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ABSTRACT 
 
 
 

A FRAMEWORK FOR EXTRACTION PLANS AND HEURISTICS IN AN 

ONTOLOGY-BASED DATA-EXTRACTION SYSTEM 

 
 

Alan Wessman 

Department of Computer Science 

Master of Science 

 

Extraction of information from semi-structured or unstructured documents, such 

as Web pages, is a useful yet complex task.  Research has demonstrated that ontologies 

may be used to achieve a high degree of accuracy in data extraction while maintaining 

resiliency in the face of document changes.  Ontologies do not, however, diminish the 

complexity of a data-extraction system.  As research in the field progresses, the need for 

a modular data-extraction system that de-couples the various functional processes 

involved continues to grow. 

In this thesis we propose a framework for such a system.  The nature of the 

framework allows new algorithms and ideas to be incorporated into a data extraction 

system without requiring wholesale rewrites of a large part of the system’s source code.  

It also allows researchers to focus their attention on parts of the system relevant to their 

research without having to worry about introducing incompatibilities with the remaining 
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components.  We demonstrate the value of the framework by providing a implementation 

of it, and we show that our implementation is capable of achieving accuracy in its 

extraction results comparable to that achieved by the legacy BYU-Ontos data-extraction 

system.  We also suggest alternate ways in which the framework may be extended and 

implemented, and we supply documentation on the framework for future use by data-

extraction researchers. 
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1 Introduction 

1.1 Purpose of data extraction 

Making sense of the vast amount of information available on the World Wide 

Web has become an increasingly important and lucrative endeavor.  The success of Web 

search companies such as Google demonstrates the vitality of this industry.  Yet Web 

search has much still to deliver.  While traditional search engines can locate and retrieve 

documents of interest, they lack the capacity to make sense of the information those 

documents contain.  They are also susceptible to inaccuracy and increasing manipulation 

by some Web site owners who seek to bolster their pages’ relevancy rankings [McN04]. 

Traditional search engines occupy the domain of information retrieval, which is 

the task of identifying from a corpus of documents those that are most relevant to a 

particular user query.  However, after the relevant documents have been identified and 

ranked, it is up to the user to browse the results and attempt to make use of their 

information.  Often, the user’s need is for highly specific information buried within the 

documents that the search engine returns.  And at times the results may exclude relevant 

documents because the keyword-based algorithms of the search engine lack the 

sophistication to understand the user’s ultimate objective. 

For example, a query such as “list all used car sales advertisements for Ford 

Mustang cars with a sales price under $15,000, located in the Pacific Northwest” will fail 

to yield an acceptably accurate result set on a standard keyword-based Web search engine 

(Figure 1).  In such a case, a keyword-based search engine may exclude a document with 

a relevant listing because the term “Pacific Northwest” is not found, despite the fact that 

the listed telephone number contains an area code for the Seattle region.  Or, the engine 
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may include a page of Toyota car listings because they are being sold through a Ford 

dealership that advertises new Mustang models.  Moreover, the engine may return a 

document with a single matching record within many similar but non-matching records, 

requiring the user to visually scan the document for the pertinent information.   

Figure 1: Google search results for a complex query. 

From these examples, we see that keyword-based engines are limited by their 

inability to distinguish between relevant and irrelevant information on a page, or to detect 

key relationships between concepts in the page.  Further, they cannot transform a set of 

relevant documents into a set of individual records representing the primary objects of 

interest, such as individual car listings.  This prevents the user from being able to query 

the listings as one would a database.   

The field of data extraction (also called information extraction) addresses many 

of the problems highlighted above.  Data extraction is the activity of locating values of 

interest within electronic textual documents, and mapping those values to a target 
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conceptual schema [LR+02].  The conceptual schema may be as simple as slots in a 

template (a wrapper) used to locate relevant data within a web page, or it may be as 

complex as a large domain ontology that defines hierarchies of concepts and intricate 

relationships between those concepts.  The conceptual schema is usually linked to a 

storage structure such as an XML file or a physical database model to permit users to 

query the extracted data.  In this way, the meaning of a document is detected, captured, 

and made available to user queries or independent software programs.  

Data extraction primarily focuses on locating values of interest within documents 

and associating the located values with a formal structure.  Extraction is performed on 

unstructured or semi-structured documents, whose structure does not fully define the 

meaning of the data, as well as structured documents, which contain sufficient structure 

to allow unambiguous parsing and recognition of information [Abi97], but whose 

underlying schema is not fully known to the extraction process [ETL02].  A natural-

language narrative is an example of an unstructured text; a Web page with sentence 

fragments and tables of values might be classified as semi-structured, and a comma-

delimited file exported from a database is an instance of a structured document.  

Data-extraction software is usually measured according to its accuracy in 

extracting data—minimizing the number of false or omitted mappings between value and 

schema, and maximizing the number of correct mappings—although other metrics, such 

as the amount of human interaction required to achieve a particular level of accuracy, 

may be applied as well [Eik99]. 

Much of the research in data extraction has aimed at developing more accurate 

wrappers while requiring less human intervention in the process.  Other data-extraction 
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researchers have focused on the use of richer and more formal conceptual schemas 

(ontologies) to improve accuracy in data extraction.  Among those involved in ontology-

based data-extraction research are members of the Data Extraction Group (DEG) at 

Brigham Young University.  This thesis is based on research conducted by the author and 

many other present and past participants of the Data Extraction Group. 

1.2 Background and related work 

Researchers have devised a number of different approaches to the problem of data 

extraction.  We summarize a few of the most prominent below to establish the 

background for our work. 

1.2.1 Wrappers 

Perhaps the most common solution to the data-extraction problem is the 

construction and use of grammar-based wrappers [HGN+97] [KWD97] [AK97].  

Wrappers use clues in the document’s structure and syntax to locate useful data.  The 

“holes” or “slots” in the wrapper, filled with data, are mapped to fields of a common 

semantic model, such as a data model in a relational database.  Early on, wrappers were 

created manually [HGN+97]; subsequent research focused on automatic or 

semiautomatic generation of wrappers [CMM01].  Two useful surveys of wrapper 

research are [Eik99] and [LR+02]. 

The primary drawback from which most wrapper approaches suffer is their 

dependence upon the actual syntax of the document markup to detect the boundaries 

between what is and is not relevant data.  This means that when the markup of a site (not 

the data) changes, the wrapper is invalidated.  Automated generation of wrappers 

 4



alleviates this problem somewhat.  Another problem is that a different wrapper is 

required for each unique document syntax, so thousands of wrappers may have to be 

generated and managed in order to adequately extract data for a particular subject 

domain. 

1.2.2 Ontology-based extractors 

Another class of data extractors (and the type of primary concern for this thesis) is 

the ontology-based extractors.  These rely upon ontological descriptions of the subject 

domain as a basis for recognizing data of interest and for inferring the existence of 

objects and relationships that are not explicitly stated in the text. 

Because an ontology describes a subject domain rather than a document, 

ontology-based data-extraction systems are resilient to changes in how source documents 

are formatted, and they can handle documents from various sources without impairing the 

accuracy of the extraction.  This contrasts with wrappers, which merely describe the 

locations of data values in a particular set of similarly-formatted documents.  Ontology-

based extractors compare unfavorably to wrappers in one important way: considerably 

more human effort is required up front to construct a high-quality extraction ontology, 

while wrappers can be constructed more easily, even to the point of automation of much 

of the process. 

Aside from the extraction system developed at BYU, some other notable 

ontology-based extraction systems have been developed at other institutions.  [DMR02] 

uses an ontology language that distinguishes between nonlexical concepts and single- or 

multi-valued attributes.  Identifier functions connected to the attribute definitions provide 

rules (such as regular expressions) that identify values from a document.  Inference of 
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structural relationships between extracted values and nonlexical concepts is achieved by 

applying various heuristic algorithms based on the DOM tree of the web page.  The 

system also employs unsupervised learning to identify concepts missed by the identifier 

functions but located in the same parts of the structure where identified values were 

found.  The authors report good precision and recall results for two simple ontologies. 

 [SFM03] discusses HOWLIR, a framework that combines an ontology 

represented in DAML+OIL with the HAIRCUT information retrieval system to perform 

extraction, inference, annotation, and search capabilities.  The system integrates a variety 

of technologies, most notably the AeroText™ text extraction tool and document structure 

analysis to extract the desired information, DAMLJessKB to make logical inferences 

over the extracted data, and HAIRCUT to index and retrieve the resulting semantic 

annotations.  Being based on standards such as RDF and DAML+OIL, HOWLIR has 

some degree of flexibility and interoperability, but is not an entirely implementation-

independent framework. 

[Eng02] describes OntoWrapper, which targets semistructured sources, taking 

advantage of structural clues to improve accuracy.  Extraction rules are represented in 

DAML+OIL and follow a script-like approach, referencing system and user-defined 

variables such as the URL of the current page or the running total of occurrences found 

for a particular concept.  The user manually constructs a wrapper using these rules, 

although some aspects of the wrapper are general enough to be applicable across different 

document syntaxes.  Still, this approach is significantly more dependent on document 

syntax than other ontology-based extraction systems. 
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1.2.3 OSM and Ontos 

The data-extraction system developed by the DEG is called BYU-Ontos, or 

simply Ontos.  It is an ontology-based engine whose present version accepts multi-record 

HTML documents, determines record boundaries within those documents, and extracts 

the data from each record.  It generates SQL DDL (CREATE TABLE) statements for the 

model structure and stores the extracted information as DML (INSERT) statements.  This 

facilitates querying of the results but also removes certain metadata (such as the original 

location of the data within the source document) attached to the data during the extraction 

process.  This metadata may be important for learning algorithms or for further research. 

The system is based on the Object-Oriented Systems Model (OSM) [EKW92].  

OSM is a set-theoretic modeling approach founded upon first-order predicate logic, 

which enables it to express modeled concepts and constraints in terms of sets and 

relations.  An OSM instance can serve as an ontology: concepts are represented by object 

sets, which group values (objects) that have similar characteristics; and connections 

between concepts are expressed via relationship sets, which group object tuples 

(relationships) that share common structure.  Generalization-specialization is a special 

type of relation that expresses “is-a” relationships between object sets.  In Ontos, OSM is 

expressed by OSML (OSM Language) [LEW00]. 

For use in extraction, OSM has been augmented by data frames, which serve to 

describe characteristics of objects, similar to an abstract data type [Emb80].  Data frames 

are attached to object sets, and provide a means to recognize lexical values that 

correspond to objects in the ontology. 
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OSM and data frames together provide the modeling power necessary for 

effective ontology-based data extraction.  Experiments on small- to medium-size 

ontologies (two to twenty object sets) have demonstrated that Ontos exhibits a rather high 

degree of accuracy with the flexibility to maintain that accuracy even when the structure 

of the source records varies considerably [ECJ+99]. 

1.2.4 OntologyEditor 

OntologyEditor is a predominantly WYSIWYG tool for editing OSM-based data-

extraction ontologies [Hew00].  It performs no true data-extraction work itself, but 

provides a way for the user to preview the effect of the value recognition rules defined in 

the data frames of the ontology on a source document.  As part of the preparation for this 

thesis, the author spent a significant amount of effort in refactoring OntologyEditor to 

accommodate new extraction ontology capabilities and to support a new ontology storage 

format. 

1.2.5 Variations on Ontos 

Considerable research touching upon Ontos and OSM has originated in the DEG.  

Much has focused on topics surrounding data extraction: record boundary detection 

[EJN99] [WE04], semiautomatic inference of data-extraction ontologies [Din03], 

extracting from tabular structures [ETL02] [Tao03] or from documents accessible only 

via HTML forms [Che04] [CEL04], and extraction into a target representation suitable 

for the Semantic Web [Cha03].  These various pursuits have served to exercise OSM and 

Ontos in ways that were difficult to predict when they were first developed. 
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1.3 Challenges in ontology-based data extraction 

Much of the research conducted after the development of Ontos has, as a side 

effect, proven the system to be inflexible when certain fundamental operational 

parameters are changed.  For instance, the system expects multiple-record documents as 

input, and thus performs poorly on single-record or tabular document structures.  

Research conducted on such document structures has required parallel versions of Ontos 

to be developed, or significant portions of Ontos code to be extracted and customized for 

newly developed systems, in order to perform effective experiments.  Furthermore, Ontos 

is not easily adapted when new features are added to OSM or the data frames 

specification.   

Finally, although there are many possible algorithms for extracting data based on 

an ontology, and it is not yet clear which are best under which circumstances, Ontos is 

heavily tailored to a single extraction algorithm and cannot readily be modified to 

execute a substantially different one.  An illustration of this is the experience of a 

researcher who devised an extraction algorithm that involved inferring hidden Markov 

models from the ontology and using those to map values to concepts [Wes02].  The new 

algorithm could not be tied back into Ontos because the system was too strongly coupled 

with its original extraction algorithm, and the project was eventually abandoned. 

This inflexibility makes it difficult to evaluate different ideas or approaches for 

data extraction.  A higher number of hard-coded assumptions about operational 

parameters makes it more likely that reimplementation of the system is required when 

these assumptions are contradicted.  In contrast, reducing the number of a priori 

assumptions encoded into the system should make it easier to experiment with or 
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improve certain aspects of the process while keeping the rest of the system constant.  This 

allows us to make scientifically rigorous claims about the performance of the system and 

the impact of the changes made. 

