
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2005-03-16

Developing a Design Space Model Using a Multidisciplinary Developing a Design Space Model Using a Multidisciplinary

Design Optimization Schema in a Product Lifecycle Management Design Optimization Schema in a Product Lifecycle Management

System to Capture Knowledge for Reuse System to Capture Knowledge for Reuse

Nathaniel Luke Fife
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Fife, Nathaniel Luke, "Developing a Design Space Model Using a Multidisciplinary Design Optimization
Schema in a Product Lifecycle Management System to Capture Knowledge for Reuse" (2005). Theses and
Dissertations. 261.
https://scholarsarchive.byu.edu/etd/261

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/261?utm_source=scholarsarchive.byu.edu%2Fetd%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

DEVELOPING A DESIGN SPACE MODEL USING A

MULTIDISCIPLINARY DESIGN OPTIMIZATION

SCHEMA IN A PRODUCT LIFECYCLE

MANAGEMENT SYSTEM TO

CAPTURE KNOWLEDGE

FOR REUSE

by

Nathaniel Luke Fife

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

Brigham Young University

April 2005

Copyright © 2005 Nathaniel Luke Fife

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Nathaniel Luke Fife

This dissertation has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date C. Greg Jensen, Chair

Date Spencer P. Magleby

Date Jordan J. Cox

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation of Nathaniel
Luke Fife in its final form and have found that (1) its format, citations, and
bibliographical style are consistent and acceptable and fulfill university and department
style requirements: (2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate committee and is ready
for submission to the university library.

Date C. Greg Jensen
 Chair, Graduate Committee

Accepted for the Department

 Matthew R. Jones
 Graduate Coordinator

Accepted for the College

 Douglas M. Chabries
 Dean, Ira A. Fulton College of Engineering and
 Technology

ABSTRACT

DEVELOPING A DESIGN SPACE MODEL USING A

MULTIDISCIPLINARY DESIGN OPTIMIZATION

SCHEMA IN A PRODUCT LIFECYCLE

MANAGEMENT SYSTEM TO

CAPTURE KNOWLEDGE

FOR REUSE

Nathaniel Luke Fife

Department of Mechanical Engineering

Master of Science

Parametric strategies for design automation and optimization can have a big

impact on engineering design. When parametric tasks and optimization frameworks and

methods are combined, theses strategies can be used to make up what is known as a

multidisciplinary design optimization (MDO) schema. Knowledge of a design space can

be modeled by using a MDO schema to represent the design process. However, current

MDO frameworks used to create this schema lack the scope to capture enterprise wide

knowledge for reuse and collaboration.

Concurrent with the development of MDO, many companies are moving toward

increased use of product lifecycle management (PLM). More applications are being

integrated into PLM as its usage increases; however, it has not to date been able to fully

embrace the sophisticated knowledge model demands of engineering design. It has

functioned primarily as a data storage and electronic email and tracking system. This

thesis proposes to integrate an MDO knowledge representation in the form of a design

space model with a PLM system to provide knowledge management for the product

design process throughout the enterprise.

In this thesis a solution has been developed by leveraging PLM workflow

management, and parametric PLM strategies. The PLM workflow management module

was customized with action handlers, adding the ability to automate engineering tasks

such as updating models and performing analysis. An optimization action handler was

also added that iterates design processes by duplicating the entire workflow job and

initiating it with updated inputs in order to explore and improve the design.

This thesis proposes a new approach to PLM and MDO framework usage that

enables the complete representation of a design space with absolute, enterprise wide

reuse. Because of the synergy that is created between PLM and MDO through this

approach, both software providers and users in industry are looking at it as a way to

achieve their greatest challenges. This thesis achieves the common knowledge

representation that industry has been actively pursuing, because of this industry leaders

have been impressed and believe that this approach will quickly take hold and usher in a

new era for product design.

ACKNOWLEDGEMENTS

My wife, Kyla, daughter, Mariah.
Jonathan Lund, Dr. Greg Jensen, Brooke Barker

TABLE OF CONTENTS

CHAPTER 1: Introduction...1
1.1 Objective .. 10
1.2 Background ... 13

1.2.1 Product Lifecycle Management ... 13
1.2.2 Framework Tools ... 14

CHAPTER 2: Literature Review ...17
2.1 Motivating Improved Process Knowledge Management 17

2.1.1 Multidisciplinary Design Optimization ... 18
2.1.2 Standardization .. 19
2.1.3 Mass Customization... 20

2.2 Mutual Contingencies... 21
2.2.1 Process Capture and Automation... 22
2.2.2 Design Optimization .. 24
2.2.3 Centralized Data Management... 25
2.2.4 Collaboration.. 26

2.3 Previous Solutions... 28
2.3.1 Web Systems.. 29
2.3.2 Agent Systems ... 31
2.3.3 Federated Systems ... 33
2.3.4 Integrated Systems ... 34

2.3.4.1 WebBlow ... 35
2.3.4.2 Klaas ... 36

2.3.5 PLM Workflow and Change Management .. 37
CHAPTER 3: Method ...39

3.1 Design Process Automation and Optimization... 41
3.1.1 Internal to PLM.. 42

3.1.1.1 Automation Modules ... 42
3.1.1.2 Data Mapping ... 47
3.1.1.3 Design Optimization ... 53
3.1.1.4 User Interface ... 55

3.1.2 External to PLM... 57
3.1.2.1 Execution... 58
3.1.2.2 Linking .. 60

3.2 Centralized Data Management and Collaboration.. 61
3.3 Test Feasibility .. 61

viii

3.3.1 Test Case ... 62
3.3.2 Comparison Metrics... 63

CHAPTER 4: Results and Discussion of Results65
4.1 Results from Development of the Proofs-of-Concept .. 65

4.1.1 Design Process Automation and Optimization .. 66
4.1.1.1 Internal to PLM... 67
4.1.1.2 External to PLM.. 75

4.1.2 Centralized Data Management and Collaboration... 77
CHAPTER 5: Conclusion ...79

5.1 Representing an MDO Schema in a PLM System ... 80
5.2 Leveraging PLM Architecture to Manage an MDO Schema 80
5.3 Interaction Between the MDO Schema and the PLM System.......................... 81
5.4 Final Conclusions.. 82

References...83
Appendix...87
Appendix A: Internal Integration...89
APPendix B: External Integration... 119
Appendix C: Analysis and Optimization Results 131

ix

LIST OF FIGURES

Figure 1 A generic representation of the concept development phase in a product's
lifecycle. ... 5

Figure 2 A representation of current practices for design knowledge. Each design
task requires knowledge that has been stored hapazardly throughout a
company. Knowledge is poorly organized and there is no clear method for its
use. ... 6

Figure 3 A representation of the knowledge management approach presented by
this thesis. Knowledge is stored in an organized form that can be linked to
automated design processes. .. 8

Figure 4 A representation of the approach taken in this thesis, with labels showing
how each area will be implimented.. 12

Figure 5 A representation of the knowledge management approach presented by
this thesis. Knowledge is stored in an organized form that can be linked to
automated design processes. .. 41

Figure 6 The feature tree for directly integrating framework capabilities into
Teamcenter... 44

Figure 7 Mapping Teamcenter data directly through SQL is risky. It is safer to use
Teamcenter ITK functions to retrieve and store data from the database. 48

Figure 8 Teamcenter memory structure. Classes store metadata, and forms allow a
set of that data to be accessed interactively ... 49

Figure 9 Overlapping ITK allocated memory can cause unpredictable behavior. It
is better to use ITK functions to feed manually allocated memory. 51

Figure 10 The feature tree for integrating iSIGHT into Teamcenter Engineering
Workflow. .. 60

Figure 11 Simple design process used to demonstrate framework integration. 63
Figure 12 The feature tree for directly integrating framework capabilities into

Teamcenter... 70
Figure 13 The feature tree for integrating iSIGHT into Teamcenter Engineering

Workflow. .. 76
Figure 14 The PLM workflow process designer. Design for the internal method

includes an ANSYS task and an optimization task.. 89
Figure 15 ANSYS task action handler. The handler accepts three arguments: The

macro file. The output form. The input form. .. 90

x

Figure 16 The optimization task action handler. This handler accepts no
arguments, because it recieves all needed information from a parameters,
preference, and status for attached to the process. ... 90

Figure 17 Internal method attached folders, and forms. The Inputs folder contains
the I-beam inputs, the three forms required by the optimization, and the
ANASYS macro... 91

Figure 18 Internal method input form... 92
Figure 19 Internal method optimization parameters form initial setup. As the

optimization runs parameters needed by the optimization are retained in this
form. ... 93

Figure 20 Internal method optimization prefences form. This form contains the
user’s optimization preferences and setup. .. 94

Figure 21 The internal method optimization status form. The optimization uses
this form to retain information about the optimization’s current status....................... 95

Figure 22 Dialog to initiate a new process from the internal method template
created in the process designer. The attached folder is shown. 96

Figure 23 The PLM workflow process designer. Design for the external method
includes only an iSIGHT task. ... 119

Figure 24 The iSIGHT task action handler. The handler accepts four arguments:
The iSIGHT description file. The system call to execute the iSIGHT run. The
form where the outputted results are stored. .. 120

Figure 25 External method attached folders and forms. The Inputs folder contains
only the iSIGHT description file. The Outputs folder need not contain
anything.. 120

Figure 26 Dialog to initiate a new process from the external method template
created in the process designer. The attached folder is shown. 121

Figure 27 Cantilever beam - end load... 131
Figure 28 A slice of the design space at Height = 3.0. Volume is contoured with

values decreasing toward the lower left corner. Deflection and Stress constraint
boundaries are shown as lines. The opimal design is circled..................................... 133

Figure 29 The design space. The space is contoured by Volume with lower corner
at the origin having the smallest volume. The two surfaces displayed within the
space represent the deflection and stress constraint boundaries. The optimal
design is circled.. 134

xi

LIST OF TABLES

Table 1 A comparison of the form and means of accessing knowledge currently
employed with the approach taken by this thesis... 9

Table 2 Comparison metrics for evaluating level of integration into the PLM
system and ease of use. .. 63

Table 3 Summary of implementation results .. 67
Table 4 Results of implementing the internal method .. 70
Table 5 Results of implementing the external method ... 77
Table 6 The optimal design. The design is at the minimum web thickness and the

maximum height. The deflection constraint is binding.. 132

xii

CHAPTER 1: INTRODUCTION

Product development is a knowledge intensive activity. Companies generate and

use vast amounts of knowledge while developing new products. This knowledge is stored

in databases, reference manuals, employees’ memories and other places. The more

efficient a company is at accessing and using this knowledge the better the designs are

and the more profitable the product development processes become. Increasing

globalization and market competitive demands are driving industry to seek out improved

strategies for knowledge management. The past two decades have produced numerous

knowledge management tools, but to date, companies have not been able to fully leverage

these tools. Two tools in particular are product lifecycle management (PLM) and

multidisciplinary design optimization (MDO). These two tools and their associated

frameworks have the potential to transform product development. However companies

have not been able to fully realize the associated benefits because they lack a common

knowledge representation that allows full integration across the enterprise. This thesis

presents an approach that defines a common knowledge representation and therefore

allows for these tools to finally be used to integrate knowledge resources and make them

readily available in context specific instances.

A third tool of significance is parametric strategies for design automation.

Parametric strategies combined with optimization can have a big impact on engineering

1

design by automating the individual product development tasks. When parametric tasks

and optimization frameworks and methods are combined, theses strategies can be used to

make up what is known as a multidisciplinary design optimization (MDO) schema. In an

MDO schema, parametric methodologies are used to execute the design process. Each

automated task requires inputs and produces outputs. These tasks are linked together to

automate the entire design process. The MDO framework provides the ability to map the

data flow between tasks and to perform optimization loops. Context specific knowledge

can be uniquely stored within an MDO schema. The knowledge is captured in the form of

a design space. This becomes an effective knowledge representation since it can be

searched or queried within the context of the design process. However, current MDO

frameworks used to create this schema lack the scope to capture enterprise wide

knowledge for reuse and collaboration. Because of this MDO is used only in isolated

engineering analysis situations, and has not been able to significantly impact design

efficiency throughout the enterprise.

Concurrent with the development of MDO, many companies are moving toward

increased use of PLM systems. More applications are being integrated into PLM as its

usage increases; however, it has not to date been able to fully embrace the sophisticated

knowledge model demands of engineering design. It has functioned primarily as a data

storage and electronic email and tracking system. This thesis proposes to integrate an

MDO knowledge representation in the form of a design space model with a PLM system

to provide knowledge management for the product design process throughout the

enterprise.

2

Currently, MDO framework solutions are not well suited for implementation within

PLM systems because they use their own database application server, and therefore

require significant workarounds to achieve integration. Even with PLM’s increased

functionality and complexity, industry uses it mainly as it did its predecessor, the Product

Data Management (PDM) system, by using it to manage CAD files, with the additional

feature of an internal email system and the ability to manage at a high level the

automation of well defined processes. Without the ability to manage design space

knowledge, PLM has not been able to achieve much more than PDM.

In this thesis, a solution has been developed that will enable knowledge

management by integrating PLM automation and MDO optimization. By allowing MDO

schemas to be created and managed in a PLM system, this solution makes it possible, for

the first time, to capture design space knowledge for reuse and collaboration. This work

creates a bridge between two engineering tools to make it possible for them to deliver

their promised potential to industry.

To illustrate how the use of this approach will lead to vast improvements in product

development, consider the production of a new jet engine. A typical new engine program

costs a company between 100 and 500 million dollars. It involves approximately 250

engineers and lasts for 18 to 24 months with a burn rate of one million dollars per week.

One of the phases of a new engine program is concept development. Typical tasks

in this phase are the creation of preliminary CAD models to give a global representation

of the engine. These preliminary designs capture the main design intent to a level of

detail sufficient for preliminary analysis. Generalizations and approximations are made in

these models to leave out unneeded complexity.

3

This preliminary geometry must be meshed for analysis. Meshes must be generated

so that structural, thermal and fluid analysis can be conducted. Each analysis requires

specific meshes with boundary conditions, and loads relevant to the analysis mapped to

them. Additionally, other properties must be applied as needed. From these analyses the

performance of the design can be judged. The process of creating the geometry and

analyzing its performance must be repeated until the design requirements are sufficiently

met.

Once a system design has been decided on, the engine is broken down into separate

modules for further design and analysis. These modules are based on engine location and

function. Typical modular break down of an engine includes the fan, compressor,

combustor, and turbine. At the modular or sub-system level the design process continues

at a level of higher fidelity. The preliminary design is taken as the starting point for these

higher fidelity models. The fidelity increases as more complex CAD models are created

with more detail. These higher fidelity models take into account tolerances, nominal

dimensions, and manufacturability. The model represents the designs to a level such that

detailed analysis can be conducted to give a performance prediction that most closely

matches reality.

To obtain detailed performance predictions sophisticated meshes must be made,

and detailed information must be mapped to the meshes. Precise boundary conditions,

loads, material properties, and other information must be applied to the models. The

analysis results are closely reviewed and interdisciplinary relations are considered.

Factors such as safety, durability, manufacturability, assembly and maintenance are also

taken into account. Based on these results the design is then tweaked and analyzed so that

4

performance can be improved. As much iteration must be performed as time allows so

that the best design is proposed.

Once time has run out, the modules must be reintegrated into a system design.

Interference and tolerances are taken into account and the design is updated as needed.

Once the design is cleared, detailed design begins where every fillet, bolt and hole are

included in the design. With this step the concept design phase ends and manufacturing

planning takes over. A generic representation of this process is given in Figure 1.

Maintenance
and repair

Maintenance
and repair

Production
and Testing

Production
and Testing

Manufacturing
planning

Manufacturing
planning

Concept
development

Concept
development

Requirements
planning

Requirements
planning

System
Optimization

System
Optimization

Sub-system
Optimization

Sub-system
Optimization

System
Integration

System
Integration

System
Concept
design

System
Concept
design

System
Analysis

System
Analysis

Sub-
System
design

Sub-
System
design

Sub-
System
Analysis

Sub-
System
Analysis

Maintenance
and repair

Maintenance
and repair

Production
and Testing

Production
and Testing

Manufacturing
planning

Manufacturing
planning

Concept
development

Concept
development

Requirements
planning

Requirements
planning

System
Optimization

System
Optimization

Sub-system
Optimization

Sub-system
Optimization

System
Integration

System
Integration

System
Concept
design

System
Concept
design

System
Analysis

System
Analysis

Sub-
System
design

Sub-
System
design

Sub-
System
Analysis

Sub-
System
Analysis

Figure 1 A generic representation of the concept development phase in a product's lifecycle.

This product development phase is much, much more complex and involved than is

suggested in the preceding paragraphs. Precise details of designing an engine would take

up numerous volumes. Companies have in fact generated huge amount of records

documenting engine design over their decades of experience designing engines. Many

strategies are used to store this information. These strategies include storage of data plots,

5

charts, documentation standards and work standards. These are records are stored in

multiple formats such as microfiche, paper documents, or computer files that are stored

all over the company in filing cabinets, or on local computers. In fact, so much

knowledge is stored and in such a haphazard way that, with the current method of using

design knowledge, it would take years to make a new design based on this previous

knowledge. However, as described above a new engine program is very expensive, and

with a burn rate of one million a week, companies cannot afford to make use of their

accumulated design knowledge because it would take too long. Consequentially, only a

small percentage of previous knowledge is reused, resulting is engines being design

mostly from scratch each time. Ironically, because previous knowledge is not used very

often the same mistakes and pitfalls are fallen into every time. Figure 2 shows a

representation of this situation.

Task A Task B
Task C

Task D

Task E Task F
Task A Task B

Task C

Task D

Task E Task F

Figure 2 A representation of current practices for design knowledge. Each design task requires
knowledge that has been stored hapazardly throughout a company. Knowledge is poorly organized
and there is no clear method for its use.

As mentioned earlier, increasing competitiveness is driving companies to become

as efficient as possible. This efficiency can be achieved through the approach presented

in this thesis. Reusing knowledge can have such a large affect because a large number of

6

product design projects in many fields do not require the creation of completely new

designs, but rather variations on previous designs and therefore, reusing knowledge make

a lot of sense. In jet engine design every new engine is a derivative of an existing design.

In fact, every engine produced today can be classified under one of about four or five

classic engine designs. Each new engine design overlaps to a great extent with previous

designs. Because competition is high and so much overlap exists in every design,

companies have a lot to gain by efficiently reuse design knowledge. This thesis presents

an approach that allows companies to reuse knowledge. This approach is based on storing

knowledge in an electronic form on an enterprise wide information system so that it is

quickly accessible to all that need it. This new approach enables knowledge to be

integrated into all levels of design and to be directly linked to applications that automate

the design process, and optimize the design. This linkage is possible because knowledge

is separated from its usage and linked directly to a central repository where everyone can

use it. Figure 3 shows a representation of this approach.

7

Task A Task B Task C

Task D

Task E
Task F

Central
Repository

Parametric
Models

Parametric
Models

Raw DataRaw Data Raw DataRaw Data

Optimization
Algorithms

Optimization
Algorithms

G
en

er
ic

M
od

el
s

Workflow

O
ptim

ization

Experience

Domain

Field Data &

Testing Results

Central
Repository

Task A Task B Task C

Task D

Task E
Task FTask A Task B Task C

Task D

Task E
Task F

Central
Repository

Parametric
Models

Parametric
Models

Raw DataRaw Data Raw DataRaw Data

Optimization
Algorithms

Optimization
Algorithms

G
en

er
ic

M
od

el
s

Workflow

O
ptim

ization

Experience

Domain

Field Data &

Testing Results

Central
Repository

Figure 3 A representation of the knowledge management approach presented by this thesis.
Knowledge is stored in an organized form that can be linked to automated design processes.

