1-29-2001

Survival and development of *Phoradendron californicum* and *Acacia greggii* during a drought

Simon A. Lei
Community College of Southern Nevada, Las Vegas

Follow this and additional works at: https://scholarsarchive.byu.edu/wnan

Recommended Citation
Lei, Simon A. (2001) "Survival and development of *Phoradendron californicum* and *Acacia greggii* during a drought," *Western North American Naturalist*: Vol. 61 : No. 1 , Article 10. Available at: https://scholarsarchive.byu.edu/wnan/vol61/iss1/10

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
SURVIVAL AND DEVELOPMENT OF PHORADENDRON CALIFORNICUM AND ACACIA GREGGII DURING A DROUGHT

Simon A. Lei

ABSTRACT.—Survival and development of parasitic and autoparasitic Phoradendron californicum (desert mistletoe) and their Acacia greggii (catclaw) hosts were quantitatively investigated during the 1997 drought in southern Nevada. Phoradendron californicum was parasitic on other individuals of the same species (autoparasitic), and these in turn were parasitic on A. greggii hosts. An extensive drought from February 1995 to mid-July 1997 was characterized by extremely low seasonal rainfall and high summer air temperatures. Extensively mistletoe-infested hosts had significantly less canopy volume and produced significantly fewer leaves, flowers, and fruits than uninfested (control) or lightly infested hosts. Mistletoe plants on A. greggii hosts with fewer infections produced significantly more leaves and fruits and survived better than mistletoe plants on A. greggii hosts with extensive infestations. Autoparasites had significantly less canopy volume and fruit production than their parasitic hosts and parasites on hosts with fewer infections. Severity of infestation was significantly negatively correlated with A. greggii and P. californicum survival, as it was with leaf, flower, and fruit development of A. greggii and parasitic and autoparasitic P. californicum during the 1997 drought in southern Nevada.

Key words: host, parasite, autoparasite, Acacia greggii, Phoradendron californicum, drought, survival, development, Las Vegas valley, southern Nevada.

Acacia greggii (catclaw) is often covered with thick masses of P. californicum, which may reduce host growth and reproductive success through time (Knute and Faber 1991). Serious long-term damage to host plants is largely caused by a combination of environmental and Phoradendron-induced physiological (water and nutrient) stress (Glatzel 1983, Hollinger 1983, Schulze and Ehleringer 1984, Schulze et al. 1984, Ehleringer et al. 1986). Weather extremes are an important environmental factor influencing survival and development of woody desert plants. Insufficient rainfall and above-average air temperatures during winter 1995–summer 1997 in southern Nevada may have been such an extreme. In general, precipitation during this 2.5-year period was well below average. From casual observations, it appears that some P. californicum individuals and their A. greggii hosts may be killed or damaged by drought alone.

Autoparasitism is a condition in which a parasite occurs facultatively on another individual of the same species. Phoradendron californicum parasitizes A. greggii and Cercidium floridum (blue palo verde) hosts and established P. californicum infestations in northwestern Arizona (Schulze and Ehleringer 1984) and southeastern California (Lei 1999). However, Schulze and Ehleringer (1984) note that autoparasitism involving Phoradendron species occurs infrequently.

Schulze and Ehleringer (1984) and Ehleringer and Schulze (1985) have greatly increased our knowledge regarding the water and nutrient status of P. californicum and its A. greggii hosts in northwestern Arizona. Yet, the response of parasites, autoparasites, and their hosts to severe drought remains poorly understood. The objective of this study was to describe survival and development of leaves, flowers, and fruits of a complex host-parasite-autoparasite
pathosystem. Specifically, 2 questions are addressed in this study: (1) Does the severity of *P. californicum* infestation affect the survival and development of *A. greggii* hosts under drought stress? (2) Does the severity of infestation affect the survival and development of parasitic and autoparasitic *P. californicum* under drought conditions?

METHODS

Study Site

Field studies were conducted in Las Vegas, Nevada (roughly 36°10'N, 115°05'W; elevation 780 m), from spring through fall 1997. The Tropicana Wash lies across the southern part of the Las Vegas valley. Although this intermittent wash remains dry throughout much of the year, it often collects excess running water during and shortly after major storms.