Sections 1.3.1 to 1.3.4 give a sample of the operational parameters for data 

extraction that we might expect a robust data-extraction system to handle flexibly without 

requiring extensive reimplementation. 

1.3.1 Accommodating different ontology languages 

One of the fundamental parameters of ontology-based extraction is the language 

used to represent the ontology.  Different ontology languages can have different means of 

defining concepts, relationships, and extraction rules.  They can also feature varying 

levels of support for modeling constructs such as generalization-specialization or 

incorporation of external ontologies by reference. 

Ontos is written to support OSML, a declarative language with its own unique 

syntax for defining OSM ontologies and data frames.  With new standards having been 

recently established by the World Wide Web Consortium (W3C) for Web-based ontology 

markup languages [W3C04], it is becoming increasingly important to accommodate 

different ontology languages without requiring completely new systems to be developed 

around each one.  We recognize, however, that the data-extraction process can be highly 

dependent on the inherent limitations of the particular ontology language used, and thus 

we should not expect that interchanging languages would be a trivial task.  Yet while 

some operational parameters might depend on the ontology language used, those that do 

not should be managed by the system so that varying the ontology language does not 

necessitate re-implementing the unrelated algorithms. 
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1.3.2 Handling various document types 

Ontos is built with the assumption that the input text documents each contain a 

logical sequence of contiguous records, each of which represents a primary object of 

interest with its dependent objects.  The system is able to detect record boundaries, 

separate the document into records, and extract the appropriate objects from the 

individual records with a significant degree of accuracy.  Ontos is less effective at 

handling documents that do not match this description.  These include documents with 

only a single primary object of interest (single-record documents), with records 

represented in a tabular form [Tao03], or with a complex hierarchy of records and sub-

records (e.g., a university course catalog with a college-department-major-course listing 

hierarchy). 

Ontos also relies upon a record separator module that assumes that the input 

documents are marked up with HTML.  Other markup types such as plaintext, PDF, or 

XML cause the software to fail or perform poorly, since it attempts to locate HTML 

markup to guide its document processing logic. 

A more flexible system might contain a module that can identify a document’s 

type and choose the most appropriate routine for parsing it.  It might also allow for new 

document parser modules to be implemented and added to the system easily in order to 

support new forms of markup. 

1.3.3 Normalizing content 

Because the record separator employed by Ontos assumes that its input 

documents are formatted in HTML, it strips out HTML tags from the records before 

extracting data.  This usually makes sense because most HTML tags only format the 
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content, and do not by themselves lend meaning to a document.  But there may be times 

that we wish to retain portions of the HTML markup.  For example, IMG tags have a SRC 

attribute containing a URL to the image to be displayed; they also sometimes contain an 

ALT or LONGDESC attribute that presents a human-readable text description of the image 

[W3C99].  It may be useful to extract data from the content of these attributes rather than 

discarding them prior to extraction.  

In addition to including content that would otherwise be excluded before 

processing, we may also find it useful to screen out stopwords or other content-free 

tokens (e.g. navigational hyperlinks, repeated whitespace characters) from the document 

when they would ordinarily be retained.  Ontos does not provide a way to select either of 

these alternatives. 

Ideally, a data-extraction system would allow various content filters to be 

interchanged as necessary in order to normalize the content before data is extracted from 

it. 

1.3.4 Locating values of interest 

Ontos locates values of interest in a document by applying rules specified in the 

data frame portion of an OSML ontology.  These data frames support a particular set of 

rules governing how to recognize values, keywords, or contextual phrases.  In the case of 

OSML, there are a number of features available for creating powerful recognition rules.  

These include the ability to match against terms listed in an external lexicon, substitution 

of symbolic macros within a recognition expression, and the specification of contextual 

phrases that must be found in order to accept a recognized value. 
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There are various aspects of value recognition that Ontos does not support.  These 

include association of confidence measures with recognized values, use of previously 

extracted values as a “dynamic lexicon” for identifying values, and composite 

recognizers that independently locate values but act together to synthesize a canonical 

form of the desired data (such as a name recognizer that locates first and last names and 

then yields the name in “Last, First” format).  Many other features can surely be invented 

to enhance the value recognition process. 

Ontology languages other than OSML might support a different set of recognition 

features.  Because ontology support for value recognition rules can differ across ontology 

languages, the code responsible for identifying values in the document based on those 

rules must have the same degree of modularity as the ontology processing code does.  

The Ontos code has some support for adding features to the current value recognition 

code, but the recognition code cannot easily be replaced entirely by an alternative 

implementation. 

1.3.5 Deciding between conflicting claims on values 

After identifying data values from the text through application of the recognition 

rules, Ontos maps those values to concepts in the ontology.  Ontos also infers 

relationships between extracted values. 

Ontos performs these actions by applying a set of heuristics that (a) decide 

between competing claims on the same region of text, (b) infer objects and relationships 

from the extracted values, and (c) generate and populate a relational structure implied by 

the ontology, using a modified Bernstein synthesis algorithm [Mai83]. 
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In Ontos, the heuristics are rigidly defined and coupled to each other to such a 

degree that identifying each heuristic from the code is extremely difficult, and modifying 

or adding heuristics is even more so.  Moreover, the mapping decisions it makes are 

binary and irreversible, prohibiting sophisticated inference techniques such as 

backtracking or confidence optimization. 

We seek to improve Ontos to support two levels of value-mapping modularity: 

first, a decreased coupling between different heuristics along with ways for the heuristics 

to be extended, and second, an ability to replace the entire heuristics mapping module 

with other value-mapping implementations. 

1.4 Toward solutions for data-extraction problems 

Addressing the need for high flexibility, modularity, and extensibility in a data-

extraction system, we propose a new framework for data extraction.  We assert that such 

a framework will provide the support for customization and experimentation needed to 

efficiently conduct data-extraction research.  We justify this assertion below by 

examining the role of frameworks in software engineering. 

1.4.1 Value of frameworks and design patterns 

Frameworks provide the means to address the macro-level problems of a system 

while allowing details to be implemented or varied after the initial design, so that 

components may be interchanged and system performance may be tuned.  Formally, a 

framework is “a system of rules, ideas or beliefs that is used to plan or decide something” 

[Cam04].  A software framework (hereafter simply called “a framework”) thus provides a 

skeletal implementation for a general problem, and establishes parameters for a set of 
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solutions based on that partial implementation.  Solution providers can concentrate on 

satisfying those requirements that are unique to a particular approach, using the existing 

mechanisms provided by the framework to handle the rest of the system. 

Frameworks are predominantly implemented in object-oriented languages such as 

C++ or Java due to their polymorphic capabilities.  They consist of abstract classes and 

interfaces that define important concepts in the problem domain and how they interact on 

a general level.  Frameworks may also be composed of declarative configuration files that 

are interpreted at runtime, allowing an implementation user to adjust operational 

parameters quickly without recompiling the system code. 

The theory of design patterns has contributed to the rise of robust software 

frameworks.  Design patterns are collections of templates and principles for designing 

code that solve commonly-encountered software design scenarios in an abstract manner.  

An example of a design pattern is the Factory Method [GHJV95], which provides a 

model for instantiating new objects whose actual classes are known only at runtime 

(dynamic binding) rather than at design time (static binding).  These design patterns are 

often encountered in frameworks due to their highly generalized architecture, which 

enables frameworks to defer non-essential design decisions to framework 

implementations. 

Frameworks are most often constructed to support complex systems whose 

behavior is subject to a large number of operational parameters.  Examples of such 

systems include the Apache Struts framework for handling Web requests and responses 

[Apa04], the Java Collections framework that provides a library of abstract data 

structures (e.g., List or Map) [Sun04], or Oracle’s Application Data Framework (ADF) 
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layer that stands between a relational data model and client- or Web-based user interfaces 

[Ora04].  We assert that the requirements of a generalized data-extraction system are 

sufficiently complex and variable to justify creation of a framework as a sensible 

approach to addressing these requirements. 

1.4.2 Analyzing data-extraction systems to design a framework 

As with any suitably powerful framework, realization of a data-extraction 

framework requires a substantial analytical effort.  We begin the process by surveying 

existing data-extraction systems, noting the assumptions and dependencies inherent in 

each, and establishing what common functionality is necessary.  Where differences in 

operation or operating assumptions exist, we generalize them in such a way that the 

framework can accommodate them.  We do this either by specifying operational 

parameters to the execution API of the framework, or by deferring specification of the 

operational differences to implementations of the framework modules.  Lastly, we 

establish a set of interfaces, design principles, and programming conventions to regulate 

how implementations fit into the framework. 

This thesis reports on the result of an effort to construct an ontology-based data-

extraction framework that supports a major new version of BYU’s Ontos extraction 

system. 

1.4.3 Thesis statement 

A generalized framework of interfaces and abstract classes written in an object-

oriented language (such as Java) can decouple each operational module from the rest of 

the engine to produce a highly flexible and configurable data-extraction system.  The 

framework can be sufficiently flexible both to allow the current heuristics to be re-
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implemented under the framework and to enable new heuristics and other modules to be 

created and incorporated into the Ontos system without requiring significant rewrites of 

unrelated code. 

1.4.4 Contributions to computer science 

The work performed for this thesis contributes the following to current data-

extraction research. 

Design and construction of a data-extraction framework 

The primary work product for this thesis is an ontology-based data-extraction 

framework written in Java.  This framework seeks to abstract or eliminate numerous 

operational assumptions on which individual data-extraction systems (most notably 

Ontos) have been based.  The framework will allow orthogonal components of an 

implementation to be modified or replaced with minimal impact to other components of 

the system.  This modularity will greatly aid the state of research in this area, as 

researchers will more easily be able to conduct well-controlled experiments focusing on 

specific problems in the data-extraction process without spending a great deal of effort on 

re-implementing aspects of the system that lie outside the focus of the research. 

Concept of extraction plans 

In the process of generalizing the functionality of a data-extraction system, we 

realized a new concept that can be introduced to this field of computer science: the 

extraction plan.  This is a high-level algorithm that prescribes the execution of the data-

extraction system.  We propose that an extraction plan relates to a data-extraction system 

in much the same way that a SQL execution plan relates to a relational database system.  
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While extraction plans are presently defined only in compiled Java classes, we envision 

that they bear the potential of being defined declaratively or even computed like modern 

SQL execution plans are.  Thus the concept of extraction plans opens up a further avenue 

of research. 

OSMX 

The complexity of maintaining and extending OSML together with its attendant 

parser and compiler prompted an initiative to define a new way to represent OSM and 

data frames, using XML as the basis for the representation.  This new language, defined 

by an XML Schema [W3C01], is called OSMX.  Porting the language to XML provides 

numerous benefits, including obviating the need for specialized parsers, natively 

enforcing constraints on how ontologies may be constructed, and allowing researchers to 

use open-source and other third-party tools to check their ontologies for compliance with 

the OSMX schema. 

1.4.5 Re-implementation of Ontos under the framework 

As both a demonstration of the practicality of the data-extraction framework as 

well as a much-needed upgrade to the core technology of the Data Extraction Group, this 

thesis effort contributes a re-implementation of Ontos under the new framework and 

based on OSMX ontologies.  The new Ontos serves as a reference for future 

implementations of the framework.  It retains support for all essential features of the old 

Ontos system but also adds many new capabilities.  In addition to those implied by the 

flexibility of the framework, these new capabilities include: 

• Fully transitive data frame inheritance via generalization-specialization, 
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• True lexicon substitution into recognizer expressions, 

• Recursive macro substitution within recognizer expressions, 

• Association of keyword recognition rules with both individual value recognition 

rules and the entire collection of value recognition rules for an object set, 

• Support for confidence values for recognized and accepted matches, 

• Rapid modification of the ontology traversal order for the value-mapping stage of 

processing, 

• Retention of extracted data inline with the ontology to support later use of the data 

without sacrificing ontology-supplied semantic meaning, and 

• Output of extracted data (objects and relationships) as nested lists in HTML, with 

support for other output formats via the framework. 
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2 A framework for performing ontology-based data extraction 

This chapter explains the design and construction of the data-extraction 

framework.  We describe each interface and abstract class, explain the essential contracts 

they define, and discuss how they might be implemented. 

A graphical overview of the framework appears in Figure 2.  Control begins at the 

engine at the top of the diagram, and passes to the extraction plan.  The narrow boxes 

running down the right side represent modules involved in the extraction process. 

 

DataExtractionEngine

public void doExtraction()

ExtractionPlan

DocumentRetriever

DocumentStructureRecognizer

DocumentStructureParser

ContentFilter

ValueRecognizer

ValueMapper

OntologyWriter

Dynamically
loaded

components

Config parameters

execute()

Extraction
Algorithm

uses

Figure 2: The data extraction framework.  
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2.1 Essential concepts 

We first discuss the concepts central to the framework—those that touch almost 

every aspect of the extraction process.  These interfaces and classes are as follows. 

• DataExtractionEngine 

• Ontology 

• Document 

• ExtractionPlan 

We provide details on each below. 