The way that knowledge is managed throughout the lifecycle can greatly affect the

efficiency. For these reasons terms such as knowledge based engineering (KBE) and

product lifecycle management (PLM) have become heavily used. However, a rigorous

definition of KBE and PLM has proven elusive, for a very simple reason: no engineer

wants to admit that they are not, in some sense, engaged in a ‘knowledge-based’ activity,

no matter what their job entails exactly, or how they go about doing it. For this reason the

reusability of knowledge in a management system must be carefully analyzed when

considering how it can improve product design. The reusability of knowledge is affected

mostly by the form in which it is stored and the means by which it is accessed. The

knowledge management approach taken in this thesis improves product development by

8

managing knowledge in a centrally located electronic form that is accessible and has the

ability to be directly linked to applications that use the knowledge. In Table 1 a possible

sampling of knowledge used in a design process is listed along with its form and means

of access. The Improvement column lists the percent reusability gained by taking this

thesis’ approach rather that the current knowledge management. These percentages are

based on dealing with engineering knowledge in design processes while working on

projects within the aerospace and automotive industry and on three criterions adapted

from those presented by Teare in his research of reusability [1]. These criterions are:

• Design information is undocumented.

• Design information is not accessible to other applications.

• Design information is poorly organized.

 Table 1 shows the vast increases in knowledge usability gained through taking this

thesis’ approach.

Table 1 A comparison of the form and means of accessing knowledge currently employed with the
approach taken by this thesis.

ImprovementImprovementNew ApproachNew ApproachCurrent PracticesCurrent PracticesKnowledgeKnowledge

Database Table

Text File

Database Table

Database Table

Database Table

Workflow Process

Database Table

Database Table

Database Table

Database Table

Database Table

Master Model

Database Table

FormForm

Data Management System

Attached to Workflow

Linked to Analysis Model

Linked to Analysis Model

Linked to Analysis Model

Data Management System

Linked to Master Model

Linked to Master Model

Linked to Analysis Model

Linked to Analysis Model

Linked to Analysis Model

Data Management System

Linked to Master Model

AccessAccess

Local File System

Request

Microfiche

Local File System

Request

Request

Request

Request

Local File System

Local File System

Local File System

Local File System

Microfiche

AccessAccess
35%Technical DrawingsGeometry Dimensions

60%Text FileCost Effects

55%Human KnowledgeLessons Learned

40%PlotMaterial Properties

30%Text FileFatigue Life

50%Human KnowledgeSafety Factors

50%Human KnowledgeDependencies

50%Human KnowledgeNominal Values

50%Human KnowledgeTolerances

30%Text FileLoads

30%Text FileBoundary Conditions

30%Text FileMesh Parameters

85%CAD FileGeometry Model

FormForm
ImprovementImprovementNew ApproachNew ApproachCurrent PracticesCurrent PracticesKnowledgeKnowledge

Database Table

Text File

Database Table

Database Table

Database Table

Workflow Process

Database Table

Database Table

Database Table

Database Table

Database Table

Master Model

Database Table

FormForm

Data Management System

Attached to Workflow

Linked to Analysis Model

Linked to Analysis Model

Linked to Analysis Model

Data Management System

Linked to Master Model

Linked to Master Model

Linked to Analysis Model

Linked to Analysis Model

Linked to Analysis Model

Data Management System

Linked to Master Model

AccessAccess

Local File System

Request

Microfiche

Local File System

Request

Request

Request

Request

Local File System

Local File System

Local File System

Local File System

Microfiche

AccessAccess
35%Technical DrawingsGeometry Dimensions

60%Text FileCost Effects

55%Human KnowledgeLessons Learned

40%PlotMaterial Properties

30%Text FileFatigue Life

50%Human KnowledgeSafety Factors

50%Human KnowledgeDependencies

50%Human KnowledgeNominal Values

50%Human KnowledgeTolerances

30%Text FileLoads

30%Text FileBoundary Conditions

30%Text FileMesh Parameters

85%CAD FileGeometry Model

FormForm

9

The knowledge management approach of this thesis offers such large

improvements over current practices because it is developed so that it retains company

design experience in a form that can be queried, reused and archived as a historical

experience domain. Product lifecycle management is seen as the ideal historical

experience domain in which the knowledge is to be retained. This approach also enables

active multi-team collaboration, standardization, and mass customization.

Product lifecycle management will be presented in this thesis as the ideal historical

experience domain for collaborative design activities. Also, this thesis refers to design

engines and their links to iterative design searches as framework tools, providing a

framework where elements of the design process may be ordered together and automated.

To introduce these concepts and to set the stage for the thesis, the following sections are

included in this introduction:

• Objective

• Background

1.1 Objective

The objective of this thesis is to identify a knowledge representation strategy that

can be implemented effectively in a PLM environment. This will create the ability for

company wide design space knowledge reuse. This objective will be achieved by

representing the design space in the format of an MDO schema that can interact with a

PLM architecture. The feasibility of this approach will be tested using two proof-of-

concepts. One proof-of-concept integrates framework capabilities into the product

lifecycle management solution. The second proof-of-concept is implemented by

10

embedding a commercial framework tool into the product lifecycle management solution.

Both applications are developed to demonstrate the power and validity of embedding

process integration and design optimization within a PLM system. This thesis will answer

the following related questions:

• How can an MDO schema best be represented in a PLM system?

• How can PLM architecture be effectively leveraged to manage the MDO

schema?

• How can the MDO schema and PLM interact to preserve reuse and modularity?

The following figure shows how this approach is taken though making use of a

PLM system:

11

Figure 4 A representation of the approach taken in this thesis, with labels showing how each area will
be implimented.

Task A Task B Task C

Task D

Task E
Task F

Central
Repository

Parametric
Models

Parametric
Models

Raw DataRaw Data Raw DataRaw Data

Optimization
Algorithms

Optimization
Algorithms

G
en

er
ic

M
od

el
s

Workflow

O
ptim

ization

Experience

Domain

Field Data &

Testing Results

Central
Repository

Task A Task B Task C

Task D

Task E
Task FTask A Task B Task C

Task D

Task E
Task F

Central
Repository

Parametric
Models

Parametric
Models

Raw DataRaw Data Raw DataRaw Data

Optimization
Algorithms

Optimization
Algorithms

G
en

er
ic

M
od

el
s

Workflow

O
ptim

n

Experience

Domain

Field Data &

Testing Results

izatioCentral
Repository

PLM Workflow

Action Handlers

PLM System

PLM Form Data

12

1.2 Background

This section is included to set the stage for the major issues in this thesis. Later in

the body of the thesis it will be assumed that the readers have a basic understanding of

the following:

• Product Lifecycle Management.

• Framework Tools.

1.2.1 Product Lifecycle Management

Product lifecycle management is a crucial element in a company’s strategy for

decreasing marketing time, while increasing the availability of product options and

product variants. The advent of Web technologies has caused many companies to seek

out the possibility to increase the collaboration between different organizations within

their product lifecycle. Many solutions are being suggested to solve the challenge of

improving collaboration during concept design. One such solution is product lifecycle

management (PLM). Product lifecycle management is the application of Web technology

to product data management (PDM). It also expands the scope of PDM to include among

others, supply-chain management (SCM), enterprise resource planning (ERP), and

customer relationship management (CRM). PLM systems are soon to become the

working computer environment for engineering enterprise. A company’s crossover to

PLM may be a daunting task, but with mega-businesses like Boeing, General Motor, and

Ford leading the way and insisting that key suppliers also implement PLM systems, it

appears that crossovers will soon occur. [2]

13

In literature, PLM is said to be the key to reducing time to market and product cost,

while increasing innovative content and available product options and product variants.

[3] PDM is, in part, the progenitor of product lifecycle management. The goal behind

PDM is that product data is stored only once, in a secure electronic vault. Information

pertaining to a product may be stored along with the files. This concept allows changes to

be controlled and data integrity assured. PLM takes the concept of PDM and vastly

extends it to involve an entire enterprise over the product’s complete lifecycle. [2] Critics

may argue that product lifecycle management is too all-inclusive, and therefore bound to

fail. However, companies are already receiving a return on their PLM investment.

One company cashing in on the product lifecycle management boon is General

Motors. It has achieved as much as $1 billion in cost savings while improving product

quality. In terms of decreasing time to market, GM reduced product development time

from six years to one year. Other companies have similarly seen the PLM benefits. [4]

1.2.2 Framework Tools

Process integration and design optimization (also termed framework software), are

tools needed for engineers to achieve quicker time to market and greater product

variation while achieving higher levels of quality and reliability. The key to the design

and manufacturing of superior products is the generation, control and integration of all

levels of engineering information. Modern engineering is dependant on the aid of

computers. Fortunately, many computer applications are available to engineers. Some of

these are available commercially, while others may have been developed in-house to

solve a company’s specific challenges. The performance characteristics of complex

14

multi-disciplinary systems can be predicted and optimized by linking together multiple

applications, each of which model different aspects or disciplines within the system.

Many applications were not originally designed to be linked together. They may have

been created using differing computer languages, input and output formats, or they may

not even run on the same platforms. To solve these challenges, framework applications

have been conceived. These applications allow data to be mapped to the different analysis

applications. They also automate the process by invoking the applications in parallel or

sequential order as specified by the engineer. As computing power and the availability of

analysis applications increase, the need for individual members of a design project to

share information and to collaborate and coordinate their activities within the framework

also increases. For this reason, framework applications are being expanded to include

collaboration capabilities.

15

CHAPTER 2: LITERATURE REVIEW

The chapter includes the results of the literature review. The subjects reviewed

most generally fit into categories that answered the questions why, how, and what. These

categories are discussed in that order under the following sections:

• Motivating Improved Process Knowledge Management.

• Mutual Contingencies.

• Previous Solutions.

2.1 Motivating Improved Process Knowledge Management

In recent years, emerging concepts for product design have gained credibility in

enabling quicker time to market, improved quality and more product offerings. The hype

surrounding these concepts has caused many companies to spend considerable effort in

their implementation. This thesis presents an approach that enables companies to benefit

from these concepts while lowering the cost to implement them. This chapter focuses on

three of these concepts that are profited most by this thesis and have been the motivation

for improving process knowledge management. The hype surrounding these concepts and

their potential benefit to companies are discussed. Throughout this thesis these three

concepts are used to both benchmark different tools used for the concept’s

17

implementation and to illustrate the prowess of the new approach developed by this

thesis. These three key concepts are:

• Multidisciplinary Design Optimization

• Standardization

• Mass Customization.

2.1.1 Multidisciplinary Design Optimization

Multidisciplinary design optimization (MDO) is a rapidly growing body of

methods, algorithms, and techniques that enable the design of complex interdisciplinary

system. It can be roughly characterized as the concepts that make it possible to optimize a

complex design that spans multiple disciplines. Multidisciplinary design optimization has

become a major initiative of today’s companies. To remain competitive customers are

requiring companies to improve product performance by increasing product complexity

and taking interdisciplinary interactions into account during design. Due to this,

companies are forced to find ways to achieve multidisciplinary design optimization so

that they can remain competitive. This section discusses the circumstances that have lead

companies to MDO.

During the previous decade the motivation behind product design has become

increasingly customer focused. “More and more customers are asking for products with

high functionality and aesthetic design.” [5] In this consumer-centric market “the

demands [on companies] for shorter time-to-market and designing a product right-the-

first-time are increasing.” [6] In areas where a product has been well established, and

18

where no new technologies are emerging to enable improvements, it can be very hard to

eek out even the slightest improvements. Achieving improvement often requires that

interdisciplinary interactions must be incorporated into the design of the product so that

the result of more subtle design changes can be determined. [7]

To exploit the most potential for design improvement multidisciplinary interactions

must be considered early in the design process. Otherwise modifications suggested by

these interaction and their effect will become apparent only after it is too late for

significant changes to be introduced. [7] For this reason MDO has emerged as the way to

efficiently design highly complex, multidisciplinary systems with mutually dependent

components and complex physical interactions. [8] MDO has become an incredible tool

for industry.

2.1.2 Standardization

Companies are always trying to find ways to make their operations more efficient.

One tactic that is increasingly gaining acclaim is standardization. Companies are striving

to establish and enforce accepted procedures by which all employees work. By

implementing standardization, the company’s results and actions can be monitored,

predicted, and repeated. By creating a system of standards by which all employees work

companies aim to guarantee that everything is done according to best practices and

procedures, a guaranty that is becoming increasingly difficulty to assure. By capturing

and standardizing the design process, continual improvement can be achieved. [9] There

is no standard method for documenting company standards, however the method

employed can have a great impact on the easy of disseminating the information and

19

enforcing the standards. [10] As companies become more global, and depend more on

outsourcing, work standards and their method of employment become increasingly

important in maintaining continuous improvement.

2.1.3 Mass Customization

Throughout most of human history every tool and product has had a unique,

custom design. Craftsmen made each product personally. Only in the last few centuries

has industry moved away from the craftsmen are toward mass production. With the

introduction of the steam engine and new manufacturing methods a new era was ushered

in where standard products were mass produced and costs were lowered. A new

revolution is becoming available with the invention of the personal computer and the

dawn of the information age. This revolution is the advent of mass customization. Mass

customization is the ability to make use of the same procedures as mass production to

turn out custom products. Mass production has the ability to please both industry and

consumers by offering more product variants at lower costs.

Consumers can now obtain goods from a global market. In order for companies to

remain competitive it is imperative that they keep their customers happy. Customers are

looking for products that fit their personal needs. As needs vary, companies must have

the flexibility to respond quickly to produce a variety of custom goods. [11] This ability

can come through the use of mass customization.

Even while consumers are demanding more product variants they also are

demanding lower prices. These previously conflicting demands are now becoming

achievable. To achieve this “the low cost of mass-produced products is still essential, but

20

it must be accompanied by products tailored to meet specific needs of various

customers.” [12] Mass customization is playing an ever increasing roll in bringing the

low cost of mass production to custom products.

MDO, standardization and mass customization have the potential to change the

face of industry. Through the use of these concepts companies obtain the power to

continual achieve never before available increases in productivity, and quality. This

potential however has not yet been achieved largely do to the difficulty of implementing

these concepts in large companies. This thesis develops a knowledge management

approach that makes the implementation of these concepts within industry’s reach.

2.2 Mutual Contingencies

Companies are striving to implement multidisciplinary optimization, company

standardization and mass customization. It is crucial that process knowledge management

is improved to allow us to realize these goals. Managing the knowledge comprising a

company’s design experience has always been important. A company’s design

experience is the result of large investments over the company’s entire existence.

Historically, this valuable knowledge has been retained mainly through documentation

standards. However, company initiatives are now requiring that the knowledge be

retained in a way that makes the utmost use of computer tools now available. By

improving process knowledge management these goals can be realized more readily,

allowing companies to glean the most possible benefit from their design experience. This

thesis presents an improved process knowledge management approach that makes

implementing MDO, standardization, and mass customization achievable. This chapter

21

discusses the crucial elements of the knowledge management approach, and shows how

these elements relate to MDO, standardization, and mass customization, as discussed in

the previous chapter. The crucial elements that make up this improved process

knowledge management approach are:

• Design Process Capture and Automation

• Design Optimization

• Centralized Data Management

• Collaboration.

2.2.1 Process Capture and Automation

The initiatives of industry that have been discussed earlier are all dependant on

design process automation. A product’s design is made up of multiple steps that include

generation of geometry, analysis procedures to predict the product’s performance, the

building of prototypes and their testing, and manufacturing. The steps involved in a

product’s design, the order they are accomplished and other related knowledge make up a

design process. After a design process is defined, it is usually possible to automate most

of it through the use of computer tools. Even the parts that cannot be automated can be

initiated and monitored as part of an automated process. This section will discuss how the

key emerging concepts for product design focused on by this thesis depend on design

process automation.

The first key concept that depends on process capture and automation is MDO.

MDO relies on the ability to automate engineering processes. Without automation it

22

becomes unfeasible to perform the iterative design and analysis process that MDO

requires to determine the sensitivity the design variables have with respect to each

discipline. In researching literature on MDO it becomes evident that because a key

feature of MDO is design-oriented analysis in each engineering discipline, it is desirable

that an MDO framework be easily adaptable to a variety of existing analysis tools. [7, 8]

MDO is dependant not only on an ability to automate a design process but also the agility

to integrate vastly different analysis tools together to quickly capture and automate design

processes.

Another key concept that relates to process capture and automation is

standardization. Process standardization requires that a process can be defined and

captured. To achieve continuous improvement “management attention should be directed

towards creating sound processes since it is assumed that good results will follow”. [9]

When working toward improving product quality through standardization, it is important

that a process be captured with the most detail and accuracy possible.

Mass customization is also a key concept that certainly depends on automation. It

depends not only on process automation but on automating all aspects of a products

lifecycle, such as supply-chain management, enterprise resource planning customer

relationship management, and manufacturing.[12] Not until the design process is fully

captured can it be seen to what extent the product can be customized. Automation of the

process then allows for the product variants to be mass produced as requested. As shown

in this discussion, process capture and automation is a crucial element of process

knowledge management.

23

2.2.2 Design Optimization

In any design there may exist any number of free choices that are not limited by the

design requirements. Design requirements may also involve sorting through multiple

objectives to find the best design. These goals or objectives may include minimizing

weight and cost, while maximizing strength and stability. Design requirements might also

specify design constraints. To find the best design it is required that the free design

choices be set at the best values. Design optimization is the method of determining the

best design as easily as possible. Each of the three initiatives identified earlier depends on

design optimization.

A key feature of MDO is disciplinary and system optimization methods. If a design

is relatively simple and design variables affect the performance in an intuitive way, then

an experienced engineer may be able to quickly choose the best design. But, “if the

design variables are numerous and strongly interact and are all about the same in

effectiveness, a formal mathematical optimization is the tool of choice for deciding how

to change the design.” [7] Optimization is certainly the focal point and motivation behind

MDO.

While standardization and mass customization do not rely on optimization, both

can make use of it. “Small ongoing improvements can accumulate to an overall

contribution to organizational performance.” [9] By implementing even a simple

optimization loop as part of a standardized process over time those small improvements

will make a difference. Design optimization must be linked to process knowledge

management so that the knowledge can be used to its fullest degree.

24

2.2.3 Centralized Data Management

Vast amounts of data are created everyday. Computers have lead to the availability

of so much data that this era has been labeled the information age. A thesis researching

CAD-centric MDO was able to show that with the use of computers, thousands of CAD

models representing different product variation can be generated by a single computer in

a matter of hours. [13] So much data is available that becomes difficult to utilize all of it.

To be useful data must be managed. Because of the importance of managing data many

solutions are available. Just like anything in the universe, if data is left to its own devises,

chaos and disorder will result. A company’s data must be controlled in a central location

so that it is not lost to chaos. In addition to combating chaos, the three initiatives

identified earlier depend on centralized data management.

MDO can generate a lot of data, but it also relies on the availability of that data.

Because of this, it “relies heavily on data base technology.” [7] Large MDO setups

greatly benefit from efficient data management. Before the data can be exploited in

MDO, it needs to be extracted from existing, often multiple data sources, integrated in

one data repository, validated and cleansed by removing or correcting corrupt values.

“These steps take 60-70% of the time and resources of a typical [MDO] application

project. Regardless of its importance, the task attracts little attention of the research

community, being perceived as mundane and routine.” [10] By managing all data in one

centralized source and automating the MDO process, most of theses mundane tasks can

be eliminated.

25

Standardization also benefits greatly from centralized data management.

Standardized processes must be stored and managed in one single location. If this does

not happen confusion will result as individuals try to sort out where to go to initiate and

follow a standard work process. Managing standards in a centralized data vault brings

“enhanced learning through the transmittal, accumulation and deployment of experience

from one individual to another, between individuals and the organization and from one

part of the organization to another.” [9]

Just as MDO and standardization can benefit from centralized data management,

mass customization does likewise. Mass customization is a product of the information

age and as such is information intensive. The success of mass customization is dependent

on information accessibility. [12] Without centralized data management information is

not as accessible as it needs to be. In implementing emerging concept for improving

product design it is imperative that process knowledge be managed in a central location.

This will also greatly enable collaboration.

2.2.4 Collaboration

Collaboration is the ability to work together as a team. The three initiatives

identified earlier depend greatly on collaboration. Product design required that multiple

teams in any location are able to work efficiently together. This section discusses the

dependence that emerging product design concepts have on collaboration, starting with

MDO.