Las Vegas valley has experienced 3 episodes of extreme drought since 1985, with precipitation falling well below annual means in some years. The most recent drought in Las Vegas valley of southern Nevada occurred over a period of 2.5 years, February 1995 through mid-July 1997, with precipitation generally falling well below monthly averages (Fig. 1). An average reduction of 72.9% in precipitation occurred during the 1995–1997 drought compared to a normal, non-drought period (NOAA, Las Vegas). Mean annual air temperatures, however, did not vary considerably despite the erratic precipitation pattern occurring during this period. The 1995–1997 years generally had above-average air temperatures (Fig. 2).

Field Surveys and Laboratory Analyses

The sample included hosts with parasites only, and with both parasites and autoparasites; also included were adjacent individuals without any visible parasites (control). A total of 16 autoparasitic *P. californicum* individuals each infested another *P. californicum*, which in turn parasitized 8 *A. greggii* hosts.

Within my study site, 1017 *P. californicum* (parasitic and autoparasitic) individuals and 76 *A. greggii* (infested and uninfested) trees were surveyed for evidence of mortality. Because 13 host trees were not infested by parasites (control), 1017 *P. californicum* individuals, including 16 autoparasites, were found on 63 hosts. *Phoradendron californicum* are obligate parasites. Once a host dies, all *P. californicum* individuals parasitizing it also die. The condition of each *A. greggii* host was recorded as live without any dead branches (1), live with single or multiple dead branches (2), or dead (3). Each *P. californicum* was recorded as live with green foliage (1), live with reddish brown foliage (2), or dead (3). Host plants having completely bare branches and lacking leaves, flowers, or fruits (without phenophases) through the 1997 growing season were assumed dead. Similarly, parasites and autoparasites with dark brown foliage and extremely brittle stems, and without phenophases, were also assumed dead.

Development of *P. californicum* (parasitic and autoparasitic) and its *A. greggii* hosts was assessed by examining vegetative and reproductive characteristics. Thirty-two *A. greggii* trees were randomly selected and were evenly distributed among the 4 levels of *P. californicum* infestation (control, light, moderate, severe). Light, moderate, and severe infections implied fewer than 20, between 20 and 40, and more than 40 *P. californicum* individuals per host tree, respectively. Due to the paucity of autoparasites, all 16 autoparasites were found on 8 severely parasitized host trees.

For each tree, volume of host canopies containing green leaves was computed by first assuming *A. greggii* architecture resembled an
elliptical cylinder and then calculating the volume using the following equation: \((\pi abh)\), where \(a\) and \(b\) are radii and \(h\) is height of the elliptical cylinder (Larson et al. 1994). Since \(A.\) greggii canopies had small open spaces within the cylindrical shape, measured volumes are likely overestimated. Total number of leaflet pairs in each group of 100 compound leaves was counted. A compound leaf possesses 2 or more separate leaflets, with 2 relatively symmetrical leaflets making up a leaflet pair. The total number of leaflet pairs was then divided by 100 to determine average number of leaflet pairs per compound leaf. Flower and fruit production was determined by counting the number of floral spikes and pods (fruits) from individual \(P.\) californicum canopies. The remaining 44 \(A.\) greggii hosts were not selected in order to conduct appropriate statistical analyses using identical sample sizes. One-way analysis of variance (ANOVA; Analytical Software 1994) was used to detect significant differences in leaf, flower, and fruit production among uninfested hosts (control) and among hosts with 3 levels of infestation. Tukey’s multiple comparison test (Analytical Software 1994) was then performed to compare means of vegetative, floral, and fruit characteristics when a significant infestation effect was detected.

Statistical Analyses

Total numbers of live and dead \(A.\) greggii hosts with 4 levels of \(P.\) californicum infestation (control, light, moderate, and severe) were expressed in percentages. Similarly, total numbers of live and dead \(P.\) californicum individuals on \(A.\) greggii hosts with 4 levels of infestation (light, moderate, severe, and autoparasite) were also expressed in percentages. Thirty-two \(A.\) greggii hosts were randomly selected and evenly distributed among the 4 levels of \(P.\) californicum infestation to calculate the volume of \(A.\) greggii and \(P.\) californicum foliage and to determine fruit production of \(P.\) californicum. Mean volume of and number of fruits on \(P.\) californicum canopies were presented with standard errors; \(P\)-values less than or equal to \((\leq)\) 0.05 were reported as statistically significant.