2.1.1 DataExtractionEngine 

The DataExtractionEngine abstract class represents the overall data-extraction 

system.  Its primary purpose is to accept operational parameters, locate and load the 

appropriate modules, perform any additional initialization steps, and initiate the 

extraction process.  It then performs cleanup as necessary and terminates. 

DataExtractionEngine follows the Facade design pattern [GHJV95].  A Facade 

is a simplified interface to a complex system; in this case, DataExtractionEngine defines 

simple methods for initializing the system and executing the extraction process.  This 

pattern also allows clients such as the OntologyEditor to interact with the system at a 

very high level without being coupled to specific components of the system. 

2.1.2 Ontology 

The Ontology interface describes an in-memory representation of the extraction 

ontology.  The interface is designed to be independent of the language the ontology is 

written in; thus we eliminate from the framework any assumption that the extraction 

ontology is built with OSM, DAML, OWL, or any other specific ontology language. 
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This decision presents us with a significant challenge.  Without knowing the 

features of the ontology language, how can we define the capabilities of the Ontology 

interface?  The answer is that we defer such details to implementation classes, and use 

Ontology as primarily a marker interface for ensuring that parameters and member 

variables representing the ontology are of the correct data type. 

2.1.3 Document 

Document is an interface that represents cohesive units of unstructured or semi-

structured information that may be interspersed with data that is not of interest. 

Two major questions to be resolved by the framework are 1) what constitutes 

data, and 2) what constitutes a document.  For example, do we seek to extract information 

from graphical images, sound, video, or other forms of multimedia?  Does graphical 

layout of a textual document according to, say, HTML markup play a role in the 

extraction process?  Are some hyperlinked Web pages considered part of the same 

document as the page that linked to them? 

We narrow the scope of our problem by choosing to focus only on textual data 

extraction.  If an information source is not text-based originally but can be made to yield 

text data, it must be transformed into a text-based source before the extraction engine can 

make use of it.  We do not attempt to decode images or other non-text sources of 

information. 

The structure of a document is another problem.  Structure can provide valuable 

clues to the extraction process; often it indicates contextual boundaries that correspond 

with distinct conceptual groups in the ontology.  Although any text document can be 

expressed as a one-dimensional string of characters, we may find it more useful to 
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represent a complex document structure by a hierarchy of documents and sub-documents, 

for example.  A matrix representation may be appropriate for tabular data.  Hyperlinked 

documents would appear as nodes in a directed graph.   

Due to the sheer number of possible document structures, it is infeasible to 

provide support for all of them.  We choose the approach that seems most flexible (borne 

out by the success of XML), which is to represent a document as a sequence of (possibly 

zero-length) strings interleaved with sub-documents.  This allows us, for instance, to 

represent a hyperlinked “drill-down” page of details as an inline sub-document, its 

contents taking the place of the hyperlink in the summary page. 

A sub-document is itself a Document, and thus may contain other sub-documents.  

This definition implies a tree structure (cycles are not permitted) with one Document at 

the root, and we formally define the term sub-document to indicate any non-root node in 

a Document tree.  We note that Document is an instance of the Composite design pattern 

[GHJV95], which allows objects to be composed into treelike hierarchies while providing 

a uniform interface both for interior nodes and leaves. 

A Uniform Resource Identifier (URI) uniquely identifies each document or sub-

document.  We may use such references to track the origin of extracted data, which is an 

important element of evaluating data-extraction accuracy. 

2.1.4 ExtractionPlan 

The ExtractionPlan abstract class represents the overall algorithm for carrying 

out the extraction activity.  In this way, it is similar to an SQL extraction plan in a 

relational database management system.  ExtractionPlan eliminates assumptions about 

the order of operations for a data-extraction system: one implementation might proceed in 
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a linear fashion, from retrieval straight through to mapping and output, while another 

implementation might discover some new information (such as a relevant URL) during 

extraction and immediately branch into a recursive execution based on that data.  In this 

sense, ExtractionPlan adheres to the Strategy design pattern [GHJV95], which 

encapsulates an algorithmic process and standardizes its invocation so that different 

algorithms may be interchanged. 

ExtractionPlan is an abstract class, not an interface, because we require it to be 

initialized with a reference to the DataExtractionEngine that invokes it.  This is 

because the ExtractionPlan needs to be able to access the engine’s initialization 

parameters and system components in order to carry out its responsibilities. 

2.2 Locating and preparing documents 

Before actual extraction work can occur, the extraction engine must provide a 

way for documents to be located and prepared for extraction.  The following interfaces 

define important aspects of this process. 

• DocumentRetriever 

• DocumentStructureParser 

• DocumentStructureRecognizer 

• ContentFilter 

We describe each interface below. 

2.2.1 DocumentRetriever 

The DocumentRetriever interface (Figure 3) defines the module responsible for 

supplying the extraction engine with source documents.  It may, for instance, represent a 

view of a local filesystem, or it may wrap the functionality of a Web crawler or even a 
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DocumentRetriever

public Iterator retrieveDocuments()URI

Web search engine such as Google.  The module accepts a URI as input and produces a 

set of Documents.  Since an extraction engine can do nothing useful without documents to 

process, the DocumentRetriever is a required component. 

The interface is rather basic.  It supports the creation and management of a list of 

locations (URIs) from which to retrieve the source documents.  The primary function of 

DocumentRetriever is to retrieve the documents based on the locations stored in the list.  

We leave it to the implementations to decide whether to filter out documents based on 

some criteria (e.g., file extension or MIME type). 

The DocumentRetriever will usually perform its functions at the beginning of 

the extraction process.  However, a sophisticated implementation might use it to retrieve 

additional documents using extracted URLs from previously retrieved web pages, in an 

intelligent spidering process. 

Figure 3: Operation of DocumentRetriever.  

2.2.2 DocumentStructureRecognizer 

DocumentStructureRecognizer  (Figure 4) is an optional component of the 

system.  Its role is to analyze a document to determine which available 

DocumentStructureParser is best suited to decompose the document into its structural 

components.  This is useful, for example, when the extraction engine is operating on a 

mixture of source documents, wherein some may be single-record documents and others 

may have a multiple-record structure.  In such a case, we would not want a 
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DocumentStructureRecognizer

public DocumentStructureParser getDocumentParser(Document doc)

Single

Multi

Tabular

Hierarchical

...

Figure 4: Operation of DocumentStructureRecognizer.  

DocumentStructureParser designed for multiple-record extraction to attempt to break a 

single-record document into what it thinks are its constituent records.  The 

DocumentStructureRecognizer intervenes to make sure that each 

DocumentStructureParser is given only those documents it is best suited to parse. 

2.2.3 DocumentStructureParser 

We may be interested in breaking up a document into sub-documents in order to 

make extraction easier or more accurate.  For example, dividing a multi-record document 

into sub-documents, each constituting an individual record, allows us to process one 

record at a time without having to worry about missing a record boundary and extracting 

values from an adjacent record. 

We define the DocumentStructureParser interface (Figure 5) as a solution to 

this problem.  It is an optional component of the system; left unspecified, the input 

document will be treated as an indivisible unit (and therefore a single-record document). 

DocumentStructureParser

public Document parse(Document doc)

Figure 5: Operation of DocumentStructureParser.  
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The interface defines one operation: parse().  It takes a Document as its single 

parameter and returns a Document.  The returned document is the root node in a tree of 

Document objects.  For a multiple-record document, the tree will be shallow and broad, 

with one root (representing the original document) and many leaves (each representing a 

single record).  Other document structures might result in deeper trees, as in a thesis with 

chapters, sections within the chapters, and sub-sections below those.  The document tree 

structure provides a natural representation for factored information: for example, a car 

dealer’s name and contact information located at the top of a Web page could be stored in 

the root of the document tree, while the used-car ads associated with the dealer 

information would exist as individual records at the leaf level. 

We generally recommend, but do not require, that implementations ensure that the 

contents of sibling documents within the tree do not overlap.  This guards against 

extraction of the same value twice due to processing different sub-documents containing 

the same value.  However, a DocumentStructureParser designer might find it useful to 

define overlapping sub-documents for some structures, such as tabular data. 

2.2.4 ContentFilter 

Most documents contain a combination of meaningful data and formatting 

information.  An HTML document contains many tags that indicate how the document 

may be represented in a browser, but these tags usually do not lend additional meaning to 

the content.  We find it convenient therefore to remove text that is exclusively for 

formatting purposes from the document before proceeding with extraction. 
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We define the ContentFilter interface to support this requirement.  This is 

another optional component of a data-extraction system, as going without a filter simply 

means extracting from the document’s original content. 

ContentFilter (Figure 6) is a simple interface, defining a single method 

filterDocument().  It accepts a Document as input and returns a Document, usually (but 

not necessarily) the same one.  The general contract is that the output document’s content 

is a filtered version of the input document’s content.  We note that since this contract is 

not enforceable at the interface level, it is merely implied by the name of the interface. 

Filtering out the formatting data from a document is a process that demands a 

substantial degree of flexibility.  For example, we may at times wish to strip all HTML 

tags from a document, leaving behind only the text content found between those tags.  On 

the other hand, we might desire to preserve quasi-meaningful pieces of information found 

within certain HTML tags, such as the contents of the ALT attribute of an IMG tag.  

Consider the example of a series of icons used to depict amenities provided at a 

campground.  The icons express information that we wish to extract into an ontology for 

campgrounds, and by extracting from the ALT attribute of those IMG tags we hope to 

glean the desired knowledge without having to attempt to decode the graphics 

themselves.  By providing a flexible means to implement various filters, we allow 

ContentFilter

public Document filterDocument(Document doc)

<p>
Price:
<br>
$452.00
</p>

Price:
$452.00

Figure 6: Operation of ContentFilter.  
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implementers to target those portions of the document that they deem most likely to yield 

useful data, while discarding data that simply gets in the way. 

2.3 Extracting and mapping values 

With the document retrieved, parsed, and filtered, we can perform the actual task 

of extracting values from the document and mapping them to the ontology.  Two 

interfaces divide this work: 

• ValueRecognizer 

• ValueMapper 

Our discussion of the functionality defined by these interfaces follows. 

2.3.1 ValueRecognizer 

ValueRecognizer (Figure 7) occupies a key role in a data-extraction system, and 

is a required component of the framework.  Its responsibility is to apply the value-

recognition rules associated with the extraction ontology to the input document, 

producing a set of candidate extractions.  We say “candidate” because it does not resolve 

conflicts about which matched values belong to which parts of the ontology; it merely 

ValueRecognizer

public void findValues(Ontology ont, Document doc)

Price:
$452.00

Ontology

Price: $452.00

Keyword Value

Figure 7: Operation of ValueRecognizer.  
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identifies from the document the values we can find that might belong in the final data 

instance. 

Locating and interpreting the extraction rules is a process that can differ according 

to the ontology language used, so at the framework level we do not restrict how this is 

done.  Nor do we specify how the rules are to be applied to the document or how the 

matching results are to be stored.  As we detail later, our reference implementation 

associates match values with the ontology through composition; but other methods of 

handling the match results (such as annotations inline with the document content) may be 

equally valid. 

The ValueRecognizer also bears the responsibility of maintaining location 

information for each candidate value.  This provides a traceable path back to the 

document content and also can supply useful data for the algorithms that resolve match 

conflicts and create mappings from candidate values to elements of the ontology.  We do 

not specify a format for the location data, but <start position, end position> or <start 

position, length> pairs generally make the most sense for character-based text sources. 

2.3.2 ValueMapper 

Perhaps the most important and difficult part of the extraction system is the 

process that takes candidate value matches and uses them to build a data instance 

consistent with the constraints specified by the ontology.  Since this process maps 

candidate values to elements of the ontology, we name this interface ValueMapper. 
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ValueMapper

public void findValues(Ontology ont, Document doc)

Ontology

ID 23 (Camera)

$452.00 (Price)

has

Figure 8: Operation of ValueMapper. 

There are four tasks that a ValueMapper (Figure 8) must perform to transform 

candidate value matches into a data instance: 

• Resolve conflicting claims that different elements of the ontology make upon the 

same matched value 

• Transform lexical values into objects (instances of concepts defined in the 

ontology) 

• Infer the existence of objects that have no direct lexical representation in the text 

• Infer relationships between objects 

The ValueMapper’s work yields a data instance: a collection of objects and relationships 

between those objects. 

2.4 Generating output with OntologyWriter 

When the ValueMapper process has finished, what do we do with the resulting 

data instance?  The OntologyWriter abstract class (Figure 9) addresses this question.  It 

provides a standard way for an implementation to export the objects and relationships to a 

useful storage format via the Java interface Writer.  The particular storage format is up 

to the implementation to define. 

OntologyWriter defines two primary methods: writeModelInstance() and 

writeDataInstance().  The former provides an export path for the structure (object 
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OntologyWriter

public void setOntology(Ontology ont)

public void writeModelInstance(Writer w)

public void writeDataInstance(Writer w)
Ontology

Camera 23
has Price $452.00
has Model XQ-093
...

Figure 9: Operation of OntologyWriter.   

sets, relationship sets, etc.) of the ontology, while the latter provides for the contents (the 

data instance, objects, and relationships) to be written to an output format. 
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3 Constructing extraction ontologies with OSMX 

Fundamental to an implementation of the data-extraction framework is the 

language used to define the ontologies involved in the extraction process.  The ontology 

language establishes the capability of the ontology to represent a given subject domain. 

