
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2005-04-13

A Flexible Circuit-Switched Communication Network for FPGA-A Flexible Circuit-Switched Communication Network for FPGA-

Based SOC Design Based SOC Design

Clint Richard Hilton
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Hilton, Clint Richard, "A Flexible Circuit-Switched Communication Network for FPGA-Based SOC Design"
(2005). Theses and Dissertations. 312.
https://scholarsarchive.byu.edu/etd/312

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/312?utm_source=scholarsarchive.byu.edu%2Fetd%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A FLEXIBLE CIRCUIT-SWITCHED COMMUNICATION

NETWORK FOR FPGA-BASED SOC DESIGN

by

Clint R. Hilton

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Brigham Young University

August, 2005

ii

Copyright c© 2005 Clint R. Hilton

All Rights Reserved

iv

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Clint R. Hilton

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Brent E. Nelson, Chair

Date Michael J. Wirthlin

Date Doran K. Wilde

vi

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Clint R.
Hilton in its final form and have found that (1) its format, citations, and bibliograph-
ical style are consistent and acceptable and fulfill university and department style
requirements; (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate committee and is
ready for submission to the university library.

Date Brent E. Nelson
Chair, Graduate Committee

Accepted for the Department

Michael A. Jensen
Graduate Coordinator

Accepted for the College

Douglas M. Chabries
Dean, Ira A. Fulton College
of Engineering and Technology

viii

ABSTRACT

A FLEXIBLE CIRCUIT-SWITCHED COMMUNICATION

NETWORK FOR FPGA-BASED SOC DESIGN

Clint R. Hilton

Department of Electrical and Computer Engineering

Master of Science

As FPGA densities continue to improve, single chips are becoming capable

of implementing larger and more complex systems. Even today these systems may

include several processors working in conjuction with a handful of other standard

interfaces or custom modules. Additional system complexity naturally leads to added

complexity throughout the different design and implementation stages. Attempting

to design such a system while maintaining high performance and within a reasonable

time frame is becoming more and more difficult.

Architectural design approaches ranging from direct module interconnection

to sophisticated bus schemes have been used to build such systems, all with their

own trade-offs. Often direct module interconnection results in the best overall perfor-

mance but at the cost of design time and flexibility. Bus schemes on the other hand

attempt to simplify the integration of the different hardware modules and allow for

a more modular design approach. However, since the bus is a single shared intercon-

nection medium, a practical limit is placed on the system’s acheivable throughput.

A relatively new architectural approach to system design involves a network-based

x

communication infrastructure. A network-based interconnect scales much better than

the shared bus and provides a potential increase in system throughput capabilites.

An effective approach would be one that can provide the throughput capa-

bilities of direct interconnect, the modular design advantages of the shared bus, and

the flexibility to adapt to different system requirements while maintaining lightweight

communication.

A design infrastructure that attempts to meet these requirements has been

developed. This infrastructure is based on a circuit-switched network architecture.

The circuit-switching aspect allows two nodes, or modules, to temporarily establish

a direct and dedicated connection for high-throughput data transfer. The network-

based topology allows this to occur without tying up all the interconnect resources as

other routes can be used to connect the other nodes. Each node is connected to the

network via a well-defined interface therefore allowing for modular design. Flexibility

is built into the architecture to accommodate many different topology configurations.

Lightweight protocols and handshaking mechanisms are used to establish node-to-

node connections, and initiate and terminate data transfers.

Two different example applications have been implemented with this network-

based interconnect: one that involves the use of a single resource that must be shared

among different modules, and another that has high system bandwidth requirements

and dynamically schedules the use of functionally identical resources. These imple-

mentations were then compared against that of a bus-based approach. Both applica-

tions illustrate the effectiveness of this network architecture in SoC implementation.

xi

xii

Contents

List of Tables xvii

List of Figures xx

1 Introduction 1

1.1 Programmable SoCs . 2

1.1.1 Dynamic Module Replacment 3

1.2 Ideal Architectural Approach . 4

1.3 Common Architectural Approaches 4

1.4 Programmable Network on Chip . 8

1.5 Structure of This Work . 8

2 Background 11

2.1 Relevant Work in SoC Design . 11

2.2 Relevant Work in NoC Design . 13

2.2.1 Packet-Switching Architectures 13

2.2.2 FPGA-Specific Architecture 14

2.2.3 Packet Switching vs Circuit Switching 15

2.3 Status of Xilinx Partial Reconfiguration 17

2.4 JHDL . 19

2.5 Summary . 19

3 Programmable Network on Chip: General Description 21

3.1 Circuit-Switched Architecture . 21

3.1.1 Network Routers . 23

3.1.2 Network Modules . 26

xiii

3.1.3 CPU Interfaces . 27

3.2 Modular Design Flow . 28

3.3 Clocking Scheme . 28

3.4 Data Flow Control . 28

3.5 Summary . 29

4 PNoC Router Description 31

4.1 Router Component Overview . 32

4.2 Parameterizable Features . 32

4.2.1 Port Interface . 32

4.2.2 Router Connectivity . 34

4.3 Routing Table . 34

4.3.1 Table Updates . 34

4.3.2 Illustrative Example . 36

4.4 Connection Process . 37

4.4.1 Table Arbitration . 37

4.4.2 Port Arbitration . 39

4.4.3 Termination Process . 41

4.4.4 Illustrative Example . 41

4.5 Summary . 43

5 PNoC Module Interface 45

5.1 Node Interface . 45

5.1.1 Router Updates . 46

5.1.2 Interface FIFOs . 48

5.2 Data Transfer Process . 48

5.2.1 Master Node Data Transfer 48

5.2.2 Slave Node Data Transfer . 50

5.2.3 Illustrative Examples . 50

5.3 Summary . 52

xiv

6 PNoC CPU Interface 53

6.1 Memory-Mapped Interfacing . 53

6.2 Network CPU Software . 54

6.2.1 CPU As Master . 55

6.2.2 CPU As Slave . 59

6.3 Summary . 60

7 PNoC Implementation Results 61

7.1 PNoC Router Results . 61

7.2 PNoC Module Interface Results . 62

7.3 PNoC CPU Interface Results . 63

7.4 Network Architecture Comparison . 63

7.5 Summary . 65

8 PNoC Test Applications 67

8.1 Autonomous Robot . 68

8.1.1 General Implementation Details 69

8.1.2 Shared Bus Implementation 70

8.1.3 Network Implementation . 70

8.1.4 System Comparisons . 71

8.2 Image Binarization . 72

8.2.1 General Implementation Details 74

8.2.2 Shared Bus Implementation 76

8.2.3 Network Implemenation . 76

8.2.4 System Comparisons . 77

8.3 Summary . 79

9 Conclusion 81

9.1 Summary . 81

9.2 Conclusions . 82

9.3 Future Work . 83

xv

A PNoC Tutorial 87

A.1 Hello World Hardware Design . 87

A.1.1 The NetInterface Class . 88

A.1.2 Network Module Design: A UART Example 88

A.1.3 Network CPU Design: A Microblaze Example 89

A.1.4 Top-Level System Design . 89

A.2 Hello World Software . 90

A.3 Building the System . 90

A.4 Hello World Source Code . 91

A.4.1 UartNode.java . 91

A.4.2 MicroblazeNode.java . 92

A.4.3 NetMicroblaze.java . 93

A.4.4 Microblaze.java . 95

A.4.5 HelloWorld.java . 97

A.4.6 HelloWorld.c . 100

A.4.7 Software Makefile . 102

A.4.8 Hardware Makefile . 103

Bibliography 107

xvi

List of Tables

4.1 Router Port Interface Signals . 33

5.1 Node Port Interface Signals . 46

7.1 Router Results . 61

7.2 Module Interface Results . 62

7.3 CPU Interface Results . 63

7.4 Network Comparison Results . 65

8.1 Robot System Comparison . 71

8.2 Binarization System Comparison . 78

xvii

xviii

List of Figures

1.1 System on Chip Mapping . 2

1.2 Direct Module Interconnect . 5

1.3 Memory-mapped Peripheral Bus . 5

1.4 Bus/Direct-interconnect Hybrid . 6

1.5 Network on Chip Interconnect . 7

2.1 The CLICHE Architecture . 14

2.2 Butterfly Fat-Tree Network . 15

2.3 Xilinx System Floorplan for Dynamic Module Support 18

3.1 Example PNoC Topology . 22

3.2 A Single Router System . 23

3.3 High Intra-Router Bandwidth . 24

3.4 Routing Table Updates . 26

4.1 Router Block Diagram . 31

4.2 Topology for Dynamic Module Support 35

4.3 Router Update Process . 36

4.4 Table Arbitration Process - Block Diagram 38

4.5 Table Arbitration Process - Timing Diagram 39

4.6 Switch-box Hardware Diagram . 40

4.7 Port Connection Process . 42

5.1 Node Interface Hardware . 47

5.2 A Module’s Router Update Request 47

5.3 A Module’s Connection Request . 49

5.4 Master Node Write Sequence . 51

5.5 Master Node Read Sequence . 52

xix

6.1 Network CPU Interfacing . 54

6.2 Network CPU Interfacing in Software 56

6.3 CPU Interface - Connection Request 58

6.4 CPU Interface - Data Transfer . 59

6.5 CPU Interface - Connection Release 60

7.1 Network Architectures . 64

8.1 Robot Top-Level Modules . 68

8.2 Binarization Top-Level Modules . 73

A.1 Hello World System . 87

xx

Chapter 1

Introduction

The number of transistors that can be packed onto a single chip continues to

increase at an exponential rate [1]. This increase in chip density clearly leads to an

increase in the amount of logic that can be incorporated on the chip. More available

logic resources allow for the implementation of larger and more complex systems. As

a result the notion of a System on Chip (SoC) has taken form and become a popular

research topic.

In the context of this work, an SoC is a system of interconnected components

that are implemented on a single chip. SoCs often consist of a heterogeneous mix of

components that include one or more general purpose microprocessors. Traditionally,

systems often required complex board-level design since each component was imple-

mented on a separate chip (ASSP, ASIC). Today however, similar systems can be

targeted to a single chip as illustrated in Figure 1.1. Integrating everything onto a

single chip often results in improvements in power consumption, manufacturing costs,

and in many cases design time.

As these systems continue to grow in size and complexity, incorporating ef-

fective communication between components in a reasonable time-frame is becoming

increasingly difficult. A significant amount of work has been done in an attempt to

standardize SoC communication in order to facilitate intellectual property (IP) reuse

and reduce design time. Shared buses and packet-switched network architectures are

two of the more commonly proposed standard interconnects. This work compares

these different approaches and presents an alternative interconnection scheme that

1

Micro
Processor

Memory

Custom
Block

IO
Block Processor

Custom
Block

Memory

IO Block

System Board
System on Chip

Figure 1.1: System on Chip Mapping

consists of a flexible circuit-switched rather than packet-switched network infrastruc-

ture. The advantages of this approach will be explained throughout this work.

1.1 Programmable SoCs

A special family of chips known as Field Programmable Gate Arrays (FPGAs)

are among those that have taken advantage of increasing chip densities. FPGAs

are chips whose function can be defined at run-time through the downloading of

a configuration bitstream. Because of the amount of logic resources available on

today’s FPGAs, entire systems can be implemented thereon. The combination of fast

reconfigurability and vast resource availability make FPGAs an attractive target for

SoC implementation. For these reasons the research presented in this work is targeted

to FPGAs.

Though FPGAs are often larger, slower, and less energy efficient than their

ASIC counterparts, FPGA-based SoC design provides several important advantages

as identified in [2]:

• Fast Time-to-Market. The process of implementing a circuit onto an FPGA

simply requires the generation and downloading of a configuration bitstream.

Since this bitstream is generated with software tools and can be downloaded

onto the FPGA in just seconds, these systems can quickly be tested and made

2

ready for production. ASICs on the other hand require a mask to be generated

and then shipped off for fabrication, which can take months, before being able

to test the actual hardware implementation.

• Lower Manufacturing Costs. This bitstream generation process is not only

fast, it is also inexpensive. Improvements can be made to the system design

and a new bitstream generated without any additional cost. Fabrication of

ASICs however, is extremely expensive. Unless the product is intended for

mass production, many cannot even afford the manufacturing costs.

• Flexibility. The flexibility provided by FPGAs through reconfiguration is what

set them apart from traditional ASICs. This allows for system updates as

improvements are made and bugs are identified and corrected. The ability to

completely change the system’s operation on the fly is a valuable feature for

many application domains. Several FPGA families also come equipped with

the ability to perform partial reconfiguration, where only a specific portion of

the circuitry is modified on the fly while the rest remains busy performing its

defined task. This opens up a completely new design paradigm that involves

the capabilities of dynamic module replacement.

1.1.1 Dynamic Module Replacment

In order to understand where dynamic module replacement might prove useful,

it is first important to discuss the different components that might make up an SoC.

In many system-based applications a CPU, or a group of CPUs, make up the primary

control for the system. The CPU core communicates with the other modules of the

system to complete the desired task. These other modules may consist of standard

interfaces such as a UART controller or memory interface, or they may be completely

custom circuits that perform some specialized computation.

The advantage of dynamic module replacement arises when certain modules

are used during specific time periods throughout the system’s active life. In such cases

these modules can be plugged in only when needed, and then replaced by something

3

that would prove more useful during the times the module is not needed. Likewise,

if certain responsibilities of the system change over time, more appropriate modules

can be plugged into the system to meet its changing needs.

1.2 Ideal Architectural Approach

In considering the challenges of system design, an ideal SoC architecture would

be one that includes the following characteristics:

• High system throughput. Fast and unimpeded data transfer between mod-

ules.

• System flexibility. Architecture configurability that enables the construction

of numerous topologies to meet the specific system requirements.

• Lightweight communication. Interconnect mechanism doesn’t severely limit

the resources available for system task modules and simple protocols for low-

overhead communication.

• Modular design. Design approach that facilitates reuse of IP blocks with as

little concern for the interconnect mechanism as possible.

1.3 Common Architectural Approaches

Many different architectural approaches have been proposed to meet the chal-

lenges of complex SoC design. Some of the more common SoC architectural ap-

proaches and their respective trade-offs can be categorized as follows:

• Direct Module Interconnect. Shown in Figure 1.2, this approach consists of

modules that are directly connected in a custom manner so data can be trans-

ferred between modules exactly as needed. As a result, systems designed using

this approach tend to achieve higher throughput, lower latency, and in most

cases require fewer resources. However, since this is a more custom approach,

design time is lengthened, and flexibility is reduced. Whenever a module is

4

Processor
Memory Custom

Block IO
Block

Figure 1.2: Direct Module Interconnect

modified during the design phase, the entire interconnection associated with

that module may also require modification.

Processor

Memory Custom
Block

IO
Block

Shared Bus

Figure 1.3: Memory-mapped Peripheral Bus

• Memory-mapped Peripheral Bus. By nature this approach, shown in Fig-

ure 1.3, is often processor-centric and uses a shared memory/peripheral bus to

allow for communication between modules. Because there is a fixed interface

to the shared bus, this architecture lends itself to a modular design approach

therefore resulting in reduced design time and increased flexibility. The use of a

single shared bus however, places a limit on the achievable system throughput

5

and can significantly increase the worst-case latency. As the system increases

in size the bus becomes an even more severe bottleneck.

Processor

Memory Custom
Block

IO
Block

Shared Bus

Figure 1.4: Bus/Direct-interconnect Hybrid

• Bus/Direct-interconnect Hybrid. One of the more common approaches

currently used is a combination of the previous two design strategies. This

hybrid approach, shown in Figure 1.4, generally uses a shared peripheral bus

for all communication involving processor(s) and/or memory interface(s). For

other intra-module communication, direct interconnect may be used. In many

cases this approach takes advantage of the strengths of both strategies. The

ability to have modules directly connected may remove the shared bus as the

throughput bottleneck, and at the same time reduce average bus access latency.

As previously mentioned, this direct interconnect can have adverse effects on

the design time and flexibility of the system design.

• Network on Chip Interconnect. There are many different variations of net-

work topologies that have been proposed to serve as the interconnect for SoCs.

Most consist of a 2-D mesh-based topology, similar to that shown in Figure 1.5,

6

Processor

Memory

Custom
Block

Custom
Block

IO
Block

IO
Block

Figure 1.5: Network on Chip Interconnect

and perform packet switching using wormwhole or cut-through routing. In gen-

eral, a network interconnect provides several advantages over the bus architec-

ture. Probably the most important advantage is in its scalability. Systems are

only going to get larger and more complex as time goes on, and bus architectures

will likely not accommodate the increasing communication demands. Network

architectures may soon become the dominant interconnection mechanism. In

addition to their scalability, their potential for high-throughput data transfer is

a feature that may help to propel them to the forefront of SoC architectures. In

many cases network-based interconnect also results in a more energy-efficient

system since the data does not need to be broadcast to every module of the

system. However, there are a few concerns with the network architectures that

have been proposed. The main disadvantages result from the overhead incurred

by the networking infrastructure. The routing circuitry tends to tie up a sig-

nificant portion of the available resources. Also the packet-switched nature of

these architectures cause problems for applications that require heavy data flow

between modules. The process of forming, parsing, and buffering packets in-

curs substantial overhead. Because of these weak points, none of the proposed

network architectures have become widely accepted for use in SoC design.

