = h +

g is area-preserving harmonic then composing the exponentiated functions from

v1,v2, . . . ,v7 gives that

f̃(z) = f
(
eiεz + α

)
+ β

is area-preserving harmonic where α, β ∈ C and ε ∈ R. This is a rotation and

translation of the domain followed by a translation of the image. Composing the

exponentiations from v8,v9 and v10 gives that

f̃(z) = reiε1h
(z
r

)
+ reiε2g

(z
r

)

is also area-preserving harmonic where r > 0 and ε1, ε2 ∈ R. If we let ε1 = −ε2 we

get that

f̃(z) = reiε1h
(z
r

)
+ re−iε1g

(z
r

)
= reiε1f

(z
r

)
.

This is a scaling of the domain followed by a rotation and unscaling of the image.

The exponentiation of v11 yields

f̃(z) = f(z) cosh ε+ if(z) sinh ε, ε ∈ R

and that of v12 yields

f̃(z) = f(z) cosh ε+ f(z) sinh ε, ε ∈ R.

Since the system of differential equations for the area-preserving harmonic func-

tions gives a submanifold in the 1st order jet space of the system for harmonic

functions, the Lie algebra formed by the generators for the area-preserving func-

tions is a finite dimensional subalgebra of the infinite dimensional Lie algebra for

the harmonic functions. This should be clear from a geometric and algebraic point

of view, given its submanifold nature and the infinitesimal criterion.
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9 Harmonic Functions with Fixed Convexity

Now we will consider our last case of symmetries. In Appendix C, we calculate the

symmetries for functions f = h+ g where h− g is a fixed function and h and g are

analytic. We want to know the symmetries of f where h−g ∈ CD(0). Geometrically

we can justify considering only the simpler case of convex in the direction of the

real axis as opposed to convex in some other direction by considering all others as

a rotation of this case.

By Theorem 3.12 we see that for f = h + g locally univalent then f ∈ CD(0)

and univalent if and only if h−g ∈ CD(0) and univalent. Let h(z)−g(z) = F (z) =

F 1(x, y) + iF 2(x, y) ∈ CD(0). We will consider symmetries of ∆ = 0 where

∆ =




h1
x − h2

y

h1
y + h2

x

g1
x − g2

y

g1
y + g2

y

h1 − g1 − F 1

h2 − g2 − F 2




.

This gives that ∆ = 0 represents h and g being analytic and h − g fixed as F . If

we can show that the transformed function f̃ is locally univalent then we will have

that f̃ will be convex in the direction of the real axis since F will be assumed to be

in CD(0).

We will begin again with the general infinitesimal generator

v = a1 ∂

∂x
+ a2 ∂

∂y
+ a3 ∂

∂h1
+ a4 ∂

∂h2
+ a5 ∂

∂g1
+ a6 ∂

∂g2

where a1, . . . , a6 are general functions of x, y, h1, h2, g1 and g2. As given by the

calculations in Appendix C, we have that a1 = a2 = 0, a3 = a5, a4 = a6 and
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a3 + ia4 is analytic in z, h and g as defined informally in Section 7. Therefore the

infinitesimal generator becomes

v = a3 ∂

∂h1
+ a4 ∂

∂h2
+ a3 ∂

∂g1
+ a4 ∂

∂g2
,

where v generates the Lie algebra relative to the symmetries. Since a3 and a4

are not independent of each other, we cannot break up this generator into smaller

elements of the algebra as we did for the simpler case of the symmetries of harmonic

functions as shown in Section 7. We will do so when we consider some subalgebra,

but in the broadest case, v is the only basis element of the infinite dimensional Lie

algebra.

It is worth noting here that the Lie symmetries calculated in this section have

broader applications than simply harmonic functions convex in the direction of the

real axis because they preserve the harmonicity of f and fix h− g as any function

and not simply one that is analytic, univalent and convex in some direction. Current

research is being done using these symmetries in minimal surface theory to fix the

second coordinate in the Weierstrass-Enneper representation of a minimal surface.

This method gives new families of associated surfaces.

9.1 A Finite Dimensional Subalgebra

One of the simplest cases of v is given when

(a3 + ia4)(z, h, g) = c1 + ic2 + (c3 + ic4)z + (c5 + ic6)h+ (c7 + ic8)g,

where c1, . . . , c8 are each arbitrary real numbers. We can verify that a3+ia4 satisfies

the infinitesimal criterion and therefore v as defined previously is a generator in the

associated Lie algebra. As shown in Appendix C.1, this gives us the eight generators

v1 =
∂

∂h1
+

∂

∂g1
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v2 =
∂

∂h2
+

∂

∂g2

v3 = x
∂

∂h1
+ y

∂

∂h2
+ x

∂

∂g1
+ y

∂

∂g2

v4 = −y ∂

∂h1
+ x

∂

∂h2
− y

∂

∂g1
+ x

∂

∂g2

v5 = h1 ∂

∂h1
+ h2 ∂

∂h2
+ h1 ∂

∂g1
+ h2 ∂

∂g2

v6 = −h2 ∂

∂h1
+ h1 ∂

∂h2
− h2 ∂

∂g1
+ h1 ∂

∂g2

v7 = g1 ∂

∂h1
+ g2 ∂

∂h2
+ g1 ∂

∂g1
+ g2 ∂

∂g2

v8 = −g2 ∂

∂h1
+ g1 ∂

∂h2
− g2 ∂

∂g1
+ g1 ∂

∂g2
.

Notice that none of these yield a flow in the domain space therefore no Lie symmetry

will involve a reparametrization of the domain. We will simply have flows in the

function space.

The calculations of the exponentiations of v1 through v8 are given in Appen-

dix C.1. If we consider the exponentiations of v1,v2, v3 and v4 and compose them

we get

h̃(z) = h(z) + αz + β

g̃(z) = g(z) + αz + β,

where α and β are arbitrary complex numbers sufficiently close to 0. Exponentiating

and composing v5 and v6 give us

h̃(z) = reiεh(z)

g̃(z) = g(z) + reiεh(z) − h(z),

where r > 0 and is sufficiently close to 1. Similarly exponentiating and composing
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v7 and v8 gives

h̃(z) = h(z) + reiεg(z) − g(z)

g̃(z) = reiεg(z)

again with r > 0 being sufficiently close to 1.

Let’s consider normalizing these exponentiated functions. If we begin with f =

h + g ∈ SH and h − g ∈ CD(0) univalent, can we classify f̃ = h̃ + g̃ in terms

of schlicht functions convex in the direction of the real axis? If f ∈ SH then f

is univalent and therefore is locally univalent and we have satisfied the conditions

of Theorem 3.12 for the function f giving us that f ∈ CD(0) if h − g ∈ CD(0)

is univalent. Unfortunately we are not able to encode the local univalence and

normalization of f into our system ∆ = 0, which means that we must impose these

conditions onto the transformed function.

9.1.1 Flows Induced by v1,v2,v3 and v4 on f

Let’s consider the transformations given by v1,v2,v3 and v4. By the Lie symme-

tries, we are guaranteed that

f̃(z) = h(z) + αz + β + g(z) + αz + β

is harmonic and that h̃− g̃ = h− g where clearly

h̃(z) = h(z) + αz + β

g̃(z) = g(z) + αz + β.

In order to have the transformed function be in SH , we must appropriately

normalize it. Since f ∈ SH , f is univalent with f(0) = 0 and fz(0) = 1. We can

see that f̃(0) = 2 Reβ and f̃z(0) = 1 + α. If we require that β = 0 then we will get
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that f̃(0) = 0. In order to impose the normalizations of SH on f̃ let’s require that

α ∈ R and define a new function f̂ by defining

ĥ(z) =
h̃(z)

1 + α
=
h(z) + αz

1 + α

ĝ(z) =
g̃(z)

1 + α
=
g(z) + αz

1 + α
.

In order to have a conventional notation with our transformed functions, let α = ε.

Requiring that ε ∈ R gives us a few properties, one of which is that ε = ε, yielding

that

f̂(z) = ĥ(z) + ĝ(z) =
1

1 + ε

(
h(z) + εz + g(z) + εz

)
=

f̃(z)

1 + ε
.

Now we can see that f̂(0) =
f̃(0)

1 + ε
= 0 and f̂z(0) =

f̃z(0)

1 + ε
= 1, giving us that

f̂ ∈ SH if f̂ is univalent. We can see that if f ∈ SO
H then fz(0) = 0, implying that

f̂z(0) =
ε

1 + ε
6= 0 when ε 6= 0, and therefore if f̂ is univalent then f̂ ∈ SH \SO

H when

ε 6= 0 and f̂ ∈ SO
H when ε = 0. Since ε = 0 corresponds to the trivial transformation

of f then we get that f̂ ∈ SH \ SO
H under any nontrivial transformation of f .

The univalence of f̂ follows directly from f̃ being univalent since f̂ is simply a

nonzero multiple of f̃ , but in general we will not be able to show that f̂ is univalent

if f is univalent but we will be able to show that f̂ is univalent if f̂ is locally

univalent. This all leads to the following result.

Theorem 9.1. Let f = h + g ∈ SH ∩ CD(0) and let f̂ = ĥ + ĝ where ĥ(z) =

h(z) + εz

1 + ε
and ĝ(z) =

g(z) + εz

1 + ε
with ε ∈ (−1,∞). Then if f̂ is locally univalent

then f̂ ∈ SH ∩ CD(0).

Proof. From what is shown above, if f ∈ SH then f̂(0) = 0 and f̂z(0) = 1. Since

f ∈ SH∩CD(0) then f is univalent and by Theorem 3.12 we have that h−g ∈ CD(0)

and is univalent. Since ε ∈ (−1,∞) then
h− g

1 + ε
∈ CD(0) and is univalent. This
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then implies that ĥ− ĝ ∈ CD(0) and is univalent since

h(z) − g(z)

1 + ε
=
h(z) + εz − (g(z) + εz)

1 + ε

=
h(z) + εz

1 + ε
− g(z) + εz

1 + ε

= ĥ(z) − ĝ(z).

Since ĥ− ĝ is univalent and convex in the direction of the real axis and f̂ is locally

univalent by assumption, by Theorem 3.12 we get that f̂ is univalent and convex in

the direction of the real axis. Therefore we have shown that f̂ ∈ SH ∩ CD(0).

Note that we require ε ∈ (−1,∞) and not simply R \ {−1} because we want ε

to flow over a connected subset of R containing 0.