Our reference implementation depends upon OSM just as the legacy version of 

Ontos does.  However, there are some key differences between the representation of 

OSM used by legacy Ontos (OSML) and the version used by our implementation 

(OSMX).  Foremost of these are the syntax and grammar differences.  OSML is 

represented by a customized declarative syntax; the new version of OSM is represented 

by standard XML syntax.  The grammar differences are less severe; some capabilities 

have been added to the new representation that the old one lacked, and some lesser-used 

features of the old representation have been deprecated or left out of the new version, but 

most of the grammar productions remain essentially the same.  Because of its XML 

syntax, we dub the new version OSMX. 

The official OSMX specification is defined by an XML Schema document 

[Wes04].  This document defines the standards for creating a well-formed and valid 

OSMX document.  We use the Java Architecture for XML Binding (JAXB) technology 

[JAXB03] to generate, from the OSMX specification, Java classes and interfaces that 

represent OSMX constructs.  Modifying the OSMX definition is generally a 

straightforward process: we adjust the definitions in the XML Schema document, and 

then execute a JAXB program that rebuilds the classes and interfaces automatically.  We 

use these classes and interfaces to access and manipulate portions of an ontology from 

within the data-extraction framework reference implementation. 
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This chapter explains the constructs supported by OSMX as a prelude to 

discussion of the data-extraction framework reference implementation in the following 

chapter.  Because many of these constructs were introduced in the original OSM research 

[EKW92], we do not go beyond a general discussion of these except where OSMX has 

introduced new aspects or capabilities.  We provide more detailed discussion for concepts 

that originated in OSMX. 

3.1 Object sets 

OSM is built upon formal mathematical principles, and at its core is a 

representation of first-order predicate logic.  It therefore deals with sets and relations.  

Perhaps the most important construct of OSM is the object set. 

3.1.1 General concept 

An object set represents a concept or classification in an OSM ontology, similar to 

an abstract data type.  As the name implies, it is treated as a set of objects, which 

represent concrete instances or values.  For example, Car might be the name for an object 

set, while the automobile with a particular Vehicle Identification Number would be an 

object belonging to that set. 

An object set has a Name property used for identification purposes, although the 

name is not necessarily unique among all object set names.  In the original OSM 

definition, object sets were permitted to have multiple names, but for simplicity OSMX 

limits them to at most one name per object set.  (This is not a significant limitation 

because multiple aliases can be encoded into a single name string if desired.)  To enable 
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unambiguous identification of an object set, OSMX introduces an ID property that 

uniquely identifies an object set within an ontology.  An object set has exactly one ID. 

Because an object set’s name is often used to label the concept associated with the 

object set (such as Car), one can use it in data-extraction processes to help match the 

ontological concept with terms found in the source documents.  However, this technique 

is complicated by the potential use of synonymy, abbreviation, or inaccuracy in the 

choice of the name.  The data-extraction framework reference implementation we 

describe in this thesis does not employ object set name matching techniques due to their 

complexity, but nothing in the framework rules out use of this approach in other 

implementations. 

3.1.2 Lexicality 

Common to both OSML and OSMX is the property of object set lexicality.  The 

ontology designer designates an object set as lexical or nonlexical.  In our reference 

implementation, we assume that nonlexical objects do not directly represent textual 

values, but rather represent the things in the real world that the lexical objects describe.  

Thus “James Smith” is a lexical object representing a person’s name, which serves to 

describe the actual individual represented by the nonlexical object.  Since under this 

assumption we cannot express the nonlexical object in a meaningful textual manner, we 

instead express the object with an arbitrary identifier such as “Person549.” 

3.1.3 Primary object set 

OSM supports the designation of one object set in the ontology as the top-level 

primary object set of interest.  This creates a constraint on the object set with respect to a 

particular record (in the case of a multiple-record document) or an entire document (in 
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the case of a single-record document).  Essentially, we constrain the primary object set to 

produce exactly one object from the input record or document.  Thus, while the global 

view of the ontology (across all records or documents) might specify an unbounded set 

cardinality for the object set, in the context of a single record or document its cardinality 

is one. 

3.2 Data frames 

In general, a data frame describes the relevant knowledge about a data item, such 

as an object set [Emb80].  For extraction purposes, a data frame defines value recognition 

rules for the concept associated with the corresponding object set.  If the object set is 

lexical, the corresponding data frame will describe the set of values that may identify 

objects in the set.  For both lexical and nonlexical object sets, a data frame can specify 

keywords and other contextual clues that help indicate the existence of an object within 

the text. 

In OSMX, a data frame can specify an internal representation for a lexical 

object’s value.  This allows us to interpret the value as a particular data type, such as 

String or Double.  We may also designate a canonicalization method that converts 

extracted values into a canonical format compatible with the internal representation.   

This functionality, though, is largely peripheral to the data-extraction process.  

Much more important are the extraction rules themselves; these are specified by 

constructions of regular expressions, macro and lexicon references, and value and 

keyword phrases.  We discuss each of these elements below. 
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3.2.1 Matching expressions, macros, and lexicons 

The most basic element of an extraction rule for a data frame is a matching 

expression.  This is an augmented form of a Perl-5 compatible regular expression.  The 

level of regular expression support is defined by the Java regular expression package 

java.util.regex.  We augment regular expressions by allowing the rule designer to 

embed macro and lexicon references within the expression itself. 

A macro defines a literal substitution rule similar to the #define macro-

substitution feature of the C programming language.  For example, we might define a 

macro named “DayOfWeek” with the substitution value of: 

((Sun|Mon|Tues|Wednes|Thurs|Fri|Satur)(day)?) 

We can then construct a regular expression that references this macro, such as: 

((from|on|starting|beginning) {DayOfWeek}) 

When this expression is applied to a text, the macro reference first expands into the 

substitution value, and the resulting regular expression is matched against the text. 

Macro references are fully recursive in our reference implementation, but cyclical 

references are forced to terminate at the first recurrence of a previously expanded macro, 

so that infinite recursion does not occur. 

A somewhat similar process occurs with lexicon references.  A lexicon is an 

external list of text strings that allow matching against finite domains of specific values 

rather than general patterns.  For example, a lexicon might contain entries for the U.S. 

states and their standard abbreviations.  When we encounter a lexicon reference within an 

expression, we substitute the disjunction of the lexicon entries.  For example: 

({CityPattern}, {State} {Zip})  
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could be an expression used to identify the last part of a U.S. postal address.  If the 

{State} reference were for a lexicon, it might expand into the following: 

(alabama|alaska|arizona|...|al|ak|az|...) 

With the tools of regular expressions and macro and lexicon substitutions, we can 

create powerful text matching rules and combine them in different ways to extract values 

and contextual keywords.  We next discuss the use of matching expressions in extracting 

lexical values. 

3.2.2 Value phrases 

OSM allows an ontology designer to associate zero to many value phrases with a 

data frame for a lexical object set.  A value phrase is an extraction rule that uses 

potentially several matching expressions to locate the correct strings from the input text. 

The most basic requirement of a value phrase is that it contain a matching 

expression for the value to be extracted.  It may also contain the following expressions: 

• Required context: the value must be found entirely within the string matched by 

this expression. 

• Left context: the string matched by this expression must be immediately adjacent 

to the left of the extracted value. 

• Right context: the string matched by this expression must be immediately 

adjacent to the right of the extracted value. 

• Exception: the extracted value must not contain the pattern specified by this 

expression. 
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• Substitute from/to: the “substitute to” string replaces substrings of the extracted 

value that match the “substitute from” expression.  This provides a limited 

alternative to canonicalization. 

A value phrase can also specify a confidence value that gives weight to the 

matches for the phrase.  This can be useful when a data frame contains several value 

phrases and some are more likely than others to yield accurate matches due to their 

higher specificity. 

The ontology designer can assign a label (or hint) to a value phrase.  This can help 

the designer remember the purpose or idea behind the expression without having to 

decode the expression itself.  The hint also plays a role in data frame inheritance, which 

we discuss in more detail in Section 3.4. 

3.2.3 Keyword phrases 

A keyword phrase is a recognition rule for contextual indicators (keywords) that 

help provide evidence for the existence of lexical or nonlexical objects.  Keyword phrases 

lack the contextual, exception, and substitution expression features of a value phrase.  

Instead, they simply contain one expression that targets matching keywords in the text.  

Keyword phrases can, however, define confidence values for matches, and they can also 

have hints, just as value phrases can. 

We may define keyword phrases for the entire data frame, or for individual value 

phrases.  Associating keyword phrases with specific value phrases enables us to give 

preference to value phrase matches that have a nearby associated keyword phrase match, 

over value phrase matches that lack an associated keyword.  Keyword phrase definitions 

at the data frame level similarly lend more credence to the value matches for that data 
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frame in comparison to other data frames’ value phrase matches where no keyword 

matches are found.  

3.3 Relationship sets 

A relationship set defines a relation between object sets in an ontology.  Its 

members are relationships, tuples whose elements are objects that are members of the 

related object sets. 

Relationship sets define how concepts are linked together.  They are therefore a 

central part of a data-extraction ontology: for example, we not only wish to know that 

“July 24, 1998” is a date, but that it links to a particular library book (“Moby Dick”) as its 

overdue date.  This example would involve the Library Book object set connecting to the 

Overdue Date object set via a relationship set.  The relationship set would have a member 

relationship that connects “Moby Dick” to “July 24, 1998.” 

Relationship sets must have a name; in the example above, an appropriate name 

might be “Library Book is overdue on Overdue Date.”  We can shorten this to “is 

overdue on” if we provide a reading arrow with the relationship set to indicate which 

object set “is overdue on” the other.  Many binary relationship sets in data-extraction 

ontologies express an “X has Y” relation between object sets, and so for convenience we 

assign “has” as the default binary relationship set name if none is specified by the user.  

The name is read as “<nonlexical> has <lexical>” since that is typically correct; if this 

assumption is wrong, the ontology designer may override the name or reading direction 

to compensate. 

We also assign an ID to each relationship set because, like object sets, the 

relationship set’s name is not guaranteed to be unique within the ontology. 
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The method of linking object sets to each other via a relationship set is a matter of 

some complexity.  We address this issue below. 

3.3.1 Connections 

A relationship set defines a relation and consequently a structure for tuples that 

belong to the relation.  Each slot in the tuple structure corresponds to a connection 

between the relationship set and an object set.  We permit an object set to connect to the 

same relationship set in multiple ways, so for example we might have a tuple structure 

like <Person, Person>.  We distinguish each slot in the tuple structure from the others 

(e.g., <PersonChild, PersonParent>, so that <Person1, Person2> is regarded as a different 

tuple than <Person2, Person1>, provided the order of the slots is held constant. 

In OSMX, we define each slot as a relationship set connection.  Because 

identifying an object set does not uniquely identify a single connection for a relationship 

set, we furnish an ID property for relationship set connections that guarantees uniqueness, 

allowing us to distinguish between different connections to the same object set by a 

single relationship set.   

The number of connections belonging to a relationship set defines the set’s arity.  

In practice, ontology designers use binary relationships extensively, and n-ary 

relationships (n > 2) are comparatively rare. 

3.3.2 Participation constraints 

The ontology designer may affix a participation constraint to a relationship set 

connection.  The most basic type of participation constraint prescribes the minimum and 

maximum number of times that an object may appear in that slot in the set of tuples that 

belong to the relationship set.  We represent the concept of unbounded maximum 
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participation by the asterisk (*) symbol.  Our format for writing basic participation 

constraints is min:max, with one exception: when the minimum and maximum 

participation constraints are the same value, we allow (but do not require) the user to 

write the constraint as a single value, e.g. “1”.  In this thesis, we term participation 

constraints with maximum constraints of 1 as max-one constraints, and those with 

unbounded maximum constraints we term max-many constraints. 

Let us suppose, for illustration purposes, that a relationship set connection defines 

a participation constraint of 0:1 for its associated lexical object set, SerialNumber.  This 

means that at most one relationship in the set can contain “0X947JP” in the SerialNumber 

slot corresponding to the relationship set connection.  However, because the minimum 

participation constraint is zero, we satisfy the constraint even if no relationships have the 

“0X947JP” object in the SerialNumber slot. 

We can add more sophistication to participation constraints.  One way is to allow 

for an “expected” or “average” participation value.  This would indicate how many times 

we expect to find a given object appearing in the slot for the relationship tuples.  For 

example, a participation constraint of 0:1.2:* would indicate that while an object may 

appear zero or more times, on average it appears in 1.2 tuples in the relationship set.  An 

expected constraint can provide good information for a ValueMapper to make its 

decisions, such as whether to infer a particular relationship.  Although OSMX supports 

the use of expected participation values, it does not require it. 

Another extension to participation constraints is constraint refinement.  This is 

expressed with an arrow notation after the main participation constraint: 0:*->0:1 is a 

typical example.  The 0:1 indicates that the constrained object’s participation is limited 
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within the set of relationships connected to a primary object of interest.  Refined 

participation constraints are useful for relationship sets with an arity of 3 or more. 