7

1.4 Programmable Network on Chip

An SoC architecture has been created that attempts to match the character-

ists of the ideal SoC. This architecture is based on a circuit-switched rather than

packet-switched networking infrastructure. A router, or series of routers, is used

as the interconnect medium for the system’s modules. Lightweight protocols and

handshaking mechanisms are used to establish dedicated point-to-point connections

between two modules to allow for high-throughput data transfer. Other modules can

simultaneously establish point-to-point connections since there is no single shared bus

but a series of possible routes between modules.

A significant amount of flexibility has been built into this architecture to allow

for the creation of numerous network topologies. Due to the programmable nature

of the proposed network architecture, this infrastructure will be referred to as Pro-

grammable Network on Chip (PNoC). A modular design approach can be used since

each module has a well-defined port interface to this network. This often results in

improved design time and increased design flexibility as it becomes much easier to

modify or replace modules during the design process.

Another important benefit of a fixed communication interface is the ability

to support dynamic module replacement. Unfortunately the current design flows as

provided by FPGA vendors for partial reconfiguration are not well-developed. Gener-

ating dynamic module bitstreams, though possible, is a relatively difficult task. The

work described here doesn’t actually demonstrate the dynamic replacement feature

but support for it is built into the architecture.

1.5 Structure of This Work

In the chapters that follow, current SoC architectures will be identified, and

the PNoC will be described in more detail. The following is an outline of what is

contained in this work:

• Related work in this area is presented and analyzed.

• A general technical description of the PNoC is provided.

8

• A discussion of the network router.

• An explanation of network modules and their design requirements.

• The details of the CPU network interface and its corresponding software usage

are described.

• Two example applications are presented and the features they exploit are iden-

tified. Their PNoC implementation is also compared to that of a more standard

approach.

• A conclusion of this work is provided.

The appendix provides a step-by-step tutorial for constructing a system using

the PNoC architecture.

9

10

Chapter 2

Background

A significant amount of work has been done that has helped to inspire and

motivate some of the architectural decisions that have gone into this research. The

first section of this chapter describes different advancements that have been realized

in SoC design. The second section of the chapter analyzes different network-based

approaches that have been proposed and their respective contributions. The third

section briefly describes the status of partial reconfiguration for Xilinx FPGAs. The

fourth and final section introduces JHDL (a Java-based Hardware Description Lan-

guage), which was used in the implementation of this work.

2.1 Relevant Work in SoC Design

In recent years SoC design has become a viable solution for the implementation

of a variety of complex systems. Initially, and still in many cases these SoCs are

designed in a custom manner and are specific to the application at hand. Many

researchers realize however, that as chip densities continue to increase, and systems

grow in size and complexity, the design of such systems in a reasonable time-frame

will not likely be feasible. As a result, the push for a more general or standard

interconnection mechanism that will allow for a modular design approach is critical

for future SoC design.

A common architecture that is based on a processor-centric system is that of

the shared bus, shown previously in Figure 1.3. Example bus architectures that have

become well established include the ARM-based AMBA bus [3] and IBM’s CoreCon-

nect [4]. Since the shared bus is a standard interconnection medium, it allows for a

11

modular design approach that facilitates IP reuse [5]. Given a well-defined interface

to the bus, each module can be effectively designed, tested, and debugged indepen-

dently. However, a strictly bus-based architecture has serious limitations since the

modules of the system are confined to a single bus for all data transfers. A more

favorable bus architecture is one that supports multiple split buses through the use of

bus bridges. This can allow multiple bus transactions to occur simultaneously as long

as they occur on different bus segments. However, split-bus architectures affect the

design simplicity and flexibility of the system as changes to the system components

may also require changes to the overall bus structure.

Another bus-based approach that is often attractive is the bus/direct-

interconnect hybrid architecture (refer back to Figure 1.4). Such an architecture

is provided in both Xilinx’s Embedded Development Kit (EDK) [6] and Altera’s

System On Programmable Chip (SOPC) Builder [7]. Both platforms use a shared

bus architecture, but maintain the design flexibilty that allows for modules to be

directly interconnected as well. The shared bus is primarily used for communication

involving the CPU or memory interface. The direct interconnect capabilities allow

for high-throughput data transfer between modules.

In such systems the CPU is often used to coordinate the scheduling of tasks

and then perform certain functions that are not time-critical while the hardware mod-

ules execute the compute-intensive tasks. Since the modules can pass data through

direct connections, the shared bus is often eliminated as the system’s performance

bottleneck. In addition to increasing the system throughput capabilities, this hybrid

architecture also scales better than a typical bus approach because only the modules

that need to communicate with the CPU actually need to connect to the bus. The

direct connection capabilities, however, do complicate the design process. This cus-

tom interconnect reduces the modularity of the system so more time must be spent

verifying the integration of the system modules.

12

2.2 Relevant Work in NoC Design

As the trend for larger and more complex SoCs continues, several important

design considerations arise. In [8] a few of these are identified and discussed. One

that received particular attention involves system clocking schemes. In many current

SoC architectures, the systems are implemented using a single clock source. As chips

become more dense, and systems become more complex, this simple clocking scheme

will not suffice. Instead a globally asynchronous – locally synchronous scheme was

proposed to meet the needs of today’s growing systems.

In addition to clocking, it was also suggested that the limited scalabilty of bus

architectures will eventually give rise to network-based interconnects. The shared-

medium bus architectures are effective for systems requiring only a handful of inter-

connected modules, but for larger systems the bus becomes a critical limiting factor.

On-chip networks that provide multiple interconnecting routes between modules are

an attractive solution for increasingly complex SoCs.

2.2.1 Packet-Switching Architectures

One of the early network architectures proposed for use in SoCs was developed

at Stanford and presented in [9]. In making their case for a network-based approach,

it was pointed out that networks would be preferred to buses because they have

higher potential bandwidth as they are capable of supporting multiple concurrent

data transactions. Their proposed architecture consists of a 2-D folded torus topology

where each module includes a small area reserved for networking logic so that packets

can be routed among all modules on the network.

Another group [10], proposed a similar 2-D mesh topology that requires a rout-

ing switch for each module on the network as shown in Figure 2.1. They named their

approach CLICHE (Chip− Level Integration of Communicating Heterogeneous

Elements) as they emphasized the notion of heterogeneous system design. They

argue that many systems perform a variety of tasks and therefore require a hetero-

geneous mix of modules to make up the system. Though their architecture is highly

scalable, they concede that their architecture is unsuitible for certain heavy data flow

13

IP Block

Switch Block

Figure 2.1: The CLICHE Architecture

systems due to its limited performance which comes as a result of its message passing

overhead.

Research published in [11], at the University of British Columbia, proposed

a completely different network topology in an attempt to create an effective SoC

architecture. This topology, shown in Figure 2.2, is described as a butterfly fat-tree

graph where the leaves of the tree represent the IP blocks and the vertices correspond

to the network switches. The motivation for this topology is to minimize wire delay

for the system. This architecture helps to reduce global wire lengths between nodes

and allows for better interconnect delay predictions. Their argument as to why bus

architectures are so limited is due to the bus’s long wire delays. With their proposed

architecture, the minimal wire delays would serve as the major source for improved

overall system performance and scalability.

2.2.2 FPGA-Specific Architecture

The network architectures previously described are targeted to general SoC

platforms. A few network-based SoC architectures have been developed that specif-

ically target FPGAs. One such architecture was proposed by a group from Belgium

14

Figure 2.2: Butterfly Fat-Tree Network

[12]. The topology for this architecture is similar to that proposed in [9]. It consists

of a 2-D torus topology and performs packet switching through the use of wormhole

routing. This work was among the first in publication to use partial reconfiguration

for dynamic module replacement in the context of network-on-chip design. With a

fixed routing network established, partial reconfiguration could be used to dynam-

ically replace individual modules on the network, allowing for dynamic hardware

multi-tasking. A more detailed description of this process is provided in Section 2.3.

2.2.3 Packet Switching vs Circuit Switching

All of the network architectures previously mentioned make use of packet

switching, and surprisingly few even mention the possibility of a circuit-switched

approach. Two groups: [13] and [14], provide strong arguments for the use of circuit-

switched networks in SoC implementations.

The major difference between packet-switched and circuit-switched networks

is in how the data is transferred between modules [15]. In packet-switched networks,

15

data packets, also called datagrams, consist of fixed-length blocks of data that con-

tain routing information and are independently routed through the network to the

desired destination. In circuit-switched networks, a dedicated connection path (i.e.

virtual circuit) between two modules is established so the raw data can be freely

transferred between the modules.

Packet-switched networks often allow for greater resource utilization as many

packets can be in flight at a given instant. They are well-suited to systems that ex-

hibit short, bursty data traffic that can easily be formed into packets [14]. However,

in general they require more sophisticated congestion control and packet process-

ing. Large buffers are often required to queue up packets awaiting the availability of

routing resources.

Circuit-switched networks, on the other hand, are connection-based, meaning

that a module must first go through the process of establishing a dedicated connection

path to the desired destination before transferring data. This can introduce undesir-

able latency, but once the connection is made, high-throughput data transfer between

the modules can be guaranteed, and the data latency is extremely predictable. In

general, circuit-switched networks are better suited for data traffic that is longer in

duration as the connection setup time becomes negligible [14]. A common argument

against circuit switching is its potential for significant underutilization of the commu-

nication links. Connections may be established in which the communication remains

idle for an extended period of time. This can result in inefficient resource utilization

if other modules need access to that communication link.

Both [13] and [14] propose fixed circuit-switched network topologies and fo-

cus on link scheduling techniques to maximize communication link utilization. This

research presents a flexible circuit-switched network that uses a low-overhead connec-

tion setup process to accommodate both long and short data traffic and improve link

utilization. A circuit-switched approach was chosen due to its relative simplicity, low

overhead, modular design, and intra-module throughput capabilities.

16

2.3 Status of Xilinx Partial Reconfiguration

Partial reconfiguration as currently supported by Xilinx is explained in [16].

This capability allows one or more configuration frames to be reconfigured while the

rest of the chip remains active. Special bus macros are used to retain connectivity

between the logic being reconfigured and the active portion. Such a feature allows

for the design of a static routing fabric and a series of reconfigurable nodes or mod-

ules. The modules retain their connection to the routing fabric during reconfiguration

through the use of these bus macros. Because of the frame structure of current Xil-

inx devices, there are some design limitations when attempting to support partial

reconfiguration. The reconfigurable modules must meet the following requirements:

• Since reconfiguration frames are column-based, the module’s height must always

be the full height of the device.

• Since the reconfiguration frames are each four slices wide, the module must be

horizontally placed on four-slice boundaries and its width must be a multiple

of four slices.

• All logic resources that lie within the boundary of the reconfigurable mod-

ule are part of that module’s reconfiguration frame. This includes all block

RAMs, multiplier blocks, TBUFs, IOBs, and routing resources. This makes

generic module-based bitstream generation a difficult task since the configura-

tion frames are not identical.

Generating a bitstream for a module that meets these requirements involves

specific floorplanning. This can be done at the HDL level through the use of low-

level LOC calls to constrain the tools during the placement phase. The alternative is

to design the module using a low-level tool such as FPGA Editor. Neither of these

solutions are very attractive for large or complex modules. Unfortunately there is

currently no high-level constraint parameters that can be applied to a module at the

top-level to keep it constrained within a specified reconfiguration frame.

17

Once a partial bitstream has been generated, it can be loaded onto the FPGA

through the use of the Xilinx internal reconfiguration access port (ICAP). ICAP con-

sists of an 8-bit input data bus and an 8-bit output data bus that allows internal logic

to reconfigure the device’s configuration memory, therefore modifying the hardware’s

functionality. Work presented by a group at Xilinx [17] introduces a software API

for accessing the ICAP on a Virtex-II device. Through these API calls the system

software can perform the dynamic module insertion/replacement.

As mentioned in Section 2.2.2, the research presented in [12] uses partial recon-

figuration to provide dynamic module support. Their work uses the ICAP API calls

to perform the desired hardware replacement. In order for their system’s modules to

meet the reconfiguration requirements previously listed, their 2-D torus was folded

into a 1-D torus and bus macros were incorporated at the module port interfaces. A

floorplan of their system is shown in Figure 2.3.

IP Block Router Bus Macro

Figure 2.3: Xilinx System Floorplan for Dynamic Module Support

18

As mentioned previously, because of the difficulty in generating useful partial

reconfiguration bitstreams, this work doesn’t demonstrate the use of dynamic mod-

ule replacement, but provides architectural support for that capability once partial

bitstream generation becomes more widely supported.

2.4 JHDL

The actual implementation of this work was done using JHDL and its associ-

ated simulation tools. JHDL, developed at Brigham Young University and presented

in [18], consists of a library of Java classes that provide an object-oriented approach

to structural FPGA circuit design. Also included in this library is a graphical sim-

ulation environment and EDIF netlister. The following features of JHDL led to its

selection as the principle design tool for this work:

• Standard programming language - Java, a well-developed, widely-used pro-

gramming language with extensive documentation, significantly facilitates the

construction of parameterizable circuits.

• Debugging capabilities - the circuit generation process can be easily mon-

itored and debugged with the use of traditional software debugging tools and

print statements. A native Java simulation tool that uses the Swing libraries

allows for seamless integration between circuit generation and circuit simulation.

• Polymorphism - the ability for network modules to extend the NetInterface

class simplifies the design of user modules and their integration with the network

infrastructure.

2.5 Summary

Much work has been done recently in the area of SoC design. As custom

approaches have been dominant in SoC design up to this point, two alternatives

have been growing in popularity: bus-based and network-based architectures. Shared

bus architectures have gained momentum since on-chip processor cores have become

increasingly common in SoC implementations. This processor-centric infrastructure

19

allows for a modular design flow that simplifies SoC design. Network architectural

approaches have been growing in popularity as chip densities continue to increase and

SoCs grow in size and complexity. The network’s scalability and potential bandwidth

improvements make them an attractive alternative.

Several network architectures have been identified, most of which use packet

switching with wormhole routing. The network architecture proposed in this work

is based on a circuit-switched communication mechanism to allow for localized high-

throughput data transfer. Extensive flexibility is provided to allow for numerous

system configurations and run-time dynamic module replacement. Lightweight pro-

tocols and modular-based design simplify the creation of systems components. JHDL

has been selected as the design tool for this system as its features further simplify the

design of parameterizable system modules.

20

Chapter 3

Programmable Network on Chip: General Description

The goal of this work is to create an effective interconnection framework for

use in SoC design. Two major aspects set this work apart from that which has

been previously done. First is the circuit-switched approach that this architecture

implements, which can guarantee high-throughput data transfer between two modules

that share a dedicated connection. The second characteristic is the flexibility built

into this architecture that simplifies the creation of numerous system topologies while

maintaining lightweight communication. Several pieces are required to make such a

system work. This chapter is dedicated to giving a general description of these pieces

and illustrates how they come together to make an effective network architecture. The

following chapters provide a more detailed explanation of the actual implementation

for each of these pieces.

3.1 Circuit-Switched Architecture

As discussed previously, circuit switching provides advantages over packet

switching in that once two modules have set up a dedicated connection between

each other, they are guaranteed a period of unimpeded data transfer. This takes

advantage of an assumption made on general heterogeneous systems – which is that

most of the critical high-throughput data transfer occurs between specific nodes, and

is not uniform among all modules of the system. Circuit switching can allow the crit-

ical nodes to establish dedicated connections to more effectively increase the system’s

throughput capabilities.

21

Node A Node B
Router

2

43

1

5 7

6 8

Router
2

43

1

5 7

6 8

Figure 3.1: Example PNoC Topology

The proposed network topology consists of a series of subnets where each

subnet consists of a single router along with several network modules or nodes. Figure

3.1 shows how a simple system might be connected using this architecture. The

architectural features that define the circuit-switched nature of this network are built

into the system’s routers. A lightweight handshaking mechanism is used to establish

the dedicated connection between modules. The node that desires to establish the

connection, referred to as the master node (Node A in the figure), sends a request to

the router. The router services the request and determines which port is associated

with the desired target node (Node B). In this example the connection request is

forwarded on to the second router since the target node (Node B) resides in its

subnet. The second router then processes the request to identify the port connected

to the target node. Once that port (port 2) becomes available, the router establishes

the dedicated connection and informs the master that the connection has been made.

The master and slave are then free to transfer data as necessary.

Once the master has determined that the data transfer is complete, a port

release command is sent to the router and the connection is terminated. The released

ports then become available for use by other modules. A timeout mechanism has also

been incorporated into the router that monitors the requests for a busy port. If a

22

pending request awaits the release of a busy port, a pend signal will be issued to that

connection’s master node. The master node can monitor this signal to detect when

a timeout occurs, at which point the master issues a release command to allow the

pending module access to the shared resource. If the master node still needs access

to the port it can re-issue a connection request command and wait for the port to

become available again. It is through this time-multiplexing mechanism that no single

module can completely tie up a shared resource. This timeout mechanism is optional

since there may be some cases where a master node cannot allow interruption of its

dedicated connection.

3.1.1 Network Routers

In this architecture the network is divided up into one or more subnets. The

router serves as the central module for each subnet on the network. Each router can

be configured with up to eight ports that serve as the interface by which modules are

connected to the router.

1

3

5

7 8

6

4

2
Router

Figure 3.2: A Single Router System

23

In systems where several subnets are required, some of those ports must be

reserved for intra-router connections so that data can be transferred between subnets.