Let’s consider an example of the flow of a function that has its convexity pre-

served by the flow of ε. In Example 9.2 we will consider the projection of Enneper’s

minimal surface.

Example 9.2. Let h(z) = z and g(z) = 1
3
z3 and let ω(z) =

g′(z)

h′(z)
= z2. We see that

ω is analytic and |ω(z)| = |z2| < 1 for all z ∈ D and therefore, by Definition 3.2, we

have that f has no singular points in D. Since f is nonzero on ∂D, by Theorem 3.6

we have that f is univalent in D. By checking the appropriate normalizations, we

see that f ∈ SO
H . It can be shown that f is also convex in the direction of the

real axis. For a visual check of this, we can verify the convexity by inspection of

Figure 11(c). Therefore f ∈ SO
H ∩ CD(0). Now we need to find what restrictions

must be made on ε to guarantee that f̂(z) = 1
1+ε

(
z + εz + 1

3
z3 + εz

)
is locally

univalent.

Suppose that ε ∈ [0,∞) and that z = x + iy ∈ D. Since z ∈ D then |z|2 < 1,
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x2 − y2 < 1 and since 0 ≤ ε then 2ε(x2 − y2) ≤ 2ε which yields that

|z2 + ε|2 = (x2 + y2) + 2ε(x2 − y2) + ε2

= |z|2 + 2ε(x2 − y2) + ε2

< 1 + 2ε+ ε2

= |1 + ε|2.

This can be simply applied to show that

∣∣∣∣∣
ĝ′(z)

ĥ′(z)

∣∣∣∣∣ =

∣∣∣∣∣

g′(z)+ε

1+ε

h′(z)+ε

1+ε

∣∣∣∣∣ =

∣∣∣∣
g′(z) + ε

h′(z) + ε

∣∣∣∣ =

∣∣∣∣
z2 + ε

1 + ε

∣∣∣∣ < 1.

This inequality yields that f̂ is locally univalent by Theorem 3.4 and therefore we

have that f̂ ∈ SH ∩ CD(0) by Theorem 9.1 if [0,∞).

Let’s analyze the function f̂ as ε ranges over values in (−1,∞). Consider that

as ε gets large we have that f̂(z) ≈ 2x which gives us that the image of D under

f̂ flattens out and approaches the real axis as ε → ∞. A few of the images of D

under f̂ as ε ranges from −1
2

to 5
4

are shown in Figure 11.

Notice that as ε decreases from a positive to a negative value, we can see that

the image is not univalent as we proved above thus showing necessary our original

assumption that ε be nonnegative. Also notice that the convexity in the direction of

the real axis is preserved as we allow ε ≥ 0 to flow, this being a result of Theorem 9.1

since f̂ is locally univalent if ε ≥ 0. Even for ε < 0, it appears that f̂ ∈ CD(0) as

we let ε flow through negative values although this is not justified by the theorem

presented in this section because f̂ would not be univalent.
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Figure 11: Images of D under the map f̂ = ĥ + ĝ where ĥ(z) =

h(z) + εz

1 + ε
and ĝ(z) =

g(z) + εz

1 + ε
for ε ranging from −1

2
to 5

4
where

f(z) = h(z) + g(z) = z + 1
3
z3.

9.1.2 Flows Induced by v5 and v6 on f

Consider the exponentiations and compositions of v5 and v6 as given by

h̃(z) = reiεh(z)

g̃(z) = g(z) + reiεh(z) − h(z)

where r > 0 and is sufficiently close to 1. Define f̃ by

f̃(z) = h̃(z) + g̃(z) = reiεh(z) + g(z) + reiεh(z) − h(z)

and let’s perform a similar analysis as we have previously done for v1,v2,v3 and

v4. First, we will consider f = h+ g ∈ SH and h− g univalent with h− g ∈ CD(0).
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Again, in order for f̃ to have the possibility of being in SH , let’s normalize

f̃ accordingly. We can see that f̃(0) = 0 and f̃z(0) = reiε. Define ĥ and ĝ by

multiplying h̃ and g̃, respectively, by se−iε where s = r−1 and define f̂ by f̂(z) =

ĥ(z) + ĝ(z). Therefore

ĥ(z) = se−iεh̃(z) = h(z)

ĝ(z) = se−iεg̃(z) = h(z) − se−iεh(z) + se−iεg(z)

implying that

f̂(z) = h(z) + h(z) − se−iεh(z) + se−iεg(z).

Unlike the case for v1, . . . ,v4, for v5 and v6 we have that f̂ is not simply a complex

constant multiple of f̃ but with the definition of f̂ as given above we see that

f̂(0) = 0 and f̂z(0) = 1. Also, we see that

ĥ− ĝ = se−iε(h− g),

yielding that ĥ − ĝ is univalent if and only if h − g is, but this does give rise to a

question of convexity. If h− g ∈ CD(0) then ĥ− ĝ will only be in CD(0) if se−iε is

real. Therefore we must require that ε be an integer multiple of π. This additional

requirement gives us that

f̂(z) = h(z) + h(z) − sh(z) + sg(z)

if ε = 2kπ where s ∈ R and s is close to 1 or

f̂(z) = h(z) + h(z) + sh(z) − sg(z)

if ε = (2k + 1)π where s is close to -1 and in both cases k ∈ Z.

For simplicity, let’s consider the first case with ε = 0 and again to maintain

uniformity in our notation, make the substitution that s = eε where ε is close to 0.
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Now we have that

f̂(z) = h(z) + h(z) − eεh(z) + eεg(z)

is harmonic and we have shown that f̂(0) = 0, f̂z(0) = 1 and that ĥ− ĝ is univalent

and in CD(0).

Now we want to find what restriction on ε will guarantee that f̂ be locally

univalent. Theorem 3.4 gives us that in order to get the local univalence of f̂ we

must find ε so that

∣∣∣∣∣
ĝ′(z)

ĥ′(z)

∣∣∣∣∣ < 1 holds true. This in turn implies that

∣∣∣∣e
ε g

′(z)

h′(z)
− (eε − 1)

∣∣∣∣ < 1.

If we think about this geometrically, the above inequality implies that the maximum

distance between any point in the set {z
∣∣ |z| < eε} and the point eε−1 is less than

1. This can only occur when ε is 0 which gives that f̂ = f , the trivial transformation.

This can be seen in Figure 12 where the light gray region is the set of all points

where eε g
′(z)

h′(z)
must lie for a given z ∈ D and the dark gray region is the set of

all points whose distance from eε − 1 is less than 1. For this inequality to hold,

the light gray region must equal the dark gray one because this is the only case

where the distance between the point eε g
′(z)

h′(z)
and eε−1 is less than 1 implying that

∣∣∣∣
(
eε g

′(z)

h′(z)

)
− (eε − 1)

∣∣∣∣ < 1.

Therefore we are unable to prove anything about the local univalence of f̂ in

general. But if we show that f̂ is locally univalent in a specific case, then we have

Theorem 9.3.

Theorem 9.3. Let f = h + g ∈ SH ∩ CD(0) and let f̂(z) = ĥ(z) + ĝ(z) where

ĥ(z) = h(z) and ĝ(z) = h(z) − eεh(z) + eεg(z) with ε ∈ R. If f̂ is locally univalent

then f̂ ∈ SH ∩ CD(0).
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eε

eε
−1

1
bb

(a) For eε > 1

eε=1
b

(b) For eε = 1

eε
−1

eε1
b b

(c) For eε < 1

Figure 12: Geometric interpretation of
∣∣∣eε g′(z)

h′(z)
− (eε − 1)

∣∣∣ < 1

The proof of Theorem 9.3 is nearly identical to the proof of Theorem 9.1 where

we can see that if h − g ∈ CD(0) and univalent then ĥ − ĝ = eε(h − g) ∈ CD(0)

and is univalent.

Note that if we begin with f ∈ SO
H then we get that fz(0) = 0, but f̂z(0) =

1 − eε 6= 0 for ε 6= 0 and therefore when we transform f nontrivially we get that

f̂ ∈ SH \ SO
H .

9.1.3 Flows Induced by v7 and v8 on f

Consider the exponentiation and composition that arises from v7 and v8. If we let

f̃ = h̃+ g̃ be the transform of f = h+ g then we have that

h̃(z) = h(z) + reiεg(z) − g(z)

g̃(z) = reiεg(z)

implying that

f̃(z) = h(z) + reiεg(z) − g(z) + reiεg(z).

Notice that if we begin with f ∈ SO
H then we have that f(0) = 0, fz(0) = 1 and

fz(0) = 0, which implies that f̃(0) = 0, f̃z(0) = 1 and f̃z(0) = 0, giving us that
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if f̃ is univalent then f̃ ∈ SO
H without any further normalization. If we begin with

f ∈ SH and let g′(0) = b2 then we get that f̃(0) = 0 and fz(0) = 1 + reiεb2 − b2

which would need further normalization in order to possibly be in SH .

Let’s consider f ∈ SO
H with h− g ∈ CD(0) and analyze f̃(z) = h(z)+ reiεg(z)−

g(z) + reiεg(z). If we expand g as g = g1 + ig2 we get the simplification of f̃ as

f̃(z) = h(z) + reiεg(z) − g(z) + reiεg(z)

= h(z) − g(z) + 2rg1(z)

(
eiε + e−iε

2

)
− 2rg2(z)

(
eiε − e−iε

2i

)

= h(z) − g(z) + 2r
(
g1(z) cos ε− g2(z) sin ε

)

showing that f̃ is h− g plus a continuous real-valued function.

As before, we want to know what conditions must be placed on r and ε so that

f̃ is locally univalent when f is. The local univalence of f̃ is equivalent to requiring

that

∣∣∣∣∣
h̃′(z)

g̃′(z)

∣∣∣∣∣ > 1 on D which in turn implies that

∣∣∣∣
h′(z)

g′(z)
−
(
1 − reiε

)∣∣∣∣ > |r|.

Geometrically we may consider this as requiring that the minimum distance from

outside the unit disk to somewhere on the circle centered at 1 of radius |r| be at

least |r|. This can be seen in Figure 13 where the light gray region is the set of

all possible values of
h′(z)

g′(z)
and the solid circle is the set of all possible values for

1 − reiε.

We can see that this inequality is satisfied for −1 < r < 1 and ε = πk with

k ∈ Z. We may thus assume that ε = 0. Since r = 0 would imply that h+g = h−g

yielding that g ≡ 0, we may additionally assume that 0 < |r| < 1. We can now

state the following two results.