3.4 Generalization and specialization 

OSM permits us to define generalization-specialization relationships between 

object sets.  These express the “is-a” notion: a Cat is a Mammal.  In this example, 

Mammal is the generalization and Cat is the specialization.  In terms of set theory, the 

specialization set of objects is a subset of the generalization set of objects. 

An object set may have multiple generalizations, multiple specializations, or both.  

OSMX prohibits circular generalization-specialization, since object sets involved in such 

a structure are by definition identical sets, and can thus be modeled as a single object set. 

Specializations inherit the data frame definitions of their generalizations.  They 

can also add their own value and keyword phrases.  Furthermore, we allow 

specializations to override named value and keyword phrases inherited from ancestor 

object sets.  This is done simply by creating a new phrase with the same hint as the 

phrase to be overridden, and providing a new phrase definition.  We can also suppress an 

inherited phrase by overriding it with an empty definition.  We do not, however, support 

mutation of an inherited phrase into a new definition based on the old; all inherited 

phrases are either overridden entirely or retained as-is. 

While the old Ontos system had some support for data frame inheritance, it was 

limited to the immediate parent of the specialized object set.  Our new reference 

implementation provides full inheritance from all ancestors of an object set. 
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3.5 Data instances 

OSMX provides support for a data instance, a collection of objects and 

relationships that fit the ontology.  We use data instances to store the results of data 

extraction alongside the ontology structure.  This enables us to refer back to those objects 

and relationships during subsequent extraction activities and use those values and 

associations to further aid the extraction and mapping process. 

OSMX defines not only relationships but also relationship connections, which 

link relationships to objects in much the same way as relationship set connections link 

relationship sets to objects sets. 

OSMX also supports associating confidence values with objects and relationships.  

Algorithms might use these values to establish threshold criteria for acceptance of objects 

and relationships into a data instance.  How these values are calculated is left up to 

implementations of the framework to define. 
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4 OntosEngine: an OSMX-based implementation 

This chapter discusses the design and implementation of a working data-

extraction system that adheres to the architecture defined by the data-extraction 

framework.  We mean for this new system to serve as a point of reference for future 

implementations or enhancements, so we refer to the system as the reference 

implementation of the framework.  This term should not be confused with the term 

framework definition, which is the set of classes, interfaces, and other architectural 

components that establish the parameters of the framework itself, without respect to any 

particular implementation. 

We do not intend this chapter as a comprehensive explanation of how the 

reference implementation is designed, but we do dwell in detail on some of the more 

interesting and complex parts of the system.  We pay particular attention to the 

implementation of ValueMapper, as this is where the central knowledge inference occurs.  

First, however, we consider the workings of the system’s other modules. 

The implementation we describe below is written in Java, compatible with version 

1.4 of the Java virtual machine. 

4.1 General implementation details 

We start with the highest level of functionality, the DataExtractionEngine.  

Figure 10 shows a high-level flow diagram of the reference implementation.  We extend 

this abstract class, creating the OntosEngine class, in order to implement the 

doExtraction() method.  We also implement initialization code that allows command-
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line parameters or entries in a configuration file to specify the implementation modules’ 

subclasses at runtime.  

After loading all necessary modules, the doExtraction() method instantiates an 

OntosExtractionPlan and invokes its execute() method.  As its name suggests, 

OntosExtractionPlan extends the ExtractionPlan abstract class.  For our 

implementation of ExtractionPlan, we define a straightforward algorithm for 

performing the extraction.  Iterating over each Document returned by the 

DocumentRetriever module, we obtain a document tree from the available 

DocumentStructureParser or retain the original Document if no parser module was 

specified in the initialization phase.  For each Document in the document tree, we remove 

markup with the available ContentFilter and then perform value recognition and 

Application
OntologyDocument

Retriever
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Figure 10: Architecture of the new Ontos system under the framework. 
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mapping with the appropriate components.  Finally, we write the results to a human-

readable HTML file. 

We now examine each of these general steps in a bit more detail. 

4.1.1 Retrieval, parsing, and filtering of documents 

LocalDocumentRetriever is a DocumentRetriever that locates and retrieves 

documents from a specified directory in the local filesystem.  From the directory, 

LocalDocumentRetriever can retrieve files whose names match a regular expression 

specified as an initialization parameter to OntosEngine.  Our reference implementation 

does not attempt any retrieval from online sources such as Web search engines. Figure 11 

shows part of a Web page that was saved locally and passed to the engine by the 

LocalDocumentRetriever.

 

Figure 11: Sample source obituary (names have been changed for privacy). 

Because our reference implementation mimics legacy Ontos in its focus on 

extraction from single- and multiple-record documents, we only depend on one 

DocumentStructureParser implementation, so no implementation of 

DocumentStructureRecognizer is necessary.  Indeed, even an implementation created 
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merely for reference purposes would be too trivial to be instructive.  In any case, the 

DocumentStructureRecognizer interface is small enough (defining only two methods) 

and well enough documented that a competent programmer will have no problem 

implementing the interface despite the lack of a reference implementation. 

A fellow research group member furnished our DocumentStructureParser 

reference implementation, FanoutRecordSeparator.  True to its name, the parser 

anticipates that the document has a shallow multi-record structure, and divides the 

document into sub-documents accordingly.  It is possible for the 

FanoutRecordSeparator to return a single-node document tree, in which case the 

engine treats the tree as a single-record document rather than a multi-record document 

with no records [WE04]. 

Our present focus for extraction is on HTML documents, which contain a 

considerable amount of markup extraneous to the data-extraction process.  We therefore 

provide an HTMLFilter implementation of ContentFilter.  It essentially serves as an 

Adapter [GHJV95] for a preexisting DEG utility that strips out unwanted HTML.  This 

exemplifies how we can incorporate existing code into the framework as well as writing 

original implementations. 

In total, these modules (LocalDocumentRetriever, FanoutRecordSeparator, 

and HTMLFilter) prepare a document for value recognition and mapping to the ontology. 
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4.1.2 Recognizing values 

At this point in processing, the framework requires an ontology.  We use the 

ontology showing in Figure 12, representing the domain of obituaries.  (Arrows 

indicating how the relationship set names should be read are omitted to simplify the 

diagram; the direction is outward from the primary object set.) 

Our reference implementation of ValueRecognizer is called DataFrameMatcher, 

reflecting our choice of OSMX (with its data frames) as the ontology language.  This 

module locates the recognition rules specified by each data frame and applies them to the 

input text.  The matcher identifies all substrings in the text that match the recognition 

rules and, for each such substring, constructs a MatchedText object that records the 

matched substring, its starting and ending character positions (in the context of the 

Figure 12: Obituaries ontology. 
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filtered document), and the URI of the Document from which it was extracted.  A 

MatchedText object also maintains a status attribute, indicating whether the match has 

been accepted, rejected, or not yet processed by the ValueMapper.  These MatchedText 

objects are stored with the rule that they matched, preserving information vital to the 

operation of the ValueMapper.  Figure 13 depicts the functionality of 

DataFrameMatcher. 

 

MatchedText

Document: http://...
Value: November 9, 1923
StartPos: 128
EndPos: 143
Status: Accepted

Born November 9, 1923 to... 

Figure 13: Operation of DataFrameMatcher.   

4.1.3 Producing output of data instance 

We provide an OntologyWriter subclass called ObjectRelationshipWriter 

that produces a human-readable hierarchical list of objects and relationships in each data 

instance stored with the input ontology.  The output format is HTML, which suits our 

present purposes since we intend humans and not computers to process the results in our 

reference implementation.  Figure 14 is an example of the output our implementation 

generates.  Despite its orientation towards human readability, the logic in 
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ObjectRelationshipWriter can easily be adapted to generate machine-friendly XML 

output. 

Note that the legacy Ontos 

system produces its output in the 

form of SQL statements: DDL 

(CREATE TABLE) for generating 

the model structure, and DML 

(INSERT) for generating the data 

instance.  Although this is not 

essential functionality for our 

reference implementation, the 

flexibility of our framework makes 

it a straightforward matter to create 

an OntologyWriter 

implementation built to emit the 

model structure and data in SQL. 

Figure 14: Sample output of OntologyWriter. 

DeceasedPerson osmx3113
•has DeceasedName Sandoval, Ernesto J.
•has DeathDate October 7, 2004
•has BirthDate November 9, 1923
•has Age 63
•DeceasedPerson has Relationship to RelativeName 

•RelativeName Agullar Sandoval
•Relationship daughter

•DeceasedPerson has Relationship to RelativeName 
•RelativeName Lalo Sandoval
•Relationship brother

•DeceasedPerson has Relationship to RelativeName 
•RelativeName Rosa Cordova
•Relationship daughter

•DeceasedPerson has Relationship to RelativeName 
•RelativeName Ernesto J. Sandoval
•Relationship daughter

•DeceasedPerson has Relationship to RelativeName 
•RelativeName Larry Sandoval
•Relationship son

•has Funeral osmx3131
•has FuneralTime 7:00
•has FuneralAddress 174 East 900 South
•has FuneralDate 10/9/2004

•has Interment osmx3147
•has IntermentAddress La Puente, New Mexico

•has Viewing osmx3261
•has BeginningTime 6:00
•has EndingTime 10:00
•has ViewingAddress 372 East 100 South

4.2 ValueMapper implementation 

This section discusses our implementation of ValueMapper, which is the most 

complex part of the extraction system (and a primary reason for creating this new 

framework, due to the difficulty of extending the legacy version of Ontos).  The module’s 

task is to infer a set of mappings between extracted values (the MatchedText objects) and 

object sets in the ontology.  Each mapping is realized as a lexical object.  ValueMapper 

must also infer the existence of nonlexical objects and relationships between objects.   
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Not every MatchedText object will necessarily become a lexical object; nor will 

the ValueMapper implementation infer an object or relationship wherever an object set or 

relationship set exists.  In fact, a key problem for the ValueMapper to solve is how to 

decide when to generate an object or relationship.  Our implementation employs various 

heuristics to solve this problem. 

4.2.1 HeuristicBasedMapper 

Because a set of heuristics lies at the core of the ValueMapper implementation, 

we name the module HeuristicBasedMapper.  This module delegates much of the 

mapping work to a set of auxiliary classes that implement the heuristics, but it retains 

some processing logic.  Most notably, before it applies any of the other heuristics, it first 

invokes one fundamental heuristic: elimination of subsumed and overlapping matches. 

The algorithm at the heart of this heuristic considers subsumption or overlap to 

occur only if the matches involved belong to the same data frame, since within the data 

frame itself we have all the information we need to make a determination of whether to 

retain a conflicting match.  We do not consider subsumption or overlap to occur across 

data frames, since these matches represent equally plausible claims on the same substring 

of the text, and we do not yet have enough information about the object sets owning the 

data frames to decide which match should prevail. 

When the algorithm determines that matches overlap, it is a simple matter to 

decide which match to prefer: accept the longer match.  When the matches are of the 

same length, we prefer the earlier occurring match.  For example: 

• “embankment” is preferred over the subsumed “bank” since it is longer; 
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• “green house” is shorter than “house plants” (overlapping on the substring “house”), 

so we prefer the latter; 

• “green house” occurs earlier than “house plant” (which is the same length), so we 

prefer the former. 

This introduces an inference bias toward longer matches, but we believe that in most 

data-extraction applications this bias is justified since it preserves more information.  

Besides, our framework provides a means to override this functionality if one should 

wish to test a different bias. 

After the application of this preliminary heuristic, HeuristicBasedMapper 

invokes a mapping algorithm centered in the ContextualHeuristic class, which 

extends the abstract class MappingHeuristic. 

4.2.2 MappingHeuristic 

MappingHeuristic is a base class for the various heuristic classes involved in our 

mapping algorithm.  Methods addObject() and addRelationship() handle the 

association of objects and relationships, respectively, with the appropriate source 

document reference within the current data instance.  Another method, bindObject(), 

creates an object’s connection to a relationship based on the corresponding relationship 

set connection.  Finally, setOntologyIndex() and getOntologyIndex() manage 

references to a cached and indexed view of the ontology to maintain reasonable 

performance in terms of both memory footprint and processing speed. 

 55



4.2.3 ContextualHeuristic 

ContextualHeuristic embodies the bulk of the logic for the mapping algorithm.  

Its primary method is processContextualGroup().  The method operates on an object 

set and a matching context, which is a contiguous region of text from the document 

represented by a set of candidate value and keyword matches associated with the data 

frames of the ontology (see Figure 15).  (This is similar to the data record table concept 

of legacy Ontos.)  The overall contract of the method is to generate an object for the 

object set together with its child relationships and objects, based on the structure defined 

by the ontology and using the evidence provided by the matching context.   

When invoked with the top-level primary object set and a matching context 

spanning the entire document or record, the result of processContextualGroup() is a 

Original text

DeathDate:Phrase_5

passed away October 7, 2004 at his home surrounded by his family. 

BirthDate:Phrase_1

FuneralDate:Phrase_5

ViewingDate:Phrase_5

IntermentDate:Phrase_5

DeathDate:Phrase_1

BirthDate:Phrase_5

FuneralDate:Phrase_1

ViewingDate:Phrase_1

IntermentDate:Phrase_1

DeathDate:Keyword_1

Matching context

Figure 15: Visualization of a matching context. 
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primary object with all of its associated properties, as represented by subordinate objects 

connected directly or indirectly (through other connected objects) to the primary object 

via relationships.  If constraints defined in the ontology are not satisfied, however, the 

method discards the generated object and returns a null value. 