The data widths for these ports are parameterizable. The configurability of these

routers allows for the creation of a topology that is specialized for the application at

hand. The manner in which modules are connected to the routers is also flexible. In

designs that involve only a few modules, a single router can be used with all ports

available for module connectivity as shown in Figure 3.2.

Router
2

43

1

5 7

6 8

Router
2

43

1

5 7

6 8

Figure 3.3: High Intra-Router Bandwidth

On the other hand, in systems that involve many modules and require signif-

icant cross-subnet communication, several of the router’s ports can be connected to

neighboring routers to increase the intra-subnet bandwidth. An example of such a

system is shown in Figure 3.3.

As mentioned in the previous section, the routers are responsible for the es-

tablishment of dedicated connections between modules. In making these connections,

the router performs two different phases of arbitration. The first phase involves ar-

bitration for access to the routing table. When a connection request is received from

a master node, it is accompanied by a destination address. The router arbitrates

24

which master’s request to process and then performs a table look-up to see which

port is associated with the selected master’s target address. Module addresses in this

system are function based. For example, two modules that perform the exact same

task can be configured to have the same source address. In this way it is possible

to increase performance if multiple modules often perform a common task and there

exist multiple such resources. Since there may be multiple instances of a particular

target address it is likewise possible that there exist multiple ports associated with

that address. This is where the second phase of arbitration occurs. The router selects

just one of the ports in order to establish the dedicated connection, and leaves the

other open for another module to access.

Since the routing table is the means by which the router associates modules and

ports, in order to support dynamic module replacement there must exist a mechanism

for updating the routing table. This initially occurs at startup. Each module sends

a router update request to its associated subnet router. The router services these

requests similar to a connection request and modifies its table. Then, when a module

is to be replaced via partial reconfiguration, the dynamic module controller, whether it

be software based or a dedicated hardware block, is responsible for clearing the module

to be replaced from the routing table. Once the new module has been configured into

the network it must send a router update request to update the routing table with

its source address. When the router services a router update request it forwards that

request on to all routers with which it is connected. In this manner each router on the

network knows exactly which ports are associated with a particular module address.

Figure 3.4 illustrates how a recently configured module with a source address

of 5 updates the routers on the network. Represented in the figure is a three-stage

update process. In the first stage the updating node issues a router update request to

its subnet router. During the second stage, the router updates its table by modifying

the entry at index 5 (the node’s source address). The data in the table is a mask

value where each bit corresponds to one of the router’s ports. In this example, a

0x01 is written at index 5 for the first router since port 1 was the source of the

update request. Also during stage 2, the router forwards the update request to the

25

Stage 1 Node
Router

1 2

Update
Request

Index Data

5 0x00

Router
3

Index Data

5 0x00

Stage 2 Node
Router

1 2
Index Data

5 0x01

Router
3

Index Data

5 0x00

Stage 3 Node
Router

1 2
Index Data

5 0x01

Router
3

Index Data

5 0x04

Forward
Request

Figure 3.4: Routing Table Updates

other router(s) in the network. The neighboring router updates its table during stage

three, which involves writing the value 0x04 at index 5. A 0x04 is written as it maps

to port 3 (0x04: the third bit is a 1). This process continues until each router has

received the update and is capable of associating the node address 5 with one of its

port interfaces.

3.1.2 Network Modules

A network module can consist of practically any hardware task block. This

might range from something as simple as a single adder to something as complex as

an entire subsystem. The only qualification for a network module is that it must

require some sort of communication with other network modules and it must fit

on the target device. Good candidates for network modules are those blocks that

can be shared by several different hardware tasks. Some examples might include

26

standard interfaces such as memory controllers, UART controllers, and other off-chip

communication interfaces. Special custom modules may also fit these requirements.

If several hardware tasks require the use of an FFT block or some common custom

computation, that computation can be implemented as a network module and can

therefore be shared among the modules that require its services. Another hardware

block that is likely a good candidate to be implemented as a network module is a

general purpose processor. In many systems, a CPU is the module responsible for

controlling the scheduling of tasks and, as a result, requires connectivity to all the

hardware modules involved.

Once a hardware task block has been identified as a viable network module it

must be appropriately interfaced to the network. As a result, each network module

consists of two parts: the hardware task block and the network interface. All modules

connected to the network must conform to a well-defined top-level interface so that

dynamic module connectivity can be supported. The network interface portion of the

module is responsible for performing router update requests and connection requests.

It is also responsible for the implementation of congestion control and crossing clock

domains if required by the network implementation. Both of these issues will be

addressed later in this chapter.

3.1.3 CPU Interfaces

In this system, CPU modules are a special type of network module. In order for

a CPU to effectively communicate with other modules on the network, there are two

types of memory mapping that must take place. The first is a mapping for establishing

network connections, and the second is a mapping for network-based data transfers.

The CPU’s connectivity to the network is directly controlled by the software. The

software uses a network access pointer to initiate and terminate connections to other

modules on the network. Similarly, the software then uses a network data pointer to

transfer data to the desired network module. Chapter 6 explains the details of the

CPU network interface.

27

3.2 Modular Design Flow

One of the design advantages that is shared by both network and bus ar-

chitectures is that of a modular design flow. Both approaches take advantage of a

well-defined interconnection mechanism that allows the designer to focus on the func-

tionality of a module and reduce the effort spent on the design and debug of the

interconnect mechanism. In both systems the modules must conform to the top-level

port interfaces and obey the associated communication protocol, but in general this

can be verified effectively at the module level.

Another advantage that comes as a result of this module-based infrastructure

is flexibility both at the design phase and during run-time. Design time flexibility

simply involves the notion that top-level module instantiation is similar among all

modules. Replacing modules at design time only requires modifications to the module

instantiations. Little or no change is required to the interconnect. The only possible

change is that of port parameterization and involves no extra design. Run-time

module replacement is a little more involved but can be a powerful feature for a

system. Dynamic module replacement requires the use of partial reconfiguration as

explained in section 2.3.

3.3 Clocking Scheme

The clocking scheme envisioned for this network architecture involves a single

global clock for the network backbone (i.e. the system routers) and then separate

clocks that are local to the modules of the system. For a small network topology a

single system clock could be used, but the capability to handle multiple clock domains

is vital for large systems. The boundaries for clock domains are located at the node

interfaces, where FIFOs are used to accommodate the differing data rates.

3.4 Data Flow Control

Supporting multiple data rates on chip implies the potential for overflowing

buffers. If a master node is capable of sending data at a rate that exceeds the slave

node’s ability to receive that data, it won’t take long before the slave’s buffer is filled

28

and data is lost. In order to prevent such occurrences, a flow-control mechanism has

been built into the architecture. This mechainsm involves the use of a clear-to-send

(CTS) signal in conjuction with the node interface FIFOs. The CTS signal can either

be manually disabled by the node module or it will automatically be disabled when

the node interface’s receive FIFO is almost full. The almost full flag is used so that

data already in flight can be safely stored in the FIFO.

In order for flow control to be fully supported however, the CTS signal must

be taken into account in the module design. The sending module must monitor the

CTS signal and stall data tranfers until CTS is again raised.

3.5 Summary

The strengths of this architecture lie in its circuit-switching advantages and

system flexibility. The circuit-switching nature of this architecure allows for localized

high-throughput data transfer between nodes. The flexibility includes that from both

design and run-time perspectives and comes as a result of a standard interconnection

interface and router/module parameterization.

The routers are the pieces responsible for managing the dedicated connections

between modules, and the modules themselves contain network interfacing circuitry

that aid in the handling of asynchronous data flow. A special CPU interface is

used to connect a general processor to the network infrastructure, and its network

access is controlled by the software. The chapters that follow describe in detail the

implemenation for each of these major components.

29

30

Chapter 4

PNoC Router Description

The router is the core of this network architecture. This chapter describes the

implementation details of the router and explains the major components involved.

The flexibility built into the router is explained, identifying its parameterizable fea-

tures. Then, a description is provided as to how the routing table works and how it

is updated as the system changes. Finally, the process of point-to-point connection

control is explained.

Table
Arbiter

SwitchBox

Routing
Table

Port
Arbiter

Request Index Dest Mask

Src Mask

Grant

Enable

Rx Signals Tx Signals

Pend

Release

Rx SignalsTx Signals

Rx Addr

Port Valid

Port
Queue

Port Mask

Figure 4.1: Router Block Diagram

31

4.1 Router Component Overview

The major components of the router are shown in the block diagram of Figure

4.1 and described as follows:

• Table Arbiter - The table arbiter receives connection requests and schedules

access to the routing table when mulitple requests are received on the same

clock cycle. This block is also responsible for managing the routing table update

requests.

• Routing Table - The routing table maps network module addresses to ports

that may be used to establish connections between modules.

• Port Queue - This queue is used to maintain the connection request order

while the requests await availability of the target port(s).

• Port Arbiter - Once the target port(s) becomes available, the port arbiter

establishes the desired connection and issues the appropriate grant signals.

This block also monitors the release signals for the disabling of connections.

• Switch Box - The switch box forms the actual connections between modules

by enabling tri-state buffers that allow the Rx signals to drive the appropriate

Tx signals.

4.2 Parameterizable Features

The flexibility that is built into the routers is key to enabling the construction

of a wide variety of systems. Two major pieces of the router design are parameteriz-

able therefore allowing for numerous system topologies. First is parameterization of

the port interfaces that connect to the router. Second is the flexible way that routers

may be connected to each other and to the other modules of the system.

4.2.1 Port Interface

Each router is built with a parameterizable number of port interfaces with up

to a maximum of eight ports. The number of port interfaces indicates how many

32

different modules can be connected to the router. The signals that define each port

interface as seen by the router are listed in Table 4.1.

Table 4.1: Router Port Interface Signals

Signal Name Direction Description

request input initiates either a router update request or a
connection request

release input initiates a connection release
grant output indicates to the network module that its

connection request has been granted
sl grant output indicates a connection has been established

with the target node as a slave
pend output indicates that another module is requesting

access to the destination port
rx data[X:0] input rx data bus of parameterizable width
rx addr[Y:0] input rx address bus of parameterizable width
rx rnw input rx read-not-write signal
rx valid input indicates valid rx data, address, and rnw signals
rx cts input rx clear-to-send signal
tx data[X:0] output tx data bus of parameterizable width
tx addr[Y:0] output tx address bus of parameterizable width
tx rnw output tx read-not-write signal
tx valid output indicates valid tx data, address, and rnw signals
tx cts output tx clear-to-send signal

The widths of the rx data, tx data, rx addr, and tx addr signals are param-

eterizable up to a maximum width of 32 bits. Since ports of differing widths may

be connected to each other, by convention the least significant bits of the larger

bus are tied to the smaller bus signals. For example, if a 32-bit rx data from one

port connnects to an 8-bit tx data of another port only the least significant 8 bits of

rx data will actually be connected to tx data.

33

Care must be taken when parameterizing the bus widths for a router’s ports

when that router is to be used with dynamic module replacement. Once a router’s

port widths have been set they are fixed and cannot be dynamically modified.

4.2.2 Router Connectivity

The other flexible aspect of the routers is in how they can be connected to the

other modules of the system, including other routers. A topology can be constructed

that best meets the specific system’s needs. If a system requires more bandwidth

between adjacent routers, mulitple ports can be used to connect the routers. Also if

a system would benefit from multiple instances of a particular module, the routers

have the capability built-in to establish a connection with whichever one is avaliable

at the time. The details of how this works will be described in Section 4.4.2.

Depending on the FPGA used, this system-level flexibility may be compro-

mised some when support for dynamic module replacement is desired. Because of

the design restrictions identified in Section 2.3 to support dynamically replaceable

modules, the network, implemented on Xilinx FPGAs, is limited to a column-based

topology. Such a system may look similar to that shown in Figure 4.2.

4.3 Routing Table

An important part of the router is its routing table. This table is responsible

for mapping a given module address to the appropriate port interface. When a master

node requests a connection to a given target node, the address associated with that

target node is used as the index to the routing table. The output of the routing table

is a mask value that identifies the ports that may be used to establish a route to the

target node. Each bit of this mask value maps to one of the router’s port interfaces.

4.3.1 Table Updates

Upon startup, and whenever a change is made to the network through dynamic

module replacement, the routing tables are updated via router update requests. The

34

R
O
U
T
E
R

R
O
U
T
E
R

R
O
U
T
E
R

R
O
U
T
E
R

Figure 4.2: Topology for Dynamic Module Support

modules are responsible for adding themselves to and removing themselves from the

routing table of the router that lies in their subnet.

These router update requests are implemented as connection requests ad-

dressed to the router. Routers maintain a fixed source address value of 0x00. When-

ever a router receives a request from one of its port interfaces that is addressed to

0x00, it is recognized as a router update request. If the corresponding rx rnw sig-

nal is low then the request is to add the module to the routing table, otherwise the

request is to remove the module. When adding a module to the routing table, the

rx data signal represents the module’s source address and is used to index the routing

table. A read-modify-write is performed in which the table output is logically or’d

with the port mask that made the router update request. Upon completion of the

update request, the updating node’s grant signal is raised and that node can begin

requesting network connections.

Once a router update request has been serviced, that request is forwarded

on to all adjacent routers until each router on the network has updated its table

35

appropriately. Each router is initially configured with routing table entries for all of

its adjacent routers so that routers know through which ports to forward the router

update requests. In order to prevent a flooding of router update requests, the routers

check to see if the updating entry is already in the routing table. If so the router does

not forward the request.

4.3.2 Illustrative Example

A simple example will be used to illustrate how a router update request is

processed. The timing waveform in Figure 4.3 will be used to help describe each step

of the process.

Signal Name Cycle 1 Cycle 2 Cycle 3 Cycle 4

port2_request

port2_grant

port2_rx_addr

port2_rx_data

port2_rx_rnw

request_mask

table_read_en

table_write_en

table_index

table_data_in

table_data_out

0x00

0x02

0x02

0x00

0x12

0x12

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

Figure 4.3: Router Update Process

36

In this example a module with a source address of 0x12 is connected to the

router’s port-2 interface. During clock cycle 1, this module initiates the router update

request by raising its port2 request line while addressing the router (port2 rx addr =

0x00) and presenting its source address on the data bus (port2 rx data = 0x12).

During this cycle the port2 rx data is used to index the routing table and begin the

read-modify-write process. At clock cycle 2 the output of the routing table becomes

valid (table data out = 0x00) and is logically or’d with the request mask value.

The result (table data in = 0x02) is then written to the routing table. This is

how the module’s address gets associated with the appropriate port interface. The

result of this process is the value 0x02 stored at location 0x12. Then, when a module

makes a connection request in which the desired target module has address 0x12, the

router will associate that address with the port-2 interface and establish the desired

connection.

4.4 Connection Process

The primary function of the routers is to manage the establishment of dedi-

cated connections between modules. Since multiple ports can make requests during

the same clock cycle, this process involves a few levels of arbitration. The first is

responsible for allowing access to the routing table and is controlled by the table

arbiter. The second, controlled by the port arbiter, is in determining which port to

use to establish the connection. Once a connection has been established the router

serves as a single pipeline stage for the data transfer between the connected modules.

4.4.1 Table Arbitration

The routing table can only service one request at a time. Since multiple port

requests can be issued on the same clock cycle, a table arbitration scheme is needed to

determine which port gets access to the table. This arbitration scheme is implemented

in a round-robin-like fashion. A series of ring counters are used to assign priorities

to each port’s request line. The request with the highest priority is given access to

the router for that given transaction. The priority ring counter is then incremented,

37

and the next high priority request is determined. This process continues in similar

fashion as long as there are pending requests.

Since the connection requests only require access to the routing table for one

cycle, the maximum table access latency is equal to the number of ports in the router.

An example will be used to illustrate the table arbitration for two requests that are

received on the same clock cycle. The block diagram in Figure 4.4 illustrates the

modules involved in the connection process and the corresponding timing diagram is

shown in Figure 4.5.

Node 1

Node 4
Addr:0x34

Node 3
Addr:0x12

Node 21

3 4

2
Router

Request
0x12

Request
0x34

Figure 4.4: Table Arbitration Process - Block Diagram

In this example, Node 1 requests a connection to Node 3, and Node 2 requests

a connection to Node 4. Since these requests are issued simultaneously, the router’s

port interfaces 1 and 2 receive the requests on the same cycle. Port 1 involves a

connection request to a module with an address of 0x12 while port 2 addresses 0x34.

At the time that these requests occur, during clock cycle 1, port 1 is assigned a priority

level of 1 while port 2 is assigned priority level 2. Therefore port 1 is of higher priority

and gets access to the routing table first. This is evident during clock cycle 2 where

the table index is 0x12 which is the port1 rx addr value. On the next clock cycle

port 2 is granted access as the table index is 0x34, the port2 rx addr value.