Theorem 9.4. Let f = h+ g ∈ SO
H ∩CD(0) and let f̃ = h̃+ g̃ where h̃(z) = h(z)+

reiεg(z) − g(z) and g̃(z) = reiεg(z). If f̃ is locally univalent then f̃ ∈ SO
H ∩ CD(0)
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Figure 13: Geometric interpretation of
∣∣∣h

′(z)
g′(z)

− (1 − reiε)
∣∣∣ > |r|

for any ε, r ∈ R. If ε = 0 and −1 < r < 1 then f̂ is locally univalent and

f̃ ∈ SO
H ∩ CD(0).

Proof. We showed previously that if f ∈ SO
H then f̃(0) = 0, f̃z(0) = 1 and f̃z(0) = 0.

Now since f ∈ CD(0) and is univalent then h − g ∈ CD(0) and is univalent by

Theorem 3.12 which gives us that h̃ − g̃ is as well. Therefore f̃ ∈ CD(0) and is

univalent implying that f̃ ∈ SO
H because of the normalizations shown implying that

f̃ ∈ SO
H ∩ CD(0). The second statement follows directly from the first and by the

argument given in association with Figure 13.

We give both parts of this theorem because there may be functions f where the

geometric interpretation as shown in Figure 13 is too broad; that is,

∣∣∣∣
h′(z)

g′(z)

∣∣∣∣ may

be greater than some δ > 1 on D, which would allow for ε to flow away from 0 and

not be required to remain fixed.
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9.2 An Infinite Dimensional Subalgebra

Let’s begin again with f = h + g ∈ SH and h− g ∈ CD(0) univalent and consider

a specific infinitesimal generator. In Appendix C.2 we show the calculations for

the infinite dimensional subalgebra relative to the Lie symmetries of the harmonic

functions where h− g is a fixed function and where we let (a3 + ia4)(z, g) = φ1(z)+

iφ2(z)+ g1 + ig2 = φ(z)+ g with φ being an analytic function of only z. Recall that

the general infinitesimal generator is

v = a3 ∂

∂h1
+ a4 ∂

∂h2
+ a3 ∂

∂g1
+ a4 ∂

∂g2
,

where a3+ia4 is analytic in z, h and g. In this section we will consider the generator

v =
(
φ1(z) + g1

) ∂

∂h1
+
(
φ2(z) + g2

) ∂

∂h2
+
(
φ1(z) + g1

) ∂

∂g1
+
(
φ2(z) + g2

) ∂

∂g2
.

The exponentiation of v as shown in Appendix C.2 gives us that

h̃(z) = h(z) − g(z) + eεg(z) + φ(z) (eε − 1)

g̃(z) = eεg(z) + φ(z) (eε − 1)

and making the substitutions α = eε and ϕ = (eε − 1)φ yields

h̃(z) = h(z) − g(z) + αg(z) + ϕ(z)

g̃(z) = αg(z) + ϕ(z)

where α > 0. This in turn gives us that the transformed function f̃ is given by

f̃(z) = h(z) − g(z) + αg(z) + ϕ(z) + αg(z) + ϕ(z).

We can see that ϕ is analytic if and only if φ is analytic. We will be concerned with

the nontrivial transformations of f which are those where α 6= 1; that is, ϕ 6= 0 if

φ 6≡ 0. We can simplify f̃ to

f̃(z) = h(z) − g(z) + 2αg1(z) + ϕ1(z)
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which shows that f̃ is h− g plus a continuous real-valued function as we did above

in the finite dimensional case.

The technique of Lie symmetries was essential in leading us to the function

f̃(z) = h(z) − g(z) + αg(z) + ϕ(z) + αg(z) + ϕ(z)

but we can see that f̃ is harmonic regardless of what we let α be and we need

not force ϕ to be 0 when α = 1. By relaxing these conditions we can see that we

preserve h − g = h̃ − g̃ and therefore we will continue the results from this point

with ϕ being analytic and α ∈ C.

We can form a similar result as those given above by using Theorem 3.12 in the

same way as before. This gives us:

Theorem 9.5. Let h−g ∈ CD(0) with h−g univalent. Then if f̃(z) = h(z)−g(z)+

αg(z) + ϕ(z) + αg(z) + ϕ(z) is locally univalent then f̃ ∈ CD(0) and is univalent.

Proof. Since h− g = h̃− g̃ and f̃ is locally univalent then by Theorem 3.12 we have

that f̃ is globally univalent and f̃ ∈ CD(0).

For f̃ to be locally univalent we must have that

∣∣∣∣∣
g̃′(z)

h̃′(z)

∣∣∣∣∣ < 1

on D. If we let
g̃′(z)

h̃′(z)
=
N(z)

D(z)
and force

N(z)

D(z)
∈ D for all z ∈ D then we will have

that

∣∣∣∣∣
g̃′(z)

h̃′(z)

∣∣∣∣∣ < 1 implying that f̃ is locally univalent.

We can see that since
g̃′

h̃′
=
N

D
then

N

D
=

ϕ′ + αg′

h′ − g′ + ϕ′ + αg′
allowing us to solve

for ϕ in terms of N and D. Since
N

D
=

ϕ′ + αg′

h′ − g′ + ϕ′ + αg′
then Nh′ −Ng′ +Nϕ′ +

Nαg′ = Dϕ′+Dαg′ implying that ϕ′(D−N) = N(h′−g′)−αg′(D−N). Therefore
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ϕ′ = (h′ − g′)
N

D −N
− αg′ and integrating this in closed form gives us that

ϕ(z) =

∫ [
(h′(z) − g′(z))

N(z)

D(z) −N(z)

]
dz − αg(z).

Therefore if
N

D
maps D into D then we will have that f̃ will be locally univalent

and therefore univalent and convex in the direction of the real axis by Theorem 9.5.

Once we have the function ϕ we can simplify h̃ and g̃ to

h̃(z) = h(z) − g(z) +

∫ [
(h′(z) − g′(z))

N(z)

D(z) −N(z)

]
dz (6)

g̃(z) =

∫ [
(h′(z) − g′(z))

N(z)

D(z) −N(z)

]
dz. (7)

With the above analysis we can restate Theorem 9.5 in the following way.

Theorem 9.6. Let h− g ∈ CD(0) with h− g univalent and let h̃ and g̃ be defined

by (6) and (7), respectively. If

∣∣∣∣
N(z)

D(z)

∣∣∣∣ < 1 for all z ∈ D then f̃ = h̃+ g̃ is univalent

and is in CD(0).

The proof of Theorem 9.6 follows directly from what is shown previously and

from Theorem 9.5.

Let’s consider a few examples of functions N and D that satisfy the above

conditions.

Example 9.7. Consider the projection of Enneper’s surface as shown in Fig-

ure 11(c) and given by h(z) = z and g(z) = 1
3
z3 and suppose that N(z) = (z + α)2

and D(z) = (1 + αz)2, where −1 < α < 1. This gives us that
N

D
is the square of a

fractional linear transformation that maps D onto D and therefore

∣∣∣∣
N(z)

D(z)

∣∣∣∣ < 1 for

83



all z ∈ D. Now we have that

h̃(z) = z − 1

3
z3 +

∫ [(
1 − z2

) (z + α)2

(1 − z2)(1 − α2)

]
dz

= z − 1

3
z3 +

1

1 − α2

∫ (
z2 + 2αz + α2

)
dz

= z − 1

3
z3 +

1
3
z3 + αz2 + α2z

1 − α2

=

(
1

1 − α2

)(
z + αz2 +

α2

3
z3

)

and

g̃(z) =

∫ [(
1 − z2

) (z + α)2

(1 − z2)(1 − α2)

]
dz

=
1

1 − α2

∫ (
z2 + 2αz + α2

)
dz

=
1
3
z3 + αz2 + α2z

1 − α2

=

(
1

1 − α2

)(
α2z + αz2 +

1

3
z3

)
.

Let’s normalize f̃ . If we let ĥ = (1 − α2)h̃ and ĝ = (1 − α2)g̃ then we get that

f̂ = (1 − α2)f̃ ; that is

ĥ(z) = z + αz2 +
α2

3
z3

ĝ(z) = α2z + αz2 +
1

3
z3

giving that

f̂(z) =

(
z + αz2 +

α2

3
z3

)
+

(
α2z + αz2 +

1

3
z3

)
.

We see that this gives that f̂(0) = 0 and fz(0) = 1. Theorem 9.6 gives that

f̃ ∈ CD(0) is univalent and since f̂ is a real valued non-zero multiple of f̃ then

f̂ ∈ CD(0) and is univalent. Therefore f̂ ∈ SH ∩ CD(0) for all −1 < α < 1. In

Figure 14, several images of D under f̂ as α ranges from −0.777 to 0.777 are shown

and we see that the convexity and univalence of f̂ are preserved as we flow between

the functions.
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Figure 14: Images of D under the map f̂ = ĥ + ĝ where ĥ(z) =

z + αz2 +
α2

3
z3 and ĝ(z) = α2z + αz2 +

1

3
z3 for α ranging from −0.777

to 0.777.

Let’s consider the limiting cases of f̂ as α approaches −1 and 1. It will be helpful

to consider the real and imaginary parts of f̂ separately. We see that

Re
{
f̂(z)

}
= Re

{
ĥ(z) + ĝ(z)

}

= Re

{
(1 + α2)z + 2αz2 +

1 + α2

3
z3

}

and

Im
{
f̂(z)

}
= Im

{
ĥ(z) − ĝ(z)

}

= Re

{
(1 − α2)

(
z − 1

3
z3

)}
.

We can see that

lim
α→1−

Re
{
f̂(z)

}
= Re

{
2z + 2z2 +

2

3
z3

}
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and

lim
α→−1+

Re
{
f̂(z)

}
= Re

{
2z − 2z2 +

2

3
z3

}
.

For the imaginary part of f̂ we get

lim
α→1−

Im
{
f̂(z)

}
= lim

α→1−
Re

{
(1 − α2)

(
z − 1

3
z3

)}
= 0

and similarly for α approaching −1 from the right. In the limiting case we see that

f̂ becomes purely real.

In essence, Example 9.7 shows taking a harmonic univalent polynomial in SH

and generating a new class of harmonic univalent polynomials in SH . With the

exception of Suffridge’s paper [15], the field of harmonic univalent polynomials has

very few known results. This approach with Lie symmetries may prove useful in

solving some results in this area.

