
Relatively undisturbed arid and semiarid
landscapes can exhibit a soil surface cover of
microphytes including mosses, lichens, algae,
fungi, and cyanobacteria (Lange et al. 1992).
Termed cryptogamic or microbiotic (Johansen
1993), cryptobiotic (Belnap et al. 1994), or
microphytic crusts (Beymer and Klopatek
1991), these biological assemblages protect
the soil from erosion (Harper and Marble 1988)
and function in carbon cycling (Beymer and
Klopatetk 1991) and nitrogen cycling (Rychert
et al. 1978).

There has been increasing interest in trying
to assess recovery rates of cryptobiotic crusts
after disturbance (e.g., overgrazing, fire, agri-
culture). Belnap (1993) found that the use of
spectrophotometrically determined chlorophyll
a as a measure of recovery of cryptobiotic
crusts was both time-efficient and reliable.
Chlorophyll a levels increased at rates of 1.0–
2.6% per year after disturbance at various Utah
sites.

Fire can destroy microbiotic crusts. Greene
et al. (1990) observed reduction in coverage of
soil crusts following fire. Soil erosion rate and
the amount of bare soil surface per unit area
increased, and a decline in aggregate stability
in the 0–1 cm horizon was also observed.
Johansen et al. (1982, 1993) observed signifi-
cant reduction in the biomass of algal/cyano-
bacterial soil crusts after burning, although
species diversity remained constant.

Recovery rates of soil crusts following fire
can vary depending on the organisms involved
and climatic conditions. In the lower Columbia
Basin, Johansen et al. (1993) observed little

increase in algal/cyanobacterial density of soil
crusts during the first 16 months following
fire. It was also observed that immediately fol-
lowing fire the algal/cyanobacterial/moss crust,
although dead, was still intact. Estimates of
algal and cyanobacterial recovery time in terms
of biomass and diversity range from 16 months
to 5 years (Johnasen et al. 1982, 1993). Recov-
ery appears to be highly dependent on precip-
itation patterns and composition of the crust,
which are in turn influenced by soil character-
istics and climate (Johansen et al. 1993).

This study is a preliminary attempt to esti-
mate the recovery of cryptobiotic crusts on
Idaho rangeland sites in the lower Snake River
plains of Idaho following disturbance by fire.
The use of chlorophyll determinations to pro-
vide both qualitative and quantitative estima-
tions of cryptobiotic crust recovery was evalu-
ated.

MATERIALS AND METHODS

Cryptobiotic crust samples were collected
nearly 3 years after the 1996 Kuna Butte fire
(location: southwest of Boise, Idaho, Township
2 North, Range 1 West, Section 4). The light-
ning-caused fire began on 26 August 1996 and
burned 5785 acres. The sampling area was for-
merly a Wyoming big sagebrush community
similar to an adjacent unburned area. The
burned area was dominated by cheatgrass
(Bromus tectorum) and tumblemustard (Sisym-
brium altissimum). Most of the burned area
still has good cover of perennial grasses, pri-
marily Sandberg’s bluegrass (Poa secunda) and
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bottlebrush squirreltail (Elymus elymoides)
amongst the cheatgrass. The fire was high
intensity, resulting in destruction of the bio-
logical crust. Trace amounts of moss were
observed on the soil surface during sampling.
Observations in the nearby Poen fire suggest
that crust cover does not become visibly
apparent until approximately 3–4 years follow-
ing a high-intensity fire.

Vegetation in the adjacent unburned area is
Wyoming big sagebrush (Artemisia tridentata
ssp. wyomingensis) with an understory of blue-
bunch wheatgrass (Pseudoroegneria spicata)
and Thurber’s needlegrass (Achnatherum thur-
berianum). Sandberg’s bluegrass and bottle-
brush squirreltail are also present. The soil
surface in the unburned area has a nearly
complete cover of biological soil crust domi-
nated by mosses (primarily Bryum spp.) and
lichens. The soil of the sampling area is classi-
fied as a fine-silty, mixed, mesic Xerollic Hap-
largid. The texture is a silt loam.