RESULTS

Compared to adjacent unparasitized \(A.\) greggii hosts (Fig 3), more severely parasitized hosts were either dead or had multiple dead branches. Substantial insect damage was found on dead and dying \(A.\) greggii hosts. Insects, including bark beetles, invaded many weakened \(A.\) greggii hosts. However, all unparasitized hosts and a majority of lightly to moderately parasitized hosts survived the 1997
drought and produced abundant flowers or fruits (Table 1) despite some dead branches.

Mortality of P. californicum was considerably greater (Fig. 4) on severely parasitized hosts than on adjacent unparasitized hosts and hosts with light to moderate infestation. Regardless of the extent of infestation, a large percentage of P. californicum plants had reddish brown foliage with relatively low flower or fruit production throughout the 1997 growing season. All 16 autoparasites were found on 8 heavily parasitized A. greggii hosts; 6 autoparasites were dead, as were their parasitic hosts.

TABLE 1. Vegetative, floral, and fruit characteristics of uninfected A. greggii hosts (control) and hosts with various levels of P. californicum infection in southern Nevada (n = 100 in each infection class). Mean values in columns followed by different letters are statistically significant at *P* ≤ 0.05.

<table>
<thead>
<tr>
<th>Infection class</th>
<th>Leaflet pairs per leaf</th>
<th>Green canopy volume (m²)</th>
<th>Number of spikes</th>
<th>Seeds per pod</th>
<th>Pods per tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5.2a</td>
<td>7.0a</td>
<td>389.7a</td>
<td>6.9a</td>
<td>234.2a</td>
</tr>
<tr>
<td>Light</td>
<td>5.2a</td>
<td>7.2a</td>
<td>374.1a</td>
<td>6.7a</td>
<td>223.1a</td>
</tr>
<tr>
<td>Moderate</td>
<td>5.0a</td>
<td>4.9b</td>
<td>334.6b</td>
<td>6.4a</td>
<td>201.3b</td>
</tr>
<tr>
<td>Severe</td>
<td>4.9a</td>
<td>2.8c</td>
<td>296.0c</td>
<td>6.3a</td>
<td>175.5c</td>
</tr>
</tbody>
</table>

Moderate to heavy infestation, with or without autoparasites, significantly (*P* ≤ 0.001) decreased host canopy volume and flower and fruit production (Table 1) compared to uninfested or lightly infested hosts. Conversely, total number of leaflet pairs per leaf and total number of seeds per pod did not differ significantly (*P* > 0.05; Table 1). Mistletoe plants on hosts with more infections produced significantly (*P* ≤ 0.001) less canopy volume (Fig. 5) and had lower fruit production (Fig. 6) than mistletoe plants on hosts with fewer infections. Autoparasites exhibited significantly (*P* ≤ 0.001) less canopy volume (Fig. 5) and fruit production (Fig. 6) than mistletoe plants on hosts with fewer infections.
production (Fig. 6) than their parasitic hosts and parasites on hosts with fewer infections.

Severity of infestation was significantly negatively \((P \leq 0.001; \text{Table 2})\) correlated with (1) host and parasite survival; (2) leaf, flower, and fruit production of hosts; and (3) leaf and fruit production of parasites and autoparasites.

DISCUSSION

Survival and development of parasitic and autoparasitic *P. californicum* and *A. greggii* hosts were compared during the severe drought of 1995–1997 in southern Nevada. *Phoradendron californicum* had adverse impacts on its *A. greggii* hosts as well as on other *P. californicum* individuals.