Example 9.8. Consider the projection of Scherk’s doubly periodic minimal surface

which is given by

h(z) =
1

4
ln

(
1 + z

1 − z

)
− i

4
ln

(
1 + iz

1 − iz

)

g(z) = −1

4
ln

(
1 + z

1 − z

)
− i

4
ln

(
1 + iz

1 − iz

)
.

If we let N(z) = α2z2 and D(z) = 1 then we have that

∣∣∣∣
N(z)

D(z)

∣∣∣∣ < 1 on D if |α| ≤ 1

with α 6= −1, 1.
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Solving for h̃(z) and g̃(z) gives us that

h̃(z) =
1

2
ln

(
1 + z

1 − z

)
+

∫ [(
1

1 − z2

)(
α2z2

1 − α2z2

)]
dz

=
1

2
ln

(
1 + z

1 − z

)
+

∫
α2z2

(1 − α2z2)(1 − z2)
dz

=
1

2
ln

(
1 + z

1 − z

)
+

α2

2(1 − α2)

∫ (
1

1 + z
+

1

1 − z
− 1

1 + αz
− 1

1 − αz

)
dz

=
1

2
ln

(
1 + z

1 − z

)
+

α2

2(1 − α2)

(
ln

(
1 + z

1 − z

)
− 1

α
ln

(
1 + αz

1 − αz

))

=
1

2(1 − α2)
ln

(
1 + z

1 − z

)
− α

2(1 − α2)
ln

(
1 + αz

1 − αz

)

and

g̃(z) =

∫ [(
1

1 − z2

)(
α2z2

1 − α2z2

)]
dz

=

∫
α2z2

(1 − α2z2)(1 − z2)
dz

=

∫ (
1

1 + z
+

1

1 − z
− 1

1 + αz
− 1

1 − αz

)
dz

=
α2

2(1 − α2)

(
ln

(
1 + z

1 − z

)
− 1

α
ln

(
1 + αz

1 − αz

))

=
α2

2(1 − α2)
ln

(
1 + z

1 − z

)
− α

2(1 − α2)
ln

(
1 + αz

1 − αz

)

thus giving that f̃(z) = h̃(z) + g̃(z) is univalent and is convex in the direction of

the real axis by Theorem 9.6.

If we let α = i then h̃(z) = h(z) and g̃(z) = g(z) giving that f̃(z) is the

projection of Scherk’s doubly periodic surface. If we let α = eiθ and allow θ to flow

from π
2

to 0 then f̃ will become the projection of the helicoid in the limiting case.

This was proven in [6]. Figure 15 shows images of f̃ as θ flows from π
2

to 0.

Example 9.9. This next example is a family of slit mappings that were studied

previously by Dorff and Suffridge [5]. It is interesting that the manner in which we

devised the family of slit mappings in this example is different from how Dorff and
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Figure 15: Images of D under the map f̃ = h̃ + g̃ where

h̃(z) =
1

2(1 − α2)
ln

(
1 + z

1 − z

)
− α

2(1 − α2)
ln

(
1 + αz

1 − αz

)
and g̃(z) =

α2

2(1 − α2)
ln

(
1 + z

1 − z

)
− α

2(1 − α2)
ln

(
1 + αz

1 − αz

)
for α = eiθ with θ rang-

ing from π
2

to 0.

Suffridge approached the problem. To understand the significance of this family of

mappings, we first must give some background.

For f ∈ SO
H , the inner mapping radius, ρO(f), of the domain f(D) is the real

number F ′(0), where F (z) is the analytic function that maps D onto f(D) and

satisfies the conditions F (0) = 0, F ′(0) > 0. By the Riemann Mapping Theorem,

there always exists a unique such F . If f ∈ SH , the inner mapping radius is denoted

by ρ(f). The lower bound for ρ(f) is 0. It was conjectured by Sheil-Small ([3], [13])

that the lower bound for ρO(f) is 2
3
. The upper bound for ρ(f) cannot be larger

than 2π, because of the Koebe 1
4
-theorem and Hall’s result [11] showing that f(D)

omits some point on any circle of radius R, where R ≥ r = π
2
. Similarly, ρO(f) is

bounded above by
8π

√
3

9
< 4.837. Sheil-Small also conjectured that ρ(f) ≤ π

2
([3],

[13]).
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In [5] Dorff and Suffridge presented a collection of univalent, harmonic 1-slit

mappings, f = h + g with g′(z) = ω(z)h′(z), whose slit is on the negative real

axis. By changing ω(z), they were able to slide the slit away from the origin. For

f ∈ SO
H , the tip of the slit can be brought as close as −1

6
and as far as −1

2
. The

inner mapping radius for this last function is 2. When they enlarged the class so

that f ∈ SH , the slit point moved from 0 to −1, and thus the inner mapping radius

was brought arbitrarily close to 4. Hence, these functions disproved the conjectures

of Sheil-Small and provided the largest known values for the inner mapping radius.

In this example, we get these same results but by a different approach than the one

used by Dorff and Suffridge.

We will show the derivation of this class of slit mappings using Theorem 9.6,

which was not the method used in [5]. Let h and g be defined by

h(z) =
z − 1

2
z2 − 1

6
z3

(1 − z)3

and

g(z) =
1
2
z2 − 1

6
z3

(1 − z)3
.

Here we have that

h(z) − g(z) =
z

(1 − z)2

yielding that h− g is the slit mapping with slit contained in the negative real axis

and therefore h−g ∈ CD(0). Suppose that h(z1)−g(z1) = h(z2)−g(z2) for z1 6= z2,

with z1, z2 ∈ D. This implies that
z1

(1 − z1)2
=

z2

(1 − z2)2
⇒ z1 − 2z1z2 + z1z

2
2 =

z2 − 2z1z2 + z2z
2
1 and hence z1 − z2 = z1z2(z1 − z2). Since z1 6= z2, we may divide

by z1 − z2 to get that z1z2 = 1 but this implies that |z1| ≥ 1 or |z2| ≥ 1 which

contradicts the fact that z1, z2 ∈ D and thus our supposition was false. Therefore

h− g is univalent and convex in the direction of the real axis.
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Let
N(z)

D(z)
=
z(z + α)

1 + αz
and we can see that

∣∣∣∣
N

D

∣∣∣∣ < 1 for all z ∈ D and −1 ≤ α ≤ 1

since
N

D
is the product of a fractional linear transformation with norm no greater

than 1 and the identity map on D. From this definition and (6) and (7) we get h̃

and g̃ defined by

h̃(z) =
z

(1 − z)2
+

∫ [
z(α+ z)(1 + z)

(1 − z)4(1 + z)

]
dz

=
z

(1 − z)2
+

∫ [
z(α+ z)

(1 − z)4

]
dz

=
z +

(
α
2
− 1
)
z2 +

(
1
3
− α

6

)
z3

(1 − z)3

and

g̃(z) =

∫ [
z(α+ z)(1 + z)

(1 − z)4(1 + z)

]
dz

=

∫ [
z(α+ z)

(1 − z)4

]
dz

=
α
2
z2 +

(
1
3
− α

6

)
z3

(1 − z)3
.

If we let f̃ = h̃ + g̃ then since h̃ − g̃ = h − g ∈ CD(0) is univalent, we get that

f̃ ∈ CD(0) and is univalent by Theorem 9.6. These two properties can be seen

partially in Figures 16 and 17.

Figure 16 shows several images of four concentric circles in D under the map f̃ .

We see that as α approaches -1 we get a half-plane map and as α flows from -1 to

1 we see that the slit moves in towards −1
6
. Figure 17 gives a closer view of the

movement of the slit.
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Figure 16: Images of D under the map f̃ = h̃ + g̃ where h̃(z) =

z +
(

α
2
− 1
)
z2 +

(
1
3
− α

6

)
z3

(1 − z)3
and g̃(z) =

α
2
z2 +

(
1
3
− α

6

)
z3

(1 − z)3
for α ranging

from −1 to 1.
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Figure 17: Images of D under the map f̃ = h̃+ g̃ as in Figure 16 for α

ranging from −1 to 1 with a viewing region of [−0.5, 0] × [−0.25, 0.25].
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A Calculation for Harmonic Functions

Let h = h1 + ih2 and g = g1 + ig2 be analytic functions of z = x + iy. The

Cauchy-Riemann equations give us that h and g are analytic if and only if

h1
x − h2

y = 0

h1
y + h2

x = 0

g1
x − g2

y = 0

g1
y + g2

x = 0.

Therefore, if let

∆ =




h1
x − h2

y

h1
y + h2

x

g1
x − g2

y

g1
y + g2

y




then ∆ = 0 represents h and g being analytic.

Now consider the generic infinitesimal generator v for the Lie symmetries of

∆ = 0. The generator v has the form

v = a1 ∂

∂x
+ a2 ∂

∂y
+ a3 ∂

∂h1
+ a4 ∂

∂h2
+ a5 ∂

∂g1
+ a6 ∂

∂g2

where a1, . . . , a6 are arbitrary functions of x, y, h1, h2, g1 and g2. Theorem 5.35 gives

us that v is the infinitesimal generator of the Lie symmetries if

pr(1)v[∆v(x, u
(1))] = 0, v = 1, . . . , 4 whenever ∆(x, u(1)) = 0.

Therefore, we want to find what each of the ai must be so that the infinitesimal

criterion holds true.

