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Effects of Gap Open and Gap Extension Penalties
Hyrum Carroll, Perry Ridge1, Mark Clement, Quinn Snell
Computer Science Department, Brigham Young University

Provo, Utah 84602, USA
{hdc,clement,snell}@cs.byu.edu, perry.ridge@gmail.com

Abstract— Fundamental to multiple sequence alignment algo-
rithms is modeling insertions and deletions (gaps). The most
prevalent model is to use gap open and gap extension penalties.
While gap open and gap extension penalties are well understood
conceptually, their effects on multiple sequence alignment, and
consequently on phylogeny scores are not as well understood.
We use exhaustive phylogeny searching to explore the effects
of varying the gap open and gap extension penalties for three
nuclear ribosomal data sets. Particular attention is given to
optimal phylogeny scores for 200 alignments of a range of gap
open and gap extension penalties and their respective distribution
of phylogeny scores.

Keywords: Alignment, gap penalties

I. INTRODUCTION

The explosion in DNA sequence data has revolutionized
the way scientists perform biological and genetic analysis. By
analyzing sequence data for different species, researchers can
determine which species are most closely related and make
conservation decisions based on these results [1]. Multiple
sequence alignment (MSA) is frequently the first step in
determining where active regions in proteins are located and
plays a critical role in understanding the function of genes and
how they govern life. Alignment also plays a central role in
sequence analysis as the first step in comparing corresponding
regions in the genomes of different organisms (comparative
genomics). Since a refined multiple sequence alignment is
crucial to so many different types of life-saving research, it is
surprising that multiple sequence alignment does not receive
more attention from the research community.

Multiple sequence alignment can be performed with DNA
nucleotide or amino acid sequences. MSA algorithms insert
gaps in order to align the sequences to maximize similarity
according to the evolutionary model summarized in the sub-
stitution matrix [2]. Gaps correspond to an insertion or deletion
of a substring (sometimes a single residue). Gaps can occur
because of single mutations, unequal crossover in meiosis,
DNA slippage in the replication process or translocation of
DNA between chromosomes.

One of the most popular algorithms for MSA is the progres-
sive sequence alignment algorithm [2], [3]. In a progressive
sequence alignment algorithm, the substitution matrix is used
to determine the likelihood of an observed mismatch (the
mismatch may be the result of a mutation or sequencing error).
The algorithm then decides to either insert a gap or allow the
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Fig. 1. ClustalW flowchart

mismatch to remain in the alignment. In progressive sequence
alignment algorithms, inserted gaps are never removed.

The popular alignment program, ClustalW [2], is used
in this research. ClustalW utilizes the progressive sequence
alignment algorithm (see Figure 1). There are two main phases
to progressive alignment. First, a distance matrix is calculated
from similarity scores for every possible pair of sequences.
ClustalW uses the Wilbur and Lipman algorithm [4] to cal-
culate the distances. These similarity scores are only very
general approximations, but work as a starting point [4]. The
similarity scores are clustered together with a modified version
of the Needleman-Wunsch algorithm [5], producing a guide
tree. The second phase consists of following the topology of
the guide tree, and at every node aligning the sequences in
each of the subtrees until all sequences have been included
in the alignment. The first phase generally requires the vast
majority of the time and can be skipped by supplying a guide
tree.

Since there are several accepted methods for computing
a multiple sequence alignment, it is difficult to evaluate the
accuracy of an alignment. The alignment score is dependent on
the substitution matrix and gap penalties. ClustalW provides
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Data Number of Average Max
Set Gene Sequences Length Length
1 18S 12 1856.25 1998
2 28S 12 332.83 340
3 28S 12 657.083 710

TABLE I
CHARACTERISTICS OF THE THREE RIBOSOMAL DATA SETS USED.

AVERAGE LENGTH AND MAX LENGTH ARE MEASURED IN BASE PAIRS.

an alignment score for each multiple sequence alignment
performed. However, since this score is dependent on the sub-
stitution matrix and gap penalties it cannot be used to compare
different alignments of the same data set. The minimum cost
for a phylogeny inferred from a given MSA has been suggested
as an unbiased measure of the quality of the alignment [6]–[9].
Because no better, unbiased, metric has been commonly used,
this research uses the minimum cost phylogeny to determine
alignment quality.

Although most phylogenetic search applications use a given
multiple sequence alignment as a starting point [10]–[13],
multiple sequence alignment has received much less attention
than phylogenetic search algorithms [9]. The importance of
a quality alignment for the phylogeny search must not be
minimized [14], [15]. Morrison et al. [14] has even suggested
that the resulting phylogeny is affected more by the method
used for performing the multiple sequence alignment than the
method used to perform the phylogeny search itself.

A. Related Work

The effects of varying parameters for MSA applications
was first covered by Fitch and Smith [16] and Williams and
Fitch [17]. Several researchers have looked at the effects of
parameters for both MSA and phylogenetic search algorithms.
These sensitivity analyses have shown that differences in
input parameters for MSA have had a greater impact on the
phylogeny score then varying the phylogeny search applica-
tion [14]. Other studies have focused on nodal support and
nodal stability [18].