MDO is based on the need to collaborate between different disciplines. These

disciplines “must work in harmony to arrive at a consisted design relative to design

26

intent.” [14] “Conceptual design issues at stake are highly interdisciplinary, and often

involve collaboration from customers, designers, and engineers.” [6] “In order to

coordinate activities of multidisciplinary design teams and to guarantee the

interoperability among the different engineering tools, it is necessary to have efficient

collaborative design environments.” [10] Any MDO framework that does not support

collaboration is meaningless.

Tools used for standardization must be collaborative in nature. Every individual

involved needs the ability to access and contribute to the standardization. Collaborative

standardization provides “enhanced learning through the transmittal, accumulation and

deployment of experience from one individual to another, between individuals and the

organization and from one part of the organization to another.” [9] By giving every

individual access to the standard it will be binding on everyone as it should be.

Mass customization is dependent on collaboration because products are created

through a collaborative process. Mass customization must make this collaborative

interaction occur as seamlessly as possible; otherwise too much time is wasted for it to be

worthwhile. In mass customization “the company works directly with the customer to

create a product that meets the needs of the customer.” [12] Without the ability to

collaboration in a friendly and secure environment this interaction cannot occur.

The emerging concepts that are making a difference in industry, and particularly

MDO, standardization, and mass customization depend not only on collaboration but also

on all of the other elements mention in this chapter. It is crucial that an approach for

process knowledge management that enables these emerging concepts include these

27

crucial elements. The next chapter discusses previous solution for achieving this and

shows that nothing is currently available that encompasses these contingencies.

2.3 Previous Solutions

Current strategies previously used to manage design process knowledge do not

meet the needs of today’s companies. The main challenge has been to move toward

greater collaborative capabilities. One researcher, Tinnsten, states that due to Internet

growth, it is of interest to make use of the new opportunities for distributed collaborative

computing. [15] Sobieszczanski-Sobieski and Tulinius found that multidisciplinary teams

need to collaborate early on in the design so that creative ‘what if’ questions can be

explored before design becomes frozen to changes. [7] In another article Sobieszczanski-

Sobieski also explains that because of speed-of-light limitations on computer processing

speed, complex computations need to make use of distributed concurrent computing in

order to increase speed. [16] Having addressed these needs, many products are now

available that allow for advanced management of design process knowledge. These

products can be categorized under the following titles:

• Web Systems

• Agent Systems

• Federated Systems

• Integrated Systems

• PLM Workflow and Change Management Systems.

28

These products and research projects are all geared toward achieving similar goals though

each takes a different route to achieve them and consequently, offer different results. This

chapter has three goals: One, to discuss the ability of these solutions to address

automation, optimization, centralized data management and collaboration. Another, to

show the shortcomings and overall inability of the solutions to meet industry needs. And

finally, to identify elements of these products that were built in this thesis. The first

category to be discussed is Web systems.

2.3.1 Web Systems

Web-based design makes use of the Web’s ability to combine multimedia data in

order to publish design information to dispersed users. Systems based on the Web

provide access to catalogue and design information, communication among design team

members, and authenticated access to design tools, services and documents. Researchers

have developed Web-based tools that utilize one or more of these capabilities. Web-based

tools are generally coded using Java, but some make use of other languages. Two

examples use Common Lisp and CORBA. As a side note, the PLM system used in this

thesis makes extensive use of Java because it is robust, versatile, and enables the PLM

system to be run on multiple platforms and within a Web browser. The Web is a great

tool for supporting information access; however, for a concept design environment to be

viable it needs to do more than simply support information access. In addition, it must

support the complete integration of analysis and simulation into a design process. Web

technology itself cannot satisfy these requirements. Between all of the current Web-based

design tools, a large range of functionality exists, however, no one solution addresses

29

more than one or two of the issues important to industry. The reason for this is that the

Web only does not meet industry’s needs. This section will discuss what has been

accomplished through the use of the Web to achieve process automation, design

optimization, and collaboration. Web-based solutions have been grouped together based

on their attention to these areas and discussed according to these groupings. The first to

be discussed are those with an emphasis on process automation.

Process automation is made possible within Web applications through the use of

CORBA and ActiveX. These tools allow for programs to interoperate with multiple

computers, operating systems or programming language. CORBA was used by Sony

System Design Corp. to develop KA Framework. [17] KA Framework is a framework

that focuses on engineering knowledge. Another project, Design for X (DFX) shell

developed by Huang and co-workers uses ActiveX to allow for Web-based deployment

of DFX tools. [18] DFX tools are custom tools originated by Huang and co-workers to

make use of morphological charts.

Other Web-based tools allow for design optimization. WebCADET, designed by

Rodgers and co-workers, uses Prolog to allow for Web-based deployment of their custom

tool CADET. [19] CADET is a system that supports decision making by providing

designers with feedback about alternative solutions by searching through design

knowledge. This program is mostly a tool for supplying information; it does not actually

automate an optimization loop.

While most Web-based design tools are for collaboration, only two are mentioned

here. Zdrahal and Domingue used Common Lisp to develop WWDL [20], a tool for

guiding designers around ongoing design dialogues. Other development has been

30

implemented to make the transfer of design information easier. One of these is VRML,

which is a neutral geometric representation used to display geometric models and make

comments on the designs. [21] None of the Web-based tools offer the scalability and

security required by industry.

2.3.2 Agent Systems

Agent technology may provide support to enhance the ability of Web technology.

[6] The concept of using agents systems is used in this thesis by making use of workflow

tasks in the PLM systems to provide the function of agents. Agent-based design is a

loosely coupled network of problem solvers. They are engaged in active dialog with each

other, working concurrently to solve problems that are beyond their individual

capabilities. Agent technology has existed before the Web. According to one researcher,

Parunak, agents are best suited for applications that are modular, decentralized,

changeable, ill structure, and complex. He notes that agents fit into the current industrial

trend towards products that are continually more complex and diverse, as well as toward

increased product variety over time. [22] However, in analyzing these projects Wang et

al. found that agents alone cannot solve the collaboration challenge. A possible solution

would be to build a Web environment that will make the designer\agent\server interaction

successful through the integration of related emerging technologies, including agents. [6]

The following sections show what has been done to implement agent-based tools. These

tools are discussed in the same manner the Web-based tools. That is to say, the tools are

discussed grouped together according to their emphasis on process automation, design

31

optimization, and collaboration, but also with centralized data management included as

an additional grouping. The discussion is begun with process automation.

One of the earliest agent-base tools is PACT. [23] PACT includes a federated

architecture using wrappers for legacy system integration and automation. This tool was

useful as a proof-of-concept, and as a starting point for agent technology, but did not

extend much beyond that.

Some agent-based design tools are made for optimization. One is A-Design which

combines the aspects of multi-objective optimization and automated design synthesis.

[24] It is of particular note because it is the best attempt to make an agent system function

as a framework. It does not however have collaborative capabilities.

Another project, Concept Database, is interesting because of its use of agents to

provide strategic design support for version control, workflow management and

information gathering. [25] This program attempts to recreate a PLM environment by

using agents. It also includes a limited framework tool. This thesis and Concept Database

are similar but opposite in that it strives to add as PDM system to a framework tool,

whereas this thesis strives to add a framework tool to a PLM system.

The last agent-based tool to be discussed focuses on collaboration. This tool is

called SHARE. It uses a federated architecture similar to PACT. [26] It entails the

development of open, network-oriented environments for concurrent engineering using

email. This tool is chiefly a collaboration tool, and like all of the other agent tools does

not provide a broad enough range of functionality to be used in industry.

32

2.3.3 Federated Systems

Under federated systems the one must prevalent is FIPER (Federated Intelligent

Product EnviRonment). FIPER by Engineous is an interesting tool because it addresses

the need for collaboration and framework functions. FIPER was part of a four year

project co-sponsored with $21.5 million by the National Institute for Standards and

Technology (NIST). “FIPER has a web-based, distributed design and integration

infrastructure that allows organizations to access execute and reuse design tools and

processes. Design teams may be work groups inside an organization or may be part of a

global geographically dispersed network of partners.” [27] While FIPER is an exciting

new tool, it creates a conflict for the large companies that are geographically dispersed.

This conflict results from the fact that FIPER is not a PLM tool. Furthermore it does not

interoperate with PLM tools. Large companies with globally geographically dispersed

network of partners rely on such PLM tools. Because FIPER does not interoperate with

PLM tools and offers some of the same functions as a PLM it contains duplicate structure

that must also be supported by the company. Companies that are already relying on PLM

systems will not be able to use any of their huge PLM investment with FIPER.

Companies rely on PLM capabilities that are not available from FIPER because it is not a

PLM tool. FIPER then does not become a part of the company’s collaborative tools, and

is used just as its predecessor – iSIGHT. This section discusses the functions of FIPER

and illustrates the duplicate structures that must be in place for a company to use it and a

PLM tool.

33

To provide process automation, FIPER contains a workflow manager. This

manager “directs the sequence of design events assembles components and controls the

dataflow between steps in the design process.” [27] PLM tools also contain a workflow

manager. For a company with both PLM and FIPER the question arises as to whether to

use the PLM workflow or FIPER’s workflow. Again, PLM is the bigger fish and wins the

debate. FIPER requires an application server to enable the collaborative process

automation. PLM tools also have an application server for this purpose. FIPER’s process

automation is a duplicate structure of what is available in the PLM system.

FIPER includes the ability to provide central data management. It does this by

allowing for “components and data from intermediate analysis [to] be stored in a

commercial back-end database.” [27] PLM tools already make use of a database for

storage of data and components. FIPER can use the same database installation that the

PLM tool uses, but both database usages must then be supported by the company.

For collaboration “FIPER B2B protocol allows for secure sharing of models in a

federated environment.” [27] PLM tools also allow for secure sharing of models. Again,

an overlap occurs and this one presents a potential security risk, because while both

protocols are secure, two protocols are less secure than one. FIPER is a viable and

wonderful solution for companies that do not plan to ever implement a PLM system, but

for its power does not become utilized in companies that use PLM.

2.3.4 Integrated Systems

The previous sections have all discussed solutions that focus on solving the issues

presented through use of tactics such as the Web or agents. However, it has been

34

discussed that through use of these tactics no one tool has been developed addressing all

of the issues presented in this thesis. This section discusses research done to integrate

multiple tools together to achieve this broader goal. These research projects are those of

WebBlow and research done by Klaas et al.

2.3.4.1 WebBlow

Wang et al. has done considerable research to find ways to solve the issues dealing

with collaborative concept design. Through their research they have found that neither

Web-based nor agent-based tools have the ability to achieve collaborative design. Based

on their findings, they addressed the challenge with an integrated approach. Their

approach was to develop a distributed multidisciplinary design optimization (MDO)

environment called WebBlow. [28] This project strove to integrate the Web with agents

in order to automatically access and manipulate information while enabling seamless

interaction between designers, agents, and servers. While the application was initiated for

blow molding applications, the methodologies and system architecture is extendable to

any application where collaborative and distributed MDO is required. While this tool is a

large advancement in distributed MDO, it does not offer the robustness and security of a

PLM tool. This section will discuss the novel elements of the project as related to the

issues of this thesis.

The major work includes developing a Web-based user interface for design and

implementation, agent-based computing resource management. Through the Web users

can setup the design process and monitor the progress. The agents allow for the

automation of the process. This novel setup allowed for distributed processing.

35

WebBlow made heavy use of XML as a means to transfer data between agents. The

system relied on this XML-based data management to store the data and distribute it to

the various elements of the tool. User input, as well as analysis results were all stored

using a central XML-based data management system.

Information was passed between the user interface and the several agents through

use of the XML files. Because of the ease to which XML can be transmitted over the web

collaboration was greatly improved over other tools.

2.3.4.2 Klaas

Research conducted by Klaas et al. was the most relevant to this thesis. This thesis

will build on their research to embed numerical analysis capabilities into an enterprise-

wide information system. [29] Their product is still under development, but the ideas

shared in their reports are very insightful. Some of what they mention is related to

improving PLM elements that already exist and others are elements that must be added to

PLM. As of date, no literature is found that addresses these areas of future work. [21]

This thesis will build on their work by developing the areas that they identified as future

work

Klaas et al. stresses the point that in order to effectively use numerical simulation in

product designs, an automated simulation environment must interact seamlessly with

product data management (PDM) and workflow systems. Workflow management can be

used to coordinate and automate the execution of processes. Along the same lines,

commercial CAE and legacy tools must be integrated such that these managers can

provide them with needed input data based on the problem description, and also to

36

transfer results back into the PDM system. Klaas additionally mentioned the need for

development of generic automatic simulation models.

They state that by making use of an enterprise’s PDM system, data redundancy can

be eliminated, revision control will be provided, and accessibility and security will be

guaranteed. Klaas identified information structures and management as two areas for

future development. Management needs to be initiated so that problem description data

modifications that become apparent during the simulation may be directly stored and

retrieved into the PDM. Another area required is an attribute system. An attribute is

information that describes material properties, loads and boundary conditions. The

definition of a simulation problem requires a system to be developed that associates the

geometric data and problem description with attributes.

Collaborative engineering crucially depends on up-to-date data. By using the PLM

system this need of collaborative engineering will automatically be supported. The

workflow can be monitored to track progress and identify bottlenecks. A workflow

process can be either initialized by a direct request or automatically based on the need to

update parameter estimates due to an upstream design modification.

2.3.5 PLM Workflow and Change Management

PLM workflow and change management are the current tools used in PLM systems

for a company to manage the processes taken by employees in everyday work and when

changes need to be made to products. While these tools are used to automate these

processes and allow for collaboration in a global company, they do not provide the

functionality to support the issues presented in this thesis.

37

Workflow and change management maintain a passive role in the automation of

processes. They rely on users to perform the specific tasks described in the process. They

automate the process by automating the assigning and notification of tasks to be

performed by participants. The automation needed by MDO, and mass customization is

an active automation. The tasks in the workflow management must perform their

assigned duties themselves. Currently standard workflow and change management do not

provide this support. Additionally, both of these tools are much too rigid to be useful in

MDO and mass customization. It is important in concept design to be able to easily

update and change the automated workflow, but the standard tools require that only

system administrators can edit or design processes.

Workflow and change management do not provide design optimization. Never

before this thesis has an optimization loop been implemented within a PLM system. This

is the major shortcoming of workflow and change management for MDO.

38

CHAPTER 3: METHOD

Currently, no solution for advanced management of design process knowledge

achieves all the needs of a company to realize multidisciplinary design optimization,

standardization, and mass customization. While all have strengths, none can offer the

complete solution that an integration of product lifecycle management and a framework

can offer. The concept design needs of PLM can be met in a large part by the capabilities

of a framework. Likewise, the collaborative and distributed computing needs of

frameworks can be met in a large part by the capabilities of PLM. In this thesis

framework capabilities will be added to PLM because PLM lacks less than what

frameworks lack. Also, it is expected that companies will already have a PLM system.

Because of this, to add a framework with collaborative capabilities to a company’s suit of

software tools would mean that there would be unneeded overlap in software. Therefore,

PLM is a bigger part of a company than framework software it is concluded that is it

better to add framework functionality to a PLM system.

39

The method used to develop this tool is the major contribution of this thesis. Figure

5 show a diagram of the major parts that must be developed. These pieces are:

• Customizing a central repository to support the framework integration.

• Creation of a process automation or workflow module.

• Integrating generic automation models.

• Integration of design optimization.

• Linkage into a centralized enterprise wide data.

The following sections describe the pieces that must be created in developing these

major parts. After these areas have been described a description of the method use to test

the feasibility of the concept is included.

40

Figure 5 A representation of the knowledge management approach presented by this thesis.
Knowledge is stored in an organized form that can be linked to automated design processes.

3.1 Design Process Automation and Optimization

Process automation was achieved within a PLM system by customizing workflow

management. There are two ways that workflow was customized to achieve process

automation. These two tactics were one, the internal method, where framework

capabilities were added completely internal to the PLM system and two, the external

method, where PLM workflow was customized to integrate external framework tools.

Task A Task B Task C

Task D

Task E
Task F

Central
Repository

Parametric
Models

Parametric
Models

Raw DataRaw Data Raw DataRaw Data

Optimization
Algorithms

Optimization
Algorithms

G
en

er
ic

M
od

el
s

Workflow
O

ptim
ization

Experience

Domain

Field Data &

Testing Results

Central
Repository

Task A Task B Task C

Task D

Task E
Task FTask A Task B Task C

Task D

Task E
Task F

Central
Repository

Parametric
Models

Parametric
Models

Raw DataRaw Data Raw DataRaw Data

Optimization
Algorithms

Optimization
Algorithms

G
en

er
ic

M
od

el
s

Workflow
O

ptim
n

Experience

Domain

Field Data &

Testing Results

izatioCentral
Repository

PLM Workflow

Action Handlers

PLM System

PLM Form Data

41

Both tactics have specific strengths and differing application for different situations.

These strengths will be discussed in the results chapter. The implementation was made

using the PLM system Teamcenter. The concepts and code written is also applicable to

other PLM tools. All that would need to be changed for different tools is the data transfer

functions to be updated for other tools and the action handlers to be registered according

to the other tool’s documentation. The method for creating both the internal and the

external tools are now described

3.1.1 Internal to PLM

As discussed in the review of research conducted by Klaas et al. it is possible to

provide framework capabilities to a PLM system. This section will discuss how the

internal integration was developed. The main elements needed in this development are:

• Automation Modules.

• Data Mapping.

• Design Optimization.

• User Interface.

3.1.1.1 Automation Modules

The nature of PLM workflow tasks was changed by building each automation

module right into the task. Standard workflow tasks are passive. They rely on users to

perform what is assigned. Once the user indicates that they have performed the task, the

workflow then moves to the next task. Active workflow tasks must be integrated into the

42

workflow. A task itself will perform its assigned duty and then the next task will be

initiated. This customization of Teamcenter Engineering Workflow is accomplish

through the use of Teamcenter’s API, the Integration Tool Kit (ITK), and makes use of

ITK’s Engineering Process Management (EPM) functions. Dynamically linked libraries

using EPM functions can be linked to standard Teamcenter libraries. These functions

allow action handlers to be registered to Teamcenter. Action handlers are the actions that

can be assigned to tasks in the workflow. Registered custom action handlers can be

assigned to workflow tasks in order to control their behavior. In this way, the workflow

can be customized to include any action that a developer can program. Using the

workflow, empowered by data mapping and custom action handlers, process integration

and automation is possible. Among others, action handlers can be made to update

parametric CAD models, to mesh and analyze the models and to optimize the

performance of the product. The feature tree of this integration for the test case is shown

in Figure 6. Several generic modules are required for design process automation. These

modules are:

• Geometry Update/Creation.

• Mesh Generation.

• Analysis.

43

Only Teamcenter
Start
CAD

Duplicate process with sugested optimum
End

SQP optimization
Run SQP

Import optimization parameters
Check status

Import mesh parameters
Analyze model
Export results into database

Approximate optimum

Export model into database
Analysis

Socket communication
Run ANSYS macro

Socket communication
Run UG Open code

Import CAD parameters
Update model

Process
Task
Action Handler

Custom Procedure

Other

Figure 6 The feature tree for directly integrating framework capabilities into Teamcenter.

3.1.1.1.1 Geometry

A generic geometry module was needed to create the ability to update a CAD

model with data taken directly from the PLM database without any intermediate files or

steps. The development of this module was divided into two main parts – the ability to

import data to the model and the ability to update the model based on that data. The

ability to import data was achieved through the use of a socket. A socket consists of a

server and clients that can transfer data between each other. The server listens on a port

for data transferred from a client. When data is transferred, the server program can then

44

use the data and communicate the results back to the client. The information transferred

over the socket can be formatted in such a way that allows requests for information

retrieval and storage to be made. With the server processing requests via ITK functions, a

client can issue request to the server and make use of the returned output in any

functions. A socket was required for the CAD automation because Teamcenter header

files and libraries conflict with those of the CAD program, Unigraphics. This means that

ITK functions cannot be used in the same dynamic linked libraries as functions from

Unigraphics’ application program language, UG Open. The use of a socket also makes

the program generic so that if the module is to be used in another PLM tool, only the

server side changes and the client can remain the same.