First we must prolong v to pr(1)v. Using the prolongation formula as given in
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Theorem 5.33 we get that

pr(1)v = a1 ∂

∂x
+ a2 ∂

∂y
+ a3 ∂

∂h1
+ a4 ∂

∂h2
+ a5 ∂

∂g1
+ a6 ∂

∂g2

+ Φ1 ∂

∂h1
x

+ Φ2 ∂

∂h1
y

+ Φ3 ∂

∂h2
x

+ Φ4 ∂

∂h2
y

+ Φ5 ∂

∂g1
x

+ Φ6 ∂

∂g1
y

+ Φ7 ∂

∂g2
x

+ Φ8 ∂

∂g2
y

where

Φ1 = a3
x + a3

h1h1
x + a3

h2h2
x + a3

g1g1
x + a3

g2g2
x − h1

xa
1
x − a1

h1h1
x

2 − h1
xa

1
h2h2

x − h1
xa

1
g1g1

x −

h1
xa

1
g2g2

x − h1
ya

2
x − h1

ya
2
h1h1

x − h1
ya

2
h2h2

x − h1
ya

2
g1g1

x − h1
ya

2
g2g2

x

Φ2 = a3
y + a3

h1h1
y + a3

h2h2
y + a3

g1g1
y + a3

g2g2
y − h1

xa
1
y − h1

xa
1
h1h1

y − h1
xa

1
h2h2

y − h1
xa

1
g1g1

y −

h1
xa

1
g2g2

y − h1
ya

2
y − a2

h1h1
y

2 − h1
ya

2
h2h2

y − h1
ya

2
g1g1

y − h1
ya

2
g2g2

y

Φ3 = a4
x + a4

h1h1
x + a4

h2h2
x + a4

g1g1
x + a4

g2g2
x − h2

xa
1
x − h2

xa
1
h1h1

x − a1
h2h2

x

2 − h2
xa

1
g1g1

x −

h2
xa

1
g2g2

x − h2
ya

2
x − h2

ya
2
h1h1

x − h2
ya

2
h2h2

x − h2
ya

2
g1g1

x − h2
ya

2
g2g2

x

Φ4 = a4
y + a4

h1h1
y + a4

h2h2
y + a4

g1g1
y + a4

g2g2
y − h2

xa
1
y − h2

xa
1
h1h1

y − h2
xa

1
h2h2

y − h2
xa

1
g1g1

y −

h2
xa

1
g2g2

y − h2
ya

2
y − h2

ya
2
h1h1

y − a2
h2h2

y

2 − h2
ya

2
g1g1

y − h2
ya

2
g2g2

y

Φ5 = a5
x + a5

h1h1
x + a5

h2h2
x + a5

g1g1
x + a5

g2g2
x − g1

xa
1
x − g1

xa
1
h1h1

x − g1
xa

1
h2h2

x − a1
g1g1

x

2 −

g1
xa

1
g2g2

x − g1
ya

2
x − g1

ya
2
h1h1

x − g1
ya

2
h2h2

x − g1
ya

2
g1g1

x − g1
ya

2
g2g2

x

Φ6 = a5
y + a5

h1h1
y + a5

h2h2
y + a5

g1g1
y + a5

g2g2
y − g1

xa
1
y − g1

xa
1
h1h1

y − g1
xa

1
h2h2

y − g1
xa

1
g1g1

y −

g1
xa

1
g2g2

y − g1
ya

2
y − g1

ya
2
h1h1

y − g1
ya

2
h2h2

y − a2
g1g1

y

2 − g1
ya

2
g2g2

y

Φ7 = a6
x + a6

h1h1
x + a6

h2h2
x + a6

g1g1
x + a6

g2g2
x − g2

xa
1
x − g2

xa
1
h1h1

x − g2
xa

1
h2h2

x − g2
xa

1
g1g1

x −

a1
g2g2

x

2 − g2
ya

2
x − g2

ya
2
h1h1

x − g2
ya

2
h2h2

x − g2
ya

2
g1g1

x − g2
ya

2
g2g2

x

Φ8 = a6
y + a6

h1h1
y + a6

h2h2
y + a6

g1g1
y + a6

g2g2
y − g2

xa
1
y − g2

xa
1
h1h1

y − g2
xa

1
h2h2

y − g2
xa

1
g1g1

y −

g2
xa

1
g2g2

y − g2
ya

2
y − g2

ya
2
h1h1

y − g2
ya

2
h2h2

y − g2
ya

2
g1g1

y − a2
g2g2

y

2
.
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Now we need to find pr(1)v[∆i] for i = 1, 2, 3, 4. By applying Definition 5.24 we

get that

pr(1)v[∆1] = −h1
xa

1
g2g2

x −h1
xa

1
h2h2

x +h2
ya

2
h1h1

y +a3
x −h1

ya
2
x −h1

ya
2
g1g1

x −h1
ya

2
g2g2

x +

h2
xa

1
h2h2

y +h2
xa

1
g1g1

y +h2
xa

1
g2g2

y +h2
ya

2
g1g1

y +h2
ya

2
g2g2

y −a4
y +h2

xa
1
h1h1

y −

h1
ya

2
h2h2

x − h1
xa

1
g1g1

x − h1
ya

2
h1h1

x + a3
h1h1

x + a3
h2h2

x + a3
g1g1

x + a3
g2g2

x −

h1
xa

1
x−a1

h1h1
x

2−a4
h1h1

y−a4
h2h2

y−a4
g1g1

y−a4
g2g2

y+h2
xa

1
y+h2

ya
2
y+a2

h2h2
y

2

pr(1)v[∆2] = −h1
ya

2
g1g1

y−h2
xa

1
g1g1

x−h1
ya

2
g2g2

y+a4
g2g2

x−a2
h1h1

y

2
+a4

h1h1
x+a4

x−h1
ya

2
y−

h1
xa

1
h1h1

y − h1
xa

1
h2h2

y − h1
xa

1
g1g1

y − h1
xa

1
g2g2

y − h1
ya

2
h2h2

y − h2
xa

1
h1h1

x −

h2
xa

1
g2g2

x − h2
ya

2
h1h1

x − h2
ya

2
h2h2

x − h2
ya

2
g1g1

x − h2
ya

2
g2g2

x + a3
y + a3

h1h1
y +

a3
h2h2

y +a3
g1g1

y +a3
g2g2

y−h1
xa

1
y +a4

h2h2
x+a4

g1g1
x−h2

xa
1
x−a1

h2h2
x

2−h2
ya

2
x

pr(1)v[∆3] = −g1
ya

2
h1 h1

x + g2
xa

1
g2g2

y − g1
xa

1
g2g2

x + g2
xa

1
h1h1

y − g1
xa

1
h2h2

x + g2
xa

1
h2h2

y −

g1
xa

1
h1h1

x − g1
ya

2
h2h2

x − g1
ya

2
g1g1

x − g1
ya

2
g2g2

x +a5
x + g2

xa
1
g1g1

y + g2
ya

2
h1h1

y +

g2
ya

2
h2h2

y + g2
ya

2
g1g1

y − a6
y − a6

h1h1
y − a6

h2h2
y − a6

g1g1
y − a6

g2g2
y + g2

xa
1
y +

g2
ya

2
y +a2

g2g2
y

2
+a5

h1h1
x+a5

h2h2
x+a5

g1g1
x+a5

g2g2
x−g1

xa
1
x−a1

g1g1
x

2−g1
ya

2
x

pr(1)v[∆4] = −g1
ya

2
h2h2

y − g1
xa

1
g2g2

y − g2
xa

1
g1g1

x − g1
xa

1
h1h1

y − g2
ya

2
h1h1

x − g2
xa

1
h2h2

x −

g2
xa

1
h1h1

x − g1
xa

1
h2h2

y − g1
xa

1
g1g1

y − g1
ya

2
h1h1

y − g1
ya

2
g2g2

y − g2
ya

2
h2h2

x −

g2
ya

2
g1g1

x−g2
ya

2
g2g2

x +a6
h2h2

x +a6
g1g1

x +a6
g2g2

x−g2
xa

1
x−a1

g2g2
x

2−g2
ya

2
x +

a5
y+a

6
x+a5

h1h1
y+a

5
h2h2

y+a
5
g1g1

y+a5
g2g2

y−g1
xa

1
y−g1

ya
2
y−a2

g1g1
y

2
+a6

h1h1
x.

The infinitesimal criterion gives that pr(1)v[∆i] should be 0 for each i = 1, 2, 3, 4

when ∆ = 0. Making the substitutions of ∆ = 0 into each of the above expressions

and setting them equal to 0 gives us a system of polynomials in x, y, h1, h2, g1,

g2, h1
x, h

2
x, g

1
x, g

2
x, h

1
y, h

2
y, g

1
y and g2

y. Collecting in these variables and equating

95



coefficients gives us the following system of partial differential equations.

a2
x + a6

g1 + a1
y + a5

g2 = 0 a5
g2 + a6

g1 − a1
y − a2

x = 0

−a5
g1 − a2

y + a6
g2 + a1

x = 0 a6
h1 + a5

h2 = 0

a5
h1 − a6

h2 = 0 a3
g1 − a4

g2 = 0

a1
h1 − a2

h2 = 0 −a2
g2 + a1

g1 = 0

a1
g2 + a2

g1 = 0 a3
y + a4

x = 0

−a4
y + a3

x = 0 a3
h2 + a1

y + a4
h1 + a2

x = 0

a3
h1 − a1

x + a2
y − a4

h2 = 0 a4
g1 + a3

g2 = 0

−a5
g1 − a1

x + a6
g2 + a2

y = 0 a5
x − a6

y = 0

−a4
h2 + a3

h1 − a2
y + a1

x = 0 a3
h2 − a1

y − a2
x + a4

h1 = 0

a1
h2 + a2

h1 = 0 a5
y + a6

x = 0

This system can be simplified to

ai
x = ai+1

y ai
h1 = ai+1

h2 ai
g1 = ai+1

g2

ai
y = −ai+1

x ai
h2= −ai+1

h1 ai
g2 = −ai+1

g1

for i = 1, 3, 5 and gives us that a1 + ia2, a3 + ia4 and a5 + ia6 are each analytic in

the complex variables z, h and g as defined in Section 7. These calculations were

mainly done using the software system Maple 9.5 with the Vessiot add-in package.

Since each of a1 + ia2, a3 + ia4 and a5 + ia6 are independent of each other then
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we can consider v as the sum of

v1 = a1 ∂

∂x
+ a2 ∂

∂y

v2 = a3 ∂

∂h1
+ a4 ∂

∂h2

v3 = a5 ∂

∂g1
+ a6 ∂

∂g2
.

With this we get that the infinite dimensional Lie algebra associated with the Lie

symmetries of the harmonic functions is spanned by the set of infinitesimal gener-

ators, {v1,v2,v3}.

B Calculation for Area-Preserving Harmonic Func-

tions

Instead of simply an area-preserving harmonic function, let’s consider the broader

case of harmonic with constant Jacobian. For a function f = h + g we have that

h and g are analytic and Jf = k for some constant k. These properties can be

represented by the system

∆ =




h1
x − h2

y

h1
y + h2

x

g1
x − g2

y

g1
y + g2

y

(h1
x + g1

x)(h
2
y − g2

y) − (h1
y + g1

y)(h
2
x − g2

x) − k




= 0.