The module addressed as 0x12 (Node 3) is connected to port 3, and the module

addressed as 0x34 (Node 4) is connected to port 4. These address/port associations

38

Signal Name Cycle 1 Cycle 2 Cycle 3 Cycle 4

port1_request

port1_rx_addr

port2_request

port2_rx_addr

port1_priority

port2_priority

table_index

table_data_out

port1_dest_mask

port2_dest_mask

0x12

0x34

4

1

3

4

1

2

0x12XXXX

XXXX

0x34 XXXX

0x04 0x08

XXXX 0x04

XXXX 0x08

Figure 4.5: Table Arbitration Process - Timing Diagram

are determined by the router during clock cycles 3 and 4. During clock cycle 3, one

cycle after port 1’s table access, the table data out value of 0x04 maps to port 3 as

the third bit is a 1. Similarly during clock cycle 4, one cycle after port 2’s table

access, the table data out value is 0x08 which maps to port 4. These mapping mask

values are later used by the port arbiter to enable the connections between Node 1

and Node 3, and between Node 2 and Node 4.

4.4.2 Port Arbitration

Once a port has successfully accessed the routing table, the table’s output

is used to determine with which port the requesting node must connect in order to

establish a route to the target node. As mentioned previously, the output of the

routing table is a port mask value that consists of a bit for each port associated with

that router. Each bit in that mask value that is a 1 represents a port that may be

used to establish the desired connection.

39

Once this destination mask has been obtained, the router must determine

whether any of the corresponding destination ports are available. A port is unavailable

if (a) it is currently used in a previously established connection or (b) if the node

attached to it has its tx cts held low, indicating that the node is not ready to accept

a connection. Since it is possible that none of the destination ports may be available,

each port has a request queue associated with it. A requesting port waits its turn

in the queue until the destination port becomes available. At that point a simple

arbitration scheme is used to determine which of the available destination ports to use,

and the connection is established. A grant signal is then issued to the requesting node

and the sl grant is issued to the target node to indicate that a dedicated connection

is in effect.

port1_enable
port1_rx

port2_enable
port2_rx

port3_enable

port3_rx

port4_enable
port4_rx

port1_tx

port2_tx

port3_tx

port4_tx

Figure 4.6: Switch-box Hardware Diagram

40

The actual connection circuitry is implemented as a tri-state enabled switch-

box. Each set of port rx signals, which includes the rx data, rx addr, rx rnw,

rx valid, and rx cts signals, has a one-hot enable mask bus associated with it to

enable one of the tri-state buffers that correspond to the target port tx signals. Fig-

ure 4.6 shows how this would look where there exists four port interfaces to the

router.

4.4.3 Termination Process

There are two instances in which a dedicated connection might be terminated

through the assertion of the release signal: upon completion of the data transfer, or

at the signaling of an optional timeout mechanism. In both cases it is the node that

established the connection that must initiate the release.

When the desired data transfer is complete, the master node issues a release

command to the router by raising the release line. This release signal disables

the dedicated connection and clears the grant signals between the two ports. In

situations where a potential hogging of a port might be detrimental to the operation

of the system, the master node may monitor a timeout request signal (pend) from

the router and comply with the assertion of the release signal to allow a pending

connection to be established.

4.4.4 Illustrative Example

A basic example will be used to further illustrate how the router’s connection

process is realized. In this example it is assumed that there are four port interfaces

to the router, and that the module at port 1 desires to connect to port 3, and the

module at port 2 desires to connect to either port 3 or port 4. Once the requests have

been received by the router, the table arbitration process, as explained in Section

4.4.1, is used to associate each request with its desired destination port mask. For

this example the destination port mask for port 1 is 0x04 and the destination port

mask for port 2 is 0x0C. Figure 4.7 illustrates the connection process that takes place

after the table access has occured.

41

Signal Name Cycle 1 Cycle 2 Cycle 3 …
port_valid

dest_mask

src_mask

open_mask

grant_mask

port1_enable

port2_enable

port3_enable

port4_enable

port1_release

port2_release

0x02

0x0F

XXXX0x0C

XXXX

Cycle 10 Cycle 11

0x04

0x01

0x0A 0x00 0x0F

0x00 0x05 0x0F 0x00

0x00 0x04 0x00

0x00 0x08 0x00

0x00 0x01 0x00

0x00 0x08 0x00

Figure 4.7: Port Connection Process

The destination port mask for port 1 becomes valid during clock cycle 1

(dest mask = 0x04). At this point the connection request is loaded into a queue

to wait for the availability of port 3, as determined by the open mask value. Since

initially all the ports are available (open mask = 0x0F), the destination port can

be selected, and the connection established. Therefore during clock cycle 2, the grant

and sl grant signals for ports 1 and 3 respectively are raised (grant mask = 0x05),

and the tri-state switch is enabled appropriately (port1 enable = 0x04).

Also during clock cycle 2, the next valid request is received: port 2’s connection

request to either port 3 or port 4 (dest mask = 0x0C). This request is entered into

the queue, and the arbiter determines that one of the target ports (port 4) is available.

So, on the next clock cycle (cycle 3), the request is removed from the queue and the

grant and sl grant signals for port 2 and port 4 are raised (grant mask = 0x0F)

along with the corresponding tri-state enable signal (port2 enable = 0x08).

At this point data can be freely tranferred between the connected modules

(ports 1 & 3 and ports 2 & 4). Once the data transfer is complete, the master

42

nodes terminate the connection with assertion of the release signals. These can

be serviced simultaneously as shown during cycle 10, where both the port1 release

and port2 release signals are raised. On the following cycle, the grant and sl grant

signals are lowered, and the tri-state enable signals are disabled. The ports at that

point become available for other connection requests.

4.5 Summary

The router is the core of this virtual circuit based network architecture. It

is responsible for establishing the dedicated point-to-point connections between the

system modules. The routing table is used to associate the router’s ports with the

network addressable modules. Table arbitration ensures that requests are serviced

effectively even as multiple requests are received simultaneously. Since multiple ports

can map to a single network address, a port arbiter is used to isolate one that is

available for connection. The actual connection between modules is implemented as

a tri-state enabled switch box. This mechanism allows for multiple concurrent con-

nections, where each connection provides unimpeded data transfer between modules.

43

44

Chapter 5

PNoC Module Interface

One of the principle goals of this work is to facilitate the design of complex sys-

tems through modular design and a simple interface to the communication medium.

This chapter describes in detail the node interface infrastructure that addresses these

issues. The first two sections detail the node’s port interface to the network and the

hardware required. The last two sections provide the details involved in establishing

point-to-point connections and transferring data, both as master and slave.

5.1 Node Interface

Modules that connect to the network do so via a well-defined port interface.

This interface is defined by the signals in Table 5.1 as seen from the module. As

mentioned previously, the rx data, rx addr, tx data, and tx addr widths are param-

eterizable to a maximum of 32 bits.

45

Table 5.1: Node Port Interface Signals

Signal Name Direction Description

request output initiates either a router update request or a
connection request

release output initiates a connection release
grant input indicates to the network module that its

connection request has been granted
sl grant input indicates that a connection has been

established with this node as a slave
pend input indicates that another module is requesting

access to the module’s current destination port
rx data[X:0] input rx data bus of parameterizable width
rx addr[Y:0] input rx address bus of parameterizable width
rx rnw input rx read-not-write signal
rx valid input indicates valid rx data, address, and rnw signals
rx cts input rx clear-to-send signal
tx data[X:0] output tx data bus of parameterizable width
tx addr[Y:0] output tx address bus of parameterizable width
tx rnw output tx read-not-write signal
tx valid output indicates valid tx data, address, and rnw signals
tx cts output tx clear-to-send signal

The node interface is responsible for issuing router update requests, managing

asynchronous boundaries, and coordinating network data transfers. Figure 5.1 identi-

fies the hardware needed to effectively integrate a module (hardware task block) with

the network. The router FSM controls the router handshaking signals responsible

for issuing router updates and connection requests. The Rx and Tx FIFOs provide

support for data flow control. This section describes these components in detail and

explains their role in this architecture.

5.1.1 Router Updates

In systems where dynamic module replacement is desired, each module that

connects to the network infrastructure must implement a simple router update request

sequence. This consists of a simple state machine that issues a router update request

46

Rx
Fifo

Router
Control
FSM

Node Interface

Tx
Fifo

Hardware
Task Block Router

Figure 5.1: Node Interface Hardware

and monitors the grant signal to determine when the request has been completed.

As shown in Figure 5.2, the router request involves the raising of the request signal

with tx addr set to 0x00 and tx rnw driven low. The tx data signal must be set

to the module’s source address – in this example a source address of 0x25 is used.

These signals are held until the grant signal is raised, indicating the table update has

completed.

Signal Name Cycle 1 Cycle 2 Cycle 3 Cycle 4

request

grant

tx_addr

tx_data

tx_rnw

0x00

0x25

XXXX

XXXX

Figure 5.2: A Module’s Router Update Request

47

If dynamic module replacement is not desired, the routing tables may be ini-

tialized at design time with the necessary address/port mappings.

5.1.2 Interface FIFOs

Depending on the system timing characteristics, certain network modules may

require the use of interface FIFOs. These FIFOs are necessary at asynchronous

boundaries, which occur under two conditions:

• Clock boundaries - whenever a module runs at a clock rate different from

that of its subnet router.

• Data-rate boundaries - during data transmission, when the receiving module

cannot keep up with the data transmission rate.

This asynchronous flow control is dictated by the CTS signal. During data

transmission between modules capable of different data rates, where the transmitting

module is the faster of the two, the receiver’s FIFO begins to fill. Once the FIFO

reaches almost full status, the tx cts signal is lowered and is propagated to the

transmitting module’s rx cts signal. In order for this asynchronous flow control to

work, the transmitting node must stall until its rx cts is again raised, indicating that

the receiving module is capable of accepting more data.

5.2 Data Transfer Process

This section describes the data transfer process first from the perspective of

the master node and then from the perspective of the slave node. An example is then

used to illustrate the complete read and write sequences. For simplicity, all examples

provided assume the use of a single common clock for all nodes/routers involved.

5.2.1 Master Node Data Transfer

The module responsible for initiating a data transfer, the master node, must

first issue a connection request to the router, as shown in Figure 5.3.

48

Signal Name Cycle 1 Cycle 2

request

tx_addr

router_index_in

router_table_index

router_dest_mask

router_port_mask

grant

Cycle 3 Cycle 4 Cycle 5 Cycle 6

0x12

0x12

0x12

0x04

0x04

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

Figure 5.3: A Module’s Connection Request

Similar to the router update request, the connection request involves the rais-

ing of the request signal as the tx addr is set to the target module’s network address

(tx addr = 0x12). These signals are held until the grant signal is raised. The mas-

ter node’s grant signal remains high throughout the duration of the connection. The

slave node sees a similar sl grant signal (not shown) so that it knows a connection to

it has been established. This connection process has a minimum latency of six clock

cycles as shown in the figure. If for some reason a target node is not ready to accept

a connection request, it may deny connections by holding its tx cts line low.

Once the grant signal goes high, the request should be lowered so that data

transfer can begin. Data transfers in this network are similar to pipelined memory

accesses. Write operations occur when the tx valid signal is raised, the tx rnw goes

low, and the tx data and tx addr buses are driven appropriately. Since the data

transfer occurs on a dedicated connection path, there is no need for an acknowledge

signal or similar handshaking. Also, as long as the rx cts signal is high, writes can

occur on consecutive clock cycles.

A read operation occurs when the tx valid and tx rnw signals go high, and the

tx addr signal is driven appropriately. Read requests are pipelined, meaning that the

request only needs to be presented for one clock cycle and not held until the data is

49

read back. This allows for reads to occur on successive clock cycles. The data comes

back with the rx valid going high, and rx data representing the requested data.

As described in Section 5.1, if data flow control is required then the rx cts sig-

nal must be monitored during the data transmission process. Similarly, if connection

timeout is to be supported, the master node must also monitor the pend signal. The

master may either completely ignore it and potentially block other connections indef-

initely, or the master may respond after a determined number of clock cycles where

the pend signal has remained high. In this case, the master must issue a connection

release command, and once the grant has been lowered, it may then again attempt

to connect to the target module. In this manner, shared resources can be effectively

time-multiplexed between modules.

5.2.2 Slave Node Data Transfer

Data transfers on the slave end are simpler. No connection process is necessary

since that is taken care of by the master node. Data transmission is detected by

monitoring the rx valid signal. For write operations the rx rnw is held low, and the

rx addr and rx data values are read in and used by the slave node.

Read operations are identified by a high rx rnw signal. The rx addr value is

read in and the requested data is produced. Upon availability of the requested data,

the slave asserts the tx valid signal and some number of clock cycles later presents

the data on the tx data bus.

5.2.3 Illustrative Examples

Two simple examples will be used to show how network write and network

read operations are performed. In these examples the nodes involved have already

successfully established dedicated connections. Also for this example it is assumed

that the data transfer latency between nodes is two cycles, though this will vary

based on the number of routers between the modules. First, the write process will be

examined. In this example the master node writes the value 0x01 to address 0x22 of

50

the slave node. In the second example the master node reads from the slave node at

address 0x22.

Signal Name Cycle 1 Cycle 2 Cycle 3 Cycle 4

master_tx_valid

master_tx_rnw

master_tx_data

master_tx_addr

slave_rx_valid

slave_rx_rnw

slave_rx_data

slave_rx_addr

XXXX

XXXX

0x01

0x22

XXXX

XXXX

0x01

0x22

XXXX

XXXX

Figure 5.4: Master Node Write Sequence

Figure 5.4 illustrates the write process. At clock cycle 1 the master node ini-

tiates the write by raising its tx valid signal, holding the tx rnw low, and presenting

the values 0x01 and 0x22 on the tx data and tx addr buses respectively. A few clock

cycles later, at clock cycle 3, the slave node receives the write request as its rx valid

goes high. At this point the slave’s rx data and rx addr values are valid and the data

can be read in and used by the slave node.

Figure 5.5 illustrates the read process. At clock cycle 1 the master node

initiates the read by raising the tx valid and tx rnw signals and presenting the value

0x22 on the tx addr bus. At clock cycle 3 the slave node receives the read request

as rx valid goes high. On the next cycle the slave node responds by asserting its

tx valid signal and presenting the requested data, 0x01, on its tx data bus. At clock

cycle 6 this data is received by the master node, completing the read sequence.

51

Cycle 1 Cycle 2 Cycle 3 Cycle 4

master_tx_valid

master_tx_rnw

master_tx_addr

master_rx_valid

master_rx_data

slave_rx_valid

slave_rx_rnw

slave_rx_addr

slave_tx_valid

slave_tx_data

XXXX

Cycle 5 Cycle 6

0x22

XXXX

0x01XXXX

XXXX 0x22

XXXX 0x01 XXXX

Figure 5.5: Master Node Read Sequence

5.3 Summary

The network modules for this architecture are comprised of two major pieces:

the network interface circuitry and the module’s functional hardware. The interface

circuitry is configurable and may include such things as asynchronous data flow FIFOs

or router update state machines. It must include some handling of the network signals

required for any data transaction in which the module may be involved. This network

port interface is fixed and the handshaking involved is relatively simple, allowing for

a straightforward and modular design of the network nodes.

52

Chapter 6

PNoC CPU Interface

A special type of module that often plays an important role in systems is a

general purpose processor. The interface for most processors is generally designed to

communicate with memory rather than a network so a special interface is required

to effectively attach a processor to this framework. This chapter explains the special

interfacing required both in hardware and software that enables the processor’s inter-

action with the network. An example is then provided that illustrates the processor’s

communication with the network.

6.1 Memory-Mapped Interfacing

When possible, the processor node should contain both the processor and its

associated program memory as shown in Figure 6.1. In systems where this is not

feasible, the processor node and the memory interface node should reside on the same

subnet in order to reduce memory access latency.

Connection of a general purpose processor or CPU to the network infrastruc-

ture requires two levels of interfacing: first, interfacing the CPU’s memory-based

interface to a network-based one, then interfacing that to the network’s required port

interface. The first interface requires a special memory mapping scheme to access the

network. The second interface is just a general network module interface as explained

in Chapter 5. These two levels of interfacing are illustrated in Figure 6.1.

There are two memory mappings that are required to effectively interface the

processor with the network. The first is a network access mapping and the second is

a network data mapping. The network access mapping is used to make connection

53

Program Memory

CPU

Memory IF
To

Network IF

Node Interface

CPU Interface

Network

Figure 6.1: Network CPU Interfacing

requests and releases. The network data mapping is used in network-based data

transfers. When a read or write request is issued by the processor, a simple address

decoding is applied to determine if the access involves a network request/release, a

network data transfer, or a local memory access. If the transaction is a network

connection request/release then that request is forwarded on to the router and the

desired connection is established/terminated. Similarly if the transaction is a network

data access, the data request is forwarded to the router and from there on to the slave

node. In order for a network data transaction to occur, a network access request must

have previously been sent and the connection with the slave node established.

6.2 Network CPU Software

As with all modules, in order to transmit data on the network, the proces-

sor must first establish a connection with the target node. For the processor node

this connection process is controlled in software. A network access pointer that

corresponds to the network access memory map is used to initiate and terminate

connections. Similarly, a network data pointer that corresponds to the network data

memory map is used to initiate the network data transfer. The processor can also be

accessed as a slave through the use of an interrupt line and corresponding interrupt

54

service routine. Sections 6.2.1 and 6.2.2 provide detailed examples of how the software

accesses the network as master and as slave respectively. These examples are simply

used to illustrate how software may be used to access the network. Since network

access is done through basic memory mapping, the actual software implementation

could be done many different ways. The only hard requirements are listed as follows:

• Two memory mappings are needed: one for network access requests, and one

for network data transfers.

• Each software memory mapping must match the corresponding memory map

used in the CPU network interface hardware.