The second part of the module, updating of the geometry, was fairly simple once

the data was available. In the CAD automation the client can request the needed

parameters and the relevant parametric part file, then using UG Open functions it can

update the part with the new parameters.

3.1.1.1.2 Mesh Generation

Mesh generation can be achieved in multiple ways. The creation of a generic mesh

generation routine is out of the scope of this research. Development of a completely

generic mesh generation tool is a major undertaking that has not yet fully been realized

by researchers. This module is very important to a design process and the creation of a

generic module would greatly simplify the move between geometry and analysis,

however a generic module is not required because code can be created on a specific case

by case basis. For this reason, code was made to generate a mesh for the analyzed

45

geometry. Inputs to the routine were commutated from the PLM database by the use of a

socket, as discussed in the previous section. With the geometry updated and meshed the

only module remaining was analysis.

3.1.1.1.3 Analysis

The ability was created to import and export analysis data directly to and from the

PLM database. To do this an action handler was assigned to perform an analysis and

transfer data by the use of a socket. The analysis software used in the test case was

ANSYS. Macros to perform the analysis can be made using ANSYS’s macro language.

The macros can link to Tool Command Language (Tcl) code that can communicate over

the Teamcenter socket to request analysis parameters such as mesh information, and

boundary conditions. The analysis is then performed and results are communicated back

to Teamcenter over the socket. Each of the modules for design automation required that

data be transferred from the PLM database to the application code. Extracting data from

the database and mapping that data between the modules are important issues that are

preformed in the background during the automation; the next section presents how these

issues were addressed.

46

3.1.1.2 Data Mapping

Each of the modules created to perform automation require data. This section

presents the issues involved with supplying this data so that PLM benefits can be

realized. These are discussed in the following sections:

• Using the PLM database

• Extracting and Importing data from the database

• Mapping data to and between modules.

3.1.1.2.1 Database

PLM systems store data in a database. Everything that is stored in the database by

the PLM system is then managed by the PLM system. Because it is desired that all data

used in design be managed by the PLM system so that it can be part of the PLM

advantages. This section describes how to access data in the PLM managed database.

It has been found that it is not effective to directly access the PLM data in the

database. [30] This statement is illustrated in Figure 7. Although it is possible for to

directly access the data using SQL, the process contains risk because full knowledge of

how the PLM system sets its data would need to be known, and such information is not

available. For instance, to change one value in the database interactively through the

PLM system may change the data in over ten tables in the database. If one tried to do this

and neglected to update one of the tables that the PLM would update, the database could

be corrupted and all data may be lost. Hence, it is more efficient to let the PLM system

update its own data. By using this process data may be accessed for use.

47

Mapping Teamcenter Data Oracle Database Data Usage

Figure 7 Mapping Teamcenter data directly through SQL is risky. It is safer to use Teamcenter ITK
functions to retrieve and store data from the database.

3.1.1.2.2 Extraction and Insertion

The internal method allows all data to be used internal to the PLM system. As

discussed earlier PLM data should be accessed only through the use of the PLM system.

The methods for doing this are different for each PLM system and can be found in that

system’s documentation. For this implementation, Teamcenter’s ITK includes the needed

functions that allow a programmer to access data through Teamcenter. Functions used

can be found in the documentation as part of Teamcenter’s persistent application and

workspace object memory (POM/AOM/WSOM) functions. Through an intricate use of

these functions data can be accessed and stored in the database.

The data structure can be set up interactively or programmatically using the ITK.

To do this, Teamcenter provides information classes and forms. Information is held in the

classes. Forms allow a set of that data to be interactively viewed and changed. The data

structure is illustrated in Figure 8. Interactively or programmatically, classes and forms

SQL Risky

Teamcenter ITK Safe

48

accessing data in the classes must be created, and data must be put into the classes. If this

is being done programmatically, forms and classes must be saved and unloaded from

memory to the database. Teamcenter handles the saving and unloading of the forms an

classes if they were created interactively. Once the data is stored it is available to be

accessed.

d

forms allow a set of that
data to be accessed interactively

hen programmatically accessing the data, these classes and forms must be loaded

into m

 First,

Form

Figure 8 Teamcenter memory structure. Classes stor

 Class Data

Class

Interactive Usage

e metadata, and

W

emory from the database. Most memory allocated by ITK functions to access data

must be freed using the appropriate methods as specified in the documentation. Working

with ITK allocated memory can lead to unpredictable results. To avoid this, it is

suggested to follow the subsequent procedure to deal this with dynamic memory.

manually allocate memory. Then, retrieve the data using the ITK function. Immediately

following this, copy the data into the manually allocated memory, and free the memory

allocated using an ITK function. Finally, free the manually allocated memory when

49

through with the data. This process is shown in the following code where an array of

doubles is retrieved from the database:

//manually allocate memory
double* my_doubles = new double[length];

 for the ITK function

signed char *junk1;

eve into “tmp” an array of doubles from positions
e “attr_id” field of the “class_instance” class

M_ask_attr_doubles (class_instance, attr_id, 0, length, &tmp, &junk1,

;i<length;i++) {
if(junk1[i] || junk2[i])

[i];

i ediat d memory
free(junk1);
_free(junk2);

 to make use of “my_doubles”***/

manually clean up memory

fter the data is copied into personal allocated memory, the ITK allocated memory

must

 are

ng

//created temporary pointers
double* tmp = 0;
un
unsigned char *junk2;

//ITK function to retri
// 0 to “length” in th
PO
&junk2);

//assign the data in “tmp” into “my_doubles”
for(int i=0

 my_doubles[i] = 0;
 else
 my_doubles[i] = tmp
}

// mm ely clean up ITK allocate
SM_
SM
SM_free(tmp);

/***add code here

//
delete [] my_doubles;

A

be freed immediately. This is due to the unpredictable behavior that can occur

when there are multiple variables containing memory allocated by ITK functions that

still in memory. Figure 9 shows this problem and the suggested method for managing

dynamically allocated memory. Care must also be taken in loading, saving and unloadi

data from the database. Lund has made good suggestions on the procedure used to make

data mapping robust when accessing data from the database. With the ability to access

data from the database available, other functionality will be developed to use the data.

50

Procedure Timeline

Var1 usage span

Var2 usage span

ITK allocated memory – Var1

ITK allocated memory – Var2

Unpredictable

Manual allocated memory – Var1

ITK Manual allocated memory – Var2

Safe ITK

Figure 9 Overlapping ITK allocated memory can cause unpredictable behavior. It is better to
use ITK functions to feed manually allocated memory.

3.1.1.2.3 Management

When running an automated process, data needs to flow between the different

modules. There is no mechanism built-in to a PLM to associate data to specific tasks, and

make the data available to the task itself to use. Data mapping capabilities must be

51

integrated into PLM workflow. In his ongoing master’s research at Brigham Young

University, Lund has made large contributions to developing the ability of data mapping

in a PLM system. A small portion of his method will be discussed, but a more in depth

discussion can be found in his thesis work. [30] The ability to manage data mapping in

PLM workflow was created by building on current PLM methods. Teamcenter

engineering allows for data to be attached to a process. As tasks are performed, users can

manually access the attached data. Data mapping for an automated process was created

by attaching a folder to the process. An argument passed into the action handler of each

action requiring an input specifies the name of a form containing input data for the action.

When the action is run it will look for the form in the attached folder. In the same way

outputs were stored in the folder. Through this process, data mapping was accomplished

between modules.

Other than mapping data between modules another type of data management for

attributes was required. Attributes are parameters of a geometric feature that are not

associated with geometry dimensions. Examples of attributes are mesh density, load

conditions, boundary conditions, material properties, and geometry names. A generic

system needed to be created allowing attributes to be assigned and continually associated

to the specific geometric features as they move from one analysis to another. The work of

creating a generic management system is beyond the scope of this thesis, but for

implementing the test case, code was written in the ANSYS macro to accomplish

attribute management for this specific case.

52

3.1.1.3 Design Optimization

A PLM system has no built-in ability to automatically make decisions to improve a

design. Decision support within PLM requires the integration of optimization algorithms.

This section discusses the issues concerned with embedding an algorithm into a PLM

system and the advantages associated with it. A discussion of the generation of new

algorithms or researching and comparing the efficiency of possible algorithms is not

included and is not part of the scope of this thesis.

3.1.1.3.1 Algorithms

The optimization algorithm used is a sequential quadratic program (SQP). SQP

algorithms are described in optimization literature. These algorithms find the gradient at a

point and find the optimum point of a quadratic function based on the gradient. They then

move the design to that optimum point and repeat the process. Once the optimum point

remains fixed within a tolerance, or a maximum number of iterations are reached, the

point is said to be the optimum and the algorithm is terminated. The SQP algorithm can

be summarized in the following equations. [31] When solving the general problem

Min)(xrf (3)

s.t. i = 1, … , n (4) 0)(≥− ii bg xr

 i = n+1, … , m (5) 0)(=− ii bg xr

the quadratic approximation at point 1+kxr is:

Min
xxxxxxx x
vvrvvrvv ∆∇∆+∆∇+=∆ +++),(

2
1)()()(1211 λkTTkk

a Lfff
 (6)

53

s.t. :)(, xv∆aig i
Tk

i
k

i bgg ≥∆∇+ ++ xxx vvv)()(11
 i = 1, … , k (7)

 i
Tk

i
k

i bgg =∆∇+ ++ xxx vvv)()(11
 i = k+1, … , m. (8)

The values of and x∆ λ
v

 are computed by solving:

0)()(=∆∇−∆∇ xx vv
aa gf λ (9)

0)(=∆xvag for i=1, … ,m. (10)

The Lagrangian Hessian matrix, of the first iteration is the identity matrix but

otherwise is approximated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update:

L2
x∇

kkTk

kTkkk

kTk

Tkk
kk

γγ
γγ

γ vv

vv

vv

vv

N
NN

x
xxNN

)(
)(

)(
)(1 −

∆
∆∆

+=+

 (11)

where the Lagrangian Hessian matrix to be found is , is the previous iteration’s

Lagrangian Hessian matrix, and

1+kN kN

kγv is found in using the following equations:

),(),(1 λλγ
vvvvv kkk LL xx xx ∇−∇= +

 (12)

∑
=

∆−∇=∇
m

i
ii gfL

1

)()(xxx
vv λ

. (13)

3.1.1.3.2 Paradigm

As stated earlier, a PLM system has no built-in ability to automatically make

decisions to improve a design. Embedding an optimization algorithm into PLM required

the use of a new optimization paradigm. Current optimization algorithms perform

assuming that the optimization is the overarching program. It supplies the inputs as well

as initiates, monitors, and retrieves the output from the automation. It makes decisions

54

about input changes and analyzes the outputs in order to find the optimal design. All tasks

are performed optimization-centric. The new paradigm is PLM-centric. The PLM system

performs the automation and stores the inputs and outputs. The optimization is only a

task at the end of the process. Its function is solely to analyze the outputs with respect to

the inputs and suggest an improved design by instantiating a duplicate of its own process.

This paradigm lends itself well to parallel and distributed processing. If multiple design

processes are spawned by the optimization task, each of these processes would then run

parallel. A genetic algorithm could spawn an entire generation of design processes to be

run simultaneously. Likewise, a gradient-based algorithm could at once run all of the

processes that are needed to approximate the gradient.

3.1.1.4 User Interface

The internal method allows for collaborative user interaction. It offers an

unprecedented ability to setup, monitor and visualize results of an automated

optimization process within a completely collaborative environment. An important part

of any application that requires human interaction is a user interface. User interface

design has a great impact on both the usability and the user perception of an application.

In general if a program works like a charm but has a poorly designed interface, it will not

be appreciated to an extent anywhere near it’s potential. This section discusses the

interfaces needed in the customization to integrate a framework internally in a PLM.

55

3.1.1.4.1 Setup

An automated optimization is setup through the use of PLM’s standard workflow

designer. As mentioned earlier, workflow is a rigid tool and as such, the workflow

designer is meant for seldom use by administrators. While it is usable and performs the

function needed, it does not allow for the agility required because this interface was not

meant for high traffic use. Future work should include the creation of a more usable

interface. Suggested changes would be to have the action and rule handlers grouped in

categories specific to their function and have them be selectable by icons. Also the

interface should be created so that each action handler’s arguments can be seen with a

description of their potential values included. Last of all, it needs to be editable in a way

that would allow engineers to access to it without requiring administrative abilities.

3.1.1.4.2 Dashboards

The current PLM workflow dashboard was leveraged for use as an unprecedented

tool for monitoring the progress of automated optimization processes. Dashboards allow

the status of the process to be monitored by users and managers. PLM workflow has a

built in dashboard to monitor this progress. Anyone can view the process dashboard and

quickly surmise the progress of the process. This dashboard may be viewed by anyone

with permission in any location.

56

3.1.1.4.3 Visualization

Data and results of the process can be viewed though normal PLM methods. This is

more advanced for CAD models, where lightweight images can be quickly viewed.

However other data forms can only be viewed as pure data or by using an external tool.

Work needs to be done to create visualization tools for viewing optimization results, and

other data forms within the PLM system.

3.1.2 External to PLM

The second methodology is to integrate an external framework tool into the PLM

system. Through implementing this tactic on the test case it was found that the external

method is best suited for applications where agility and ease of use are required. Because

a commercial tool was used, this tactic provided more support and a better user interface,

making it much more usable as shown by the low score received for the number of

required specifications that needed as shown in Table 3. The following sections support

these conclusions as they discuss how this tactic was developed and the findings obtained

when implementing the test case. The two main areas of development are:

• Executing the external application from within the PLM system.

• Linking the external run to the PLM such that all inputs and results can be

access in the PLM system.

57

3.1.2.1 Execution

PLM workflow management was used to integrate iSIGHT into the PLM system.

iSIGHT was chosen because of its wide acceptance in industry and because of the ease at

which it was integrated into the PLM system. Additionally, iSIGHT has only the

functions needed by a framework with few other collaborative or data management

functionality that would overlap with and cause redundancy with PLM functionality. A

standalone version of FIPER was considered, but not chosen because at the time and

now, though advertised to be available, no standard supported application programming

interface is available.

To accomplish the workflow customization to run iSIGHT, a new custom task

action handler was made to export to the user’s local computer an iSIGHT description

file specified in the handler’s arguments and included in the folder attached to the

process. It then makes a system call to run iSIGHT in batch with the locally stored

description file. The action handler then stops the progress of the workflow process until

the iSIGHT optimization is completed. The handler is notified of the completion of

iSIGHT by continually looping on a one-second pause until a file is written to by the

iSIGHT run signifying its completion. Once the optimization is completed the handler

continues the process’ progress. In this way it is possible for the iSIGHT run to be

included as a task in a larger workflow process.

An iSIGHT run was created that involved creating an executable to read in CAD

parameter from a file, and update and save a parametric CAD model using the

parameters. The development of an iSIGHT simcode was also necessary to wrap the

58

executable and map the input parameters into the file that the executable will read. An

ANSYS macro was made to read the mesh parameters in from a file. Also, an iSIGHT

simcode similar to the previous one was created to map the mesh parameters into the

mesh parameter’s file. These simcodes were implemented to run in sequential order. An

optimization loop was also specified that matched the loop implemented in the internal

method as explained above. The feature tree for this methodology including both

Teamcenter and iSIGHT components are shown in Figure 10.

59

Figure 10 The feature tree for integrating iSIGHT into Teamcenter Engineering Workflow.

Map results from file to database file
Read database file

End

Run ANSYS macro
Import parameters from file
Analyze mdole
Export results to file

Update model
Save model

Analysis
Map mesh parameters into file

CAD
Map parametersfrom database file into file
Run UG Open code

Import parameters from file

Write description file
Run iSIGHT

Run integration
Optimize

Teamcenter / iSIGHT
Start
iSIGHT

Process Integration
Task Task
Action Handler Simcode

Input Mapping
Output Mapping

Custom Procedure Program

Other

3.1.2.2 Linking

Linking the iSIGHT data to the PLM system was implemented by using standard

file parsing procedures. iSIGHT uses an ASCII formatted description file to store the

preferences and input information to be used in the iSIGHT run. iSIGHT stores its run

60

data in an ASCII formatted database file. In order to supply iSIGHT with necessary

information and to put data back into Teamcenter, the action handler was made to parse

the description before iSIGHT was run to supply it with user setup information. Then,

once iSIGHT completed, the action handler continued to parse the database file for

results and store them in the PLM database.

3.2 Centralized Data Management and Collaboration

Centralized data management is achieved through the use of the PLM system. All

data transactions by both the internal and external methods have used PLM methods to

transfer and store data. Because of this, all of the data is automatically managed by the

PLM system. PLM systems also have collaborative ability built in. That is the beauty of

using a PLM system. Everything done by the framework integration is securely

accessible though the entire enterprise because of the use of a PLM system.

3.3 Test Feasibility

To test the feasibility of the concepts those have been developed. The concept is

deemed feasible if its objective is meant. The objective as stated in the Introduction is

that it can perform a design optimization based engineering results obtained from an

automated processes involving geometry creation and analysis. The test case and

comparison metrics devised to prove the concepts are discussed in this section.

61

3.3.1 Test Case

A simple design process was created as a test case used to compare the two

methodologies. The elements of this process were created using currently available

parametric procedures. As illustrated in Figure 11, the process will consist of a

parametric CAD model of an I-beam with inputs of height (h), width (h), web thickness

(b), and flange thickness (l). The analysis was a simple stress analysis of a cantilever

beam under a bending load with inputs of mesh density and load, and outputs of

maximum displacement (δmax) and weight (f). The optimization minimized weight while

keeping the displacement under a critical amount. The problem was posed as:

 Minimize:

 f(h,w,b,l) (1)

 Subject to:

 g = δcritical - δmax(h,w,b,l) > 0. (2)

The design variables were height, width, web thickness and flange thickness. This

process was automated and evaluated using the Teamcenter customized workflow. It was

also automated using an iSIGHT automation that was then integrated into Teamcenter.

The comparison metrics were used to evaluate the two methods on the basis of usability,

robustness, and easy of implementation and quality of results.

62

DATA DATA
Geometry Analysis

ParameteParameters

CAD Analysis
Parametric

Model
Macro

DATA
Analysis
Results

Figure 11 Simple design process used to demonstrate framework integration.

3.3.2 Comparison Metrics

The two tactics were compared using the following metrics. Four weighted criteria

were measured and then the results were added. The weights used to scale the criteria

were chosen so that the metrics better represented the performance of each methodology.

The method with the lower total was the better method. The criteria and their respective

weights are as follows:

Table 2 Comparison metrics for evaluating level of integration into the PLM system and ease of use.

Criteria Weights
Data Mapping Operations 1
File Conversions 2
Parameter Specifications Required 5
Options Not Available Inside the PLM 10

63

These metrics are descriptive of the level of integration and usability of each

method. The method that has the least data mappings and file conversions will be a

tighter integration. It will also be more robust and faster for comparable operations. The

method requiring fewer parameter specifications per run and that does not require the

user to go outside of the product lifecycle management system to specify parameters will

be easier to use and a tighter integration. The weights were chosen by comparing each

criterion against each other. It was determined through this comparison that the number

of specifications not available inside of the product lifecycle management made the

largest contribution to ease of use and level of integration. For this reason it has the

largest weight. The number of data mappings was determined to contribute least in

determining the better method. Hence, it has the lowest weight. The other weights were

determined in a similar manner. Through these metrics the better method can be

determined.

64

CHAPTER 4: RESULTS AND DISCUSSION OF RESULTS

Currently, no solution for advanced management of design process knowledge

achieves all the needs of a company to realize multidisciplinary design optimization,

standardization, and mass customization. While all have strengths, none can offer the

complete solution that an integration of product lifecycle management and a framework

can offer. The concept design needs of PLM can be met in a large part by the capabilities

of a framework. Likewise, the collaborative and distributed computing needs of

frameworks can be met in a large part by the capabilities of PLM. In this thesis

framework capabilities will be added to PLM because PLM lacks less than what

frameworks lack. Also, it is expected that companies will already have a PLM system. To

add a framework with collaborative capabilities to a company’s suit of software tools

would mean that there would be unneeded overlap in software. Because PLM is a bigger

part of a company than framework software it is concluded that is it better to add

framework functionality to a PLM system.