Soil “cores” consisting of cryptobiotic crust
plus soil were collected with sterile plastic
petri dishes serving as coring devices (1 cm
deep and 47 mm in diameter). Ten samples
were collected from both the burned and un-
burned areas and kept on ice. Chlorophyll pig-
ments were extracted with dimethylsulfoxide
(DMSO) the same day (12 March 1999), fol-
lowing the procedures of Ronen and Galun
(1984; 60°C for 50 minutes). Following filtra-
tion of the extracts through a Whatman #1 fil-
ter, absorbance readings at 750 nm, 665 nm,
648 nm, 435 nm, and 415 nm were made with
a Spectronic 20 Genesys spectrophotometer.

Chlorophyll a (Ca) and chlorophyll b (Cb)
concentrations were determined using the
equations of Barnes et al. (1992):

Ca (in mg L–1) = 14.85 A665 – 5.14 A648
Cb (in mg L–1) = 25.48 A648 – 7.36 A665

Chlorophyll concentrations are expressed as
mg m–2, extrapolated from the 1.73 × 10–3 m2

soil core(s).
Statistical analyses were run with SAS for

Windows, version 8 (SAS Institute, Inc. 1999).

RESULTS AND DISCUSSION

Chlorophyll a concentrations, chlorophyll b
concentrations, and chlorophyll a/b ratios are
higher for the unburned than the burned site
(Table 1). The burned site had chlorophyll a
levels that are 50% of the unburned site. Mean
chlorophyll a concentrations for both the
burned (65 mg m–2) and control (130 mg m–2)
sites were much higher than the levels deter-
mined by Belnap et al. (1994) with disturbed
cryptobiotic soil crusts in Utah (approximately
10–50 mg m–2), but they are similar to
endolithic microphytic chlorophyll a levels
reported by Bell and Sommerfield (1987; 87
mg m–2) on the Colorado Plateau, and by
Matthes-Sears et al. (1997; 73 mg m–2) in
Ontario, Canada. Recovery of the cryptobiotic
crust probably does not occur as a linear func-
tion; however, in less than 3 years, chlorophyll
a values are approximately half recovered.

Chlorophyll a/b ratios may provide some
indication of soil crust recovery after distur-
bance. Table 2 lists some chlorophyll a/b ratios
from a variety of algae, plants, and lichens.
Cyanobacteria (blue-green algae) lack chloro-
phyll b (Shoaf and Lium 1976). So, if the soil-
stabilizing, nutrient-cycling, and nitrogen-fix-
ing functions of cyanobacterial-lichen crusts
represent the undisturbed ecological condition
for arid and semiarid soil surfaces (Rychert et
al. 1978, Buttars et al. 1998), higher chloro-
phyll a/b ratios may represent a useful assess-
ment parameter. In this study the burned site
exhibited a chlorophyll a/b ratio of 1.66, sug-
gesting that cryptobiotic recovery after fire
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TABLE 1. Chlorophyll concentrations: burned vs. unburned sites.

Chlorphyll a Chlorophyll b
(mg m–2) (mg m–2) a/b ratio_____________________________ _____________________________ _____________________________

Standard Coefficient Standard Coefficient Standard Coefficient
Site Meana deviation of variation Meanb deviation of variation Meanc deviation of variation

Unburned 130.163 50.690 38.943 53.259 18.146 34.071 2.493 0.808 32.418
Burned 65.159 26.258 40.298 39.647 14.421 36.372 1.658 0.369 22.274

at test, significantly different, P = 0.0020.
bt test, not significantly different, P = 0.0797.
ct test, significantly different, P = 0.0082.



involves mainly eukaryotic algae and bryo-
phytes. The chlorophyll a/b ratio for the refer-
ence site was 2.49, probably reflecting the
predominant moss (Bryum spp.) cover, al-
though a few lichens were present.

Chlorophyll a degradation to phaeophytin a
occurs for a variety of reasons including ex-
traction with solvents, air pollution, and expo-
sure to air (oxidation). The state of degradation
of chlorophyll a can be measured by the ab-
sorbancy at 435/415 nm ratio (Ronen and Galun
1984). The mean A 435/415 in this study was
0.933 for the unburned site (s 0.065, sx– 0.070)
and 0.898 for the burned site (s 0.032, sx– =
0.40). This is very similar to the degradation
noted by Belnap et al. (1994). Based upon the
mixtures tested by Ronen and Galun (1984),
just under 50% of the chlorophyll a has been
degraded. Freezing and thawing, characteris-
tic of the spring climate, would tend to reduce
chlorophyll a/b ratios due to the greater effect
on chlorophyll a (Barnes et al. 1992). However,
in this study the A 435/415 ratios are nearly
identical; therefore, chlorophyll a/b ratios and
chlorophyll a concentrations for the burned
and reference sites can be compared unam-
biguously.