• A connection request must be completed before a network data transfer can

take place.

• Issuing a connection request requires writing the value 1 to the network access

address, and a connection release requires writing the value 2.

• When a connection is established between the CPU and another module, a

release must be issued before a new connection can be requested.

6.2.1 CPU As Master

As a master node, the processor is responsible for establishing the connection

prior to initiating the data transfer. Sample code shown in Figure 6.2 will be used to

illustrate how this process occurs in software and how that translates to the hardware

interface. As seen in the example code, there are a few #define’s that represent

important system parameters.

55

#define NET ACCESS ADDR 0xFE000000
#define NET DATA ADDR 0xFF000000

#define NET REQUEST 1
#define NET RELEASE 2

#define NODE ADDR 6

int ∗ network ptr = (int ∗)NET ACCESS ADDR;
int ∗ data pt r = (int ∗)NET DATA ADDR;

void networkRequest (int node addr) ;
void networkRelease (int node addr) ;

int main () {
int r e ad va l ;

networkRequest (NODE ADDR) ;
∗(data pt r +1) = 6;
r ead va l = ∗(data pt r +2);
networkRelease (NODE ADDR) ;

}

void networkRequest (int node addr) {
∗(network ptr + node addr) = NET REQUEST;
while (! ∗ (network ptr + node addr)) ;

}

void networkRelease (int node addr) {
∗(network ptr + node addr) = NET RELEASE;
while (∗ (network ptr + node addr)) ;

}

Figure 6.2: Network CPU Interfacing in Software

56

• NET ACCESS ADDR - the address that maps to network access requests.

• NET DATA ADDR - the address that maps to network data requests.

• NET REQUEST - the value representing a request command.

• NET RELEASE - the value representing a release command.

• NODE ADDR - the network address for the target node.

On source code line 9 the network ptr variable is initialized to point to

NET ACCESS ADDR. On line 10 the data ptr is initialized to point to

NET DATA ADDR. Inside the main() function the first call at line 18 is a net-

workRequest() function call that makes a request to connect to the target node. The

networkRequest() function does two things. It first writes a 1 (NET REQUEST) to

address 0xFE000006 (NET ACCESS ADDR + NODE ADDR). Then it waits in a

loop reading from address 0xFE000006 until the connection grant is received.

Figure 6.3 shows what the corresponding interface hardware sees. During clock

cycle 1 the cpu data addr is 0xFE000006, and the cpu data we line goes high. This

is detected as a network access, and since cpu data out is 0x00000001 the access is

decoded as a network request. On the next clock cycle (cycle 2) the request is sent

on to the router with the tx addr value of 0x06, as obtained from the low byte of

the cpu data addr bus. These signals are held until the grant signal is received from

the router indicating that the requested connection has been established. During

clock cycle 8, the cpu data re line is asserted and the cpu data addr is again set to

0xFE000006. This is decoded as a network access read which enables the reading

of the grant signal. On clock cycle 8 the grant signal is high and read in by the

processor on the following cycle (cpu data valid = 1 & cpu data in = 1).

Now that the connection with the target node has been established, the data

transfer can be initiated. This occurs at line 19 where a network write is followed by

a read. The write consists of a 6 being written to address 0xFF000001. Then the

read requests data from address 0xFF000002.

57

Signal Name Cycle 1 Cycle 2

cpu_data_we

cpu_data_re

cpu_data_addr

cpu_data_out

cpu_data_in

cpu_data_valid

request

tx addr

grant

XXXX 0xFE000006

Cycle 8 Cycle 9

0xFE000006

0x06

. . .

0x00000001 XXXX

0x00000001XXXX

XXXX

XXXX

Figure 6.3: CPU Interface - Connection Request

Figure 6.4 shows the corresponding data transaction sequence as it occurs

in the hardware interface. During clock cycle 1 the cpu data we signal goes high,

cpu data addr is 0xFF000001, and the cpu data out value is 6. This is decoded as a

network write of value 6 to network address 0x01. On clock cycle 2 this write request

is forwarded to the router (tx valid = 1, tx addr = 0x01, tx data = 0x06). On

the following cycle the request is received by the target node. Also on clock cycle 3

the cpu data re signal is asserted, and cpu data addr is set to 0xFF000002. This is

decoded as a network read from address 0x02. Again this request is sent to the router

and from there on to the target node. The node responds during clock cycle 7 with

a data value of 6. On clock cycle 8 this value is received by the processor node and

can be used by the software.

The final piece of code is at line 21, where the networkRelease() function is

called. Similar to the networkRequest() function, the release consists of two parts.

The first is the writing of a 2 (NET RELEASE) to address 0xFE000006. Then the

software waits in a while− loop until the grant signal goes low.

Figure 6.5 show what happens in hardware during this release process. During

clock cycle 1 cpu data we is asserted, cpu data addr is set to 0xFE000006, and the

58

Signal Name Cycle 1 Cycle 2 Cycle 3 Cycle 4

cpu_data_we

cpu_data_re

cpu-data_addr

cpu_data_out

cpu_data_in

cpu_data_valid

tx_valid

tx_addr

tx_data

tx_rnw

XXXX

Cycle 7 Cycle 8

0xFF000001

0x6XXXX

rx_valid

rx_data

. . .

0xFF000002XXXX

0x00000006 XXXX

XXXX0x01 0x02XXXX

0x06 XXXX

XXXX

XXXX

XXXX0x06

Figure 6.4: CPU Interface - Data Transfer

cpu data out value is 0x02. This is decoded as a network release command which is

forwarded to the router on the following cycle. On clock cycle 4 the router responds

by lowering the grant signal. Also on clock cycle 4 cpu data re is asserted, and

cpu data addr is again set to 0xFE000006. This combination is decoded as a network

access read and enbles the reading of the grant signal which is read into the processor

on the following cycle.

6.2.2 CPU As Slave

The processor can be accessed as a slave through the service of an interrupt.

This process occurs when a node on the network establishes a connection with the

processor node and then issues a write request while presenting its source address on

the tx data. This request gets decoded by the processor interface as an interrupt and

the interrupt line is raised. The processor then jumps to the interrupt service routine

and from there reads in the master node’s source address to determine which node

issued the interrupt and responds accordingly.

59

Signal Name Cycle 1 Cycle 2

cpu_data_we

cpu_data_re

cpu_data_addr

cpu_data_out

cpu_data_in

cpu_data_valid

release

grant

XXXX 0xFE000006

Cycle 4 Cycle 5

0xFE000006

Cycle 3

0x00000002 XXXX

0x00XXXX

XXXX

Figure 6.5: CPU Interface - Connection Release

6.3 Summary

General purpose processors often serve an important role in systems. In order

to integrate a processor into this network infrastructure, a special interface converts

a processor’s memory-based interface to a network-compatible one. This conversion

process involves two memory mappings: one for network access requests and the

other for network data transactions. Both the network accesses and the network data

transfers are controlled by the software through memory-mapped pointers.

60

Chapter 7

PNoC Implementation Results

The PNoC router, module interface, and CPU interface have each been isolated

and run through the Xilinx ISE place-and-route tools for analysis purposes. This

chapter reports the implementation results for each of these components, each with

varying parameter settings. The numbers provided in the tables show the values

reported by the Xilinx tools when targeting a Virtex-II Pro device. Also provided is

a comparison between the PNoC and a representative packet-switched architecture.

7.1 PNoC Router Results

Table 7.1 shows the implementation results for several different router config-

urations. The top half of the table represents results for a router with 8-bit data and

address widths at each port interface where 2, 4, and 8 port interfaces were used.

The bottom half of the table reflects the results for 32-bit data and address widths.

In each case 1 block RAM was required for the routing table.

Table 7.1: Router Results

of Ports Data/Addr Width Area (slices) Speed (MHz)

2 8 83 160
4 8 249 152
8 8 1,113 145

2 32 131 154
4 32 366 141
8 32 1,305 129

61

As indicated by the table, the size and speed of the router is more heavily

impacted by the number of ports rather than the data and address widths. This is

due to the fact that all table and port arbitration circuitry is directly related to the

number of port interfaces. The number of connection request FIFOs (for connections

awaiting availability of the destination port) is equal to the number of port interfaces

in the router. As a result, the size of the router grows substantially as the number of

ports increase.

7.2 PNoC Module Interface Results

Table 7.2 shows the implementation results for the module interface hardware.

The basic configuration includes no circuitry for asynchronous data flow or timeout

handling. It consists of a simple state machine for managing connection requests

and circuitry for registered inputs. The full configuration, on the other hand, in-

cludes circuitry for full functionality: asynchronous data flow, timeout handling, and

connection request management.

Table 7.2: Module Interface Results

Data/Addr Width Basic (slices) Basic (brams) Full (slices) Full (brams)

8 27 0 143 4
16 43 0 147 4
32 75 0 155 4

Full-functionality module interfaces require noticeably more hardware than

the basic interface implementations. This is primarily due to the ciruitry required

to implement the four asynchronous data flow FIFOs: the Rx data, Rx address, Tx

data, and Tx address FIFOs.

62

Each FIFO is implemented with a dual-ported block RAM, and read and write

address counters. The timeout handling hardware is simply a counter that counts the

duration of an asserted pend signal.

7.3 PNoC CPU Interface Results

Table 7.3 shows the implementation results for the CPU interface hardware.

Again the basic configuration includes no circuitry for asynchronous data flow or

timeout handling. It consists of circuitry for converting CPU memory-mapped ac-

cesses to the corresponding network accesses. Again, the full configuration includes

the circuitry required for asynchronous data flow control and timeout handling. These

values are based on the results for a 32-bit processor.

Table 7.3: CPU Interface Results

Configuration Slices BRAMs

Basic 102 0
Full 190 4

In addition to the hardware required for basic module interfacing described in

the previous section, the CPU interface also contains address decoding circuitry to

identify network accesses verses normal program memory accesses. It also contains

special hardware to handle the network-module interrupt requests.

7.4 Network Architecture Comparison

Unfortunately, few authors have published implementation results for their

proposed network-based architectures. As a result, it is difficult to perform direct

comparisons with other network approaches. One that has done so, however, and

appears to be representative of other packet-switched approaches is presented in [19].

63

In order to make a meaningful comparison between their architecture and the PNoC

architecture a few assumptions had to be made:

• The system under comparison consists of 8 network modules targeted to a Xil-

inx Virtex-II Pro device, where the packet-switched architecture uses distributed

routers while the PNoC architecture uses a single central router. The commu-

nication between nodes consists of 16-bit data channels. These systems are

illustrated in Figure 7.1.

• Based on the packet-switched topology shown in the figure, the system requires

4 3-port routers and 4 4-port routers. According to the implementation results

published in [19], a 3-port router requires 250 slices and a 4-port router requires

350 slices. It is also assumed that each router also uses 1 block RAM for the

output buffers.

1

3

5

7 8

6

4

2

Router

PNoC Packet-switched Network

Figure 7.1: Network Architectures

Table 7.4 shows how the PNoC architecture compares with this packet-switched

architecture based on the assumptions previously mentioned. The table compares re-

source usage and maximum clock rates for the systems’ routers.

64

Table 7.4: Network Comparison Results

Network Architecture Slices BRAMs Clock Rate

Packet-Switched 2,400 8 50 MHz
PNoC 1,223 1 134 MHz

These results reflect the complexity required in packet-switched networks to

process, route, and buffer packets. The simplicity of the circuit-switched PNoC ar-

chitecture not only reduces the hardware costs by over 2×, in this example it also

increased the clock rate by almost 3×, resulting in an area×time improvement of over

5×.

7.5 Summary

One of the goals of this work was to create a lightweight communication

framework. The results presented in this chapter illustrate the overhead required

for using the PNoC architecture. The comparisons made against a representative

packet-switched architecture suggest that the PNoC architecture is both lightweight

and capable of relatively fast clock rates.

65

66

Chapter 8

PNoC Test Applications

Two example applications have been created to illustrate the effectiveness of

this network architecture. Each has been implemented using both the PNoC archi-

tecture and the Xilinx EDK [6], which consists of a shared bus architecture based

on IBM’s CoreConnect [4]. This chapter explains the test applications and their im-

plementation on both platforms. Also a comparison of the performance results are

analyzed.

The first application involves an autonomous robot with on-board vision. The

objective of this application is to integrate a robot soccer defense algorithm on the

robot so that it searches for the soccer ball with the on-board vision. Once the ball

is located, the robot quickly moves to the ball in attempt to clear it away from the

goal. The implementation of this application involves two nodes that access a shared

memory. As the camera writes a new video frame to memory the processor reads from

memory the previously stored frame to decide what action to perform. Since there is

not a significant amount of intra-node communication, this application should work

equally well on both platforms.

The second application is an image binarization algorithm that uses hierarchi-

cal thresholding to segment the image data. The binarization is used to compress the

image data while mimimizing the amount of important information lost in the pro-

cess. This algorithm requires a significant amount of concurrent data processing and

bandwidth between the computation modules. This algorithm is much more suited

to a network architecture since multiple data transactions can occur simultaneously.

67

In both applications a single global clock is used since the systems are relatively

small. For the PNoC implementation this eliminates the need for module interface

FIFOs since all transactions occur on the same clock. Also, since no dynamic module

replacement is used in either application, the PNoC’s router configuration is simplified

as no table update circuitry is needed.

8.1 Autonomous Robot

The autonomous robot used in this application consists of a control board

that rests on top of a three-wheeled base. Attached to the board is a small video

camera to provide on-board vision. The control board uses a Virtex-II 1000 FPGA

(part: xc2v1000-4) that is responsible for controlling both the wheel motors and the

camera. The objective of the robot is to identify the location of a white ball and keep

it away from the robot’s goal. Once the ball has been identified, the robot activates

the motors and drives towards the ball in attempt to direct it away from the goal.

The autonomous robot application involves the use of four top-level modules

that interface to the connection medium as shown in Figure 8.1.

Interconnect
Medium

Microblaze

Camera
Interface

Motor
Controller

Memory
Block

Figure 8.1: Robot Top-Level Modules

68

• Microblaze Processor & Local Memory - this module serves as the primary

control for the system. It consists of a Microblaze processor along with its

associated program memory. The software is responsible for sending commands

to the motor controller to control the movement of the robot. Also a simple ball

tracking algorithm is implemented in the software that runs on this processor.

• On-chip Memory Block - this module is a block RAM-based memory in

which the video frame data is stored.

• Camera Interface - this module interfaces the FPGA logic to the on-board

video camera. Hardware is also built into this module that captures video

frames as directed by the software, performs intensity segmentation, and then

sends the segmented frame to the on-chip memory block.

• Motor Controller - this module serves as the interface between the FPGA

and the robot’s wheel motors. A hardware PID loop is part of this module to

provide precise control of the robot’s movement.

8.1.1 General Implementation Details

Control for the system originates with the processor, which begins by issuing

a frame-capture request to the camera interface module. Once the camera module

receives this command, it begins a single frame capture. As the pixels are received,

the camera module extracts only the luminance value (the Y value in the YCrCb

video data) and performs segmentation based on this intensity value. All pixels with

intensity values over a specified threshold are segmented to a 1 while all other pixel

values are set to 0. These segmented values are then sent to the on-chip memory

block. After the entire frame has been received, segmented, and then loaded into

memory, the camera module raises its done status bit.

The processor, which polls on the done status bit, initiates another frame-

capture request and begins processing the frame previously loaded in memory. Double

buffering is used to allow the software to process a frame of video data while the next

frame gets captured. The software uses vertical projection to locate the white ball.

69

Since the ball is white, it should be the dominant feature in the segmented image.

Each column of the current frame is summed, and the column with the greatest sum

represents the center of mass for the ball in the horizontal direction. This information

is used to determine the direction the robot must navigate to center the ball in its

field of view. Once that is done the processor sends the appropriate commands to

the motor controller to move forward towards the ball. If the ball is not detected in

the current frame, the robot pivots to get a new field of view and awaits the arrival

of the next frame.

The main design challenge in this system is in coordinating accesses to the

shared memory while maintaining the data-rate necessary to keep up with the desired

video frame rate. This memory sharing is accomplished in slightly different ways for

each architecture.

8.1.2 Shared Bus Implementation

The bus-based implemenation was done using the Xilinx EDK version 6.3

and contains a Microblaze processor and OPB bus running at 75 MHz. In this

implementation both the processor and camera module access memory through a

series of single-word bus transactions as needed. If ever the two require access to

the memory simultaneously, the bus arbiter assigns priorities to the requests, grants

bus access to that of highest priority, and forces the other to stall until the granted

transaction is completed. Since the required bandwidth for this system is limited by

the slow video frame rate (30 frames per second) there is ample time for sharing of

the bus and memory without performance degradation or data loss.

8.1.3 Network Implementation

In the PNoC implementation the entire system runs off a single 75 MHz clock.

The Microblaze processor accesses memory through a series of single-word network

transactions as requested by the software. The camera module on the other hand,

first buffers up 16 bytes of segmented pixel data before establishing a connection

and transferring the data to the memory node. This is done to reduce the network

70

connection setup overhead and make more efficient use of the communication medium.

If the processor requires access to the memory while the camera module is bursting

the pixel data, the processor’s request stalls and waits for the camera module to

terminate the connection.

8.1.4 System Comparisons

Both system implementations were able to keep up with the video frame rate

and perform the desired task equally well. There were slight differences in the amount

of hardware resources required and maximum clock rate allowed for each system.