4.1 Results from Development of the Proofs-of-Concept

It was found that two tactics could be used to achieve the PLM – framework

integration. These tactics consist of one, embedding a commercial framework, iSIGHT

(Engenious Software Inc.) into the product lifecycle management system and two,

65

integrating design/analysis applications and an optimization algorithm into the product

lifecycle management system’s workflow action handler. A generic case study is

implemented and used to compare the tactics. Recommendations are made based on the

level of integration and ease of implementation. This chapter shows that a PLM –

framework integration solves the challenges associated with performing MDO,

standardization, and mass customization because it enables a company to:

• Capture and Automate Design Processes.

• Optimize Designs.

• Manage All Data in a Centralized, Secure Fashion.

• Collaborate With All Participants.

4.1.1 Design Process Automation and Optimization

Process automation was achieved within a PLM system by customizing workflow

management. There are two ways workflow was customized to achieve process

automation. These two tactics were one, the internal method, where framework

capabilities were added completely internal to the PLM system and two, the external

method, where PLM workflow was customized to integrate external framework tools.

Both tactics have specific strengths and differing application for different situations. To

make recommendations on the usage of the different tactics, both were applied to the

same test case and compared through the use of comparison metrics, as explained in the

Method. The implementation was made using the PLM system Teamcenter. The concepts

and code written is also applicable to other PLM tools. All that would need to be changed

66

for different tools is the data transfer functions to be updated for other tools and the

action handlers to be registered according to the other tool’s documentation. The results

of the implementation comparison are show here in Table 3, (more details on the test case

are found in the appendix):

Table 3 Summary of implementation results

Metric Internal External
Data Mappings 14 21
File Conversions 4 14
Parameter Specifications 160 105
Options unavailable in PLM 0 200
Total 178 340

These result and conclusions are drawn from the results are discussed in the

following sections:

• Internal Method.

• External Method.

4.1.1.1 Internal to PLM

As discussed in the review of research conducted by Klaas et al. it is possible to

provide framework capabilities to a PLM system. By following this tactic it was found

that the internal method was best suited for applications where every element of a design

process needs to be monitored and controlled within the PLM system. This method is

best suited for these applications because it provides a tighter integration and more

control over the data as shown by the lower score in Table 3 for data mappings, file

conversions, and option unavailable in PLM. This section will discuss the findings that

67

lead to the conclusions just stated. The main elements evaluated in the internal method

are:

• Automation Modules.

• Data Mapping.

• Design Optimization.

• User Interface.

4.1.1.1.1 Automation Modules

The creation of automation modules in the PLM system resulted in a very tight

integration of each of the automated process steps into the PLM system. Such a tight

integration was possible because each module was built right into PLM workflow tasks,

thereby changing the very nature of these tasks. Standard workflow tasks are passive.

They rely on users to perform what is assigned. Once the user indicates that they have

performed the task, the workflow then moves to the next task. Active workflow tasks

must be integrated into the workflow. A task itself will perform its assigned duty and then

the next task will be initiated. Using the workflow empowered by data mapping and

custom action handlers, process integration and automation is possible. Among others,

action handlers can be made to update parametric CAD models, to mesh and analyze the

models and to optimize the performance of the product. The feature tree of this

integration for the test case is shown in Figure 12 and the break down of the test case

score is given in Table 4. Several generic modules are required for design process

automation. These modules are:

68

• Geometry Update/Creation.

• Mesh Generation.

• Analysis.

These modules make up a large proportion of the steps involved in a design process. If

these modules can be made generic enough that they can be applied to vastly different

models and programs, then the design automation setup will have the level of agility

needed for continual improvement and exploration.

69

Figure 12 The feature tree for directly integrating framework capabilities into Teamcenter.

Only Teamcenter
Start
CAD

Duplicate process with sugested optimum
End

SQP optimization
Run SQP

Import optimization parameters
Check status

Import mesh parameters
Analyze model
Export results into database

Approximate optimum

Export model into database
Analysis

Socket communication
Run ANSYS macro

Socket communication
Run UG Open code

Import CAD parameters
Update model

Process
Task
Action Handler

Custom Procedure

Other

Table 4 Results of implementing the internal method
Workflow Start

Handler
Import

Params
Update
Model

Export
model

Import
Params

Analyze Export
Results

Import
Params

Check
status

Appriximate
Optimum

Duplicate
process

Data Mappings 3 1 2 5 3 14 1 14

File Conversions 1 1 2 2 4
Required

Specifications 5 11 16 32 5 160

Option unavailable 0 10 0

178 Total

Sum Weight Total

Run SQPRun UG code ANSYS macro

70

Geometry

Creation of a generic geometry module resulted in the ability to update a CAD

model with data taken directly from the PLM database without any intermediate files or

steps. This ability integrated the geometric module very tightly into the PLM system by

contributing to only three data mappings and one file creation in the test case

implementation. The use of a socket also makes the program generic so that if the module

is to be used in another PLM tool, only the server side changes and the client can remain

the same.

Mesh Generation

The mesh generation was also tightly integrated with very few data transfer

procedures. Mesh generation can be achieved in multiple ways. In implementing the test

case code was made to robustly generate a mesh for the analyzed geometry. Inputs to the

routine were commutated from the PLM database by the use of a socket, as discussed in

the previous section.

Analysis

The analysis module showed the ability to greatly reduce the number of data

mappings needed. Because of this it was a very tight integration. The need for input and

output files was eliminated by creating the ability to import and export analysis data

directly to and from the PLM database. Because of this, the analysis module only

71

contributed three data mappings and one file conversion during the test case

implementation.

4.1.1.1.2 Data Mapping

The internal method gives the PLM system the most control over data mapping.

Each of the modules created to perform automation require data. The internal method

enables every detail of data mapping to be specified from within the PLM system. This

section presents the issues involved with supplying this data so that PLM benefits can be

realized. These are discussed in the following sections:

• Using the PLM database

• Extracting and Importing data from the database

• Mapping data to and between modules.

Database Data Extraction and Insertion

PLM systems store data in a database. Everything that is stored in the database by

the PLM system is then managed by the PLM system. Because it is desired that all data

used in design be managed by the PLM system so that it can be part of the PLM

advantages. The internal method allows all data to be used internal to the PLM system.

This enables the automation modules to be tightly integrated and eliminates the need of

using files to store and communicate data. As discussed earlier PLM data should be

accessed only through the use of the PLM system. The methods for doing this are

different for each PLM system and can be found in that system’s documentation.

72

4.1.1.1.3 Design Optimization

The internal method provides to a PLM system, for the first time ever, the ability

for the PLM system to control an optimization loop. It also enables optimization data to

be managed automatically by a PLM system. A PLM system has no built-in ability to

automatically make decisions to improve a design. Decision support within PLM requires

the integration of optimization algorithms. This section discusses the issues concerned

with embedding an algorithm into a PLM system and the advantages associated with it. A

discussion of the generation of new algorithms or researching and comparing the

efficiency of possible algorithms is not included and is not part of the scope of this thesis.

4.1.1.1.4 User Interface

The internal method allows for collaborative user interaction. It offers an

unprecedented ability to setup, monitor and visualize results of an automated

optimization process within a completely collaborative environment. An important part

of any application that requires human interaction is a user interface. User interface

design has a great impact on both the usability and the user perception of an application.

In general if a program works like a charm but has a poorly designed interface, it will not

be appreciated to an extent anywhere near it’s potential. This section discusses the

interfaces needed in the customization to integrate a framework internally in a PLM.

73

Setup

An automated optimization is setup through the use of PLM’s standard workflow

designer. As mentioned earlier, workflow is a rigid tool and as such, the workflow

designer is meant for seldom use by administrators. While it is usable and performs the

function needed, it does not allow for the agility required because this interface was not

meant for high traffic use. Future work should include the creation of a more usable

interface. Suggested changes would be to have the action and rule handlers grouped in

categories specific to their function and have them be selectable by icons. Also the

interface should be created so that each action handler’s arguments can be seen with a

description of their potential values included. Last of all, it needs to be editable in a way

that would allow engineers to access to it without requiring administrative privileges.

Dashboards

The current PLM workflow dashboard was leveraged for use as an unprecedented

tool for monitoring the progress of automated optimization processes. Dashboards allow

the status of the process to be monitored by users and managers. PLM workflow has a

built in dashboard to monitor this progress. Anyone can view the process dashboard and

quickly surmise the progress of the process. This dashboard may be viewed by anyone

with permission in any location.

74

Visualization

Data and results of the process can be viewed though normal PLM methods. This is

more advanced for CAD models, where lightweight images can be quickly viewed.

However other data forms can only be viewed as pure data or by using an external tool.

Work needs to be done to create visualization tools for viewing optimization results, and

other data forms within the PLM system.

4.1.1.2 External to PLM

The second methodology is to integrate an external framework tool into the PLM

system. The feature tree for this implementation is shown in Figure 13. Through

implementing this tactic on the test case it was found that the external method is best

suited for applications where agility and ease of use are required. Because a commercial

tool was used, this tactic provided more support and a better user interface, making it

much more usable as shown by the low score received for the number of required

specifications that needed as shown in Table 3. The following sections support these

conclusions as they discuss the findings obtained when implementing the test case. The

two main areas of development are:

• Executing the external application from within the PLM system.

• Linking the external run to the PLM such that all inputs and results can be

access in the PLM system.

75

Map results from file to database file
Read database file

End

Run ANSYS macro
Import parameters from file
Analyze mdole
Export results to file

Update model
Save model

Analysis
Map mesh parameters into file

CAD
Map parametersfrom database file into file
Run UG Open code

Import parameters from file

Write description file
Run iSIGHT

Run integration
Optimize

Teamcenter / iSIGHT
Start
iSIGHT

Process Integration
Task Task
Action Handler Simcode

Input Mapping
Output Mapping

Custom Procedure Program

Other

Figure 13 The feature tree for integrating iSIGHT into Teamcenter Engineering Workflow.

4.1.1.2.1 Execution

Execution of an automated optimization enables extreme setup agility, because the

use of a commercial tool execution of an already setup process is very easy. This is

shown by the results of the test case implementation as broken down in Table 5.

76

Table 5 Results of implementing the external method
Worflow
Handler Read file
iSIGHT

Integration
Simcode Map Map Map

Program
Import

Params
Update
Model

Export
model

Import
Params

Analyze Export
Results

Data Mappings 4 3 3 1 1 2 2 5 21 1 21

File Conversions 1 1 1 1 1 1 1 7 2 14
Required

Specifications 1 11 9 21 5 105

Option unavailable 11 9 20 10 200

340 Total

Start
Dscr File

Sum Weight Total

Optimize
Run iSIGHT

Run UG code ANSYS macro

Execute iSIGHT

CAD Analysis

PLM workflow management was used to integrate iSIGHT into the PLM system.

iSIGHT was chosen because of its wide acceptance in industry and because of the ease at

which it was integrated into the PLM system. Additionally, iSIGHT has only the

functions needed by a framework with few other collaborative or data management

functionality that would overlap with and cause redundancy with PLM functionality. A

standalone version of FIPER was considered, but not chosen because at the time and

now, though advertised to be available, no standard supported application programming

interface is available.

4.1.2 Centralized Data Management and Collaboration

Centralized data management is achieved through the use of the PLM system. All

data transactions by both the internal and external methods have used PLM methods to

transfer and store data. Because of this, all of the data is automatically managed by the

PLM system. PLM systems also have collaborative ability built in. That is the beauty of

using a PLM system. Everything done by the framework integration is securely

accessible though the entire enterprise because of the use of a PLM system.

77

CHAPTER 5: CONCLUSION

The objective of this thesis was to identify a knowledge representation strategy that

can be implemented effectively in a PLM environment. This created the ability for

company wide design space knowledge reuse. This objective was be achieved by

representing the design space in the format of an MDO schema that can interact with a

PLM architecture. The feasibility of this approach was tested using two proof-of-

concepts. One proof-of-concept integrated framework capabilities into the product

lifecycle management solution. The second proof-of-concept was implemented by

embedding a commercial framework tool into the product lifecycle management solution.

Both applications were developed to demonstrate the power and validity of embedding

process integration and design optimization within a PLM system. This thesis answered

the following related questions:

• How can an MDO schema be represented in a PLM system?

• How can PLM architecture be leveraged to manage the MDO schema?

• How can the MDO schema and PLM interact to preserve reuse and modularity?

79

5.1 Representing an MDO Schema in a PLM System

It is concluded through the results obtained from the test case that an MDO schema

should be represented in a PLM system by creating action handlers within PLM

workflow to perform automated engineering tasks required by the MDO process.

Parametric automation modules can be created as action handlers to update CAD models,

generate analysis meshes and to perform analysis.

When these action handlers are linked together in a workflow process it represents

an ideal representation of the product design. The entire design space can be represented

by this workflow process if it is defined such that it can be implemented as an

optimization loop. As such, an action handler should be created to perform optimization

on the automated process. Through the use of PLM workflow action handlers to provide

automation and optimization, this design space can be represented in a PLM system as an

MDO schema. This representation, however, in itself does not insure that the PLM

system manages the MDO schema. The next section discusses how the PLM system can

be leveraged to manage the MDO schema.

5.2 Leveraging PLM Architecture to Manage an MDO Schema

It is concluded through the results obtained from the test case that by leveraging

PLM workflow, and form architecture the PLM system can be used to manage MDO

schemas. To manage the MDO schema the PLM system must have access to the

schema’s inputs and results. Additionally, this data must be accessible to PLM users. By

80

storing this data as PLM forms the PLM system and its users will be able to have access

to manage the data.

To further increase the data organization for more control, and easier management

PLM workflow process attachment architecture should also be used. MDO schema data

stored in PLM forms can be referenced in folders attached to workflow processes. By

attaching the PLM forms containing a schema’s data to the schema’s workflow process

the data becomes linked to the schema, and both schema and data can be managed

together. The next section discusses the conclusions for achieving interaction between the

MDO schema and the PLM system.

5.3 Interaction Between the MDO Schema and the PLM System

It is concluded through the results obtained from the test case that interaction

between the MDO schema and PLM system should be achieved through the use of socket

communications. Interaction required between the schema and PLM system consists of

data communication and status notification. A socket communication is the most ideal

way to handle this interaction because it promotes modularity.

Modularity is achieved because the communication and interaction functionality

needed between the MDO schema and PLM system can be contained within the server of

the socket. The server then becomes a distinct module that every parametric automation

module can use to interact with the PLM system. In the event that a new automation

module is created it can be created as a client that communicates with the socket server.

Because the server module communicates with the PLM system, that functionality does

not need to be recreated in the client automation module. Also, if an automation module

81

needs to be used with another PLM system the module will only need to be changed so

that it communicates with a different server module that communicates with the new

PLM system. The combined ability to represent an MDO schema in a PLM system such

that the PLM system can manage it and preserve modularity presents an enormous

opportunity to industry which will be discussed in the final conclusions.

5.4 Final Conclusions

Increasing globalization and market competitive demands are driving industry to

seek out improved strategies for knowledge management. Concurrently, engineering

software providers (specifically PLM and MDO framework providers) have been selling

their products to industry claiming that they can solve these challenges; but to date,

companies have not been able to fully leverage these tools. One of industries greatest

challenges is to capture a common knowledge representation of their product’s design

space that allows full integration across the enterprise so that as market needs shift they

can quickly pinpoint the design to meet these needs. This thesis proposes a new approach

to PLM and MDO framework usage that enables the complete representation of a design

space with absolute, enterprise wide reuse. Because of the synergy that is created

between PLM and MDO through this approach, both software providers and users in

industry are looking at it as a way to achieve their greatest challenges. This thesis

achieves the common knowledge representation that industry has been actively pursuing,

because of this industry leaders have been impressed and believe that this approach will

quickly take hold and usher in a new era for product design.

82

REFERENCES

1. Teare, S. “A procedure for Structuring Product Information for Reusability”,
Master’s Thesis BYU, 2000.

2. Anon. “PLM: What does it mean? What do you want it to mean?” British Plastics

and Rubber, n MAY, pages 35-36, May 2004.

3. www.ugs.com, Posted Sept. 2004.

4. Johnson, C. Gavilanes, J. "Quick and below budget", InTech, v 50 n 5, pages 51-
54, May 2003.

5. Rahse, Wilfried, Hoffmann, Sandra “Product design - Interaction between

chemistry, technology and marketing to meet customer needs” Chemical
Engineering and Technology, v 26, n 9, pages 931-940, September, 2003.

6. Wang, L.Shen W. Xie H. Neelamkavil, P. A. "Collaborative conceptual design -

State of the art and future trends", CAD Computer Aided Design, v 34 n13, pages
981-996, November 2002.

7. Sobieszczanski-Sobieski, J. Tulinius, J. "MDO can help resolve the designer's

dilemma", Aerospace America, v 29 n 9, pages 32-35, 63, September 1991.

8. Stelmack, Marc A., Batill, Stephen M., Beck, Bryan C. “Design of an aircraft
brake component using an interactive multidisciplinary design optimization
framework”, Journal of Mechanical Design, Transactions of the ASME, v 122, n
1, pages 70-76, March 2000.

9. Berger, “Continuous improvement and kaizen: Standardization and organizational

designs” Integrated Manufacturing Systems, v 8, n 2, pages 110-117, 1997.

10. Kulhavy, Rudolf. “Data-centric decision support”. Proceedings of the American
Control Conference, v 4, pages 3395-3400, 2002.

11. Pine, J.B., 1993, “Mass Customizing Products and Services,” Planning Review,

Vol. 21, No 4, pp. 6-13.

83

http://www.ugs.com/

12. Roach, Gregory, “The Product Design Generator—A Next Generation Approach

To Detailed Design”, Brigham Young University, Dissertation, August 2003.

13. Hogge, D, “Integrating Commercial CAx Software to Perform Multidisciplinary
Design Optimization”, Master’s Thesis BYU, 2002.

14. Tappeta, R.V., Nagendra, S., Renaud, J.R. “Multidisciplinary design optimization

approach for high temperature aircraft engine components”, Structural
Optimization, v 18, n 2-3, pages 134-145Oct, 1999.

15. Carlson, P. "A distributed computing system used for concurrent optimization

methods on a violin top", Structural and Multidisciplinary Optimization, v 25 n 5-
6, pages 453-458, December 2003.

16. Sobieszczanski-Sobieski, J. "Multidisciplinary design optimization (MDO)

methods: Their synergy with computer technology in the design process",
Aeronautical Journal, v 103 n 1026, pages 373-382, August 1999.

17. Numata J. Lei, B. Iwashita, Y. “Information management for knowledge

amplification in virtual enterprise”. IEEE International Engineering Management
Conference, Managing Virtual Enterprises: A Convergence of Communications,
Computing, and Energy Technologies. pages 281-285, 1996.

18. Huang G. Lee S. Mak K. “Web-based product and process data modeling in

concurrent ‘design for X’”. Robotics and Computer-Integrated manufacturing; v
15 n 3, pages 53-63, June 1999.

19. Caldwell, N. Rodgers, P. “WebCADET: Facilitating distributed design support”.

London, UK: IEE Colloquium on Web-based Knowledge Servers. n 307, pages
9/1-9/4, 1998

20. Zdrahal Z, Domingue J. “The World Wide Design Lab: an environment for

distributed collaborative design”. In Proceedings of International Conference on
Engineering Design, Tampere, Aug. 19-21, 1997.

21. Klein M. “Capturing geometry rationale for collaborative design”. In Proceedings

of the IEEE Workshops on Enabling Technologies Infrastructure for
Collaborative Enterprises (WET ICE’97). Pages 24-28, 1997.