This study represents the first analysis of
chlorophyll a in cryptobiotic crusts from the
Snake River plain. The crust recovery rate
estimated from this study reflects crust assem-
blage and climatic differences from other sites
(Belnap 1993). Recovery rates may be site spe-
cific. Selective sampling primarily of moss-
and lichen-covered sites would provide impor-
tant additional information on in situ chloro-
phyll a/b ratios.

Monitoring chlorophyll a and b concentra-
tions can provide 2 important indicators of
cryptobiotic crust recovery. Chlorophyll a lev-
els are an estimate of cryptobiotic crust bio-
mass, while chlorophyll a/b ratios are an indi-
cator of how the biotic composition of the

cryptobiotic crust is changing. Temporal stud-
ies exhibiting higher or increasing ratios
would suggest development or return of cyano-
bacteria and lichens as components of the crust.
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Effects of flooding on mammals (Yeager
and Anderson 1944) and reptiles (Stickel 1948)
have been documented, and Northern Bob-
whites (Colinus virginianus) have been known
to drown (Schorger 1946, Mullan and Apple-
gate 1969). However, on landscape and popu-
lation scales, the implications of mortality
from extensive flooding are undocumented for
birds. We document mortality of bobwhites,
possibly by drowning, because of flooding in
east central Kansas.

From 31 October through 2 November 1998,
21 cm of rain fell in Lyon County, Kansas
(Kansas Precipitation Report ftp//oz.oznet.
ksu.edu). Water levels in all rivers and streams
in the area overflowed their banks for the 3rd
time in the decade (1993, 1995, 1998). The
Cottonwood and Neosho rivers and their trib-
utaries flooded a minimum area of 130 km2 of
Lyon County. During this period we observed
the effects of flooding on Northern Bobwhites.

We conducted research on 12 independent
259-ha parcels of private and public land.
Study areas were separated by at least 1.6 km.
Distances between study areas were small
enough to eliminate confounding climate and
habitat heterogeneity effects on the popula-
tion and yet large enough to avoid bobwhite
interchange between study sites. Study areas
were located in eastern Lyon County, western
Osage County, and western Coffee County,
Kansas. All study areas (1) were composed of
habitat that was representative of east central
Kansas and (2) allowed no hunting of bob-
whites. Additionally, 5 of the 12 study areas
were entirely or partially within the floodplain
of the Cottonwood and Neosho rivers (termed
floodplain study areas, FSA). The remaining 7
study areas were considered to be outside the

floodplain in upland areas (termed upland
study areas, USA).

Bobwhites were captured 1 October–1
December 1998 using bait-traps (Stoddard
1931) and night-lighting (Labisky 1968). Upon
capture, birds were sexed, aged (Rosene
1969), and weighed to the nearest gram. From
each covey we randomly selected 3 birds that
were fitted with a necklace-type radio-trans-
mitter weighing <6 g (Burger et al. 1995).
Birds weighing <150 g were not radio-marked
to avoid stress from radio-collars weighing
>5% of body mass (Samuel and Fuller 1994).
All other birds captured in the covey were leg-
banded. We immediately released all birds at
the capture location. Radio-tagged individuals
were located 5–7 times per week by homing
(White and Garrott 1990) until death, radio
failure, or 31 January. We recorded individual
locations as Universal Transverse Mercator
(UTM) coordinates with a resolution of 1.00
ha (Exum et al. 1982).

We monitored bobwhite survival during
the period of flooding (31 October–1 Decem-
ber 1998). Survival rates were calculated with
staggered entry additions, and all assumptions
were met (Kaplan and Meier 1958, Pollock et
al. 1989). We allowed birds to adjust to radio-
collars for 7 days before they were included in
survival analysis. We right-censored birds
when fate was unknown or there was radio
failure or loss, emigration from the study area,
or survival beyond 31 January. Additionally,
we estimated cause-specific mortality rates,
classifying mortality agents as flooding or nat-
ural mortality. Both survival and mortality
rates were calculated within the staggered
entry survival model between treatments with
log-rank tests (P ≤ 0.10; Pollock et al. 1989).
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