Table 8.1 shows the number of slices required for each of the system modules and

illustrates the area and speed differences between the two implementations. These

numbers were obtained from the Xilinx ISE place-and-route tools.

Table 8.1: Robot System Comparison

Parameter Shared Bus PNoC

Microblaze 565 565
Camera Interface 246 246
Motor Controller 441 441
Communication Overhead 305 526
Total Slices 1,557 1,778
Maximum Clock Rate 78 MHz 88 MHz

As shown in this table, the network architecture does introduce some over-

head in terms of hardware resources (14% increase), but provides a 13% faster clock

due to the shorter wire delays. Most of the PNoC resource overhead came from the

router, which required 488 slices. Since the system was run off a single clock, no mod-

ule interface FIFOs were needed, therefore reducing the module interface overhead.

The design times for each system were very similar since both the bus and PNoC

architectures each provide a standard interface to the communication medium.

71

8.2 Image Binarization

The image binarization involves the implementation of an algorithm that re-

quires much higher bandwidth utilization than the robot application. Again, this

implementation was done using both the shared-bus architecture and the PNoC ar-

chitecture. The image binarization algorithm, developed specifically for this work,

uses hierarchical thresholding to quantize a grayscale image to binary black and white

values. This type of algorithm is used to compress, and often clean up noisy hand

written documents that have been digitized for archival purposes. The objective of

the algorithm used here was not intended to provide the best binarization. Instead

it was created for the purpose of illustrating important advantages of the PNoC ar-

chitecture. It was used because of its highly parallel structure that maps nicely to a

hardware implementation that provides high bandwidth capabilities. It involves com-

puting median values at three different levels of hierarchy to be used as quantization

threshold values. These levels are identified as follows:

• Global level - the highest level, uses the pixel data of the entire image.

• Block level - the middle level, uses the pixel data of a partitioned section of

the image.

• Window level - the lowest level, uses the pixel data of a single window.

For certain types of documents or images a simple global thresholding is ef-

fective, however most images that contain considerable noise or inconsistent back-

ground intensities require a more sophisticated algorithm. This algorithm maintains

the simplicity of the global thresholding algorithm but also incorporates local image

information before performing the final quantization. This algorithm involves the

following steps:

1. Compute the median value for the entire image and use that to compute the

global threshold value where global thresh = median + median/4.

72

2. For each block of data, determine its darkest pixel value and compare that

against the global threshold. If it is lower (darker) than the threshold, then

that block contains valid data and is processed further (step 3). Otherwise the

entire block of data is set to a white value.

3. A valid block is divided into smaller windows and each window is then quantized

based on the window’s threshold value. Each pixel that is darker than the

threshold is set to black – all others are set to white.

4. Steps 2 and 3 are repeated until every block has been processed and the complete

quantized image has been produced.

Interconnect
Medium

UART

Block
Module

Block
Module

Window
Module

Microblaze

Block
Module

Block
Module

Window
Module

Figure 8.2: Binarization Top-Level Modules

This application, targeted to a Virtex-II Pro FPGA (part: xc2vp30-ff860-7), is

illustrated in Figure 8.2 and consists of four different module types. As shown in the

figure, there are a different number of block and window modules (4 block modules &

73

2 window modules). This is due to the projected need for each in the overall system

computation. The module types and their functional descriptions are as follows:

• Microblaze Processor & Program Memory - this module serves as the

primary control for the system. It is responsible for computing a global thresh-

old value for the entire image and then manages the distribution of the image

blocks to the block thresholding modules.

• UART - this module is used to enable the uploading and downloading of the

original and final images between the FPGA and a host computer via the RS232

connector.

• Block Thresholding Modules - these modules compute block-level threshold

values, and if valid data is detected within a block, smaller windows of the data

are sent to the window processing modules.

• Window Processing Modules - these modules quantize each pixel of the

window based on the window’s threshold value.

8.2.1 General Implementation Details

The binarization algorithm gets mapped to this system as follows:

1. The processor, controlled by software, reads in the original image data via the

UART.

2. As the data is received, the global median and threshold values are computed.

3. The image is divided into blocks and these blocks, along with the global thresh-

old value, are sent to available block nodes one at a time.

4. Each block node computes its own local minimum, median, and threshold values

which are used to identify valid blocks and later valid windows.

5. If the block node detects valid data within the block then that block is further

divided into windows. The block node forwards these windows, along with the

74

block’s threshold value, to an available window node. If no valid data is found

in a given block, all of its pixel values are set to white and read back by the

processor.

6. Each window node computes its own local minimum, median, and threshold

values. The minimum value is compared against the parent block’s threshold

value to determine if the window is valid. If the window is valid each pixel is

quantized against the window threshold value. Otherwise all pixels are set to

white.

7. Once the window node has completed its quantization process, the quantized

values are sent back to the parent block node.

8. Once the block node has processed each of its windows, the quantized results

are read back by the processor.

9. Once the processor has received the quantized results for each block, the final

quantized image is sent out the UART.

For this particular experiment block sizes of 2,400 bytes were used with 10×15

(150 bytes) windows. When a block is found that contains valid data, each window is

sent to the window processing module. The quantized window data becomes valid one

cycle after the last byte of has been received by the window module. The quantized

values are then read back to the block module. As a result each window processed

requires 300 data transactions (150 writes to and 150 reads from the window module).

Complete block processing therefore requires 4,800 data transactions (2,400 total

writes and 2,400 total reads).

The main design challenge in this system is in coordinating the transfer of

image data between the different hierarchical nodes. Also, since there is a differ-

ent number of block nodes verses window nodes, there must be some arbitration or

scheduling involved to allow a block node access to an available window node when

needed. These issues are addressed in significantly different ways between the two

architectures.

75

8.2.2 Shared Bus Implementation

Two different bus-based implementations were completed using Xilinx EDK

version 6.3. Each uses a Microblaze processor and OPB bus running at 100 MHz.

For both implementations, all data transactions must be time-multiplexed since all

modules share a common communication medium. There are two extremes as to how

this may be done:

• Single-beat Transfers - The reads and writes are simple single-word trans-

actions. This is easiest to implement, but doesn’t make effective use of the

available bandwidth since bus arbitration cycles precede each data transfer.

• Burst Transfers - Bus arbitration occurs only once for x number of words to

be transferred. This can result in much higher throughput, but since the shared

bus must be locked, no other modules can communicate on the bus during the

burst.

The first bus-based implementation uses single-beat transfers. It results in

a considerably slower system, but allows other modules to communicate on the bus

without considerable delays. The second implementation uses burst transfers that

lock the bus during the entire window processing phase. This results in a much faster

system, but stalls all other pending accesses to the bus.

In both implementations, and in bus architectures in general, there is no built-

in way of arbitrating access to the available window modules. This module-level arbi-

tration must be incorporated into the modules themselves. For this experiment, both

implementations were done using simple static scheduling of the window modules.

Each window module is shared by two predetermined block modules.

8.2.3 Network Implemenation

The PNoC implementation was completed with the use of a single clock run-

ning at 100 MHz. The PNoC architecture is well-suited to this type of system.

Multiple block-to-window module data transfers can occur simultaneously as mul-

tiple connections can be active at a given instant. All transactions are essentially

76

burst transactions, but due to the networking infrastructure, routing resources re-

main available for other system modules to communicate.

The dynamic routing capability of this network also plays an important role

in this system. When a block module requests a connection to a window module,

that connection can be established with whichever one becomes available first. No

additional hardware is required by the system designer to poll for available window

modules – the choice of which module to use is made by the router. Further, if none of

the window modules is available, the connection request is placed in a queue until the

module becomes available. This allows for significant system flexibility – additional

block and/or window modules can be added to the system without requiring any

modification to the block or window modules.

8.2.4 System Comparisons

The designs were downloaded to the Xilinx XUP Virtex-II Pro Development

Board. A simple hardware timer was incorporated into each of the designs to count

the number of clock cycles required by each system implementation. Each were set

up in such a way as to remove the software overhead from the computation time.

The four block modules were loaded, and then the computation/communication of

the block/window processing was timed using the hardware timer. This was done to

analyze the system performance during maximum data transfer, where all four block

modules contend for the services of the two window modules. As mentioned earlier,

each valid block requires 4,800 data transfers. For this experiment, that implies

19,200 total data transfers. Table 8.2 shows how the implementations compared in

terms of maximum clock rate, hardware utilization, and the execution time required

for processing the four blocks.

As illustrated in the table, though the PNoC implementation introduces a

29% area increase verses the bus implementations, its performance is considerably

better. The single-beat version of the bus implementation requires 20× more cycles

for execution than the PNoC implementation. This occurs as a result of the bus

arbitration that takes place for each data transfer, resulting in around 10 cycles per

77

Table 8.2: Binarization System Comparison

Parameter Shared Bus Shared Bus PNoC
(single-beat) (burst)

Microblaze 565 565 565
UART 52 52 52
Block Module 148x4 148x4 148x4
Window Module 627x2 627x2 627x2
Communication Overhead 389 401 1,222
Total Slices 2,852 2,864 3,685
Maximum Clock Rate 108 MHz 98 MHz 124 MHz
Execution Cycle Count 198,113 20,919 9,977

transaction. By allowing the block modules to lock the bus and burst the data during

window processing, the difference is reduced to about 2×. This factor of 2× is a

direct result of the PNoC’s ability to support multiple simultaneous data transfers

(in this case 2, one for each window module). The locking of the bus in the burst

implementation prevents any commuincation between the CPU and other system

modules. The PNoC architecture, on the other hand, provides both high throughput

and open CPU communication.

Also of note is that the PNoC’s clock rate is 15% and 27% faster than the bus

implementations. This is consistent with the results seen in the robot system imple-

mentation and is a result of the shorter wire delays found in the network architecture.

Taking into account the maximum clock rates results in overall PNoC speedups of

23× and almost 3× verses the single-beat and burst bus implementations respectively.

These results also illustrate the channel utilization efficiency of the PNoC

architecture. Both the single-beat and burst bus implementations involved a single

channel and attained 10% and 92% effective utilization. The PNoC implementation

on the other hand, involved the use of two channels and achieved 96% utilization on

each.

The design simplicity for the PNoC implementation and the single-beat bus

implementations were very similar. Implementing the burst implementation however,

78

was a little more complicated. It required the use of some additional bus signals that

enable the master’s locking of the bus and bursting of data. Similarly some additional

design had to be incorporated into the slave modules as well. They had to be modified

to monitor these additional bus signals and respond differently to accommodate the

burst transfers. They had to be specially designed to handle both burst and single-

beat data transfers, whereas in the PNoC both burst and single-beat data transfers

are handled in the exact same manner.

8.3 Summary

Two applications were used to compare the PNoC architecture against a widely

used bus architecture. The first application involved an autonomous robot system,

which was a relatively small system that required low-bandwidth intra-module com-

munication. In this system two modules accessed a shared memory for the acquisition

and processing of video frames. Due to the low-bandwidth requirements for the sys-

tem, both the bus and PNoC implementation were equally effective in performing the

desired task.

The second application involved a slightly larger system that had much higher

bandwidth requirements. Four block modules required the services of two window

processing modules to perform image binarization. In this experiment, 4,800 data

transfers were needed by each block module to complete the task. Two different

bus-based implementations were completed: a single-beat data transfer version and

a bursting version. The single-beat implementation was much slower but allowed for

open CPU communication. The burst implementation was much faster but locked

the bus, temporarily preventing any other intra-module communication. The PNoC

implementation provided both high-throughput data transfer while at the same time

allowing open CPU communication. Even against the bursting bus implementation

the PNoC provided almost a 3× performance improvement due to its use of multi-

ple channels, higher clock rate, and more efficient channel utilization. Analysis of

these experiments indicate the PNoC’s viability as an effective alternative to bus

architectures.

79

80

Chapter 9

Conclusion

9.1 Summary

The increase in chip densities has increased the potential for systems to be

integrated onto a single chip, commonly referred to as System on Chip (SoC). Today

these systems are capable of integrating one or more general purpose processors with

numerous other system hardware modules. As chip densities continue to increase

these systems will similarly continue to grow in size and complexity. One of the major

design challenges that results is in maintaining effective communication between the

system modules.

Shared bus architectures are common in current systems that involve processor-

centric control. These architectures often provide the processor with a memory-

mapping scheme to access the system modules as bus peripherals. Bus architectures

have been found to be effective in their role as a system communication medium.

Modular-based design can be used, which allows for relatively short and more pre-

dictable design-time. The major weaknesses of the shared bus architecture are its

limited bandwidth and poor scalability. Only two modules can communicate on the

bus at a given instant and, as more modules are integrated into the system, the bus

becomes a signficant performance bottleneck.

Several network-based architectures have been proposed with the arguments

that they significantly improve scalability, provide higher bandwidth capabilities, and

maintain a modular design flow. Nearly all of the network architectures researched

81

suggest a packet-switched communication framework. The weaknesses of these net-

works is in the overhead required to process, route, and buffer the data packets. A

significant amount of hardware resources are needed to perform these tasks, and in

some cases it has been acknowledged that their networks had difficulty with heavy

data flow applications from a performance standpoint.

This work proposes another alternative that involves a lightweight, flexible

circuit-switched rather than a packet-switched network architecture. Circuit-switching,

in the context of this work, involves the establishment of dedicated connections be-

tween system modules so that unimpeded data transfer can occur. Once the desired

data transfer is complete for a given connection, that connection is released and other

modules can then request access to the available resources.

This circuit-switched architecture provides some important advantages to the

packet-switched networks. Since data is transferred only after a dedicated connection

has been established, there is no need for the formation and buffering of packets.

The raw data can simply be forwarded along the connected route. This reduces the

communication overhead as packet processing is not required. Implementation com-

parisons were made between the PNoC and a representative packet-switched architec-

ture. These comparisons illustrated the relative simplicity of the PNoC architecture

and strengthen its claim as a fast, lightweight network architecture.

A considerable amount of flexibility has been incorporated into this architec-

ture. The system designer has full control of the system connectivity and the network

topology. Also built into this architecture is support for dynamic module replacement.

Dynamically configured modules can issue update requests to the routers so that the

routing tables maintain updated address/port associations.

9.2 Conclusions

The proposed architecture, designed using JHDL, was used in the implemen-

tation of two test applications. The first application was an embedded system for the

control of an automomous robot. The second involved a data processing algorithm

82

that performs image binarization. Both systems were also implemented using the

Xilinx EDK, which uses a shared bus architecture.

Analysis results for the robot test application showed that both architectures

were equally effective for the low-bandwidth system implementation. The network

architecture allowed for a slightly higher maximum clock rate but also required a few

more resources as part of the routing overhead.

The second, higher-bandwidth application clearly favored the PNoC architec-

ture. In the PNoC-based system the maximum clock rate was higher and the execu-

tion cycle count considerably lower than for the shared bus implementations. This

was due to the network’s ability to allow for multiple simultaneous data transfers.

These tests indicate that this circuit-switched network is capable of matching

the performace of a bus architecture for simple embedded systems without incurring

significant hardware overhead. It has also proven to be superior to the bus architecture

for applications that require considerable system bandwidth and scalability. This

work has successfully produced a flexible, and relatively lightweight circuit-switched

architecture that allows for high-throughput data transfer between the modules that

are critical in the overall system performance.

9.3 Future Work

An important continuation to this work involves exploring the use of multiple

routers and subnets, and understanding the kinds of topologies that map well to

different system communication requirements. Then, formally testing it against other

proposed network architectures could be done to verify its relative effectiveness for

large-scale system design. This is currently a difficult task since most of the proposed

architectures are not readily accessible. Though, that may soon change as the demand

for scalable communication continues to increase.

Another area of future work that may prove valuable is further develpment of

the PNoC’s dynamic module support. This may involve the design of a tool that aids

in the creation of module-based partial reconfiguration bitstreams. This would allow

for the creation of systems in which the requirements change over time and where

83

dynamic module replacement can be used to make more efficient use of the available

resources.

84

Appendix

85

86

Appendix A

PNoC Tutorial

Presented here is a tutorial that walks through the process of building a sim-

ple Hello World example system. This system is created using JHDL and consists

of a Microblaze processor node and a UART node that are connected to the PNoC

router as shown in Figure A.1. This tutorial first describes how the hardware for

this system is created. Then a corresponding Hello World software program is ex-

plained. This example simply illustrates one of many ways that such a system might

be implemented.

Microblaze UART1 2

Router

Node
IF

Node
IF

Figure A.1: Hello World System

A.1 Hello World Hardware Design

This hardware design tutorial assumes that both the Microblaze and UART

cores are complete and ready to integrate into the PNoC system. A NetInterface

class has been created to simplify PNoC module integration. Though the NetInterface

87

is used in the creation for each of the modules in this example, its use is not required.

A module designer could manually implement all of the required interfacing hardware

for one or more of the system modules. This section describes the NetInterface class

and explains how both the Microblaze and UART nodes use it to interface to the net-

work. Also explained is the creation of the top-level hardware system.

A.1.1 The NetInterface Class

The NetInterface class manages all of the node’s top-level port interface sig-

nals and provides an abstracted set of signals to the module, simplifying its integration

to the network. This interface can be configured (by boolean flags passed to its con-

structor) to include Rx and Tx interface FIFOs, timeout detection circuitry, a router

update FSM, and registered inputs and outputs. PNoC modules simply extend this

class to take advantage of its features.