Long-term climatically extreme conditions, such as drought, tend to episodically lower host, parasite, and autoparasite populations. The drought in southern Nevada began in February 1995 and reached its greatest intensity during the first 6 months of 1997, followed by well above-average monsoonal rainfalls in July and September (NOAA, Las Vegas). This prolonged drought was characterized by extremely low seasonal rainfall and high summer air temperatures. The well below-average seasonal rainfall and above-average air temperatures during winter 1995–summer 1997 likely resulted in low soil water content and high soil temperatures. Although not investigated in this study, active transpiration with soils of low available moisture during growing seasons may result in substantial branch damage or even mortality of *A. greggii* hosts that support abundant *P. californicum* individuals on their branches. Severely infested *A. greggii* hosts would be expected to exhibit greatest branch damage or mortality compared to uninfested or lightly infested hosts in drought years. Mistletoe infestation greatly reduces host growth and the ability to survive drought and insect outbreak (Calder and Bernhardt 1983). However, uninfested *A. greggii* hosts appear to be fairly tolerant of extreme water and heat (drought) stress, and are more capable of growing in periodically stressful desert environments than moderately or severely infested hosts.

Although comparative water relations were not examined in this study, prolonged drought would result in widespread host-plant water stress, which in turn could increase mortality of established parasitic and autoparasitic infections. *Phoradendron californicum*, which is characterized by low water-use efficiencies, must maintain more negative water potentials than its *A. greggii* hosts to obtain water (Jordan et al. 1997). Some *P. californicum* individuals are more vulnerable to water stress than their hosts. Jordan et al. (1997) propose that drought may have a greater detrimental effect
on *P. californicum* than on its hosts because some *P. californicum* individuals die although their host branches do not. Extremely low host-plant water potentials appear to result in substantial mortality of established *P. californicum* infections and may limit long-term *P. californicum* infection success under severe drought conditions in southeastern California (Jordan et al. 1997). The final cause of mortality in mistletoe-infested *A. greggii* during drought in southern California was bark beetle infestation. Jordan et al. (1997) observed extensive insect damage on mistletoe-infested *A. greggii*. This could be the main cause of mortality under drought stress.

In this study *Acacia greggii* experiencing moderate to massive infestations had a significant reduction in canopy volume and flower and fruit production. Large clumps of *P. californicum* were visible on host branches and canopies. Within a single, heavily infested host, live branches supported abundant parasites, while dead branches revealed dead and dying parasites and autoparasites. Despite infrequent host-parasite-autoparasite interactions, infection and reproduction of autoparasitic *P. californicum* were successful as evidenced by abundant green canopy and fruit production, respectively, at the expense of parasitic and nonparasitic hosts. Under extreme moisture stresses, *A. greggii* hosts died, as did their parasites and autoparasites.

A very limited number of autoparasitic *P. californicum* can be found in Las Vegas valley of southern Nevada. Host, parasite, and autoparasite survival and development are a function of parasite severity and drought stress.

Relationships between severity of infestation and host, parasite, and autoparasite survival, and between severity of infestation and host, parasite, and autoparasite plant development, may have occurred in the absence of drought. Perhaps these phenomena are normal patterns irrespective of drought stress. Host trees with severe leafy mistletoe infestations are slowly declining and will eventually die long before similar trees without infestation. This decline will occur over many years if not several decades. Reductions in canopy volume of *A. greggii* likely occurred long before the 1995–1997 drought. The severe drought in 1997 may have accentuated or accelerated detrimental effects of mistletoe infestation on *A. greggii* hosts. Severely infested hosts are expected to be the first to die during periods of drought. *A. greggii* trees are already under infestation stress, and additional drought stress will weaken them enough that insects, including bark beetles, can successfully attack and kill them. Under extreme conditions in southern Nevada, *A. greggii* hosts supported abundant *P. californicum* before *P. californicum* experienced autoparasitic- and drought-induced mortality that killed parasites, autoparasites, and their hosts.

Acknowledgments

David Valenzuela and Shevaun Valenzuela provided valuable field assistance. Steven Lei assisted with statistical analyses. Dean Jordan provided stimulating discussions. Critical reviews by David Charlet greatly improved this manuscript. The Department of Biology of the Community College of Southern Nevada (CCSN) provided logistical support.

Literature Cited

Received 8 February 1999
Accepted 30 January 2000