If we let ∆H = 0 be the system as given in Appendix A then we can see that

S∆ ⊂ S∆H
. That is that the subvariety of ∆ is contained in the subvariety of

∆H where the subvariety of ∆, S∆, is defined by (5) on page 46. This means that

the manifold represented by the set of all points in the first jet space X × U × U1
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where ∆ = 0 as given by S∆ is a submanifold of S∆H
. Therefore if we find

the Lie symmetries that have flows contained in S∆ then we will have found a

set of Lie symmetries that have flows contained in S∆H
as well. Simply put, the

infinitesimal generators of the Lie symmetries of ∆ = 0 will form a Lie subalgebra

of the generators for ∆H .

Now let’s calculate the infinitesimal generators for ∆ = 0. If we begin again

with the generic generator

v = a1 ∂

∂x
+ a2 ∂

∂y
+ a3 ∂

∂h1
+ a4 ∂

∂h2
+ a5 ∂

∂g1
+ a6 ∂

∂g2

we will have the same first prolongation as given in Appendix A. That is

pr(1)v = a1 ∂

∂x
+ a2 ∂

∂y
+ a3 ∂

∂h1
+ a4 ∂

∂h2
+ a5 ∂

∂g1
+ a6 ∂

∂g2

+ Φ1 ∂

∂h1
x

+ Φ2 ∂

∂h1
y

+ Φ3 ∂

∂h2
x

+ Φ4 ∂

∂h2
y

+ Φ5 ∂

∂g1
x

+ Φ6 ∂

∂g1
y

+ Φ7 ∂

∂g2
x

+ Φ8 ∂

∂g2
y

where Φi, i = 1, . . . , 8 are defined in Appendix A.

To satisfy the infinitesimal criterion we must calculate each of pr(1)v[∆i] for

i = 1, 2, 3, 4, 5. For i = 1, . . . , 4, we have pr(1)v[∆i] as given in Appendix A and us-

ing the definition of Lie derivative as given in Definition 5.24 we get that pr(1)v[∆5]

is given by

a4
g2g2

yg
1
x − a5

g1g1
yh

2
x + a4

g1g1
yh

1
x − a5

h1h1
xg

2
y − a3

h2h2
xg

2
y − h2

ya
2
yh

1
x + a5

h1h1
xh

2
y − a4

g1g1
xh

1
y −

a4
h1h1

xg
1
y + a2

h1h1
y

2
h2

x + a3
g2g2

xh
2
y + h2

xa
1
xg

1
y + h2

xa
1
g1g1

xh
1
y + a4

h2h2
yg

1
x + h1

ya
2
yh

2
x + a4

yg
1
x −

a2
h2h2

y

2
h1

x+a1
h2h2

x

2
g1

y−g2
xa

1
xg

1
y−a3

yh
2
x−a5

yh
2
x+a5

h2h2
yg

2
x+h2

xa
1
h1h1

xg
1
y−h1

xa
1
g2g2

xh
2
y−a4

xg
1
y−

a3
xg

2
y +a5

xh
2
y −a4

xh
1
y +a5

yg
2
x +a3

yg
2
x−a2

g1g1
y

2
g2

x +h2
ya

2
h2h2

xg
1
y +a4

yh
1
x−h2

ya
2
h1h1

yg
1
x−a6

yh
1
x−

a6
yg

1
x − a5

xg
2
y + a6

xh
1
y + a6

xg
1
y + a3

xh
2
y +h1

ya
2
g1g1

yh
2
x −h1

ya
2
g1g1

yg
2
x +h1

ya
2
g2g2

yh
2
x +h2

xa
1
g1g1

xg
1
y +
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h2
xa

1
g2g2

xh
1
y +h2

xa
1
g2g2

xg
1
y−h2

ya
2
g1g1

xg
1
y−h2

xa
1
h2h2

yg
1
x−h2

ya
2
g1g1

yh
1
x−h2

ya
2
g2g2

yh
1
x+g1

xa
1
h1h1

xg
2
y +

g1
xa

1
h2h2

xg
2
y −g1

xa
1
g2g2

xh
2
y +g1

xa
1
g2g2

xg
2
y +g1

ya
2
g1g1

xg
2
y −g1

ya
2
g2g2

xg
2
y −g1

xa
1
g1g1

yg
2
x +g1

ya
2
h1h1

yh
2
x−

g1
ya

2
h1h1

yg
2
x−g1

ya
2
h2h2

yg
2
x+g1

ya
2
g2g2

yh
2
x−g2

xa
1
h1h1

xg
1
y−g2

xa
1
h2h2

xh
1
y−g2

xa
1
h2h2

xg
1
y−g2

xa
1
g1g1

xh
1
y +

g2
ya

2
h1h1

yg
1
x+g2

ya
2
h2h2

yh
1
x+g2

ya
2
h2h2

yg
1
x+g2

ya
2
g1g1

yh
1
x−h1

xa
1
h2h2

xh
2
y +h1

xa
1
g1g1

xg
2
y−h1

xa
1
h1h1

yg
2
x+

h1
xa

1
h2h2

xg
2
y−h1

xa
1
g1g1

xh
2
y−g1

xa
1
h1h1

xh
2
y−h1

ya
2
h2h2

yg
2
x−h2

ya
2
g2g2

yg
1
x+h1

xa
1
g2g2

xg
2
y−h1

ya
2
h1h1

xh
2
y+

h1
ya

2
h1h1

xg
2
y+h1

ya
2
h2h2

xh
2
y−h1

ya
2
g2g2

xg
2
y+h1

xa
1
h1h1

yh
2
x−g1

ya
2
yg

2
x+a5

g1g1
yg

2
x+g1

ya
2
yh

2
x−h1

xa
1
xh

2
y−

a5
g2g2

yh
2
x + a2

g1g1
y

2
h2

x + a3
h1h1

xh
2
y − a3

h1h1
xg

2
y + a3

g1g1
xh

2
y − a3

g1g1
xg

2
y + h1

xa
1
xg

2
y − a1

h1h1
x

2
h2

y +

a1
h1h1

x

2
g2

y − a3
h1h1

yh
2
x + a3

h1h1
yg

2
x + a3

h2h2
yg

2
x − a3

g1g1
yh

2
x + a3

g1g1
yg

2
x − a3

g2g2
yh

2
x − h1

ya
2
yg

2
x −

a2
h1h1

y

2
g2

x − a4
h2h2

xh
1
y − a4

h2h2
xg

1
y − a4

g2g2
xh

1
y − a4

g2g2
xg

1
y + h2

xa
1
xh

1
y + a1

h2h2
x

2
h1

y − a5
h1h1

yh
2
x +

a4
h2h2

yh
1
x + a4

h1h1
yg

1
x + a4

g2g2
yh

1
x − h2

ya
2
yg

1
x − a2

h2h2
y

2
g1

x − a5
h2h2

xg
2
y + a5

g1g1
xh

2
y − a5

g1g1
xg

2
y +

a5
g2g2

xh
2
y − g1

xa
1
xh

2
y + g1

xa
1
xg

2
y − a1

g1g1
x

2
h2

y + a1
g1g1

x

2
g2

y + a5
h1h1

yg
2
x + a6

h2h2
xh

1
y + a6

h2h2
xg

1
y +

a6
h1h1

xg
1
y + a6

g1g1
xh

1
y + a6

g2g2
xh

1
y + a6

g2g2
xg

1
y − g2

xa
1
xh

1
y − a1

g2g2
x

2
h1

y − a1
g2g2

x

2
g1

y − a6
h1h1

yg
1
x −

a6
h2h2

yh
1
x−a6

h2h2
yg

1
x−a6

g1g1
yh

1
x−a6

g2g2
yh

1
x−a6

g2g2
yg

1
x+g2

ya
2
yh

1
x+g2

ya
2
yg

1
x+a2

g2g2
y

2
h1

x+a2
g2g2

y

2
g1

x.

Again, while their sizes may be intimidating, each of the pr(1)v[∆i] is simply a

polynomial in the variables x, y, h1, h2, g1, g2, h1
x, h

2
x, g

1
x, g

2
x, h

1
y, h

2
y, g

1
y and g2

y .

Now to satisfy the infinitesimal criterion, we must again make the substitutions of

∆ = 0 into each of the pr(1)v[∆i], group the polynomials by their terms and equate

each of them with 0. Doing this will yield the following system of partial differential

equations.

−a1
x + a5

h1 − a6
h2 + a3

h1 + a4
h2 − a2

y = 0 a2
g1 + a1

g2 = 0

−a6
g2 − a5

h1 + a4
h2 − a6

h2 − a3
h1 + a3

g1 + a5
g1 + a4

g2 = 0 −a1
g1 + a2

g2 = 0

a3
h1 − a2

y − a4
h2 + a1

x = 0 a1
h2 + a2

h1 = 0

−a1
x − a2

y + a3
g1 + a5

g1 − a4
g2 + a6

g2 = 0 a4
x + a3

y = 0

−a1
y − a2

x + a3
h2 + a4

h1 = 0 a2
h2 = 0
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a4
h1 + a6

g1 + a3
g2 − a4

g1 − a6
h1 + a3

h2 + a5
g2 + a5

h2 = 0 a2
h1 − a1

h2 = 0

a2
x + a6

g1 + a1
y + a5

g2 = 0 a1
g2 − a2

g1 = 0

−a3
x − a5

x − a4
y + a1

h1 + a6
y = 0 a5

h1 − a6
h2 = 0

a1
g1 + a1

h1 + a2
g2 = 0 a3

g2 + a4
g1 = 0

a4
x + a3

y + a5
y − a6

x = 0 a3
g1 − a4

g2 = 0

−a5
x + a1

h1 − a3
x + a4

y − a6
y = 0 a1

h1 = 0

−a2
y + a6

g2 + a1
x − a5

g1 = 0 a6
x + a5

y = 0

−a6
g2 + a1

x + a5
g1 − a2

y = 0 −a6
y + a5

x = 0

a4
h1 + a3

h2 + a1
y + a2

x = 0 −a2
h2 + a1

h1 = 0

−a5
g2 + a2

x − a6
g1 + a1

y = 0 a4
y − a3

x + a1
h1 = 0

a4
h2 + a1

x − a3
h1 − a2

y = 0 a5
h2 + a6

h1 = 0

−a4
x + a5

y + a6
x + a3

y = 0

Solving the above system of partial differential equations gives us that

a1(z, h, g) = c10x− c7y + c1

a2(z, h, g) = c10y + c7x+ c2

a3(z, h, g) = c12g
1 + c11g

2 + c10h
1 − c8h

2 + c3

a4(z, h, g) = c12g
2 + c10h

2 − c11g
1 + c8h

1 + c4

a5(z, h, g) = c10g
1 + c12h

1 − c9g
2 − c11h

2 + c5

a6(z, h, g) = c9g
1 + c11h

1 + c12h
2 + c10g

2 + c6

where each ci is an arbitrary real number.