Figure 16 shows a representation of the object tree that results from invoking 

processContextualGroup().  The inputs to the method are the DeceasedPerson object 

set for an obituaries ontology, and a matching context containing keyword and value 

phrase matches recognized by the data frames of the ontology. 

Figure 16: Result of processContextualGroup() for DeceasedPerson object set. 

A key insight here is that in each invocation of this method, we focus on a 

particular object set that, for the current context, acts as a primary object set at the local 

level—even if it is not designated as the top-level primary object set for the entire 

document.  This paradigm enables us to traverse the ontology recursively, starting with 

DeceasedPerson osmx3113
•has DeceasedName Sandoval, Ernesto J.
•has DeathDate October 7, 2004
•has BirthDate November 9, 1923
•has Age 63
•DeceasedPerson has Relationship to RelativeName 

•RelativeName Agullar Sandoval
•Relationship daughter

•DeceasedPerson has Relationship to RelativeName 
•RelativeName Lalo Sandoval
•Relationship brother
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Figure 17: Steps of processContextualGroup(). 
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the top-level primary object set and working outward, invoking 

processContextualGroup() each time we seek to generate an object for another object 

set.  (To avoid infinite recursion, no relationship set may be traversed more than once.)  

This recursion also allows our algorithm to traverse an arbitrarily complex ontology with 

a relatively small amount (a few hundred lines) of implementation code.  Figure 17 shows 

the essential steps of the algorithm. 

The general flow of the method is: 

1. Generate an object for the object set (but do not add it to the data instance yet). 
2. If object set is lexical: 

a. Find the best value phrase match for this object set within the current matching context. 
b. If a value phrase is found in the matching context: 

i. Store information about the match (such as the matched text and location) with the 
object. 

ii. Add the object to the data instance and return it. 
c. Otherwise, discard the generated object and return null. 

3. Determine which object sets to process next. 
a. Find all relationship set connections for this object set, except those already visited for this 

object (prevents infinite cycle). 
b. Determine an order for processing the connections. 

4. Process the child object sets. 
a. Invoke the appropriate heuristic (singleton, functional group, nested group, nonfunctional), 

based on the nature of the relationship set and the participation constraint on the connection, 
to obtain one or more relationships. 

b. If relationships were generated, bind the object to each relationship. 
5. If object is nonlexical:  

a. If not bound to any child relationships, discard it. 
b. Otherwise add it to the data instance. 

6. Return the generated object if it was not discarded. 
 

We emphasize three important points of this algorithm.  First, to determine the 

best value phrase match in Step 2a, we define a method called 

findBestLexicalMatch().  This method is designed to be easily overridden if one 

wishes to redefine what “best match” means.  Our reference implementation defines the 

best match to be the one closest to a keyword if keywords are present; otherwise, it is the 

earliest occurring match.  Second, we define a method for Step 3b called 

compareRelSets() that provides an ordering for the relationship set connections 

associated with the local primary object set to guide ontology traversal.  We implement it 
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as a protected method in order to provide an easy way to override the ordering, should the 

existing order prove to be sub-optimal.  Third, we note that Step 4a is the recursive step; 

the four heuristics based on the relationship set connection all invoke the 

processContextualGroup() method of ContextualHeuristic at some point in their 

code. 

We now examine the heuristics based on the connecting relationship set’s 

structure and participation constraints.  ContextualHeuristic invokes these to obtain 

relationships to bind to the generated object.  Figure 18 depicts the different types of 

relationship set connection structures that correspond to these heuristics. 

 

0:*

0:1

0:*

0:*

0:*

0:1

0:*

0:*

Figure 18: Relationship set connection types: singleton, nonfunctional, functional-group, 
nested-group. 

SingletonHeuristic 

For binary relationship set connections where the local primary object set 

participation constraint has a maximum of one, ContextualHeuristic invokes 

SingletonHeuristic.  In this case, we expect to infer at most a single relationship for 

the primary object within the present matching context.  (As a notational aside, we 
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observe that the terms singleton, nonfunctional, functional-group, and nested-group 

strictly describe only relationship set connections within the context of a local primary 

object set.  However, we take the liberty of applying these terms to the connected 

relationship set and relationships belonging to it, recognizing that this use is meaningful 

only in terms of the local primary object set.)  In relational terms, a singleton relationship 

usually represents a simple attribute of the primary object, such as DateOfBirth for a 

particular Person.  Singletons may, however, include complex objects that themselves 

have child objects. 

SingletonHeuristic is perhaps the simplest of the connection-based heuristics.  

Since we only expect to generate at most one binary relationship for the connection, we 

simply base our decision to generate a relationship on whether the object set at the 

opposite end of the relationship set generates an object from the matching context.  By 

recursively invoking the ContextualHeuristic on the opposite object set using the 

same matching context, we obtain an object for the best candidate match if one is to be 

found, and either generate the relationship or exit without generating it depending on the 

result of the call.  Figure 19 shows the operation of SingletonHeuristic on a matching 

context with several candidate matches.  The candidate matches (depicted in the top part 

of the diagram) become accepted (circled value at bottom) or rejected (marked by an “X” 

in the diagram) for the singleton mapping.  At most one object is chosen from the 

available candidates within the relevant context. 
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ID#10209 (DeceasedPerson)

? ? ? ? ?

name_1 name_2 name_3 name_4 name_5

MatchingContext

ID#10209 (DeceasedPerson)

name_1 name_2 name_3 name_4 name_5

Figure 19: Operation of SingletonHeuristic. 

NonfunctionalHeuristic 

NonfunctionalHeuristic infers relationships for connections that qualify as 

nonfunctional.  A nonfunctional relationship set connection links the local primary object 

set to a binary relationship set with a max-many participation constraint.  Furthermore, 

the opposite object set must have no other connections to the ontology than the 

nonfunctional relationship set, and therefore must be lexical (otherwise it would not 

generate an object from the text, having no evidence to justify generating one).  In 

relational-model terms, think of a nonfunctional relationship set as defining a simple 

multi-valued attribute for the local primary object set. 

Because of the max-many participation constraint, we can generate multiple 

relationships for the local primary object, even within a single matching context.  

Because we are limited to binary relationships, the max-many constraint implies that 

multiple objects can be generated from the opposite object set.  Thus our 
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NonfunctionalHeuristic code repeatedly invokes ContextualHeuristic on the 

opposite object set until it can generate no more objects from the matching context.  The 

code then creates a relationship for each generated object, binds the opposite object to its 

corresponding relationship, and returns the set of relationships.  Figure 20 shows how 

NonfunctionalHeuristic operates.  The top portion of the diagram shows the state of 

the system before the heuristic is invoked; the job is to map the candidate values 

(indicated by question marks) to the local primary object if the values are deemed 

acceptable to participate in such a mapping.  This determination is made by the recursive 

call to ContextualHeuristic. 

ID#60445 (Car)

? ? ? ? ?

feature_1 feature_2 feature_3 feature_4 feature_5

MatchingContext

ID#60445 (Car)

feature_1 feature_2 feature_3 feature_4 feature_5

Figure 20: Operation of NonfunctionalHeuristic. 
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FunctionalGroupHeuristic 

The FunctionalGroupHeuristic operates on binary relationship sets that strike 

a balance between the singleton and nonfunctional structures.  Like nonfunctionals, it 

features a max-many participation constraint on the local primary object set side; like 

singleton, it places no restriction on the connectivity of the opposite relationship set.  The 

algorithm is similar to that of NonfunctionalHeuristic, since the max-many constraint 

governs its operation, so we will not revisit that logic here.  We observe, however, that 

functional groups are complex objects that themselves contain child objects, and 

therefore the extracted objects are nonlexical.  Since this structural difference can 

influence an extraction strategy, we distinguish this heuristic from 

NonfunctionalHeuristic.  Figure 21 illustrates FunctionalGroupHeuristic.  In this 

diagram, the nonlexical Address objects appear above the lexical objects (Street, City, 

State, Zip, Country) that denote their presence within the text.  Recursive calls to 

ContextualHeuristic determine whether the lexical objects provide enough evidence 

to support generating a nonlexical object.  If sufficient evidence exists, the recursive call 

generates and returns the nonlexical object, and FunctionalHeuristic maps it to the 

local primary object. 
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ID#24601 (Employee)

? ? ? ?

address_1
<street, 
city, state, 
zip, country>

address_2
<street, 
city, state>

address_3
<state, 
country>

address_4
<street, 
city, state, 
zip, country>

MatchingContext

ID#24601 (Employee)

address_1
<street, 
city, state, 
zip, country>

address_2
<street, 
city, state>

address_3
<state, 
country>

address_4
<street, 
city, state, 
zip, 
country>

Figure 21: Operation of FunctionalGroupHeuristic. 

 

NestedGroupHeuristic 

NestedGroupHeuristic operates on all relationship sets with an arity greater 

than two.  It includes those for which the primary-side participation constraint is max-one 

or max-many. 

NestedGroupHeuristic is the most complicated of the connection-based 

heuristics.  We divide its operation into two main cases: first, when the primary-side 

constraint is max-one; and second, when it is max-many. 

Max-one scenario.  The max-one constraint on the local primary object set side 

allows us to disregard participation cardinalities on the other connections in the 

relationship set, because we can only discover at most one relationship.  In this case, we 

invoke ContextualHeuristic once on each opposite object set for the input context, and 

generate a relationship if and only if each invocation resulted in a generated object.  
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Because the order in which the opposite object sets are passed to 

processContextualGroup() may be significant, the algorithm for determining this 

order is encapsulated in an auxiliary class so it may be overridden if needed. 

Max-many scenario.  We now consider the more complex case where the local 

primary object set connection has a max-many participation constraint.  An example of 

such a structure is shown in Figure 22. 

The depicted structure shows the top-level primary object set, DeceasedPerson, 

connected to a ternary relationship set.  Since the relationship set arity is greater than two, 

the structure is a nested group. 

DeceasedPerson

Relationship RelativeName

DeceasedPerson 
has Relationship 
with Relati veName

0:*

1:* 1:*->1

Figure 22: Example of a max-many nested group structure. 

The participation constraint on the top-level primary object set connection is 0:*, 

indicating that a DeceasedPerson object may appear in multiple relationship tuples for 

this nested group relationship set.  In other words, a DeceasedPerson object may be 

related to potentially many combinations of Relationship and RelativeName objects. 
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The constraint on the Relationship connection indicates that an extracted 

Relationship must participate in the relationship set, but may do so many times.  Hence, a 

DeceasedPerson may be related to multiple RelativeNames under the same Relationship. 

The constraint on the RelativeName connection indicates that at the model level, a 

RelativeName may appear potentially many times in connection with DeceasedPerson 

and Relationship objects, but at a local or refined level (i.e., for a particular 

DeceasedPerson object), it may only appear once. 

With a max-many constraint on the local primary object set connection, it is 

possible to create multiple relationships.  The important question is, how many do we 

create?  We generally do not desire to create a relationship for every possible n-way 

binding among the extracted objects.  Instead, we assume a contextual nesting structure 

(hence the nested group name).  In this approach, each object in the relationship is 

associated with a region of the text; this region is the object’s context.  Objects that are 

permitted to participate in multiple relationships have broader contexts, within which the 

max-one objects’ contexts are nested.  See Figure 23 for an example of this idea, based 

on the sample nested group structure depicted earlier. 

Survived by his daughters Rosa, Rita, Tina; sons Larry, Ramon; sister Veva

nested contexts

Figure 22: Example of nested contexts. 
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The diagram shows part of the context for a DeceasedPerson object.  Within this 

context are three nested sub-contexts, one for each Relationship object found (daughter, 

son, sister).  Inside each of these contexts are contexts pertaining to the max-one 

RelativeName objects: Rosa, Rita, Tina, Larry, Ramon, and Veva.  If we think of each 

context as a node in a tree, with nested contexts appearing as child nodes, then we have a 

tree with the local primary object as the root and the max-one objects as leaves.  Each 

distinct path from root to leaf yields a relationship for the nested-group relationship set.  

Using the example from the above diagram, the nested contexts determine the tree shown 

in Figure 24.  The tree in turn defines relationships that can be generated, which are 

shown in Figure 25. 

ID#10209 (DeceasedPerson)

sister

Rita

son

Larry

daughter

VevaRosa Tina Ramon

Figure 23: Tree implied by nesting contexts. 
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son Larry

ID#10209 (DeceasedPerson)

son Larry

ID#10209 (DeceasedPerson)

daughter Rosa

ID#10209 (DeceasedPerson)

Tina

ID#10209 (DeceasedPerson)

daughterdaughter Rita

ID#10209 (DeceasedPerson)

son Ramon

ID#10209 (DeceasedPerson)

son Ramon

ID#10209 (DeceasedPerson)

Veva

ID#10209 (DeceasedPerson)

sister

We assume that each object’s context begins from the location of the extracted 

object and continues until the next extracted object of the same object set, or the end of 

the parent context.  To determine which object set defines the next deeper nesting level, 

we search for the earliest appearing extractable object belonging to those max-many 

object sets that have not yet defined a nesting level.  This is a heuristic for which one can 

imagine various exceptions (such as if the max-many object tends to appear at the end of 

a context rather than the beginning), yet it performs well for expressions where earlier 

concepts factor over a subsequent list of concepts, as in the “sons Larry and Ramon; 

sister Veva” example. 