22. Parunak, H. “What can agents do in industry, and why? AN overview of

industrially-oriented R&D at CEC, Cooperative information agents II: learning,
mobility and electronic commerce for information discovery on the Internet”. In:
Klusch M, Weiss G, editors. Second International Workshop, CIA’98, Paris,
France: Springer. pages 1-18, 1998.

84

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bLei%2C+Bangyu%7d§ion1=AU&database=1&startYear=1969&endYear=2004&yearselect=yearrange
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bIwashita%2C+Yukinori%7d§ion1=AU&database=1&startYear=1969&endYear=2004&yearselect=yearrange

23. Cutkosky, M. Engelmore, R. Fikes, R. Genesereth, M. Bruber, T. Mark, W.
Tenenbaum, J. Weber, J. “PACT: An experiment in integrating concurrent
engineering systems”. IEEE Computer; v 26(1), pages 28-37, 1993.

24. Campbell, M. Cagan, J. Kokvsky, K. “A-Design: an agent-based approach to

concept design in a dynamic environment”. Research in Engineering Design v 11,
pages172-192, 1999.

25. Varma, A. Dong, A. Childambaram, B. Agogino, A. Wood, W. “Web-based tool

for engineering design”, Working Paper, 1999.

26. Toye, G. Cutkosky, M. Leifer, L. Tenenbaun, J. Glicksman, J. “SHARE: A
methodology and environment for collaborative product development”. In
proceeding of Second Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, IEEE Computer Society Press. Pages 33-47, 1993.

27. http://www.engineous.com/product_FIPER.htm, Posted Feb. 2005.

28. Wang, Y. D. Shen, W. Ghenniwa, H. "WebBlow: A Web/agent-based

multidisciplinary design optimization", Computers in Industry, v 52 n 1, pages
17-28, September 2003.

29. Klaas, O. "Embedding reliable numerical analysis capabilities into an enterprise-

wide information system", Engineering with Computers, v 17 n 2, pages 151-161,
2001.

30. Lund, J. “Parametric Product Lifecycle Management” Master’s Thesis BYU,

2005.

31. Goldfarb, D. Idnani, A. “A Numerically Stable Dual Method for Solving Strictly
Convex Quadratic Programs” Math Programming, v 27, pages 1-33, 1983.

32. Kim, Y. Kang, S. Lee, S. and Yoo, S. “A distributed, open, intelligent product

data management system”. International Journal of Computer Integrated
Manufacturing, v 14 n 2, pages 224–235, March/April 2001.

33. Koonce, D. "A hierarchical cost estimation tool", Computers in Industry, v 50 n 3,

pages 293-302, April 2003.

34. Alexandrov, N. M. Lewis, R. "Analytical and computational aspects of
collaborative optimization for multidisciplinary design", AIAA Journal, v 40 n 2,
pages 301-309, February 2002.

35. Robinson, C. "Good goals lead to better data", Machine Design, v 66 n 10, pages

51-60, May 1994.

85

http://www.engineous.com/product_FIPER.htm Feb 2005

36. Meade, L. Presley, A. Rodgers, K. "Tools for engineering the agile enterprise",
IEEE International Engineering Management Conference, Managing Virtual
Enterprises: A Convergence of Communications, Computing, pages 381-385,
1996.

37. Aziz, H. Gao, J. Maropoulos, P. Cheung, W. "Application of product data

management technologies for enterprise integration", International Journal of
Computer Integrated Manufacturing, v 16 n 7-8, pages 491-500,
October/December 2003.

38. Rogers PA, Huxor AP, Caldwell. “Design support using distributed Web-based

AI tools”. Research in Engineering Design, v 11, pages 31-44, 1999.

86

APPENDIX

87

APPENDIX A: INTERNAL INTEGRATION

Figure 14 The PLM workflow process designer. Design for the internal method includes an ANSYS
task and an optimization task.

89

Figure 15 ANSYS task action handler. The handler accepts three arguments: The macro file. The
output form. The input form.

Figure 16 The optimization task action handler. This handler accepts no arguments, because it
recieves all needed information from a parameters, preference, and status for attached to the
process.

90

Figure 17 Internal method attached folders, and forms. The Inputs folder contains the I-beam inputs,
the three forms required by the optimization, and the ANASYS macro.

91

Figure 18 Internal method input form.

92

Figure 19 Internal method optimization parameters form initial setup. As the optimization runs
parameters needed by the optimization are retained in this form.

93

Figure 20 Internal method optimization prefences form. This form contains the user’s optimization
preferences and setup.

94

Figure 21 The internal method optimization status form. The optimization uses this form to retain
information about the optimization’s current status.

95

Figure 22 Dialog to initiate a new process from the internal method template created in the process
designer. The attached folder is shown.

96

ANSYS Macro Code:

/com,starting

FINISH
/CLEAR
!/CWD,'C:\Documents and Settings\Nathaniel\My Documents\School\isightSide\ANSYS'
~eui,'source [file join C:/IMAN0900/bin/DFM_ansys.tcl]'
~eui,'DFM::getValue Length'
~eui,'DFM::getValue Height'
~eui,'DFM::getValue Width'
~eui,'DFM::getValue Web_th'
~eui,'DFM::getValue Flange_th'
~eui,'DFM::getValue Load'

! Load IGES file
/AUX15
! ~UGIN,ibeam,prt,'..\CAD\',SOLIDS,1,0 !***Edit this line

! Go into the preprocessor
/prep7
!RECTNG,4,-4,2,1.5,
RECTNG,-Width/2,Width/2,Height/2,Height/2-Flange_th
RECTNG,-Width/2,Width/2,-Height/2,-Height/2+Flange_th
RECTNG,-Web_th/2,Web_th/2,Height/2-Flange_th,-Height/2+Flange_th
AADD,ALL
VOFFST,4,Length, ,

! Define element types
ET,1,MESH200
KEYOPT,1,1,6
KEYOPT,1,2,0
ET,2,SOLID45

! Define material properties
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,30e6
MPDATA,PRXY,1,,.3
MPDATA,dens,1,,.0007

! Create a volume if necessary
allsel,all
*get,volumeCount,volu,,count
*if,volumeCount,eq,0,then
 nummrg,kp,7e-4,7e-4,,low
 va,all
*endif

! Get the front area number (loadArea)
areaNum=0
minCentZ=1000
allsel,all
*get,areaCount,area,,count
*do,i,1,areaCount,1
 asel,all
 areaNum=arnext(areaNum)
 asel,s,,,areaNum
 asum
 *get,centZ,area,,cent,z
 *if,centZ,lt,minCentZ,then
 minCentZ=centZ
 loadArea=areaNum
 *endif
*enddo

! Get the back area number (fixArea)

97

areaNum=0
minCentZ=0
allsel,all
*do,i,1,areaCount,1
 asel,all
 areaNum=arnext(areaNum)
 asel,s,,,areaNum
 asum
 *get,centZ,area,,cent,z
 *if,centZ,gt,minCentZ,then
 minCentZ=centZ
 fixArea=areaNum
 *endif
*enddo

! Mesh the top area
myesize=Web_th/2
*if,Web_th,gt,Flange_th,then
 myesize=Flange_th/2
*endif

asel,s,,,loadArea
lsla,s
*get,lineCount,line,,count
lineNum=0
*do,i,1,lineCount,1
 lsla,s,
 lineNum=lsnext(lineNum)
 lsel,s,,,lineNum
 lesize,lineNum,myesize
*enddo

asel,s,,,loadArea
TYPE,1
MAT,1
REAL,
ESYS,0
SECNUM,
MSHAPE,0,2D
MSHKEY,0
amesh,all

! Set number of divisions on the lines
lsel,all
asel,s,,,loadArea
asel,a,,,fixArea
lsla,u
lesize,all,,,8,,,,,0 ! This puts n divisions on all lines selected

! Sweep mesh the volume
allsel,all
TYPE,2
MAT,1
REAL,
ESYS,0
SECNUM,
!*
MSHAPE,0,3D
!*
VSWEEP,all

! Constrain root face of airfoil
DA,fixArea,ALL,

! Find number of nodes in the web area

98

asel,s,,,loadArea
nsla,s,1
cm,loadNodes,node
*get,nodeCount,node,,count
nodeNum=0
minX=Web_th/2
numNodesToLoad=0
*do,i,1,nodeCount,1
 cmsel,s,loadNodes
 nodeNum=ndnext(nodeNum)
 nsel,s,,,nodeNum
 *get,xloc,NODE,nodeNum,loc,x
 *if,xloc,le,minX,then
 *if,xloc,ge,-minX,then
 numNodesToLoad=numNodesToLoad+1
 *endif
 *endif
*enddo

nodeForce=Load/numNodesToLoad

! Apply forces to nodes in the web area
asel,s,,,loadArea
nsla,s,1
cm,loadNodes,node
*get,nodeCount,node,,count
nodeNum=0
minX=Web_th/2
numNodesToLoad=0
*do,i,1,nodeCount,1
 cmsel,s,loadNodes
 nodeNum=ndnext(nodeNum)
 nsel,s,,,nodeNum
 *get,xloc,NODE,nodeNum,loc,x
 *if,xloc,le,minX,then
 *if,xloc,ge,-minX,then
 F,nodeNum,FY,nodeForce
 *endif
 *endif
*enddo

! Solve it
/solu
allsel,all
solve

! Output solution analysis objectives to PLM

! Measure volume of ibeam (representative of mass)
/prep7
vsel,all
vsum
*get,vol,volu,,volu
~eui,'DFM::setValue volume vol'

! Get max principal stress
/post1
nsort,s,1,0
*GET,logtmax,SORT, ,MAX
~eui,'DFM::setValue stress logtmax'

! Get max displacement
nsort,u,sum,0
*GET,dymax,SORT, ,MAX
~eui,'DFM::setValue displacement dymax'

99

~eui,'DFM::closeConnetion'

!create plot
/SHOW,JPEG
/VIEW,1,1,2,3
/ANG,1
/AUTO,1
/RGB,INDEX,100,100,100,0
/RGB,INDEX,0,0,0,15
/VCONE,ALL,45.0
/DEV,PSFN,NINC
/gfile,400
PLNSOL,S,EQV
/SHOW,CLOSE
~eui,'set jobname [ans_getvalue ACTIVE,,JOBNAM]; set imagename [string trim $jobname];
file copy -force $imagename.jpg results.jpg; file delete -force $imagename.jpg;'

100

Tcl Code:

namespace eval DFM {
 variable myPID [pid]
 variable channel
 variable serverHost "127.0.0.1"
 variable serverPort "27016"
 variable arg
 variable field
 variable valueToSet
 variable luke
 variable msg

}

proc debug {arg} {
 puts $arg
}

proc DFM::getArg { arg } {
 set DFM::arg $arg
 set DFM::msg "$DFM::myPID:getarg:$DFM::arg"
 DFM::msgSend
 vwait DFM::luke
}

proc DFM::getValue { arg } {
 set DFM::arg $arg
 set DFM::msg "$DFM::myPID:getvalue:$DFM::arg"
 DFM::msgSend
 vwait DFM::luke
}

proc DFM::setValue { field valueToSet } {
 set DFM::field $field
 set DFM::valueToSet $valueToSet
 set value [ans_getvalue PARM,$valueToSet,VALUE]
 set DFM::msg "$DFM::myPID:setvalue:$DFM::field:$value"
 DFM::msgSend
}

proc DFM::msgSend { } {
 puts "TCL client sent <<<$DFM::msg>>>"
 puts $DFM::channel "$DFM::msg"; flush $DFM::channel
}

proc DFM::msgHandler { } {
 set data [gets $DFM::channel]; flush $DFM::channel
 puts stdout "TCL client recieved <<<$data>>> for message <<<$DFM::msg>>>"; flush stdout
 if { [string first "setvalue" $DFM::msg] != -1 } {
 set data [gets $DFM::channel]; flush $DFM::channel
 } elseif { [string first "getarg" $DFM::msg] != -1 } {
 ans_sendcommand *set,$DFM::arg,$data
 } elseif { [string first "getvalue" $DFM::msg] != -1 } {
 ans_sendcommand *set,$DFM::arg,$data
 }
 set DFM::luke ready
 unset DFM::luke
}

proc DFM::closeConnetion { } {
 puts "Closing TCL client"
 catch {close $DFM::channel}
}

#open get socket
if {[catch {socket $DFM::serverHost $DFM::serverPort} DFM::channel]} {
 puts stdout "Failed to connect to server at $DFM::serverHost $DFM::serverPort"; flush
stdout
 exit

101

} else {
 fconfigure $DFM::channel -blocking 0
 fileevent $DFM::channel readable "DFM::msgHandler"
}
set data [gets $DFM::channel]; flush $DFM::channel

102

Optimization Code:

#include "sqp.h"

//the forms
Form* Stats;
tag_t stats;
Form* Prefs;
tag_t prefs;
Form* Param;
tag_t params;
tag_t root_task;
tag_t dup_task;

//found in preference form
int numConstraints;
int numDesign;
int numObjectives;
double tol;
int N;
int diffType;
double gradDx;
double *b;
double *o;
double *scale;
double *xUpper;
double *xLower;

//found in status form
int storeAsOpt;
int finished;
int count;
double deltaPenalty;
int iteration;
int numDesignProbed;

//found in parameters form
double penalty;
double **gPrev;
double **gNext;
double **gGrad;
double **fPrev;
double **fNext;
double **fGrad;
double **hessianPrev;
double **dx;
double *lamda;
double *gOpt;
double *fOpt;
double *lGradPrev;
double *xOpt;

//found in other attached forms
double *f;
double *g;
double *xRun;

//not read in
int total;
int num2probe;
double **hessian;
double **coeficiants;
double **gama;
double **gamaT;
double **dxT;
double *lGrad;
double *xNext;
double *other;
double *solution;

103

//---
// allocates memory for a 2D array
//---

void setup2DArray(double **&array, int x, int y)
{
 array = new double*[x];
 for(int i=0;i<x;i++) {
 array[i] = new double[y];
 for(int j=0;j<y;j++)
 array[i][j]=0;
 }
}

//--
// deallocates memory for a 2D array
//--

void destroy2DArray(double **&array, int x)
{
 for(int i=0;i<x;i++)
 delete [] array[i];
 delete [] array;
}

//--
// constructor for optimization
//---

int opt()
{
 int i;
 //allocate memory
 setup2DArray(gNext, numDesign, numConstraints);
 setup2DArray(gPrev, numDesign, numConstraints);
 setup2DArray(gGrad, numDesign, numConstraints);
 setup2DArray(fPrev, numDesign, numObjectives);
 setup2DArray(fNext, numDesign, numObjectives);
 setup2DArray(fGrad, numDesign, numObjectives);
 setup2DArray(hessianPrev, numDesign, numDesign);
 setup2DArray(dx, numDesign, 1);
 g = new double[numConstraints];
 b = new double[numConstraints];
 lamda = new double[numConstraints];
 gOpt = new double[numConstraints];
 for(i=0;i<numConstraints;i++) {
 g[i] = 0;
 b[i] = 0;
 lamda[i] = 0;
 gOpt[i] = 0;
 }
 f = new double[numObjectives];
 o = new double[numObjectives];
 scale = new double[numObjectives];
 fOpt = new double[numObjectives];
 for(i=0;i<numObjectives;i++) {
 f[i] = 0;
 o[i] = 0;
 scale[i] = 0;
 fOpt[i] = 0;
 }
 xNext = new double[numDesign];
 xRun = new double[numDesign];
 xUpper = new double[numDesign];
 xLower = new double[numDesign];
 lGradPrev = new double[numDesign];
 xOpt = new double[numDesign];
 for(i=0;i<numDesign;i++) {
 xNext[i] = 0;
 xRun[i] = 0;

104

 xUpper[i] = 0;
 xLower[i] = 0;
 lGradPrev[i] = 0;
 xOpt[i] = 0;
 }

 return 0;
}

//------------------------------
// constructor for sqp
//------------------------------

int sqp()
{
 //variables NOT read in but ONLY calculated and used in calculations in part of
function
 setup2DArray(hessian, numDesign, numDesign);
 setup2DArray(gama, numDesign, 1);
 setup2DArray(gamaT, 1, numDesign);
 setup2DArray(dxT, 1, numDesign);
 setup2DArray(coeficiants, total, total);
 lGrad = new double[numDesign];
 for(int i=0;i<numDesign;i++) {
 lGrad[i] = 0;
 }
 solution = new double[total];
 other = new double[total];
 for(i=0;i<total;i++) {
 solution[i] = 0;
 other[i] = 0;
 }

 return 0;
}

//------------------------------
// destructor for sqp
//------------------------------

int Tsqp()
{
 destroy2DArray(hessian, numDesign);
 destroy2DArray(gama, numDesign);
 destroy2DArray(coeficiants, total);
 destroy2DArray(gamaT, 1);
 destroy2DArray(dxT, 1);
 delete [] lGrad;
 delete [] solution;
 delete [] other;

 return 0;
}

//------------------------------
// destructor for optimization
//------------------------------

int Topt()
{
 destroy2DArray(dx, numDesign);
 destroy2DArray(hessianPrev, numDesign);
 destroy2DArray(gNext, numDesign);
 destroy2DArray(gPrev, numDesign);
 destroy2DArray(fNext, numDesign);
 destroy2DArray(fPrev, numDesign);
 destroy2DArray(gGrad, numDesign);
 destroy2DArray(fGrad, numDesign);
 delete [] g;
 delete [] xNext;
 delete [] xRun;

105

 delete [] xOpt;
 delete [] xUpper;
 delete [] xLower;
 delete [] b;
 delete [] lamda;
 delete [] gOpt;
 delete [] lGradPrev;
 delete [] f;
 delete [] o;
 delete [] scale;
 delete [] fOpt;

 return 0;
}

//----------------------------------
// convinience functions for reading
//----------------------------------

double* getRefStringDoubles(POM_Field* refs, POM_Field* strings) {
 double* tmp = new double[refs->length];
 for(int i=0;i<refs->length;i++) {
 tag_t tmp_tag_holder = refs->get_ref_at(i);
 POM_Class *tmp_class = new POM_Class(tmp_tag_holder, POM_no_lock);
 char* tmp_field = strings->get_value_at(i);
 tmp[i] = tmp_class->getField(tmp_field)->getDouble();
 delete tmp_field;
 delete tmp_class;
 }
 return tmp;
}

double* getFormName_FieldNameDoubles(EPM_action_message_t* message, POM_Field* names,
POM_Field* fields) {
 double* tmp = new double[names->length];
 for(int i=0;i<names->length;i++) {
 char* tmp_name = names->get_value_at(i);
 tag_t tmp_tag_holder = get_attachment_byname(message, tmp_name);
 delete [] tmp_name;
 Form *tmp_class = new Form(tmp_tag_holder, POM_no_lock);
 char* tmp_field = fields->get_value_at(i);
 tmp[i] = tmp_class->data->getField(tmp_field)->getDouble();
 delete [] tmp_field;
 delete tmp_class;
 }
 return tmp;
}

int setFormName_FieldNameDoubles(tag_t folder, POM_Field* names, POM_Field* fields,
double* values) {
 for(int i=0;i<names->length;i++) {
 char* tmp_name = names->get_value_at(i);
 tag_t tmp_tag_holder = get_attachment_byname(folder, tmp_name);
 delete [] tmp_name;
 Form *tmp_class = new Form(tmp_tag_holder, POM_modify_lock);
 char* tmp_field = fields->get_value_at(i);
 tmp_class->data->getField(tmp_field)->setValue(values[i]);
 delete [] tmp_field;
 delete tmp_class;
 }

 return 0;
}

double* getFormName_NameValueDoubles(EPM_action_message_t* message, POM_Field* forms,
POM_Field* valueNames) {
 double* tmp = new double[forms->length];
 for(int i=0;i<forms->length;i++) {

 //get the name of the name-value form for the i-th value

106

 char* tmp_formName = forms->get_value_at(i);

 //use the name to get the name-value form
 tag_t tmp_tag_holder = get_attachment_byname(message, tmp_formName);
 if(tmp_tag_holder == NULL_TAG){
 printf("Cannot find %s amonge attachments\n",tmp_formName);
 return NULL;
 }
 delete [] tmp_formName;
 Form *tmp_class = new Form(tmp_tag_holder, POM_no_lock);