Substituting each of the ai into v and then factoring with respect to the ci will
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give us

v = c1

(
∂

∂x

)
+ c2

(
∂

∂y

)
+ c3

(
∂

∂h1

)
+ c4

(
∂

∂h2

)
+ c5

(
∂

∂g1

)
+ c6

(
∂

∂g2

)

+ c7

(
−y ∂

∂x
+ x

∂

∂y

)
+ c8

(
−h2 ∂

∂h1
+ h1 ∂

∂h2

)
+ c9

(
−g2 ∂

∂g1
+ g1 ∂

∂g2

)

+ c10

(
x
∂

∂x
+ y

∂

∂y
+ h1 ∂

∂h1
+ h2 ∂

∂h2
+ g1 ∂

∂g1
+ g2 ∂

∂g2

)

+ c11

(
g2 ∂

∂h1
− g1 ∂

∂h2
− h2 ∂

∂g1
+ h1 ∂

∂g2

)

+ c12

(
g1 ∂

∂h1
+ g2 ∂

∂h2
+ h1 ∂

∂g1
+ h2 ∂

∂g2

)
.

Successively setting all ci to 0 except for one of them gives us the following

infinitesimal generators

v1 =
∂

∂x
v7 = −y ∂

∂x
+ x

∂

∂y

v2 =
∂

∂y
v8 = −h2 ∂

∂h1
+ h1 ∂

∂h2

v3 =
∂

∂h1
v9 = −g2 ∂

∂g1
+ g1 ∂

∂g2

v4 =
∂

∂h2
v10 = x

∂

∂x
+ y

∂

∂y
+ h1 ∂

∂h1
+ h2 ∂

∂h2
+ g1 ∂

∂g1
+ g2 ∂

∂g2

v5 =
∂

∂g1
v11 = g2 ∂

∂h1
− g1 ∂

∂h2
− h2 ∂

∂g1
+ h1 ∂

∂g2

v6 =
∂

∂g2
v12 = g1 ∂

∂h1
+ g2 ∂

∂h2
+ h1 ∂

∂g1
+ h2 ∂

∂g2

where vi corresponds to setting all but ci to 0. Since the set {v1, . . . ,v12} spans

a Lie algebra over R corresponding to the Lie symmetries of ∆ = 0, then we need

not consider v1 as v1 = c1
∂

∂x
since we can multiply by c−1

1 for c1 6= 0 giving us

v1 =
∂

∂x
. This is true in general thus justifying the 12 infinitesimal generators that

we have stated.

Let’s consider the exponentiations of each of these. First consider v1, . . . ,v6 and

their respective exponentiations. For each of these, the boundary valued differential
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equation to solve for each of the exponentiations is essentially the same. Consider

that v1 =
∂

∂x
. This leads to the equation

dx̃

dε
= 1

with x̃|0 = x. We can see that this has solution x̃ = x + ε. Each of ỹ, h̃1, . . . , g̃2

remains unchanged yielding that z̃ = z + ε, h̃(z) = h(z) and g̃(z) = g(z). The

exponentiations for v2, . . . ,v6 are derived in the same way.

For v7,v8 and v9 we must solve basically the same system of differential equa-

tions as we have for v7 which is the system

dx̃

dε
= −ỹ, dỹ

dε
= x̃

subject to x̃|0 = x and ỹ|0 = y. This has solution x̃ = x cos ε − y sin ε and ỹ =

y cos ε+ x sin ε. This gives us that

z̃ = x̃+ iỹ

= (x cos ε− y sin ε) + i(y cos ε+ x sin ε)

= x(cos ε+ i sin ε) + iy(cos ε+ i sin ε)

= eiε(x+ iy)

= eiεz.

For v7 we get h̃(z) = eiεh(z) and for v8 we get g̃(z) = eiεg(z).

For v10 we must solve

dx̃

dε
= x̃,

dỹ

dε
= ỹ,

dh̃1

dε
= h̃1,

dh̃2

dε
= h̃2,

dg̃1

dε
= g̃1,

dg̃2

dε
= g̃2

subject to x̃|0 = x, . . . , g̃2|0 = g2. The system has solution x̃ = eεx, . . . , g̃2 = eεg2

thus giving us that z̃ = eεz, h̃(z) = eεh(z) and g̃(z) = eεg(z).
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At this point notice that our notation is slightly misleading in that each of the

exponentiated functions h̃ and g̃ technically should have independent variable z̃

instead of z, that is that h̃(z) should really be h̃(z̃). The adoption of the notation

as given in this paper is for simplicity and it will always be clear from context what

is meant. We must therefore solve for z in terms of z̃ in order to find the transformed

functions h̃ and g̃. Doing so gives us the inverse transform of z and since ε acting

on z is a Lie group action then the inverse action is simply the action of the inverse

of ε on z, that is z = e−εz̃. We can see this from Definition 5.22. Therefore h̃(z) is

given by h̃(z) = eεh
(
e−εz

)
and g̃(z) by g̃(z) = eεg

(
e−εz

)
.

For the exponentiation of v11 we must solve

dh̃1

dε
= g̃2,

dh̃2

dε
= −g̃1,

dg̃1

dε
= −h̃2,

dg̃2

dε
= h̃1

subject to the same boundary conditions as above. This system has solution

h̃1 = h1 cosh ε+ g2 sinh ε

h̃2 = h2 cosh ε− g1 sinh ε

g̃1 = g1 cosh ε− h2 sinh ε

g̃2 = g2 cosh ε+ h1 sinh ε

which gives us that

h̃ = (h1 cosh ε+ g2 sinh ε) + i(h2 cosh ε− g1 sinh ε)

= h cosh ε− ig sinh ε

g̃ = (g1 cosh ε− h2 sinh ε) + i(g2 cosh ε+ h1 sinh ε)

= g cosh ε+ ih sinh ε.
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Since the exponentiation of v12 is very similar to that of v11, we will not show

its calculation. The exponentiations of each of the vi are given by

v1 : h̃(z) = h(z − ε), g̃(z) = g(z − ε)

v2 : h̃(z) = h(z − iε), g̃(z) = g(z − iε)

v3 : h̃(z) = h(z) + ε, g̃(z) = g(z)

v4 : h̃(z) = h(z) + iε, g̃(z) = g(z)

v5 : h̃(z) = h(z), g̃(z) = g(z) + ε

v6 : h̃(z) = h(z), g̃(z) = g(z) + iε

v7 : h̃(z) = h
(
e−iεz

)
, g̃(z) = g

(
e−iεz

)

v8 : h̃(z) = eiεh(z), g̃(z) = g(z)

v9 : h̃(z) = h(z), g̃(z) = eiεg(z)

v10 : h̃(z) = eεh(e−εz), g̃(z) = eεg(e−εz)

v11 : h̃(z) = h(z) cosh ε− ig(z) sinh ε, g̃(z) = g(z) cosh ε+ ih(z) sinh ε

v12 : h̃(z) = h(z) cosh ε+ ig(z) sinh ε, g̃(z) = g(z) cosh ε+ ih(z) sinh ε

where we can see that h̃(z) = h(z) and g̃(z) = g(z) for each of the above exponen-

tiations when ε = 0, thus verifying the trivial action of ε on h and g.

These exponentiations can be composed in any way to give another transform.

This is the composition of the action of ε on z, h and g and not simply the com-

position of the transformed functions. Since each ε is independent of the others,

we will notate the differences by subscripts. For an example of composing consider

h(z) 7→ eiε1h(z) and h(z) 7→ h(z) + ε2, which compose to give that

h(z) 7→ eiε1h(z) 7→
(
eiε1h(z)

)
+ ε2 = eiε1h(z) + ε2
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or composition in the other direction gives

h(z) 7→ h(z) + ε2 7→ eiε1 (h(z) + ε2) = eiε1h(z) + ε2e
iε1

where either composition is valid and are not necessarily equal.

C Calculation for Harmonic Functions with Pre-

scribed Convexity

The title for this appendix and for Section 9 is a little misleading in that it relies on

Theorem 3.12 to give us convexity by fixing h−g when f̃ is locally univalent, which

cannot be encoded in the system ∆ = 0. We will calculate the Lie symmetries for h

and g analytic with h− g being a fixed function and we will let h− g be an analytic

univalent function convex in the direction of the real axis and apply Theorem 3.12

to f̃ to get its convexity in the direction of the real axis. If f̃ is locally univalent

then Theorem 3.12 gives us that f̃ is convex in the direction of the real axis.

Let’s begin with our system of differential equations,

∆ =




h1
x − h2

y

h1
y + h2

x

g1
x − g2

y

g1
y + g2

y

h1 − g1 − F 1

h2 − g2 − F 2




= 0

where F 1(z) + iF 2(z) is analytic and fixed. We can see that ∆ = 0 represents h

and g being analytic and h− g being a fixed function. Let the general infinitesimal
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generator be

v = a1 ∂

∂x
+ a2 ∂

∂y
+ a3 ∂

∂h1
+ a4 ∂

∂h2
+ a5 ∂

∂g1
+ a6 ∂

∂g2

as given in Appendix A and Appendix B and note that the first prolongation is the

same as well. Therefore

pr(1)v = a1 ∂

∂x
+ a2 ∂

∂y
+ a3 ∂

∂h1
+ a4 ∂

∂h2
+ a5 ∂

∂g1
+ a6 ∂

∂g2

+ Φ1 ∂

∂h1
x

+ Φ2 ∂

∂h1
y

+ Φ3 ∂

∂h2
x

+ Φ4 ∂

∂h2
y

+ Φ5 ∂

∂g1
x

+ Φ6 ∂

∂g1
y

+ Φ7 ∂

∂g2
x

+ Φ8 ∂

∂g2
y

where Φi, i = 1, . . . , 8 are defined in Appendix A.

Now to satisfy the infinitesimal criterion we must find the Lie derivatives of

the prolongation of v for each of ∆i. For ∆1, . . . ,∆4, these are the same as in

Appendix A so we need only calculate pr(1)v[∆5] and pr(1)v[∆6]. Definition 5.24

gives us that

pr(1)v[∆5] = a3 − a5 − a1F 1
x − a2F 1

y

pr(1)v[∆6] = a4 − a6 − a1F 2
x − a2F 2

y .