II. DATA SETS

We used three data sets to study the effects of gap open and
gap extension penalties (see Table I). The three data sets cover
two nuclear ribosomal genes for a wide diversity of hexapod
species and are provided by Michael Whiting, a researcher in
the Biology Department at Brigham Young University. Data
set 1 has twelve 18S gene sequences, while data sets 2 and
3 each of have twelve 28S gene sequences. The sequences in
each data set were randomly chosen from larger data sets. We
limited the number of sequences included in this study due
to the intrinsic computational time limitations of exhaustive
searching.

III. RESULTS

Varying the gap open and gap extension costs not only
produces very different alignments [14] but produces different
distributions of phylogeny scores. Figures 2-4 plot optimal

phylogeny scores for gap open penalties (GOP) ranging from
1.0 to 20.0 and gap extension penalties (GEP) evenly dis-
tributed between 0 and one half of the respective GOP. For
each of the 200 data points in each graph, we used ClustalW
to produce the alignment, and then PAUP* [13] to exhaus-
tively generate the phylogenies. While heuristic searches are
commonly used, an exhaustive search is necessary to ensure
the optimality of the phylogeny score for an alignment. In
each of these graphs, the default parameters for ClustalW
(GOP 15.0, GEP 6.66) are labeled. Although it is expected
that ClustalW’s defaults do not produce the optimal alignment
with the lowest phylogeny score, it is noteworthy that these
scores are 11.0% worse (data set 3) and 106 steps (data set 1)
than the best optimal phylogeny score found. Also, the plot
for data set 2 clearly reveals that local minima of optimal
phylogeny scores exist. For that data set, the local minima
has a GOP of 3.0 and a GEP of 1.2. The phylogeny score
at that point is 380. Attempts to search over the GOP-GEP
space need to incorporate some sort of hill-climbing feature
to overcome such local minima.

In addition to gap open and gap extension penalties affecting
optimal phylogeny scores, they also greatly affect the distri-
bution of phylogeny scores. Figure 5 illustrate histograms of
the phylogeny scores for data sets 1-3. A clear example of
the difference in phylogenies scores is exhibited by data set
3. 98% of the possible phylogenies with a GOP of 20.0 and a
GEP of 10.0 have of parsimony score worse than any of the
phylogenies with a GOP of 2.0 and a GEP of 0.8. In general,
varying the GEP parameters shifts the histograms of parsimony
scores. The shifted distribution retains its general shape and
features. For example, the histograms presented for data set
2 each have a second hump aside from another much larger
one. Adjusting the gap parameters causes substantial change
to both the optimal phylogeny score and its distribution.

IV. CONCLUSION

Gap open and gap extension penalties have long been used
to model insertions and deletions. We explored the effects
of independently varying the gap open and gap extension
penalties for three nuclear ribosomal gene data sets. We em-
ployed exhaustive phylogeny searching to guarantee optimal
maximum parsimony phylogenies. Varying these parameters
not only yields very different optimal phylogenies, but also
greatly effects the distribution of possible phylogeny scores.
Furthermore, algorithms for traversing the GOP-GEP space
need to employ hill-climbing techniques to avoid local min-
ima.

REFERENCES

[1] W.-H. Li, Molecular Evolution. Sunderland, Massachusetts: Sinauer
Associates, 1997.

[2] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “Clustal W: improving
the sensitivity of progressive multiple sequence alignment through
sequence weighting, position specific gap penalties and weight matrix
choice,” Nucleic Acids Research, vol. 22, pp. 4673–4680, 1994.

[3] D. Feng and R. F. Doolittle, “Progressive sequence alignment as a
prerequisite to correct phylogenetic trees,” J. Mol. Evol., vol. 60, pp.
351–360, 1987.

20



 1520
 1540
 1560
 1580
 1600
 1620
 1640
 1660

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20  0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 1520
 1540
 1560
 1580
 1600
 1620
 1640
 1660

Parsimony Score

Most Parsimonious Tree Scores (per alignment parameters) (Data Set 1)

GOP GEP

Parsimony Score

ClustalW Defaults

Fig. 2. Optimal parsimony scores for 200 alignments of data set 1. The minimum optimal parsimony score of 1531 has a gap open penalty of 1.0 and two
gap extension penalties of 0.4 and 0.5. ClustalW default parameters yield an optimal phylogeny score of 1634.

 376
 378
 380
 382
 384
 386
 388
 390
 392

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20  0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 376
 378
 380
 382
 384
 386
 388
 390
 392

Parsimony Score

Most Parsimonious Tree Scores (per alignment parameters) (Data Set 2)

GOP GEP

Parsimony Score

ClustalW Defaults

Fig. 3. Optimal parsimony scores for 200 alignments of data set 2. The minimum optimal parsimony score of 376 has a gap open penalty of 8.0 and a gap
extension penalty of 3.2. ClustalW default parameters yield an optimal phylogeny score of 388.