A.1.2 Network Module Design: A UART Example

A UartNode.java file is provided in A.4.1 that illustrates how the UART

core might be used with the NetInterface to interface to the network. As shown

in the code, the UartNode extends NetInterface and passes all the top-level port

signals to it through the super() constructor call. The NetInterface connects all of

the top-level network port signals, but the UART-specific rx and tx signals must be

separately added to the port interface and connected from within the UartNode.

The UartNode reads in the rx signals provided by the NetInterface to inter-

pret what commands to issue to the UART core. For example, in this system, a send

request is defined by a write to rx addr = 0x00, where the rx data is the value to

be sent. Similarly, a receive request is defined as a read from rx addr = 0x00, while

a read from rx addr = 0x01 is interpreted as a status read request. The requested

data is connected to the tx data bus.

Since the UartNode never needs to act as a master node, its request, release,

tx addr, and dest addr lines are tied to ground.

88

A.1.3 Network CPU Design: A Microblaze Example

The MicroblazeNode, shown in A.4.2, also extends NetInterface, which pro-

vides its top-level interface to the network. However, as described in chapter 6, there

is another level of interfacing that is needed. MicroblazeNode instances a module

called NetMicroblaze, shown in A.4.3, which is responsible for converting the Microb-

laze memory-based interface to a PNoC compatible one. It is in the NetMicroblaze

class that the network address decoding takes place, which identifies network accesses

and network data transfers.

NetMicroblaze instances both the Microblaze core and its associated pro-

gram memory, LocalMemory. Since Microblaze is not available in a JHDL im-

plementation, it is instanced as a blackbox, shown in A.4.4. Also included in the

NetMicroblaze class is circuitry that drives the network connection request and

release lines as controlled by the software program.

A.1.4 Top-Level System Design

The top-level system file, HelloWorld.java, is shown in A.4.5. It is in this file

where the system parameters are defined, the system clocks are generated, and the

top-level router and network nodes are instantiated. This system has a port count of

2 since there are only 2 nodes that connect to the network: the Microblaze processor

and UART. The data and address widths for the Microblaze are both 32 bits, while

the data and address widths for the UART are 8 bits and 1 bit respectively.

A DCM is used to generate the clocks used in this system. For this example,

the MicroblazeNode and NetRouter run at the native clock rate of 100 MHz, while

the UartNode runs at 50 MHz. Therefore, the clk0 output of the DCM drives both

the net clk and the cpu clk, while the clk dv drives the uart clk.

As shown in A.4.5, the NetRouter is configured without the use of table update

hardware since dynamic module replacement support is not needed in this system.

Instead, the table is initialized with the values provided in the table init array, which

map the MicroblazeNode address 1 to port interface 1 and the UartNode address 2

to port interface 2.

89

The MicroblazeNode instantiation includes the network access and network

data mask parameters. For this system the net access mask is 0x80000000 and the

net data mask is 0xC0000000. The MicroblazeNode is assigned a source address of

1 and does not require the use of interface FIFOs since it runs at the same clock rate

as the NetRouter.

The UartNode is assigned a source address of 2 and does require the use of

interface FIFOs since it runs at a clock rate different from that of the NetRouter.

A.2 Hello World Software

The software that runs on this system is shown in A.4.6. The

NET ACCESS MASK and NET DATA MASK values are consistent with those

used in the top-level hardware file (HelloWorld.java). Network macros

(mNetworkRequest, mNetworkRelease, mNetworkWrite, and mNetworkRead)

are used to access the network. The function of this program is to print the string

“Hello World!” to the UART to be received and read by a host computer. To do

this the software first requests access to the UART by issuing a network request ad-

dressed to the UartNode. Once access is granted, the printString() function sends

the desired string, one character at at time. The connection is then released as the

software issues a network release command.

A.3 Building the System

The details of building such a system are device and processor specific and are

not discussed in detail here. However, the hardware and software makefiles used to

build this system, targeted to a Xilinx Virtex-II Pro device (xcv2p30), are provided

in A.4.7 and A.4.8 respectively to be used as a reference.

90

A.4 Hello World Source Code

A.4.1 UartNode.java

import byucc . j hd l . base . ∗ ;
import byucc . j hd l . Logic . ∗ ;

public class UartNode extends Net In t e r f a c e {

public UartNode (Node parent , S t r ing name ,
Wire ne t c l k , Wire node c lk , Wire r e s e t ,
Wire ne t r eque s t , Wire n e t r e l e a s e ,
Wire net grant , Wire net pend ,
Wire net rx data , Wire net rx addr , Wire net rx rnw ,
Wire n e t r x va l i d , Wire n e t r x c t s ,
Wire net tx data , Wire net tx addr , Wire net tx rnw ,
Wire n e t t x va l i d , Wire n e t t x c t s ,
int s rc addr , int t imeout va l ,
Wire rx , Wire tx ,
int c l o ck r a t e , int baud rate) {

super (parent , name ,
ne t c l k , node c lk , r e s e t ,
ne t r eque s t , n e t r e l e a s e , net grant , net pend ,
net rx data , net rx addr , net rx rnw , n e t r x va l i d , n e t r x c t s ,
ne t tx data , net tx addr , net tx rnw , n e t t x va l i d , n e t t x c t s ,
s rc addr , t imeout va l) ;

addPort (out ("tx" , 1)) ;
addPort (in ("rx" , 1)) ;

connect ("rx" , rx) ;
connect ("tx" , tx) ;

gnd o (des t addr) ;
gnd o (r eque s t) ;
gnd o (r e l e a s e) ;

gnd o (tx addr) ;
gnd o (tx rnw) ;
vcc o (t x c t s) ;

Wire r e ad s t a tu s = and (rx va l i d , rx rnw , rx addr . gw (0) , "read_status") ;
Wire read en = and (rx va l i d , rx rnw , not (rx addr . gw (0)) , "read_en") ;

Wire enable = and (rx va l i d , not (rx rnw) , "enable") ;
Wire din = regce (rx data , enable , "data") ;
Wire send = reg (enable , "send") ;
Wire va l i d = wire (1 , "valid") ;
Wire recv = reg r e (vcc () , read en , va l id , "read_data") ;
Wire dout = wire (8 , "dout") ;
Wire ready = wire (1 , "ready") ;
new Uart (this , r e s e t , din , send , recv , rx , tx , dout , va l id , ready ,

c l o ck r a t e , baud rate) ;

Wire s t a tu s = concat (gnd (7) , ready , "status") ;

mux o (s tatus , dout , recv , tx data) ;
mux o (r ead s ta tu s , va l id , recv , t x v a l i d) ;

} // end UartNode ()

} // end c l a s s UartNode

91

A.4.2 MicroblazeNode.java

import byucc . j hd l . base . ∗ ;
import byucc . j hd l . Logic . ∗ ;

public class MicroblazeNode extends Net In t e r f a c e {

public MicroblazeNode (Node parent , S t r ing name ,
Wire ne t c l k , Wire node c lk , Wire r e s e t ,
Wire ne t r eque s t , Wire n e t r e l e a s e ,
Wire net grant , Wire net pend ,
Wire net rx data , Wire net rx addr , Wire net rx rnw ,
Wire n e t r x va l i d , Wire n e t r x c t s ,
Wire net tx data , Wire net tx addr , Wire net tx rnw ,
Wire n e t t x va l i d , Wire n e t t x c t s ,
int s rc addr , int t imeout va l ,
boolean u s e r x f i f o s , boolean u s e t x f i f o s ,
int net access mask , int net data mask ,
int mem size) {

super (parent , name , ne t c l k , node c lk , r e s e t ,
ne t r eque s t , n e t r e l e a s e , net grant , net pend ,
net rx data , net rx addr , net rx rnw , n e t r x va l i d , n e t r x c t s ,
ne t tx data , net tx addr , net tx rnw , n e t t x va l i d , n e t t x c t s ,
s rc addr , t imeout va l , u s e r x f i f o s , u s e t x f i f o s) ;

new NetMicroblaze (this , r e s e t , r x va l i d , rx rnw , rx data , rx addr ,
grant , cpu request , cpu r e l e a s e , dest addr ,
t x va l i d , tx rnw , tx data , tx addr , t x c t s ,
net access mask , net data mask , mem size) ;

new CPUTimeoutFSM(this , timeout , grant ,
t imeout request , t imeou t r e l e a s e) ;

o r o (cpu request , t imeout request , r e qu e s t i n) ;
r e g r e o (vcc () , r eque s t i n , grant , r eque s t) ;

o r o (cpu r e l e a s e , t imeou t r e l e a s e , r e l e a s e i n) ;
r e g r e o (vcc () , r e l e a s e i n , not (grant) , r e l e a s e) ;

} // end MicroblazeNode ()

} // end c l a s s MicroblazeNode

92

A.4.3 NetMicroblaze.java

import byucc . j hd l . base . ∗ ;
import byucc . j hd l . Logic . ∗ ;

public class NetMicroblaze extends Logic {

public stat ic Ce l l I n t e r f a c e c e l l i n t e r f a c e [] = {

in ("reset" , 1) ,
in ("rx_valid" , 1) ,
in ("rx_rnw" , 1) ,
in ("rx_data" , 3 2) ,
in ("rx_addr" , 3 2) ,
in ("grant" , 1) ,
out ("cpu_request" , 1) ,
out ("cpu_release" , 1) ,
out ("dest_addr" , 8) ,
out ("tx_valid" , 1) ,
out ("tx_rnw" , 1) ,
out ("tx_data" , 3 2) ,
out ("tx_addr" , 3 2) ,
out ("tx_cts" , 1)

} ;

public NetMicroblaze (Node parent , Wire r e s e t ,
Wire rx va l i d , Wire rx rnw ,
Wire rx data , Wire rx addr , Wire grant ,
Wire cpu request , Wire cpu r e l e a s e ,
Wire dest addr , Wire tx va l i d , Wire tx rnw ,
Wire tx data , Wire tx addr , Wire tx c t s ,
int net mask value , int net data mask value ,
int mem size) {

super (parent) ;

connect ("reset" , r e s e t) ;
connect ("rx_valid" , r x v a l i d) ;
connect ("rx_rnw" , rx rnw) ;
connect ("rx_data" , rx data) ;
connect ("rx_addr" , rx addr) ;
connect ("grant" , grant) ;
connect ("cpu_request" , cpu reques t) ;
connect ("cpu_release" , c pu r e l e a s e) ;
connect ("dest_addr" , de s t addr) ;
connect ("tx_valid" , t x v a l i d) ;
connect ("tx_rnw" , tx rnw) ;
connect ("tx_data" , tx data) ;
connect ("tx_addr" , tx addr) ;
connect ("tx_cts" , t x c t s) ;

Wire i n t e r r up t = wire (1 , "interrupt") ;
Wire i d a t a = wire (3 2 , "i_data") ;
Wire i r e ady = wire (1 , "i_ready") ;
Wire i wa i t = wire (1 , "i_wait") ;
Wire i f e t c h = wire (1 , "i_fetch") ;
Wire i add r = wire (3 2 , "i_addr") ;
Wire i a d d r v a l i d = wire (1 , "i_addr_valid") ;
Wire d da ta in = wire (3 2 , "cpu_data_in") ;
Wire d data out = wire (3 2 , "cpu_data_out") ;
Wire d wait = gnd () ;
Wire d addr = wire (3 2 , "cpu_data_addr") ;
Wire d addr va l i d = wire (1 , "cpu_addr_valid") ;
Wire d data we = wire (1 , "d_data_we") ;
Wire d da ta r e = wire (1 , "d_data_re") ;
Wire d data be = wire (4 , "d_data_be") ;

93

Wire d ready = wire (1 , "d_ready") ;
new Microblaze (this , r e s e t , i n t e r rupt , i data ,

i r eady , i wa i t , i f e t c h , i addr , i a dd r va l i d ,
d data in , d data out , d data we , d data re , d data be ,
d ready , d wait , d addr , d addr va l i d) ;

Wire mem fetch = and (i f e t c h , i a d d r v a l i d) ;
Wire mem data re = wire (1 , "mem_data_re") ;
Wire mem data we = wire (1 , "mem_data_we") ;
Wire mem data out = wire (3 2 , "mem_data_out") ;
Wire mem data valid = wire (1 , "mem_data_valid") ;
new LocalMemory (this , mem fetch , i addr , i data , i v a l i d ,

mem data re , mem data we , d addr , d data out ,
mem data out , mem data valid , mem size) ;

Wire cpu data we = and (d data we , d addr va l i d) ;
Wire cpu data re = and (d data re , d addr va l i d) ;
Wire cpu data en = or (cpu data we , cpu data re) ;

Wire net mask = constant (3 2 , net mask value) ;
Wire n e t a c c e s s = and (d addr . gw(3 1) , not (d addr . gw (3 0))) ;

Wire net data mask = constant (3 2 , net data mask va lue) ;
Wire n e t da t a a c c e s s = and (d addr . gw(3 1) , d addr . gw (3 0)) ;

Wire n e t a c t i v e = wire (1 , "net_active") ;
Wire n e t a c c e s s r e qu e s t = and (ne t ac c e s s , cpu data we) ;
Wire n e t da ta r eque s t = and (ne t da ta ac c e s s , n e t a c t i v e , cpu data en) ;

and o (ne t ac c e s s , cpu data we , d data out . gw (0) , cpu reques t) ;
and o (ne t ac c e s s , cpu data we , d data out . gw (1) , c pu r e l e a s e) ;

r e g r e o (cpu request , n e t a c c e s s r e qu e s t , cpu r e l e a s e , n e t a c t i v e) ;

Wire ne t enab l e = buf (d addr . gw (3 1)) ;
Wire data mem re = and (cpu data re , not (ne t enab l e)) ;
Wire data mem we = and (cpu data we , not (ne t enab l e)) ;

Wire n e t d a t a s e l = wire (1 , "net_data_sel") ;
Wire net data = concat (gnd (3 1) , grant) ;
Wire ne t data out = mux(rx data , net data , n e t d a t a s e l) ;
Wire n e t da t a va l i d = mux(rx va l i d , vcc () , n e t d a t a s e l) ;
r e g r e o (ne t ac c e s s , cpu data re , n e t da ta va l i d , n e t d a t a s e l) ;

Wire cpu da t a s e l = r eg r e (net enab le , cpu data re , n e t da t a va l i d) ;
Wire cpu da ta va l i d = mux(mem data valid , n e t da ta va l i d , cpu da t a s e l) ;
mux o (mem data out , net data out , cpu data s e l , d da ta in) ;

o r o (cpu data va l id , reg (cpu data we) , d ready) ;

and o (ne t a c t i v e , rx rnw , rx va l i d , i n t e r r up t) ;

Wire d e s t add r i n = buf (d addr . range (9 , 2)) ;
r e g c e o (de s t addr in , cpu request , des t addr) ;

Wire tx add r i n = and (not (net data mask) , d addr) ;
concat o (gnd (2) , t x add r i n . range (3 1 , 2) , tx addr) ;

buf o (cpu data re , tx rnw) ;
buf o (ne t da ta ac c e s s , t x v a l i d) ;
vcc o (t x c t s) ;

} // end NetMicroblaze ()

} // end c l a s s NetMicroblaze

94

A.4.4 Microblaze.java

import byucc . j hd l . base . ∗ ;
import byucc . j hd l . Logic . ∗ ;

public class Microblaze extends Logic {

public stat ic Ce l l I n t e r f a c e c e l l i n t e r f a c e [] = {

in ("reset" , 1) ,
in ("interrupt" , 1) ,
in ("instruction" , 3 2) ,
in ("i_ready" , 1) ,
in ("i_wait" , 1) ,
out ("i_fetch" , 1) ,
out ("i_addr" , 3 2) ,
out ("i_addr_valid" , 1) ,
in ("data_in" , 3 2) ,
out ("data_out" , 3 2) ,
out ("data_we" , 1) ,
out ("data_re" , 1) ,
out ("data_be" , 4) ,
in ("d_ready" , 1) ,
in ("d_wait" , 1) ,
out ("d_addr" , 3 2) ,
out ("d_addr_valid" , 1)

} ;

public Microblaze (Node parent ,
Wire r e s e t , Wire in t e r rupt , Wire i n s t r u c t i on ,
Wire i r eady , Wire i wa i t , Wire i f e t c h ,
Wire i addr , Wire i a dd r va l i d ,
Wire data in , Wire data out ,
Wire data we , Wire data re , Wire data be ,
Wire d ready , Wire d wait ,
Wire d addr , Wire d addr va l i d) {

super (parent) ;

connect ("reset" , r e s e t) ;
connect ("interrupt" , i n t e r r up t) ;
connect ("instruction" , i n s t r u c t i o n) ;
connect ("i_ready" , i r e ady) ;
connect ("i_wait" , i w a i t) ;
connect ("i_fetch" , i f e t c h) ;
connect ("i_addr" , i add r) ;
connect ("i_addr_valid" , i a d d r v a l i d) ;
connect ("data_in" , da ta in) ;
connect ("data_out" , data out) ;
connect ("data_we" , data we) ;
connect ("data_re" , da ta r e) ;
connect ("data_be" , data be) ;
connect ("d_ready" , d ready) ;
connect ("d_wait" , d wait) ;
connect ("d_addr" , d addr) ;
connect ("d_addr_valid" , d addr va l i d) ;