Making the substitution of ∆ = 0 into each of the prolongations, setting them to

0 and comparing the coefficients of these polynomials gives us the following system

of differential equations.

a3
x − a4

y = 0 a2
h1 + a1

h2 = 0

a2 = 0 a3 − a5 = 0

−a2
g2 + a1

g1 = 0 a2
g1 + a1

g2 = 0

a4
g1 + a3

g2 = 0 a4
h2 − a3

h1 + a1
x − a2

y = 0
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a4
h1 + a3

h2 + a1
y + a2

x = 0 −a2
h2 + a1

h1 = 0

−a4
g2 + a3

g1 = 0 a3
y + a4

x = 0

−a3
h2 + a1

y − a4
h1 + a2

x = 0 −a4
h2 + a3

h1 + a1
x − a2

y = 0

a6
y − a5

x = 0 a5
g2 + a2

x + a6
g1 + a1

y = 0

−a6
h2 + a5

h1 = 0 a6
h1 + a5

h2 = 0

−a2
y − a5

g1 + a1
x + a6

g2 = 0 a5
y + a6

x = 0

a1
x − a2

y + a5
g1 − a6

g2 = 0 −a5
g2 + a1

y − a6
g1 + a2

x = 0

a1 = 0 a4 − a6 = 0

Solving this system yields a1, a2 ≡ 0, a3 = a5, a4 = a6 and that a3 + ia4 is

analytic in each of z, h and g. Therefore we have that

v = a3 ∂

∂h1
+ a4 ∂

∂h2
+ a3 ∂

∂g1
+ a4 ∂

∂g2

is the infinitesimal generator for the Lie symmetries. Since the coefficients of
∂

∂x

and
∂

∂y
are 0 then we can see that a reparametrization of the domain in any way

is not given by the Lie symmetries. We should note that since a3 and a4 are not

independent of each other then we cannot split the infinitesimal generator into

smaller elements. Therefore v alone spans the Lie algebra corresponding to the Lie

symmetries of harmonic functions with h− g being fixed.

C.1 A Finite Dimensional Lie Subalgebra

We want to consider a subalgebra of the algebra spanned by the generator as given

in Appendix C. If we let

a3(z, h, g) = c1 + c3x− c4y + c5h
1 − c6h

2 + c7g
1 − c8g

2
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and

a4(z, h, g) = c2 + c3y + c4x+ c5h
2 + c6h

1 + c7g
2 + c8g

1

where each ci is an arbitrary real number then it can be verified that

(a3 + ia4)(z, h, g) = (c1 + ic2) + (c3 + ic4)z + (c5 + ic6)h+ (c7 + ic8)g

is analytic in z, h and g. If we substitute a3 and a4 into v and factor in each ci we

get that

v = a3 ∂

∂h1
+ a4 ∂

∂h2
+ a3 ∂

∂g1
+ a4 ∂

∂g2

= c1

(
∂

∂h1
+

∂

∂h2

)
+ c2

(
∂

∂h2
+

∂

∂g2

)

+ c3

(
x
∂

∂h1
+ y

∂

∂h2
+ x

∂

∂g1
+ y

∂

∂g2

)

+ c4

(
−y ∂

∂h1
+ x

∂

∂h2
− y

∂

∂g1
+ x

∂

∂g2

)

+ c5

(
h1 ∂

∂h1
+ h2 ∂

∂h2
+ h1 ∂

∂g1
+ h2 ∂

∂g2

)

+ c6

(
−h2 ∂

∂h1
+ h1 ∂

∂h2
− h2 ∂

∂g1
+ h1 ∂

∂g2

)

+ c7

(
g1 ∂

∂h1
+ g2 ∂

∂h2
+ g1 ∂

∂g1
+ g2 ∂

∂g2

)

+ c8

(
−g2 ∂

∂h1
+ g1 ∂

∂h2
− g2 ∂

∂g1
+ g1 ∂

∂g2

)
.

By successively setting the ci to 0 we get the following eight infinitesimal generators:

v1 =
∂

∂h1
+

∂

∂g1

v2 =
∂

∂h2
+

∂

∂g2

v3 = x
∂

∂h1
+ y

∂

∂h2
+ x

∂

∂g1
+ y

∂

∂g2

v4 = −y ∂

∂h1
+ x

∂

∂h2
− y

∂

∂g1
+ x

∂

∂g2

v5 = h1 ∂

∂h1
+ h2 ∂

∂h2
+ h1 ∂

∂g1
+ h2 ∂

∂g2
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v6 = −h2 ∂

∂h1
+ h1 ∂

∂h2
− h2 ∂

∂g1
+ h1 ∂

∂g2

v7 = g1 ∂

∂h1
+ g2 ∂

∂h2
+ g1 ∂

∂g1
+ g2 ∂

∂g2

v8 = −g2 ∂

∂h1
+ g1 ∂

∂h2
− g2 ∂

∂g1
+ g1 ∂

∂g2

where vi corresponds to setting all but ci to 0. These eight generators span a finite

dimensional Lie subalgebra of the infinite dimensional one calculated in Appendix C.

Let’s consider the exponentiations of each of the vi. The exponentiation for v1

comes from solving the system

dh̃1

dε
= 1,

dg̃1

dε
= 1

subject to the aforementioned boundary conditions. This system has solution h̃1 =

h1 + ε and g̃1 = g1 + ε which yields the exponentiation of h̃(z) = h(z) + ε and

g̃(z) = g(z)+ ε. The exponentiation of v2 is similar and yields h̃(z) = h(z)+ iε and

g̃(z) = g(z) + iε.

To exponentiate v3 we solve

dh̃1

dε
= x̃,

dh̃2

dε
= ỹ,

dg̃1

dε
= x̃,

dg̃2

dε
= ỹ

which has solution h̃1 = h1 + εx, h̃2 = h2 + εy, g̃1 = g1 + εx and g̃2 = g2 + εy. This

solution gives us the exponentiation of h̃(z) = h(z) + εz and g̃(z) = g(z) + εz. The

exponentiation of v4 is similar and yields h̃(z) = h(z) + iεz and g̃(z) = g(z) + iεz.

The exponentiation of v5 and v7 are also similar. The exponentiation of v5

arises from the system

dh̃1

dε
= h̃1,

dh̃2

dε
= h̃2,

dg̃1

dε
= h̃1,

dg̃2

dε
= h̃2

which has solution h̃1 = eεh1, h̃2 = eεh2, g̃1 = g1 +eεh1−h1 and g̃2 = g2 +eεh2−h2.

This gives us that h̃(z) = eεh(z) and g̃(z) = g(z) + eεh(z) − h(z). For v7 we have

that h̃(z) = h(z) + eεg(z) − g(z) and g̃(z) = eεg(z).
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In order to exponentiate v6 we find that the solution of

dh̃1

dε
= −h̃2,

dh̃2

dε
= h̃1,

dg̃1

dε
= −h̃2,

dg̃2

dε
= h̃1

is h̃1 = h1 cos ε − h2 sin ε, h̃2 = h2 cos ε + h1 sin ε, g̃1 = g1 + h1 cos ε − h2 sin ε − h1

and g̃2 = g2 + h2 cos ε + h1 sin ε − h2. This gives us that h̃(z) = eiεh(z) and

g̃(z) = g(z)+ eiεh(z)−h(z). This is similar to the exponentiation of v8 which gives

that h̃(z) = h(z) + eiεg(z) − g(z) and g̃(z) = eiεg(z).

The exponentiations of each of the vi are given by

v1 : h̃(z) = h(z) + ε, g̃(z) = g(z) + ε

v2 : h̃(z) = h(z) + iε, g̃(z) = g(z) + iε

v3 : h̃(z) = h(z) + εz, g̃(z) = g(z) + εz

v4 : h̃(z) = h(z) + iεz, g̃(z) = g(z) + iεz

v5 : h̃(z) = eεh(z), g̃(z) = g(z) + eεh(z) − h(z)

v6 : h̃(z) = eiεh(z), g̃(z) = g(z) + eiεh(z) − h(z)

v7 : h̃(z) = h(z) + eεg(z) − g(z), g̃(z) = eεg(z)

v8 : h̃(z) = h(z) + eiεg(z) − g(z), g̃(z) = eiεg(z)

where we can see that h̃(z) = h(z) and g̃(z) = g(z) for each of the above exponen-

tiations when ε = 0 verifying the trivial action of ε on h and g.

C.2 An Infinite Dimensional Lie Subalgebra

We will begin with an arbitrary analytic function φ(z) = φ1(z) + iφ2(z) of strictly

the variable z. If we let a3(z, g) = φ1(z) + g1 and a4(z, g) = φ2(z) + g2 we have

satisfied the necessary conditions for a3 + ia4 as given in Appendix C, that is that

110



(a3 + ia4)(z, g) = φ(z) + g is analytic in z and in g. Therefore

v = (φ1(z) + g1)
∂

∂h1
+ (φ2(z) + g2)

∂

∂h2
+ (φ1(z) + g1)

∂

∂g1
+ (φ2(z) + g2)

∂

∂g2

will be an infinitesimal generator of Lie symmetries for harmonic functions with h−g

fixed and will span an infinite dimensional subalgebra of the algebra presented in

Appendix C.

To exponentiate this we must solve the system

dh̃1

dε
= φ(z̃) + g̃1,

dh̃2

dε
= φ2(z̃) + g̃2,

dg̃1

dε
= φ1(z̃) + g̃1,

dg̃2

dε
= φ2(z̃) + g̃2

where φ(z̃) is not a function of ε because we have no flow in the
∂

∂x
or

∂

∂y
coordi-

nates. Therefore we could consider

dx̃

dε
= 0 and

dỹ

dε
= 0

as part of the system as well but this gives us the trivial solution of z̃ = z and

therefore the entire system has solution

h̃1 = h1 + eεg1 − g1 + φ1(z) (eε − 1)

h2 = h̃2 + eεg2 − g2 + φ2(z) (eε − 1)

g̃1 = eεg1 + φ1(z) (eε − 1)

g̃2 = eεg2 + φ2(z) (eε − 1)

and if we make the substitution that ϕ = φ (eε − 1) then we get the exponentiation

of

h̃(z) = h(z) + eεg(z) − g(z) + ϕ(z)

and

g̃(z) = eεg(z) + ϕ(z).
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