 610
 620
 630
 640
 650
 660
 670
 680
 690
 700
 710
 720

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20  0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

 610
 620
 630
 640
 650
 660
 670
 680
 690
 700
 710
 720

Parsimony Score

Most Parsimonious Tree Scores (per alignment parameters) (Data Set 3)

GOP GEP

Parsimony Score

ClustalW Defaults

Fig. 4. Optimal parsimony scores for 200 alignments of data set 3. The minimum optimal parsimony score of 618 has a gap open penalty of 2.0 and a gap
extension penalty of 0.8. ClustalW default parameters yield an optimal phylogeny score of 686.

21



 3500000

3000000

2500000

2000000

1500000

1000000

500000

0
 1500  1600  1700  1800  1900  2000  2100  2200  2300

N
um

be
r 

of
 P

hy
lo

ge
ni

es

Parsimony Score

All Parsimony Scores (Data Set 1)

GOP 2, GEP 0.8
GOP 5, GEP 1.5

GOP 10, GEP 3.0
GOP 15, GEP 6.66
GOP 20, GEP 10.0

20000000

15000000

10000000

5000000

0
 380  400  420  440  460  480  500  520  540  560  580

N
um

be
r 

of
 P

hy
lo

ge
ni

es

Parsimony Score

All Parsimony Scores (Data Set 2)

GOP 2, GEP 0.8
GOP 5, GEP 1.5

GOP 10, GEP 3.0
GOP 15, GEP 6.66
GOP 20, GEP 10.0

10000000

5000000

0
 550  600  650  700  750  800  850  900

N
um

be
r 

of
 P

hy
lo

ge
ni

es

Parsimony Score

All Parsimony Scores (Data Set 3)

GOP 2, GEP 0.8
GOP 5, GEP 1.5

GOP 10, GEP 3.0
GOP 15, GEP 6.66
GOP 20, GEP 10.0

Fig. 5. Representative histograms of all parsimony scores for various alignments parameters for data sets 1-3.
22



[4] W. Wilbur and D. Lipman, “The context dependent comparison of
biological sequences,” SIAM J. Appl. Math, vol. 44, pp. 557–567, 1984.

[5] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
J. Mol. Biol., vol. 48, pp. 443–453, 1970.

[6] A. G. Kluge, “A Concern for Evidence and a Phylogenetic Hypothesis
of Relationships Among Epicrates (Boidae, Serpentes),” Systematic
Zoology, vol. 38, no. 1, pp. 7–25, 1989.

[7] W. C. Wheeler and D. S. Gladstein, “MALIGN: A multiple sequence
alignment program,” J. Hered, vol. 85, pp. 417–418, 1994.

[8] W. C. Wheeler, “Optimization alignment: the end of multiple sequence
alignment in phylogenetics?” Cladistics, vol. 12, pp. 1–9, 1996.

[9] A. Phillips, D. Janies, and W. C. Wheeler, “Multiple sequence align-
ment in phylogenetic analysis,” Molecular Phylogenetics and Evolution,
vol. 16, no. 3, pp. 317–330, September 2000.

[10] J. S. Farris, HENNIG86, version 1.5, Program and Documentation: Port
Jefferson Station, New York, 1988.

[11] J. Felsenstein, “PHYLIP – phylogeny inference package (version 3.2),”
Cladistics, vol. 5, pp. 164–166, 1989.

[12] P. Goloboff, “Analyzing large datasets in reasonable times: Solutions for
composite optima,” Cladistics, vol. 15, pp. 415–428, 1999.

[13] D. L. Swofford, PAUP*. Phylogenetic Analysis Using Parsimony (*
and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer
Associates, 2003.

[14] D. A. Morrison and J. T. Ellis, “Effects of nucleotide sequence alignment
on phylogeny estimation: A case study of 18s rDNAs of apicomplexa,”
Molecular Biology and Evolution, vol. 14, no. 4, pp. 428–441, 1997.

[15] N. Mugridge, D. Morrison, T. Jakel, A. Heckeroth, A. Tenter, and
A. Johnson, “Effects of sequence alignment and structural domains of
ribosomal dna on phylogeny reconstruction for the protozoan family
sarcocystidae,” Molecular Biology and Evolution, vol. 17, pp. 1842–
1853, 2000.

[16] W. M. Fitch and T. F. Smith, “Optimal sequence alignments,” Proc. Natl.
Acad. Sci. USA, vol. 80, pp. 1382–1386, March 1983.

[17] P. L. Williams and W. M. Fitch, The Hierarchy of Life. Elsevier,
Amsterdam, 1989, ch. Finding the minimal change for a given tree.

[18] G. Giribet, “Stability in phylogenetic formulations and its relationship
to nodal support,” Systematic Biology, vol. 52, no. 4, pp. 554–564, 2003.

23


	Effects of Gap Open and Gap Extension Penalties
	Original Publication Citation
	BYU ScholarsArchive Citation

	Microsoft Word - Preface.doc