Figure 24: Relationships generated for nested group. 
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5 Evaluation of OntosEngine 

We have claimed that our framework provides a flexible approach to building a 

data-extraction system, one that permits a wide variety of strategies and algorithms to be 

tested and compared while reducing the amount of coding required to achieve this.  

Although such a claim is not fully testable within the scope of this thesis, as it would 

involve creating a large number of different implementations to explore the limits of the 

framework and attempting to measure the increase in programming efficiency gained by 

use of the framework, we can assess whether the framework is sufficient for supporting 

data extraction, and leave the question of how flexible it is to future experience.  

Moreover, past experience with other frameworks gives us a high degree of confidence in 

our approach.  Consequently, we have provided a reference implementation of the 

framework to demonstrate that it is complete enough to cover the main processes of data 

extraction.  This gives us a point of comparison with legacy Ontos.  It is important to 

show that use of the framework does not negatively impact extraction results, and our 

reference implementation of the framework does indeed achieve comparable, if not 

better, results for the extraction process. 

We wish to show that the framework allows implementation of a system that is 

capable of achieving at least the same degree of accuracy in extraction as the legacy 

Ontos system.  We demonstrate this by performing extraction using the same set of 

documents and the same ontology on both our new implementation and the legacy 

system, then comparing the results. 

The subject domain for this experiment is obituary listings such as those 

commonly found in local newspapers.  Our corpus is a set of recent obituaries from two 
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different newspapers—the Salt Lake Tribune and the Arizona Daily Star—containing a 

total of 25 individual obituaries.  The ontology used for both experiments is the same, 

with the exception that for our implementation we represent the ontology with OSMX, 

and for the legacy system we represent it with the OSML language.  The representational 

differences between these languages do not influence the accuracy of the extraction.  We 

do, however, make use of keyword affinity, which is solely supported in OSMX and thus 

affects only the accuracy of the new system.  We do this to demonstrate one of the new 

features of OSMX. 

In our experiment, we measure precision and recall with respect to the lexical 

object sets from the ontology.  Our basis for comparison is a set of manually derived 

extraction results based on the judgment of the human experimenter.  We score correct 

(exact and partial) matches, false positives (incorrect mappings), and false negatives 

(missed mappings).  Exact matches are defined as identical values appearing in the same 

mapping for both automatic and manual results; for partial matches, the automatically 

extracted value may be a substring of the manual result, or it could subsume or overlap 

the manual result.  For example, a partial match might contain only “July 21,” where the 

human would extract “July 21, 1993,” or vice versa.  In contrast, an exact match would 

contain “July 21, 1993” for both automatic and manual extraction processes.  If the 

values are entirely different, such as “August 23, 1979” and “July 21, 1993,” we consider 

them to be different mappings and record a false positive.  We record as a false negative 

the failure to extract any sort of mapping (exact, partial, or incorrect) to correspond with 

one extracted manually. 
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Counting matches for nonlexical object sets entails a bit more difficulty, since 

there is no inherent lexical representation to use as a basis of comparison between 

mappings.  Thus we simply count the occurrences of nonlexical objects in the test 

mappings and compare that number to the mappings in the control instance.  If numbers 

are equal, precision and recall for that object set are both 100%.  If they are unequal, one 

of precision or recall will be 100% but not both.  It may seem counterintuitive to say that 

two nonlexical objects match each other even if the associated lexical objects wholly fail 

to match, but this is the only way to match nonlexical objects to each other without over-

counting lexical mismatches.  For example, if we compare two Funeral objects, one with 

a FuneralDate of “6 June 1999” and the other with a FuneralDate of “8 Sept 1999,” we 

count a mismatch on FuneralDate.  If we also count a mismatch on Funeral because the 

objects’ lexical children disagree, the FuneralDate mismatch has effectively been counted 

twice, skewing the results.  Therefore, to avoid disproportionately counting mismatches, 

we allow any nonlexical object to be identified for counting purposes with any other 

nonlexical object of the same object set.  In the example above, we consider the two 

Funeral objects to match, but count the mismatch at the FuneralDate level. 

However, we now have a problem when counting matches for lexical object sets 

that are functionally dependent on a nonlexical object set.  For example, the lexical 

DeceasedName object set is functionally dependent on the nonlexical DeceasedPerson 

object set.  When counting matches for DeceasedName, do we include those that were 

extracted for a false-positive DeceasedPerson object?  For our experiment, we have 

chosen to omit functionally dependent mappings from our calculations when a nonlexical 

object is falsely generated.  We do this because we perceive a strong correlation of the 
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nonlexical-lexical relationship with the rules for implication in propositional logic: the 

nonlexical mapping corresponds to the antecedent, and the lexical object to the 

consequent.  If the antecedent is false, no statement can be made about the falsity of the 

consequent; similarly, a false mapping at the nonlexical level prevents us from making a 

determination as to the quality of the dependent lexical mapping.  We therefore exclude 

the lexical mappings from our tally when they are extracted due to a falsely generated 

nonlexical object. 

Our results appear in Table 1.  The left-hand column lists the object sets of the 

ontology.  The following columns list the total correct matches (with partial matches in 

parentheses), the total false positives, total false negatives, precision, and recall for each 

of the two newspapers from which the input obituaries came.  The rightmost columns 

give the overall precision and recall numbers.  Precision and recall figures count both 

exact and partial matches as correct matches.  Each row of the table gives the results for 

the legacy Ontos system (topmost numbers, in normal type) and the new Ontos system 

(bottommost numbers, in boldface). 

For half of the object sets, the new system performs as well as or better than the 

legacy system.  Of the remaining nine object sets, the new system performs worse for 

seven, and for the other two it equals or excels the legacy system’s performance in either 

recall or precision, but not both. 
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Salt Lake Tribune 9-Oct-2004 Arizona Daily Star 9-Oct-2004 Overall 

Object Set C(P) FP FN R% P% C(P) FP FN R% P% R% P% 
DeceasedPerson 15 

15 
2 
2 

0 
0 

100 
100 

88 
88 

9 
10 

0 
0 

1 
0 

90 
100 

100 
100 

96 
100 

92 
93 

DeceasedName 8 (7) 
8 (7) 

0 
0 

0 
0 

100 
100 

100 
100 

5 (4) 
6 (4) 

0 
0 

0 
0 

100 
100 

100 
100 

100 
100 

100 
100 

Age 5 
5 

7 
4 

0 
0 

100 
100 

42 
56 

3 
4 

6 
5 

6 
6 

33 
40 

33 
44 

57 
60 

38 
50 

DeathDate 12 
11 

3 
4 

3 
4 

80 
73 

80 
73 

8 
9 

1 
1 

1 
1 

89 
90 

89 
90 

83 
80 

83 
80 

BirthDate 13 
11 

2 
4 

2 
4 

87 
73 

87 
73 

2 
2 

5 
6 

1 
1 

67 
67 

29 
25 

83 
72 

68 
57 

Funeral 11 
11 

4 
4 

0 
0 

100 
100 

73 
73 

8 
8 

2 
2 

0 
0 

100 
100 

80 
80 

100 
100 

76 
76 

FuneralDate 8 
7 

3 
4 

3 
4 

73 
64 

73 
64 

4 
6 

1 
0 

4 
2 

50 
75 

80 
100 

63 
68 

75 
76 

FuneralTime 7 
5 

3 
5 

4 
6 

64 
46 

70 
50 

4 
3 

3 
5 

4 
5 

50 
38 

57 
38 

58 
42 

65 
44 

FuneralAddress 5 (2) 
6 (2) 

4 
3 

3 
2 

70 
80 

64 
73 

2 
1 

5 
7 

2 
3 

50 
25 

29 
13 

64 
64 

50 
47 

Interment 1 
1 

12 
10 

0 
0 

100 
100 

8 
9 

0 
0 

7 
9 

0 
0 

100 
100 

0 
0 

100 
100 

5 
5 

IntermentDate 1 
1 

0 
0 

0 
  0 

100 
100 

100 
100 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

100 
100 

100 
100 

IntermentAddress 1 
1 

0 
0 

0 
0 

100 
100 

100 
100 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

100 
100 

100 
100 

Viewing 10 
7 

47 
5 

0 
3 

100 
70 

18 
58 

4 
5 

18 
2 

1 
0 

80 
100 

18 
71 

93 
80 

18 
63 

ViewingDate 1 
0 

4 
6 

0 
1 

100 
0 

20 
0 

0 
0 

0 
1 

5 
5 

0 
0 

0 
0 

17 
0 

25 
0 

BeginningTime 5 
4 

1 
2 

5 
6 

50 
40 

83 
67 

4 
4 

0 
1 

1 
1 

80 
80 

100 
80 

60 
53 

90 
73 

EndingTime 6 
2 

0 
2 

4 
8 

60 
20 

100 
50 

4 
3 

0 
1 

1 
2 

80 
60 

100 
75 

67 
33 

100 
63 

ViewingAddress 2 
0 

1 
4 

2 
4 

50 
0 

67 
0 

0 
1 

3 
3 

4 
3 

0 
25 

0 
25 

25 
14 

33 
14 

Relationship/ 
RelativeName 

75 (32) 
67 (31) 

196 
191 

28 
38 

77 
72 

35 
34 

58 (35) 
69 (37) 

94 
78 

45 
32 

67 
77 

50 
58 

73 
74 

41 
43 

Table 1: Results of extraction of obituaries from two newspapers.  Boldface numbers indicate results 
from the new Ontos system; normal font indicates legacy Ontos results.  Columns are: C(P) = Correct 
(Partial); FP = False Positive; FN = False Negative; R% = Percent recall; P% = Percent precision. 

 

By examining the operation of the systems, we have identified reasons why for 

some object sets our new system underperforms in comparison to the legacy system.  The 

results for DeathDate and BirthDate illustrate one such reason.  The new system is 

designed to follow the heuristic of choosing the value match that is closest to a 

corresponding keyword.  This heuristic was enunciated in [ECJ+99], but it turns out that 

the legacy system does not quite accomplish this, instead selecting the value match 
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nearest to the earliest found keyword—even if a later keyword-value pair were closer to 

each other than those found.  In some of the obituaries used for our experiment, we find 

phrasing such as “died at home in Park City, Utah, early on the morning of Thursday, 

October 7, 2004,” while later in the obituary might be a reference to a relative who “died 

on July 7, 1991.”  In such a case, the legacy system will serendipitously make a correct 

decision to choose the earlier keyword-value pair, while the new system in strict 

adherence to the heuristic will incorrectly choose the later pair.  We observe that because 

this heuristic is modularly implemented in the 

ContextualHeuristic.getBestLexicalMatch() method, it is easy to change the new 

system to follow the behavior of the legacy system in this regard, if one should wish to 

favor that behavior over the heuristic specification. 

Another reason for the new system’s underperformance is evident in the numbers 

for the Viewing object set and its dependent object sets, ViewingDate, BeginningTime, 

EndingTime, and ViewingAddress.  The legacy system significantly outperforms the new 

system in recall and precision for all of these object sets, except for the precision of the 

nonlexical Viewing object set.  Essentially, the legacy system is extracting so many 

Viewing objects that its precision suffers but its recall is high.  Further, in counting 

matches for the dependent object sets, we have excluded those that belong to false-

positive Viewing objects.  This causes the legacy system to show much better results, 

since it has more chances to pick up the correct values in connection with a Viewing than 

the new system does.  In contrast, the new system has much better precision with respect 

to Viewing (63% compared to 18%) than the legacy system does, but suffers from only 

having a few chances to correctly link the dependent lexical objects with the nonlexical 
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Viewing objects.  This behavior too can be modified, at the expense of the high precision 

it currently enjoys. 

In summary, the two systems perform at roughly the same level, with the major 

differences stemming from a few intentional departures by the new system from the rules 

followed by the legacy system.  Some of these differences are magnified due to the 

counting methods employed that exclude from the count lexical objects that are 

dependent on false-positive nonlexicals.  Generally, though, the performance between the 

two systems is remarkably similar, considering the very different algorithms at the heart 

of the systems.  Where performance degrades in the new system, the code is modular 

enough to allow poorly performing code to be optimized or replaced without impacting 

the rest of the system.  This bears out our claim that the framework is sufficient to 

support the task of data extraction at the same level as the legacy system, while providing 

a much more capable supporting code infrastructure. 
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6 Future work 

Our efforts offer three dimensions of possibilities for future improvement.  One 

dimension is the wide variety of customized modules that can be developed and plugged 

into the framework.  For example, one might write a DocumentRetriever that invokes 

the Google APIs to take advantage of the search engine’s existing capabilities for 

retrieval from the Internet.  Another possibility is a ValueMapper that uses natural-

language processing techniques to aid its decision making processes.  Or, we might 

envision an ExtractionPlan that dynamically governs the flow of the extraction process 

based on the number and type of documents retrieved, the data found, and the degree to 

which the extracted data satisfies the constraints of the ontology.  These are only a few of 

the many variations that can be developed under our framework.  In this chapter, we 

examine how the framework can be extended in this manner.  