} // end Microb laze ()

public St r ing getCellName () {
return "microblaze_wrapper" ;

}

public boolean i sBlackBox () {

95

return true ;
}

} // end c l a s s Microb laze

96

A.4.5 HelloWorld.java

import byucc . j hd l . base . ∗ ;
import byucc . j hd l . Logic . ∗ ;
import byucc . j hd l . X i l i nx . Virtex2 . ∗ ;

public class HelloWorld extends Logic {

public stat ic int port count = 2 ;
public stat ic int dwidths [] = { 3 2 , 8 } ;
public stat ic int awidths [] = { 3 2 , 1 } ;

public stat ic Ce l l I n t e r f a c e c e l l i n t e r f a c e [] = {

in ("clk" , SINGLE BIT) ,
in ("reset" , SINGLE BIT) ,
in ("rx" , SINGLE BIT) ,
out ("tx" , SINGLE BIT)

} ;

public HelloWorld (Node parent , Wire c lk , Wire r e s e t ,
Wire rx , Wire tx) {

super (parent) ;

connect ("clk" , c l k) ;
connect ("reset" , r e s e t) ;
connect ("rx" , rx) ;
connect ("tx" , tx) ;

//
////////////////// Generate System Clocks //////////////////////
//
Wire c lk0 = wire (1 , "clk0") ;
Wire c l k i n = wire (1 , "clk_in") ;
Wire c l k f b = wire (1 , "clk_fb") ;
Wire c lk dv = wire (1 , "clk_dv") ;
Wire n e t c l k = wire (1 , "net_clk") ;
Wire cpu c lk = wire (1 , "cpu_clk") ;
Wire u a r t c l k = wire (1 , "uart_clk") ;

new i bu fg (this , c lk , c l k i n) ;
new bufg (this , c lk0 , c l k f b) ;
new bufg (this , c lk0 , n e t c l k) ;
new bufg (this , c lk0 , cpu c lk) ;
new bufg (this , c lk dv , u a r t c l k) ;

Ce l l sys dcm = new dcm(this ,
c l k i n , c l k f b , gnd () , gnd () , gnd () , gnd () , gnd () ,
c lk0 , nc () , nc () , nc () , nc () , nc () , c lk dv , nc () ,
nc () , nc () , nc (8) , nc ()) ;

sys dcm . addProperty ("CLKIN_PERIOD" , "10ns") ;
sys dcm . addProperty ("CLKDV_DIVIDE" , "2") ;

//
//////////////// Create the Network S i gna l s ////////////////////
//
Wire reque s t [] = new Wire [por t count] ;
Wire r e l e a s e [] = new Wire [por t count] ;
Wire grant [] = new Wire [por t count] ;
Wire pend [] = new Wire [por t count] ;
Wire rx data [] = new Wire [por t count] ;
Wire rx addr [] = new Wire [por t count] ;

97

Wire rx rnw [] = new Wire [por t count] ;
Wire r x v a l i d [] = new Wire [por t count] ;
Wire r x c t s [] = new Wire [por t count] ;
Wire tx data [] = new Wire [por t count] ;
Wire tx addr [] = new Wire [por t count] ;
Wire tx rnw [] = new Wire [por t count] ;
Wire t x v a l i d [] = new Wire [por t count] ;
Wire t x c t s [] = new Wire [por t count] ;

for (int i = 0 ; i < port count ; i ++) {
St r ing p r e f i x = "port"+i+"_" ;
int dwidth = dwidths [i] ;
int awidth = awidths [i] ;
r eque s t [i] = wire (SINGLE BIT , p r e f i x+"request") ;
r e l e a s e [i] = wire (SINGLE BIT , p r e f i x+"release") ;
grant [i] = wire (SINGLE BIT , p r e f i x+"grant") ;
pend [i] = wire (SINGLE BIT , p r e f i x+"pend") ;
rx data [i] = wire (dwidth , p r e f i x+"rx_data") ;
rx addr [i] = wire (awidth , p r e f i x+"rx_addr") ;
rx rnw [i] = wire (SINGLE BIT , p r e f i x+"rx_rnw") ;
r x v a l i d [i] = wire (SINGLE BIT , p r e f i x+"rx_valid") ;
r x c t s [i] = wire (SINGLE BIT , p r e f i x+"rx_cts") ;
tx data [i] = wire (dwidth , p r e f i x+"tx_data") ;
tx addr [i] = wire (awidth , p r e f i x+"tx_addr") ;
tx rnw [i] = wire (SINGLE BIT , p r e f i x+"tx_rnw") ;
t x v a l i d [i] = wire (SINGLE BIT , p r e f i x+"tx_valid") ;
t x c t s [i] = wire (SINGLE BIT , p r e f i x+"tx_cts") ;

}

//
////////////////// Ins tance the NetRouter //////////////////////
//
s e tDe fau l tC lock (n e t c l k) ;

boolean t ab l e upda t e enab l e = fa l se ;
int t a b l e i n i t [] = { 0 x00 , 0 x01 , 0 x02 } ;
new NetRouter (this ,

r equest , r e l e a s e , grant , pend ,
rx data , rx addr , rx rnw , rx va l i d , r x c t s ,
tx data , tx addr , tx rnw , tx va l i d , t x c t s ,
t ab l e update enab l e , t a b l e i n i t) ;

//
/////////////////// Instance the CPUNode ///////////////////////
//
s e tDe fau l tC lock (cpu c lk) ;

int cpu addr = 1 ;
int cpu t imeout va lue = 0 ;
boolean c p u u s e r x f i f o s = fa l se ;
boolean c p u u s e t x f i f o s = fa l se ;
int net acces s mask = 0 x80000000 ;
int net data mask = 0xC0000000 ;
int cpu mem size = 64 ;
new MicroblazeNode (this , "MicroblazeNode" ,

n e t c l k , cpu c lk , r e s e t ,
r eque s t [0] , r e l e a s e [0] , grant [0] , pend [0] ,
tx data [0] , tx addr [0] , tx rnw [0] ,
t x v a l i d [0] , t x c t s [0] ,
rx data [0] , rx addr [0] , rx rnw [0] ,
r x v a l i d [0] , r x c t s [0] ,
cpu addr , cpu t imeout va lue ,
c p u u s e r x f i f o s , c p u u s e t x f i f o s ,
network mask , network addr mask ,
cpu mem size) ;

98

//
////////////////// Ins tance the UartNode ///////////////////////
//
s e tDe fau l tC lock (u a r t c l k) ;

int uart addr = 2 ;
int uar t t imeout va lue = 0 ;
boolean u a r t u s e r x f i f o s = true ;
boolean u a r t u s e t x f i f o s = true ;
int u a r t c l k f r e q = 50000000;
int uar t baud rate = 115200;
new UartNode (this , "UartNode" ,

n e t c l k , ua r t c l k , r e s e t ,
r eque s t [1] , r e l e a s e [1] , grant [1] , pend [1] ,
tx data [1] , tx addr [1] , tx rnw [1] ,
t x v a l i d [1] , t x c t s [1] ,
rx data [1] , rx addr [1] , rx rnw [1] ,
r x v a l i d [1] , r x c t s [1] ,
uart addr , uar t t imeout va lue ,
u a r t u s e r x f i f o s , u a r t u s e t x f i f o s ,
rx , tx , u a r t c l k f r e q , ua r t baud rate) ;

} // end HelloWorld ()

} // end c l a s s HelloWorld

99

A.4.6 HelloWorld.c

//
/////////////////////// Network Access Def ines ///////////////////////
//
#define NET ACCESS MASK 0 x80000000
#define NET DATA MASK 0xC0000000

#define NET REQUEST 0 x01
#define NET RELEASE 0 x02

//
//////////////////////// Network Access Macros ///////////////////////
//
#define mNetworkIn (net addr) \

(∗ (volat i le int ∗) (net addr))

#define mNetworkOut (net addr , va lue) \
(∗ (volat i le int ∗) (net addr) = value)

#define mNetworkRequest (node addr) \
mNetworkOut (NET ACCESS MASK+(node addr <<2) , NET REQUEST) ; \
while (! mNetworkIn (NET ACCESS MASK))

#define mNetworkRelease (node addr) \
mNetworkOut (NET ACCESS MASK, NET RELEASE) ; \
while (mNetworkIn (NET ACCESS MASK))

#define mNetworkRead(data addr) \
(∗ (volat i le int ∗) (NET DATA MASK+(data addr <<2)))

#define mNetworkWrite (data addr , va lue) \
(∗ (volat i le int ∗) (NET DATA MASK+(data addr <<2)) = value)

///
/////////////////////// UART Defines & Functions ////////////////////
///
#define UART ADDR 0x02
#define UART STATUS OFFSET 0 x01
#define UART READY MASK 0x01
void p r i n tS t r i n g (char ∗ value) ;
void sendByte (int value) ;

///
/////////////////////// Function De f i n i t i on s ////////////////////////
///
int main () {

mNetworkRequest (UART ADDR) ;
p r i n t S t r i n g ("Hello World !\r\n") ;
mNetworkRelease (UART ADDR) ;

} // end main ()

void p r i n tS t r i n g (char ∗ value) {
int c , i = 0 ;

while ((c = value [i ++]) != ’\0’)
sendByte (c) ;

} // end p r i n t S t r i n g ()

100

void sendByte (int value) {

while (mNetworkRead(UART STATUS OFFSET) != UART READY MASK) ;
mNetworWrite (0 , va lue) ;

} // end sendByte ()

101

A.4.7 Software Makefile

SW FILE = HelloWorld

CC = mb−gcc −mno−xl−s o f t−mul −mno−xl−s o f t−div
AS = mb−as
AR = mb−ar
LD = mb−ld − r e l a x −N −T default . l i n k
DUMP = mb−objdump −D

a l l : $ (SW FILE) . l s t

$ (SW FILE) . l s t : $ (SW FILE) . c
$ (CC) − c $ (SW FILE) . c −o $ (SW FILE) . o
$ (AS) i n i t . S −o i n i t . o
$ (LD) i n i t . o $ (SW FILE) . o l i b x i l . a −o $ (SW FILE) . e l f
$ (DUMP) $ (SW FILE) . e l f > $ (SW FILE) . l s t

102

A.4.8 Hardware Makefile

HW FILE = HelloWorld
HWPART = xc2vp30−f f 896 −7

a l l : $ (HW FILE) . b i t

$ (HW FILE) . b i t : $ (HW FILE) . edn
ngdbui ld −p $ (HWPART) $ (HW FILE)
map − d e t a i l $ (HW FILE)
par − o l 5 −w $ (HW FILE) . ncd $ (HW FILE) . par . ncd
t r c e −v 100 −a $ (HW FILE) . par . ncd
b i tgen −w −g s t a r tupc l k : j t a g c l k $ (HW FILE) . par . ncd
mv ∗ . par . twr $ (HW FILE) . twr
mv ∗ . par . b i t $ (HW FILE) . b i t

$ (HW FILE) . edn : $ (HW FILE) . uc f
j i k e s +Pno−naming−convent ion ∗ . java
java tb $ (HW FILE) − n e t l i s t

$ (HW FILE) . uc f : $ (HW FILE) . e l f
data2mem −bm $ (HW FILE) .bmm −bd $ (HW FILE) . e l f

−o u temp . uc f −p $ (HWPART) − i
cat temp . uc f >> $ (HW FILE) . uc f

103

104

Bibliography

[1] G. Moore, “Cramming More Components Onto Integrated Circuits,” Electronics,

vol. 38, no. 8, 1965.

[2] M. Abramovici, C. Stroud, and M. Emmert, “Using Embedded FPGAs for SoC

Yield Improvement,” in Proceedings of the Design Automation Conference. DAC

02, 10-14 June 2002, pp. 713–724.

[3] “ARM, AMBA Specification,” ARM, Tech. Rep., 1999, revision 2.0.

[4] “CoreConnect, CoreConnect Bus Architecture,” IBM Cooperation, Tech. Rep.,

1999.

[5] E. Salminen, V. Lahtinen, K. Kuusilinna, and T. Hamalainen, “Overview of

Bus-Based System-on-Chip Interconnections,” in Proceedings of the IEEE Inter-

national Symposium on Circuits and Systems. ISCAS 02, 26-29 May 2002, pp.

II–372 – II–375 vol.2.

[6] [Online]. Available: http://www.xilinx.com

[7] [Online]. Available: http://www.altera.com

[8] L. Beninni and G. D. Micheli, “Networks on Chips: A New SoC Paradigm,”

Computer, pp. 70–78, 2002.

[9] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection

Networks,” in Proceedings of the Design Automation Conference. DAC 01, 18-22

June 2001, pp. 684–689.

105

http://www.xilinx.com
http://www.altera.com

[10] S. Kumar and A. Jantsch, “A Netork on Chip Architecture and Design Methodol-

ogy,” in Proceedings of the IEEE Computer Society Annual Symposium on VLSI.

ISVLSI 02, 25-26 April 2002, pp. 105–112.

[11] C. Grecu, P. P. Pande, A. Ivanov, and R. Saleh, “A Scalable Communication-

Centric SoC Interconnect Architecture,” in Proceedings of the 5th International

Symposium on Quality Electronic Design, 2004, pp. 343–348.

[12] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins, “Inter-

connection Networks Enable Fine-Grain Dynamic Multi-Tasking on FPGAs,” in

Proceedings of the 12th International Conference on Field-Programmable Logic

and Applications. FPL 02, September 2002, pp. 795–805.

[13] D. Wiklund and D. Liu, “SoCBUS: Switched Network on Chip for Hard Real

Time Embedded Systems,” in Proceedings of the International Parallel and Dis-

tributed Processing Symposium, April 2003.

[14] J. Liu, L.-R. Zheng, and H. Tenhunen, “A Circuit-Switched Network Architec-

ture for Network-on-Chip,” in Proceedings of the International Symposium on

System-on-Chip, September 2004, pp. 55–58.

[15] L. Peterson and B. Davie, Computer Networks: A Systems Approach, 2nd ed.

San Francisco: Morgan Kaufmann, 2000, ch. 3, pp. 170–186.

[16] D. Lim and M. Peattie, “Two Flows for Partial Reconfiguration: Module Based

or Small Bit Manipulations,” Xilinx Corporation, Tech. Rep., 17 May 2002,

XAPP290 (v1.0).

[17] B. Blodget, S. McMillan, and P. Lysaght, “A Lightweight Approach for Embed-

ded Reconfiguration of FPGAs,” in Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition. DATE 03, 2003.

[18] P. Bellows and B. Hutchings, “JHDL-an HDL for Reconfigurable Systems,” in

Proceedings of FPGAs for Custom Computing Machines. FCCM 98, 15-17 April

1998, pp. 175–184.

106

[19] T. Bartic, J.-Y. Mignolet, V. Nollet, T. Marescaux, D. Verkest, S. Vernalde, and

R. Lauwereins, “Highly Scalable Network on Chip for Reconfigurable Systems,”

in Proceedings of the International Symposium on System-on-Chip, November

2003, pp. 79–82.

107

	A Flexible Circuit-Switched Communication Network for FPGA-Based SOC Design
	BYU ScholarsArchive Citation

	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Programmable SoCs
	Dynamic Module Replacment

	Ideal Architectural Approach
	Common Architectural Approaches
	Programmable Network on Chip
	Structure of This Work

	Background
	Relevant Work in SoC Design
	Relevant Work in NoC Design
	Packet-Switching Architectures
	FPGA-Specific Architecture
	Packet Switching vs Circuit Switching

	Status of Xilinx Partial Reconfiguration
	JHDL
	Summary

	Programmable Network on Chip: General Description
	Circuit-Switched Architecture
	Network Routers
	Network Modules
	CPU Interfaces

	Modular Design Flow
	Clocking Scheme
	Data Flow Control
	Summary

	PNoC Router Description
	Router Component Overview
	Parameterizable Features
	Port Interface
	Router Connectivity

	Routing Table
	Table Updates
	Illustrative Example

	Connection Process
	Table Arbitration
	Port Arbitration
	Termination Process
	Illustrative Example

	Summary

	PNoC Module Interface
	Node Interface
	Router Updates
	Interface FIFOs

	Data Transfer Process
	Master Node Data Transfer
	Slave Node Data Transfer
	Illustrative Examples

	Summary

	PNoC CPU Interface
	Memory-Mapped Interfacing
	Network CPU Software
	CPU As Master
	CPU As Slave

	Summary

	PNoC Implementation Results
	PNoC Router Results
	PNoC Module Interface Results
	PNoC CPU Interface Results
	Network Architecture Comparison
	Summary

	PNoC Test Applications
	Autonomous Robot
	General Implementation Details
	Shared Bus Implementation
	Network Implementation
	System Comparisons

	Image Binarization
	General Implementation Details
	Shared Bus Implementation
	Network Implemenation
	System Comparisons

	Summary

	Conclusion
	Summary
	Conclusions
	Future Work

	PNoC Tutorial
	Hello World Hardware Design
	The NetInterface Class
	Network Module Design: A UART Example
	Network CPU Design: A Microblaze Example
	Top-Level System Design

	Hello World Software
	Building the System
	Hello World Source Code
	UartNode.java
	MicroblazeNode.java
	NetMicroblaze.java
	Microblaze.java
	HelloWorld.java
	HelloWorld.c
	Software Makefile
	Hardware Makefile

	Bibliography