 //get the value name for the i-th value
 char* tmp_valueName = valueNames->get_value_at(i);

 //search for value name in the names field of the name-value form
 POM_Field *NameValue_Names = tmp_class->data->getField("names");
 POM_Field *NameValue_Values = tmp_class->data->getField("values");
 for(int j=0;j<NameValue_Names->length;j++){
 char* jth_name = NameValue_Names->get_value_at(j);
 if(strcmp(tmp_valueName,jth_name) == 0){

 //get the corresponding value in the values field of the
name-value form
 char* value_to_store = NameValue_Values->get_value_at(j);

 //convert to double and store the value in the i-th
position in the returning array
 tmp[i] = atof(value_to_store);
 delete [] value_to_store;
 delete [] jth_name;
 break;
 }
 delete [] jth_name;
 }

 delete [] tmp_valueName;
 delete tmp_class;
 }
 return tmp;
}

int setFormName_NameValueDoubles(tag_t folder, POM_Field* forms, POM_Field* valueNames,
double* values) {
 for(int i=0;i<forms->length;i++) {

 //get the name of the name-value form for the i-th value
 char* tmp_formName = forms->get_value_at(i);

 //use the name to get the name-value form
 tag_t tmp_tag_holder = get_attachment_byname(folder, tmp_formName);
 if(tmp_tag_holder == NULL_TAG){
 printf("Cannot find %s amonge attachments\n",tmp_formName);
 return 1;
 }
 Form *tmp_class = new Form(tmp_tag_holder, POM_modify_lock);
 //TRACK: class_instance here was the
error!! POM_no_lock changed to POM_modify_lock

 //get the value name for the i-th value
 char* tmp_valueName = valueNames->get_value_at(i);
 //printf("setting form <%s> name <%s> to value
<%lf>\n",tmp_formName,tmp_valueName,values[i]);
 delete [] tmp_formName;

 //search for value name in the names field of the name-value form
 POM_Field *NameValue_Names = tmp_class->data->getField("names");
 POM_Field *NameValue_Values = tmp_class->data->getField("values");
 //TRACK: class_instance
 for(int j=0;j<NameValue_Names->length;j++){
 char* jth_name = NameValue_Names->get_value_at(j);

107

 if(strcmp(tmp_valueName,jth_name) == 0){
 //TRACK: position

 //set the corresponding value in the values field of the
name-value form
 char buf[100];
 sprintf(buf,"%lf",values[i]);
 //TRACK: val
 //printf("set Form Name Value from found match\nsetting %s
at %d\n",buf,j);
 NameValue_Values->set_value_at(buf,j);
 //TRACK: val TRACK: position TRACK: class_instance
 //printf("set Form Name Value from spq cleaning memory from
temperary string\n");
 delete [] jth_name;
 //printf("set Form Name Value from spq breaking from
search\n");
 break;
 }
 //printf("set Form Name Value from spq searching for
%s\n",tmp_valueName);
 delete [] jth_name;
 }

 //printf("set Form Name Value from spq cleaning memory from the value name
string\n");
 delete [] tmp_valueName;
 //printf("set Form Name Value from spq cleaning memory from the form\n");

 delete tmp_class;
 }

 return 0;
}

//--------------------------------------
// read info for sqp
//--

int read(EPM_action_message_t* message)
{
 int i,j;

 //**********read in preferences*************

 //get form
 prefs = get_attachment_byname(message,"sqp-preferences");
 Prefs = new Form(prefs, POM_no_lock);

 //get values
 numDesign = Prefs->data->getField("numDesign")->getInt();
 numConstraints = Prefs->data->getField("numConstraints")->getInt();
 numObjectives = Prefs->data->getField("numObjectives")->getInt();
 N = Prefs->data->getField("N")->getInt();
 diffType = Prefs->data->getField("diffType")->getInt();
 tol = Prefs->data->getField("tol")->getDouble();
 gradDx = Prefs->data->getField("gradDx")->getDouble();

 //allocate memory
 opt();

 xUpper = Prefs->data->getField("xUpper")->getDoubles();
 xLower = Prefs->data->getField("xLower")->getDoubles();
 b = Prefs->data->getField("b")->getDoubles();
 o = Prefs->data->getField("o")->getDoubles();
 scale = Prefs->data->getField("scale")->getDoubles();
 xRun = getFormName_NameValueDoubles(message,Prefs->data-
>getField("designForms"),Prefs->data->getField("designFields"));

108

 f = getFormName_NameValueDoubles(message,Prefs->data-
>getField("objectiveForms"),Prefs->data->getField("objectiveFields"));
 g = getFormName_NameValueDoubles(message,Prefs->data-
>getField("constraintForms"),Prefs->data->getField("constraintFields"));
 delete Prefs;

 //***********read parameters*************
 //get form
 params = get_attachment_byname(message,"sqp-parameters");
 Param = new Form(params, POM_no_lock);

 //get values
 if(count > 0) {
 hessianPrev = Param->data->getField("hessianPrev")->getDoubles2D();
 fNext = Param->data->getField("fNext")->getDoubles2D();
 fPrev = Param->data->getField("fPrev")->getDoubles2D();
 fGrad = Param->data->getField("fGrad")->getDoubles2D();
 gNext = Param->data->getField("gNext")->getDoubles2D();
 gPrev = Param->data->getField("gPrev")->getDoubles2D();
 gGrad = Param->data->getField("gGrad")->getDoubles2D();
 gOpt = Param->data->getField("gOpt")->getDoubles();
 xOpt = Param->data->getField("xOpt")->getDoubles();
 fOpt = Param->data->getField("fOpt")->getDoubles();
 penalty = Param->data->getField("penalty")->getDouble();
 }
 lamda = Param->data->getField("lamda")->getDoubles();
 lGradPrev= Param->data->getField("lGradPrev")->getDoubles();
 double* dx1D = new double[numDesign];
 dx1D = Param->data->getField("dx")->getDoubles();
 for(i=0;i<numDesign;i++)
 dx[i][0] = dx1D[i];
 delete [] dx1D;
 delete Param;

 //***********read in status**************

 //get form
 stats = get_attachment_byname(message,"sqp-status");
 Stats = new Form(stats, POM_no_lock);

 //get values
 storeAsOpt = Stats->data->getField("storeAsOpt")->getInt();
 finished = Stats->data->getField("finished")->getInt();
 count = Stats->data->getField("count")->getInt();
 iteration = Stats->data->getField("iteration")->getInt();
 numDesignProbed = Stats->data->getField("numDesignProbed")->getInt();
 deltaPenalty = Stats->data->getField("deltaPenalty")->getDouble();
 delete Stats;

 //calc other status vars
 total = numDesign+numConstraints;
 num2probe = numDesign;
 if(diffType == 0)
 num2probe += numDesign;

 //store relavant run data
 if(storeAsOpt == 1)
 {
 for(i=0;i<numDesign;i++)
 xOpt[i] = xRun[i];
 fOpt[0] = f[0];
 for(i=0;i<numConstraints;i++)
 gOpt[i] = g[i];
 } else {
 i = (numDesignProbed-1)%numDesign;
 switch(diffType)
 {
 case -1:

109

 fPrev[i][0] = f[0];
 for(j=0;j<numConstraints;j++)
 gPrev[i][j] = g[j];
 break;
 case 0:
 if((numDesignProbed-1)<numDesign)
 {
 fNext[i][0] = f[0];
 printf("fNext = %lf\n",fNext[i][0]);
 for(j=0;j<numConstraints;j++)
 gNext[i][j] = g[j];
 } else {
 fPrev[i][0] = f[0];
 for(j=0;j<numConstraints;j++)
 gPrev[i][j] = g[j];
 }
 break;
 case 1:
 fNext[i][0] = f[0];
 printf("fNext = %lf\n",fNext[i][0]);
 for(j=0;j<numConstraints;j++)
 gNext[i][j] = g[j];
 break;
 default:
 fPrev[i][0] = f[0];
 for(j=0;j<numConstraints;j++)
 gPrev[i][j] = g[j];
 break;
 }
 }

 return 0;
}

//-----------------------------
// writes info for sqp
//-----------------------------

int write(tag_t folder){
 tag_t cpParams, cpStats, cpPrefs;
 //write stats
 cpStats = get_attachment_byname(folder,"sqp-status");
 Stats = new Form(cpStats, POM_modify_lock);
 Stats->data->getField("iteration")->setValue(iteration);
 Stats->data->getField("count")->setValue(count);
 Stats->data->getField("finished")->setValue(finished);
 Stats->data->getField("storeAsOpt")->setValue(storeAsOpt);
 Stats->data->getField("deltaPenalty")->setValue(deltaPenalty);
 Stats->data->getField("numDesignProbed")->setValue(numDesignProbed);
 delete Stats;

 //write params
 cpParams = get_attachment_byname(folder,"sqp-parameters");
 Param = new Form(cpParams, POM_modify_lock);
 double *dx1D = new double[numDesign];
 for(int i=0;i<numDesign;i++)
 dx1D[i] = dx[i][0];
 Param->data->getField("dx")->set_array(dx1D, numDesign);
 delete [] dx1D;
 Param->data->getField("fOpt")->set_array(fOpt, numObjectives);
 Param->data->getField("penalty")->setValue(penalty);
 Param->data->getField("xOpt")->set_array (xOpt, numDesign);
 Param->data->getField("lGradPrev")->set_array (lGradPrev, numDesign);
 Param->data->getField("lamda")->set_array (lamda, numConstraints);
 Param->data->getField("gOpt")->set_array (gOpt, numConstraints);
 Param->data->getField("gGrad")->set_array (gGrad, numDesign, numConstraints);
 Param->data->getField("gPrev")->set_array (gPrev, numDesign, numConstraints);
 Param->data->getField("gNext")->set_array (gNext, numDesign, numConstraints);
 Param->data->getField("fGrad")->set_array (fGrad, numDesign, numObjectives);
 Param->data->getField("fPrev")->set_array (fPrev, numDesign, numObjectives);
 Param->data->getField("fNext")->set_array (fNext, numDesign, numObjectives);

110

 Param->data->getField("hessianPrev")->set_array (hessianPrev, numDesign,
numDesign);
 delete Param;

 //write prefs
 cpPrefs = get_attachment_byname(folder,"sqp-preferences");
 Prefs = new Form(cpPrefs, POM_modify_lock);
printf("storing new design variables into spq-prefences\n");
 setFormName_NameValueDoubles(folder,Prefs->data->getField("designForms"),Prefs-
>data->getField("designFields"),xNext); //DEBUG: function of no
return
 delete Prefs;

 return 0;
}

//------------------------------
// calculate the gradiants
//------------------------------

int calcGradiants()
{
 int i,j;

 switch(diffType)
 {
 case -1:
 //calc backward
 for(i=0;i<numDesign;i++)
 {
 fGrad[i][0] = backward(fPrev[i][0],fOpt[0],gradDx);
 for(j=0;j<numConstraints;j++)
 gGrad[i][j] = backward(gPrev[i][j],gOpt[j],gradDx);
 }
 break;
 case 0:
 //calc center
 for(i=0;i<numDesign;i++)
 {
 fGrad[i][0] = center(fPrev[i][0],fNext[i][0],gradDx);
 for(j=0;j<numConstraints;j++)
 gGrad[i][j] = center(gPrev[i][j],gNext[i][j],gradDx);
 }
 break;
 case 1:
 //calc forward
 for(i=0;i<numDesign;i++)
 {
 fGrad[i][0] = forward(fOpt[0],fNext[i][0],gradDx);
 for(j=0;j<numConstraints;j++)
 gGrad[i][j] = forward(gOpt[j],gNext[i][j],gradDx);
 }
 break;
 default:
 //calc backward
 for(i=0;i<numDesign;i++)
 {
 fGrad[i][0] = backward(fPrev[i][0],fOpt[0],gradDx);
 for(j=0;j<numConstraints;j++)
 gGrad[i][j] = backward(gPrev[i][j],gOpt[j],gradDx);
 }
 break;
 }

/* printf("\ngadients f");
 for(i=0;i<numDesign;i++){
 printf("\n\t%7lf",fGrad[i][0]);
 }

111

 printf("\ngradiant g");
 for(i=0;i<numDesign;i++){
 printf("\n");
 for(j=0;j<numConstraints;j++){
 printf("\t%7lf",gGrad[i][j]);
 }
 }*/

 return 0;
}

//---
// calculate the ghessian of the langranian
//---

int calcHessian()
{
 int i,j;

 if(iteration > 0)
 {
 for(i=0;i<numDesign;i++)
 {
 lGrad[i] = fGrad[i][0];
 for(j=0;j<numConstraints;j++)
 {
 lGrad[i] -= lamda[j]*gGrad[i][j];
 }
 }
/*printf("\nlGrad");
for(i=0;i<numDesign;i++)
 printf("\n\t%7lf",lGrad[i]);*/

 for(i=0;i<numDesign;i++)
 {
 gama[i][0] = lGrad[i] - lGradPrev[i];
 gamaT[0][i] = gama[i][0];
 dxT[0][i] = dx[i][0];
 }

 //BFGS approximation of Hessian of the Lagrangian
 double **temp1, **temp2, **temp3, **temp4;
 setup2DArray(temp1, numDesign, numDesign);
 setup2DArray(temp2, numDesign, numDesign);
 setup2DArray(temp3, numDesign, numDesign);
 setup2DArray(temp4, numDesign, numDesign);

 //third part
 multiply(hessianPrev,dx,temp1,numDesign,numDesign,1);
 multiply(temp1,dxT,temp2,numDesign,1,numDesign);
 multiply(temp2,hessianPrev,temp3,numDesign,numDesign,numDesign);
 multiply(dxT,hessianPrev,temp1,1,numDesign,numDesign);
 multiply(temp1,dx,temp2,1,numDesign,1);
 for(i=0;i<numDesign;i++)
 for(j=0;j<numDesign;j++)
 temp1[i][j] = -temp3[i][j]/temp2[0][0];

 //second part
 multiply(gama,gamaT,temp2,numDesign,1,numDesign);
 multiply(gamaT,dx,temp3,1,numDesign,1);

 for(i=0;i<numDesign;i++)
 for(j=0;j<numDesign;j++)
 temp4[i][j] = temp2[i][j]/temp3[0][0];

 //add them with the previous hessian
 add(temp1,temp4,temp2,numDesign,numDesign);
 add(hessianPrev,temp2,hessian,numDesign,numDesign);

 destroy2DArray(temp1, numDesign);

112

 destroy2DArray(temp2, numDesign);
 destroy2DArray(temp3, numDesign);
 destroy2DArray(temp4, numDesign);

 } else {
 for(i=0;i<numDesign;i++) {
 for(j=0;j<numDesign;j++) {
 if(i == j)
 hessian[i][j] = 1;
 else
 hessian[i][j] = 0;
 }
 }
 }
/* printf("\nhessian matrix");
 for(i=0;i<numDesign;i++){
 printf("\n\t");
 for(j=0;j<numDesign;j++){
 printf("%7lf ",hessian[i][j]);
 }
 }*/
 printf("\n");
 return 0;
}

int solve()
{
 int i;
 //int j;

 //fill coeficiants and other arrays
 for(i=0;i<total;i++)
 {
 if(i<numDesign)
 other[i] = -fGrad[i][0]; //TODO fix this for multiple
objectives
 else
 other[i] = -g[i-numDesign];
 for(int j=0;j<total;j++)
 if(i<numDesign)
 if(j<numDesign)
 coeficiants[i][j] = (hessian[i][j]+hessian[j][i])*.5;
 else
 coeficiants[i][j] = -gGrad[i][j-numDesign];
 else
 if(j<numDesign)
 coeficiants[i][j] = gGrad[j][i-numDesign];
 else
 coeficiants[i][j] = 0;
 }

 //solve for dx's and lamda's
 if(gauss(coeficiants,other,total,solution,.01)==1)
 {
 printf("\n\nERROR in gauss\n\n");
 for(i=0;i<total;i++)
 if(i<numDesign)
 solution[i] = .5*dx[i][0];
 else
 solution[i] = lamda[i-numDesign];
 }

 return 0;
}

//---

113

// calculate the penalty and change in penalty
//---

double calcPenalty()
{
 double temp=0;
 for(int i=0;i<numObjectives;i++)
 temp += scale[i]*f[i];
 for(i=0;i<numConstraints;i++)
 if(g[i] > b[i])
 temp += lamda[i]*g[i];
 double delta = penalty - temp;
 if(delta < 0)
 penalty = temp;

 return delta;
}

//---
// changes values for calculating next gradiant point
//---

int storeGradPt()
{
 int i;
 for(i=0;i<numDesign;i++)
 {
 xNext[i] = xOpt[i];
 if(i == numDesignProbed%numDesign)
 {
 switch(diffType)
 {
 case -1:
 xNext[i] -= gradDx;
 break;
 case 0:
 if(numDesignProbed<numDesign)
 xNext[i] += gradDx;
 else
 xNext[i] -= gradDx;
 break;
 case 1:
 xNext[i] += gradDx;
 break;
 default:
 xNext[i] -= gradDx;
 break;
 }
 }
 }
 numDesignProbed++;

 return 0;
}

//---
// changes values for calculating next optimum point
//---

int storeOptPt()
{
 int i,j;
 deltaPenalty = 1;
 numDesignProbed = 0;
 iteration++;
 storeAsOpt = 1;

 for(i=0;i<numConstraints;i++)
 lamda[i] = solution[numDesign + i];
/*printf("\nlamda");
for(i=0;i<numConstraints;i++)

114

 printf("\n\t%7lf",lamda[i]);*/

 double max = 0;
 for(i=0;i<numDesign;i++)
 {
 lGradPrev[i] = fGrad[i][0];
 for(j=0;j<numConstraints;j++)
 {
 lGradPrev[i] -= lamda[j]*gGrad[i][j];
 }
 dx[i][0] = solution[i];
 xNext[i] = xOpt[i] + dx[i][0];
 if(xNext[i] > xUpper[i])
 xNext[i] = xUpper[i];
 if(xNext[i] < xLower[i])
 xNext[i] = xLower[i];
 if(fabs(dx[i][0]) > max)
 max = fabs(dx[i][0]);
 }
/*printf("\nlGradPrev");
for(i=0;i<numDesign;i++)
 printf("\n\t%7lf",lGradPrev[i]);*/

 if(max < tol || count > N)
 finished = 1;

 for(i=0;i<numDesign;i++)
 for(j=0;j<numDesign;j++)
 hessianPrev[i][j] = hessian[i][j];

 return 0;
}

//---
// changes values for calculating next penalty
//---

int storePenaltyPt()
{
 double max = 0;
 for(int i=0;i<numDesign;i++)
 {
 dx[i][0] = dx[i][0]*0.5;
 xNext[i] = xOpt[i] - dx[i][0];
 if(xNext[i] > xUpper[i])
 xNext[i] = xUpper[i];
 if(xNext[i] < xLower[i])
 xNext[i] = xLower[i];
 if(fabs(dx[i][0]) > max)
 max = fabs(dx[i][0]);
 }

 if(max < tol)
 finished = 1;

 return 0;
}

//------------------------------
// finite differencing algorithms
//------------------------------

double forward(double f, double fNext, double dx)
{
 return (fNext - f) / dx;
}

115

double backward(double fPrev, double f, double dx)
{
 return (f - fPrev) / dx;
}

double center(double fPrev, double fNext, double dx)
{
 return (fNext - fPrev) * .5 / dx;
}