The second dimension is the improvements that might be made to the specific 

implementation we have provided as a proof of the framework’s applicability.  These are 

enhancements that would build upon the existing Ontos approach rather than introducing 

entirely new ways of performing data extraction. 

The third dimension is the avenues of future research made practical by our work.  

Two such avenues are declarative extraction plans and automated precision and recall 

computation. 

6.1 Extending the framework 

This section examines how the current framework code can serve as the basis for 

development of new modules for a data-extraction system. 
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6.1.1 Creating implementations and subclasses 

Two primary ways exist for new modules to be written for the framework.  First, 

entirely new classes can be created, implementing the interfaces defined by the 

framework.  An example of this is our Ontos implementation written for the framework: 

all of the modules were written “from scratch” under the constraints imposed by the 

interface definitions.  As another example, if one wished to develop a means to store the 

extracted data in a database, one could provide a new implementation of 

OntologyWriter to create the data model and generate the appropriate INSERT 

statements. 

The second way to provide new code is to inherit the functionality of existing 

modules and override only those methods that are necessary to accomplish the desired 

result.  This strategy is best if the functionality to be added represents a variation on 

existing capabilities, rather than a wholly different approach.  For example, one might 

simply subclass HTMLFilter in order to adjust the types of markup that are stripped out, 

rather than re-implement the entire class. 

Of course, one can directly modify an existing module’s code to add functionality, 

if one has access to the source code.  However, taking this approach is a much more 

permanent modification to the module and prevents one from switching back to the 

original feature set in order to perform side-by-side comparisons of performance or to 

establish a basis of reference for a series of experiments. 

6.1.2 Plugging into existing components 

A developer who has created new modules to be plugged into the framework must 

be able to instruct the system to use the new code, hopefully without having to modify 
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the system source code or overwrite the original module class files.  Our framework 

provides a way to specify which classes supply the module implementations at runtime, 

via a text-based configuration file containing attribute-value pairs in the format 

attribute=value.  Switching module implementations is as straightforward as 

modifying an entry in this file.  Further, the location of this file can be provided to the 

main engine class as an argument, so a developer can also switch implementations by 

simply pointing the engine to an alternate configuration file.  Figure 26 shows an 

example of the contents of the configuration file. So long as the specified classes 

correctly implement the appropriate framework interfaces, they can in this manner be 

incorporated into an existing data-extraction system subscribing to the framework with 

minimal effort required. 

documentRetriever=edu.byu.deg.ontos.LocalDocumentRetriever 
ontology=URL_to_OSMX_file 
valueRecognizer=edu.byu.deg.ontos.DataFrameMatcher 
retrievalPath=URL_to_input_document_directory 
retrievalPattern=obituaries-test.html 
valueMapper=edu.byu.deg.ontos.HeuristicBasedMapper 
outputFile=pathname_of_output_OSMX_file 
ontologyWriterOutputFile=pathname_of_output_HTML_file 
ontologyWriter=edu.byu.deg.ontos.ObjectRelationshipWriter 
documentStructureParser=edu.byu.deg.framework.DSP.fanout.FanoutRecordSeparator 
extractionPlan=edu.byu.deg.ontos.OntosExtractionPlan 

Figure 25: Sample DataExtractionEngine configuration file. 

6.2 Enhancements to the new Ontos implementation 

In addition to developing new modules to plug into the framework, another area 

of possible future work is enhancement of the Ontos implementation provided for this 

thesis.  This implementation, while capable of the same performance as the old Ontos 

system, can be improved in many ways.  We discuss a number of these possibilities 

below. 
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6.2.1 Additional OSM support 

One area in which Ontos can improve is in its adherence to the OSM 

specification.  While Ontos supports many of the OSM constructs, there are certain 

features that it does not yet support, and there are some constraints that it ignores.  We 

discuss a few of the possible ways that Ontos can better support the OSM specification. 

Model-wide constraints 

Ontos attempts to satisfy certain constraints specified in the input ontology, 

particularly the participation constraints.  However, it does so only at a localized level; 

the constraints are only honored within the context of a local primary object.  

Participation constraints are not necessarily honored across a data instance; an object 

(particularly a lexical object) might participate in several relationships across the data 

instance even though the relationship set’s maximum participation constraint is one.  For 

example, nothing prevents a single SocialSecurityNumber lexical value from appearing 

in relationships with two different USCitizen primary objects, even if the model 

constrains its maximum participation cardinality to one. 

Furthermore, model-wide constraints such as object set cardinality  or 

generalization-specialization constraints are not repected by Ontos, and there is no 

validation logic to make sure that the data instance generated by the mapping algorithm is 

valid with respect to the constraints of the ontology.  Implementation of such logic and 

enforcement of these constraints during the extraction phase can enable researchers who 

wish to reason about the data to rely upon the ontology as a fully controlling specification 

for the data instances. 
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Canonicalization 

The ability to reason about the data extracted by Ontos is affected by the data type 

of the extracted data.  Currently, Ontos represents all extracted data as strings, but OSMX 

allows data frames to specify an alternate data type for the extracted values, such as 

Integer, URL, or Date.  Since Ontos extracts only text strings, in order to use extracted 

values as any other data type we must provide a means to convert the values from their 

string representation. 

OSMX provides support for this via the defaultCanonicalizationMethod 

attribute of a data frame.  This attribute gives the name of a method that takes a string as 

input and returns a value of the data type specified by the data frame.  For instance, a 

method toInteger(String) might be appropriate for canonicalizing string values that 

represent integers.  OSMX also supports associating individual value phrases with 

different canonicalization methods, in case the phrases match different units of measure 

or representations that are better handled by different conversion methods.  The reference 

implementation does not use this feature, but we foresee situations where 

canonicalization can be potentially useful. 

6.2.2 Improvements to heuristics 

Another way to improve Ontos is to enhance the capabilities of the heuristic-

based mapping algorithm.  We suggest three specific features that can provide the 

algorithm with more information to make its decisions: use of confidence values, support 

for average or expected participation constraint cardinalities, and employment of 

negative-indicator keywords.  This is by no means an exhaustive list. 
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Confidence values 

Currently, the heuristic-based mapping algorithm makes binary decisions about 

whether to accept or reject a candidate value.  It might be valuable to assign to each 

proposed mapping a number that represents the likelihood or confidence that the mapping 

is correct.  This would allow for mappings to be compared and would also allow for 

probabilistic calculation of the overall likelihood of a data instance’s correctness. 

OSMX supports assignment of confidence values to value phrases and keyword 

phrases.  For example, consider a Date object set for which two value phrases are 

defined.  The first matches dates in Month DD, YYYY format; the second matches dates in 

YY format.  Using confidence values, we could assign a confidence of 0.99 (on a scale 

from 0.0 to 1.0) to the first phrase since matches are highly likely to be actual date values, 

while the second phrase might merit only a confidence of 0.3 since a two-digit number 

might only represent a date value 30% of the time. 

Using confidence values in this manner can open the way to employing machine-

learning algorithms as well: assigning confidence values to keyword and value phrases 

based on actual ratios from previously extracted data completes the feedback cycle that is 

essential to machine learning.  This is a potentially rich area of future research. 

Expected participation cardinality 

One of the key sub-problems addressed in the heuristic-based algorithm arises 

when attempting to infer relationships for an extracted object.  In this situation, the 

problem is deciding which of the relationship set connections that attach to the current 

object set should be followed next.  This is an important problem because choosing the 
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wrong processing order can lead to values being mapped to the wrong object set because 

it was processed earlier than the correct one. 

With expected participation constraint values, we can implement a heuristic that 

chooses the relationship set connection with the greatest difference between the expected 

participation value and the actual number of objects extracted for that relationship set 

connection so far.  For example, if we have two connections with expected participation 

values of 2.3 and 3.8, and have extracted one object for the first and three objects for the 

second, we would choose the first connection to process next since we are farther away 

from satisfying the expectation stated by the first connection than the second. 

Similar to confidence values, expected participation cardinalities can be used in 

machine-learning algorithms, since they can be dynamically calculated based on the 

participation cardinalities encountered in previously extracted data instances. 

Negative-indicator keywords 

Keyword matches are used in the extraction algorithm as positive indicators of the 

correctness of a value match.  For example, the keyword “born” is a strong indicator of 

the correctness of the mapping of the nearby “January 24, 1955” value match to the 

object set BirthDate. 

It is logical to propose a counterpoint to this feature, whereby keyword matches 

may serve as negative indicators of the correctness of a value match.  An example is the 

negative keyword “fax” for a HomePhone object set, since we would wish to exclude fax 

numbers from being mapped to the object set.  Combined with confidence values, 

negative-indicator keywords would serve to bolster the accuracy of the mapping 
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algorithm by screening out matches that are obviously inappropriate for the object set in 

question. 

6.3 Avenues of future research 

Our development of the framework and the OSMX specification has opened 

doors to areas of research that were impractical under the legacy system.  We do not 

attempt to address all such avenues here, but we examine two of these as representative: 

declarative extraction plans and automated computation of precision and recall. 

6.3.1 Declarative extraction plans 

An example of possible future research is support for declarative extraction plans.  

This feature would permit the extraction algorithm to be specified by a declarative script, 

rather than a hard-coded imperative Java method.  Since declarative scripts can be 

generated either manually or by some automated process, the extraction algorithm 

becomes much more manipulable, which opens doors to extraction engines that adapt 

their behavior dynamically according to the current environment and inputs. 

The ExtractionPlan abstract class does not specify whether extraction plans are 

imperative or declarative, so we can presumably replace the imperative implementation 

with a declarative module.  Under such a scenario, the ExtractionPlan implementation 

would need at least to provide a method to locate or store the declarative script before the 

execute() method is invoked, since execute() is defined to take no arguments.  The 

details of parsing and processing the declarative instructions are entirely up to the 

implementor to handle.  Access to other modules in the extraction framework is available 

via the getInitializationParameter() method of the DataExtractionEngine 
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reference required by ExtractionPlan’s constructor.  No code needs to be changed in 

the DataExtractionEngine class or any other module in order to implement and 

integrate this functionality. 

6.3.2 Automated computation of precision and recall 

Tallying precision and recall figures from a data-extraction technique is a 

laborious process even on relatively small datasets.  Because the legacy system output 

extracted data to a relational database, a considerable amount of metadata used to answer 

accuracy questions (such as extraction location, which informs us whether we have 

extracted a partial value or an incorrect value) was unavailable after the extraction 

process completed.  This made it difficult to assess accuracy except by manual inspection 

of the results. 

Since extracted data is now stored inline with the ontology in OSMX, together 

with essential metadata linking the extracted values back to their origins in the source 

documents as well as to the elements of the ontology to which they map, it is much more 

feasible to perform an automated comparison of extraction results.  A human would tag a 

document or corpus to provide a reference data instance, and then the automated 

extraction would take place.  With both data instances stored alongside the ontology, an 

automated recall/precision computer can simply take the ontology as input, traverse the 

object-relationship trees within the data instances, compare values, and report the results.  

Without such automation, a human has to attempt to correlate each piece of data from the 

test data instance with those in the reference data instance—an extraordinarily time-

consuming and error-prone process even when only one test data instance needs to be 

assessed.  By reducing the cost of comparing data instances, automating precision and 
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recall calculations can make possible extraction experiments at a much larger scale than 

what has heretofore been practical. 
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7 Conclusion 

We have proposed, designed, and provided a reference implementation for a 

framework for ontology-based data extraction.  This framework offers improved 

modularity and extensibility to support further data-extraction research.  We have 

demonstrated that the framework is sufficiently developed to support a re-implementation 

of Ontos that preserves the quality of legacy Ontos while also using modular heuristics 

code. 

Additionally, we have designed an XML Schema, OSMX, that provides an XML 

storage definition for OSM ontologies.  Newly added features give OSMX greater 

capabilities for representing data-extraction ontologies and the instance data extracted for 

them.  A library of JAXB-generated Java classes supports programmatic access to 

OSMX-compliant documents.  This library allows Ontos, OntologyEditor, and future 

tools to exchange ontologies and data, expanding the research possibilities while 

minimizing the need for specialized information interchange protocols or file formats. 

The products of these efforts provide a solid basis for continued research on 

ontology-based data extraction.  Future researchers will be better able to focus on specific 

problems in the field while maintaining confidence that plugging their code into the 

existing system and comparing the results can rapidly validate their work.  The value of 

this thesis is in future research opportunities made possible or practical because of the 

framework. 
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9 Appendix 

This appendix provides references to documentation on the systems and libraries 

developed for this thesis, since the documentation is too large to publish directly in this 

appendix. 

9.1 Framework documentation 

The framework API documentation may be found at 

http://www.deg.byu.edu/api/framework/index.html.  

9.2 OSMX documentation 

9.2.1 XML Schema definition 

The current OSMX definition, which is an XML Schema instance, may be found 

at http://www.deg.byu.edu/xml/osmx.xsd. 

9.2.2 Documentation for implementation subclasses 

Documentation for the classes used to represent OSMX structures in Java is 

located at http://www.deg.byu.edu/api/osmx/index.html. 

9.3 OntosEngine documentation 

API documents for the reference implementation of the framework is located at 

http://www.deg.byu.edu/api/ontos/index.html. 
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