//---
// linear solving by gauss elimination
//---

int gauss(double **a,double *b, int n, double *x, double tol)
{
 int i=0, j=0;
 double *s = new double[n];
 int er=0;
 for(i=0;i<n;i++)
 {
 s[i] = fabs(a[i][0]);
 for(j=1;j<n;j++)
 if(fabs(a[i][j])>s[i])
 s[i]=fabs(a[i][j]);
 }
 eliminate(a,s,n,b,tol,er);
 if(er == -1)
 {
 return 1;
 }
 substitute(a,n,b,x);
 return 0;
}

int eliminate(double **a, double *s, int n, double *b, double tol, int er)
{
 int i=0,j=0,k=0;
 double factor;
 for(k=0;k<n-1;k++)
 {
 pivot(a,b,s,n,k);
 if(fabs(a[k][k]/s[k])<tol)
 {
 er = -1;
 return 1;
 }
 for(i=k+1;i<n;i++)
 {
 factor = a[i][k]/a[k][k];
 for(j=k+1;j<n;j++)
 {
 a[i][j] = a[i][j] - factor*a[k][j];
 }
 b[i] = b[i] - factor*b[k];
 }
 }
 if(fabs(a[k][k]/s[k]) < tol)
 {
 er = -1;
 return 1;
 }
 return 0;
}

int pivot(double **a, double *b, double *s, int n, int k)
{

116

 int i=0,j=0,p=k;
 double big = fabs(a[k][k]/s[k]);
 double dummy;
 for(i=k+1;i<n;i++)
 {
 dummy=fabs(a[i][k]/s[i]);
 if(dummy > big)
 {
 big = dummy;
 p = i;
 }
 }
 if(p != k)
 {
 for(j=k;j<n;j++)
 {
 dummy = a[p][j];
 a[p][j] = a[k][j];
 a[k][j] = dummy;
 }
 dummy = b[p];
 b[p] = b[k];
 b[k] = dummy;
 dummy = s[p];
 s[p] = s[k];
 s[k] = dummy;
 }
 return 0;
}

int substitute(double **a, int n, double *b, double *x)
{
 int i=0,j=0;
 double sum=0;
 x[n-1] = b[n-1]/a[n-1][n-1];
 for(i=n-2;i>=0;i--)
 {
 sum=0;
 for(j=i+1;j<n;j++)
 {
 sum += a[i][j] * x[j];
 }
 x[i] = (b[i] - sum)/a[i][i];
 }
 return 0;
}

//------------------------------
// matrix operations
//------------------------------

int add(double **a, double **b, double **sum, int ni, int nj)
{
 for(int i=0;i<ni;i++)
 for(int j=0;j<nj;j++)
 sum[i][j] = a[i][j] + b[i][j];
 return 0;
}

int multiply(double **a, double **b, double **product, int ai, int aj, int bj)
{
 for(int i=0;i<ai;i++)
 for(int j=0;j<bj;j++)
 {
 product[i][j] = 0;
 for(int k=0;k<aj;k++)
 product[i][j] += a[i][k]*b[k][j];
 }
 return 0;
}

117

void storeInfo(void){
 /*
 tag_t record_tag = get_item("luke_test", "Form");
 Form* record_form = new Form(record_tag, POM_modify_lock);

 char buf[32];
 sprintf(buf,"%lf",f[0]);
 record_form->data->getField("f")->set_value_at("buf",1);

 sprintf(buf,"%lf",g[0]);
 record_form->data->getField("g")->set_value_at("buf",1000);

 sprintf(buf,"%d",iteration);
 record_form->data->getField("iteration")->set_value_at("buf",1000);

 sprintf(buf,"%d",count);
 record_form->data->getField("run")->set_value_at("buf",1000);

 sprintf(buf,"%lf",xRun[0]);
 record_form->data->getField("x1")->set_value_at("buf",1000);

 sprintf(buf,"%lf",xRun[1]);
 record_form->data->getField("x2")->set_value_at("buf",1000);
 delete record_form;*/
 printf("\n\t\t\t\t%d_%d f=%7lf g=%7lf x1=%7lf
x2=%7lf\n",iteration,count,f[0],g[0],xRun[0],xRun[1]);
}

118

APPENDIX B: EXTERNAL INTEGRATION

Figure 23 The PLM workflow process designer. Design for the external method includes only an
iSIGHT task.

119

Figure 24 The iSIGHT task action handler. The handler accepts four arguments: The iSIGHT
description file. The system call to execute the iSIGHT run. The form where the outputted results are
stored.

Figure 25 External method attached folders and forms. The Inputs folder contains only the iSIGHT
description file. The Outputs folder need not contain anything.

120

Figure 26 Dialog to initiate a new process from the external method template created in the process
designer. The attached folder is shown.

121

iSIGHT Description File:

MDOLVersion: 9.0
CompilerOptions: warn

Task Task1

 TaskHeader Task1
 Version: 1.0
 Evaluation: doestudy surface
 ControlMode: user
 RunCounter: 29
 BoundsPolicy: adjustvalue
 CheckPoint: unknown
 End TaskHeader Task1

 Inputs Task1
 Parameter: Length Type: real InitialValue: 8.0
 Parameter: Height Type: real InitialValue: 3.0
 Parameter: Webth Type: real InitialValue: 0.0501
 Parameter: Width Type: real InitialValue: 2.0
 Parameter: Flangeth Type: real InitialValue: 0.089685
 Parameter: Load Type: real InitialValue: 1500.0
 End Inputs Task1

 Outputs Task1
 Parameter: Volume Type: real
 Parameter: Stress Type: real
 Parameter: Displace Type: real
 End Outputs Task1

 SimCode ibeamANSYS
 InputFiles ibeamANSYS
 FileDescription paramstxt
 FileType: standard
 TemplateFile: "params.template"
 InputFile: "params.txt"
 Parameters
 Length Height Webth Width Flangeth Load
 Instructions
 require Length Height Webth Width Flangeth Load
 find "Length= " ignore
 replace word with $Length
 find "Height= " ignore
 replace word with $Height
 find "Width= " ignore
 replace word with $Width
 find "Web_th= " ignore
 replace word with $Webth
 find "Flange_th= " ignore
 replace word with $Flangeth
 find "Load= " ignore
 replace word with $Load
 End Instructions
 End FileDescription paramstxt
 End InputFiles ibeamANSYS

 OutputFiles ibeamANSYS
 FileDescription ibeamout
 FileType: standard
 OutputFile: "ibeam.out"
 Parameters
 Volume Stress Displace
 Instructions
 find "IBeam Volume: " ignore
 read Volume as "%f"
 provide $Volume
 find "Max longitudinal stress: " ignore
 read Stress as "%f"
 provide $Stress

122

 find "Max displacement: " ignore
 read Displace as "%f"
 provide $Displace
 End Instructions
 End FileDescription ibeamout
 End OutputFiles ibeamANSYS

 SimCodeProcess ibeamANSYS
 ScriptLanguage: DOSBatch
 Script
 C:\Progra~1\AnsysI~1\v81\ANSYS\bin\intel\ansys81.exe -b -p ansysrf -j
JobName -i C:\iSIGHTthesis\ibeam.mac -o C:\iSIGHTthesis\LogFileName.out
 End Script
 ProcessType: transient
 Environment: unrestored
 ElapseTime: 5m
 Prologue
 WriteInputSpecs: paramstxt
 Epilogue
 ReadOutputSpecs: ibeamout
 End SimCodeProcess ibeamANSYS

 End SimCode ibeamANSYS

 TaskProcess Task1
 Control: [
 ibeamANSYS
]
 End TaskProcess Task1

 Optimization Task1
 PotentialVariables:
 Length Height Webth Width Flangeth Load
 Variables:
 Webth Flangeth Height
 VariableScaling
 Parameter: Length ScaleFactor: 1.0
 Parameter: Height ScaleFactor: 1.0
 Parameter: Webth ScaleFactor: 1.0
 Parameter: Width ScaleFactor: 1.0
 Parameter: Flangeth ScaleFactor: 1.0
 Parameter: Load ScaleFactor: 1.0
 InputConstraints
 Parameter: Height LowerBound: 0.75 UpperBound: 3.0
 Parameter: Webth LowerBound: 0.05 UpperBound: 1.0
 Parameter: Flangeth LowerBound: 0.05 UpperBound: 1.0
 PotentialObjectives:
 Volume Stress Displace Length Height Webth Width Flangeth Load
 Objectives
 Parameter: Volume Direction: minimize Weight: 1.0 ScaleFactor: 1.0
 OutputConstraints
 Parameter: Stress UpperBound: 25000.0 Weight: 1.0 ScaleFactor: 1.0
 Parameter: Displace UpperBound: 0.01 Weight: 1.0 ScaleFactor: 1.0

 OptimizePlan midterm
 DefaultUpperBound: 1.0E15
 UseScaling: yes
 OptimizeStep Step1
 Technique: "Generalized Reduced Gradient - LSGRG2"
 Prologue
 RestoreBestSolution: no
 RerunTask: no
 Epilogue
 RestoreBestSolution: yes
 RerunTask: no
 Options
 ConvergenceEpsilon: 0.001
 GradientStepSize: 0.001
 Control: [
 Step1
]

123

 OptimizePlan SQP
 DefaultUpperBound: 1.0E15
 UseScaling: yes
 OptimizeStep Step1
 Technique: "Sequential Quadratic Programming - NLPQL"
 Prologue
 RestoreBestSolution: no
 RerunTask: no
 Epilogue
 RestoreBestSolution: yes
 RerunTask: no
 Options
 Control: [
 Step1
]

 # PLAN TO BE CONFIGURED BY ADVISOR:
 OptimizePlan PriorityRankedPlan
 Control: [
]
 End Optimization Task1

 DesignOfExperiments Task1
 Plan DOEPlan1
 Technique: "CentralComposite"
 Factors
 ParameterList
 Type: control
 Parameters
 Height BaseLine: 2.6 Levels: values [2.3 2.4 2.6 2.8 3.0]
Alpha: 2.0 LowerLevel: 2.4 UpperLevel: 2.8
 Webth BaseLine: 0.0501 Levels: values [0.0499268 .05 0.0501 1.0
1.6953268] Alpha: 1.732 LowerLevel: .05 UpperLevel: 1.0
 Flangeth BaseLine: 0.089685 Levels: values [0.02095058 .05
0.089685 1.0 1.66635058] Alpha: 1.732 LowerLevel: .05 UpperLevel: 1.0
 End ParameterList
 End Factors
 End Plan DOEPlan1

 Study surface
 Plan: DOEPlan1
 Responses
 Outputs:
 ObjectiveAndPenalty
 End Responses
 Actions
 Objective: ObjectiveAndPenalty
 Direction: minimize
 End Actions
 ResultsFile: "doe_Study.surface"
 Prologue
 Tcl
 End Tcl
 Epilogue
 Tcl
 End Tcl
 End Study surface
 End DesignOfExperiments Task1

 TaskPlan Task1
 StopTaskPlanOnError: no
 Control: [
 midterm
 SQP
]
 End TaskPlan Task1

 DataStorage Task1
 Restore: no
 DataLog: "Task1.db" Mode: overwrite

124

 DataLookUp: "Task1.db"
 MatchMode: Exact
 Levels: all
 StoreGradRuns: yes
 StoreApproxRuns: yes
 End DataStorage Task1

End Task Task1

125

External Method ANASYS Macro Code:

/com,starting

FINISH
/CLEAR
!/CWD,'C:\Documents and Settings\Nathaniel\My Documents\School\isightSide\ANSYS'
/INPUT,params,txt

! Load IGES file
/AUX15
! ~UGIN,ibeam,prt,'..\CAD\',SOLIDS,1,0 !***Edit this line

! Go into the preprocessor
/prep7
!RECTNG,4,-4,2,1.5,
RECTNG,-Width/2,Width/2,Height/2,Height/2-Flange_th
RECTNG,-Width/2,Width/2,-Height/2,-Height/2+Flange_th
RECTNG,-Web_th/2,Web_th/2,Height/2-Flange_th,-Height/2+Flange_th
AADD,ALL
VOFFST,4,Length, ,

! Define element types
ET,1,MESH200
KEYOPT,1,1,6
KEYOPT,1,2,0
ET,2,SOLID45

! Define material properties
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,30e6
MPDATA,PRXY,1,,.3
MPDATA,dens,1,,.0007

! Create a volume if necessary
allsel,all
*get,volumeCount,volu,,count
*if,volumeCount,eq,0,then
 nummrg,kp,7e-4,7e-4,,low
 va,all
*endif

! Get the front area number (loadArea)
areaNum=0
minCentZ=1000
allsel,all
*get,areaCount,area,,count
*do,i,1,areaCount,1
 asel,all
 areaNum=arnext(areaNum)
 asel,s,,,areaNum
 asum
 *get,centZ,area,,cent,z
 *if,centZ,lt,minCentZ,then
 minCentZ=centZ
 loadArea=areaNum
 *endif
*enddo

! Get the back area number (fixArea)
areaNum=0
minCentZ=0
allsel,all
*do,i,1,areaCount,1
 asel,all
 areaNum=arnext(areaNum)

126

 asel,s,,,areaNum
 asum
 *get,centZ,area,,cent,z
 *if,centZ,gt,minCentZ,then
 minCentZ=centZ
 fixArea=areaNum
 *endif
*enddo

! Mesh the top area
myesize=Web_th/2
*if,Web_th,gt,Flange_th,then
 myesize=Flange_th/2
*endif

!asel,s,,,loadArea
!lsla,s
!*get,lineCount,line,,count
!lineNum=0
!*do,i,1,lineCount,1
! lsla,s,
! lineNum=lsnext(lineNum)
! lsel,s,,,lineNum
! lesize,lineNum,myesize
!*enddo

! Mesh the top area
asel,s,,,loadArea
lsla,s
*get,lineCount,line,,count
lineNum=0
*do,i,1,lineCount,1
 lsla,s,
 lineNum=lsnext(lineNum)
 lsel,s,,,lineNum
! *get,lineLength,LINE,lineNum,LENG
! *if,lineLength,eq,Height-2*Flange_th,then
! myesize = lineLength/3
! *endif
 lesize,lineNum,myesize
*enddo

asel,s,,,loadArea
TYPE,1
MAT,1
REAL,
ESYS,0
SECNUM,
MSHAPE,0,2D
MSHKEY,0
amesh,all

! Set number of divisions on the lines
lsel,all
asel,s,,,loadArea
asel,a,,,fixArea
lsla,u
lesize,all,,,16,,,,,0 ! This puts n divisions on all lines selected

! Sweep mesh the volume
allsel,all
TYPE,2
MAT,1
REAL,
ESYS,0
SECNUM,
!*

127

MSHAPE,0,3D
!*
VSWEEP,all

! Constrain root face of airfoil
DA,fixArea,ALL,

! Find number of nodes in the web area
asel,s,,,loadArea
nsla,s,1
cm,loadNodes,node
*get,nodeCount,node,,count
nodeNum=0
minX=Web_th/2
numNodesToLoad=0
*do,i,1,nodeCount,1
 cmsel,s,loadNodes
 nodeNum=ndnext(nodeNum)
 nsel,s,,,nodeNum
 *get,xloc,NODE,nodeNum,loc,x
 *if,xloc,le,minX,then
 *if,xloc,ge,-minX,then
 numNodesToLoad=numNodesToLoad+1
 *endif
 *endif
*enddo

nodeForce=Load/numNodesToLoad

! Apply forces to nodes in the web area
asel,s,,,loadArea
nsla,s,1
cm,loadNodes,node
*get,nodeCount,node,,count
nodeNum=0
minX=Web_th/2
numNodesToLoad=0
*do,i,1,nodeCount,1
 cmsel,s,loadNodes
 nodeNum=ndnext(nodeNum)
 nsel,s,,,nodeNum
 *get,xloc,NODE,nodeNum,loc,x
 *if,xloc,le,minX,then
 *if,xloc,ge,-minX,then
 F,nodeNum,FY,nodeForce
 *endif
 *endif
*enddo

! Solve it
/solu
allsel,all
solve

! Extract information to an output file
! Output solution analysis objectives to a file
*cfopen,ibeam,out
*vwrite
Ansys output file
*vwrite
(' ')
! Measure volume of airfoil (representative of mass)
/prep7
vsel,all

128

vsum
*get,vol,volu,,volu
*get,centX,volu,,cent,x
*get,centY,volu,,cent,y
*get,centZ,volu,,cent,z

*vwrite,vol
IBeam Volume: %14.7G

! Get max principal stress
/post1

nsort,s,1,0
*GET,logtmax,SORT, ,MAX

*vwrite,logtmax
Max longitudinal stress: %14.7G

! Get max displacement
nsort,u,sum,0
*GET,dymax,SORT, ,MAX

*vwrite,dymax
Max displacement: %14.7G
*cfclose
/eof
/VIEW,1,1,2,3
/ANG,1
/AUTO,1
/RGB,INDEX,100,100,100,0
/RGB,INDEX,0,0,0,15
/VCONE,ALL,45.0
/DEV,PSFN,NINC
/gfile,400
PLNSOL,S,EQV

129

APPENDIX C: ANALYSIS AND OPTIMIZATION
RESULTS

Analytical Solution for I-beam stress and deflection:

Figure 27 Cantilever beam - end load.

The following equations are used to find the maximum stress and deflection in the

I-beam:

 (14) FLM =max

L
F

y

x

M
width

Flangth_th

height

web_th

131

12

)_2()_(33 thflangeheightthwebwidthheightwidthI ⋅−⋅−−⋅
= (15)

I

cM max
max =σ (16)

EI

FLy
3

3

max −= (17)

These equations were used to find the theoretical stress and displacement. These

values were then compared to the numerical stress and displacement found using

ANSYS. The results obtained varied proportionally for multiple designs which qualifies

the use of the numerical model in the optimization.

Optimization Results:

Table 6 The optimal design. The design is at the minimum web thickness and the maximum height.
The deflection constraint is binding.

Flange_th Web_th Height Volume Stress Deflection
0.08968 0.05000 3.00000 3.99815 21092.98179 0.01000

132

The following contour plots illustrate the design space.

Stress

Feasible Area

Deflection

Figure 28 A slice of the design space at Height = 3.0. Volume is contoured with values decreasing
toward the lower left corner. Deflection and Stress constraint boundaries are shown as lines. The
opimal design is circled.

133

Feasible

Deflection Infeasible

Stress

Figure 29 The design space. The space is contoured by Volume with lower corner at the origin having
the smallest volume. The two surfaces displayed within the space represent the deflection and stress
constraint boundaries. The optimal design is circled.

134

	Developing a Design Space Model Using a Multidisciplinary Design Optimization Schema in a Product Lifecycle Management System to Capture Knowledge for Reuse
	BYU ScholarsArchive Citation

	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Objective
	Background
	Product Lifecycle Management
	Framework Tools

	LITERATURE REVIEW
	Motivating Improved Process Knowledge Management
	Multidisciplinary Design Optimization
	Standardization
	Mass Customization

	Mutual Contingencies
	Process Capture and Automation
	Design Optimization
	Centralized Data Management
	Collaboration

	Previous Solutions
	Web Systems
	Agent Systems
	Federated Systems
	Integrated Systems
	WebBlow
	Klaas

	PLM Workflow and Change Management

	METHOD
	Design Process Automation and Optimization
	Internal to PLM
	Automation Modules
	Geometry
	Mesh Generation
	Analysis

	Data Mapping
	Database
	Extraction and Insertion
	Management

	Design Optimization
	Algorithms
	Paradigm

	User Interface
	Setup
	Dashboards
	Visualization

	External to PLM
	Execution
	Linking

	Centralized Data Management and Collaboration
	Test Feasibility
	Test Case
	Comparison Metrics

	RESULTS AND DISCUSSION OF RESULTS
	Results from Development of the Proofs-of-Concept
	Design Process Automation and Optimization
	Internal to PLM
	Automation Modules
	Geometry
	Mesh Generation
	Analysis

	Data Mapping
	Database Data Extraction and Insertion

	Design Optimization
	User Interface
	Setup
	Dashboards
	Visualization

	External to PLM
	Execution

	Centralized Data Management and Collaboration

	CONCLUSION
	Representing an MDO Schema in a PLM System
	Leveraging PLM Architecture to Manage an MDO Schema
	Interaction Between the MDO Schema and the PLM System
	Final Conclusions

	REFERENCES
	APPENDIX
	APPENDIX A: INTERNAL INTEGRATION
	APPENDIX B: EXTERNAL INTEGRATION
	APPENDIX C: ANALYSIS AND OPTIMIZATION RESULTS

