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ABSTRACT

The resource allocation hypothesis predicts that reproductive
activity suppresses immunocompetence; however, this has
never been tested in an endemic disease system with free-rang-
ing mammals. We tested the resource allocation hypothesis in
wild deer mice (Peromyscus maniculatus) with natural exposure
to Sin Nombre Virus (SNV). Immunocompetence was esti-
mated from the extent of swelling elicited after deer mice were
injected with phytohemagglutinin (PHA); swelling is positively
correlated with immunocompetence. After livetrapping deer
mice, we determined their reproductive state and SNV infection
status. Males were more likely to be seropositive for SNV than
females (37% vs. 25%) and exhibited 10% less swelling after
PHA injection. The swelling response of females differed with
both infection status and reproductive condition. There was
also a significant infection status by reproductive condition
interaction: nonreproductive, seropositive females experienced
the least amount of swelling, whereas females in all other cat-
egories experienced significantly greater swelling. The swelling
response of males differed with both SNV infection status and
reproductive condition, but there was no significant infection
status by reproductive condition interaction. Seronegative
males elicited greater swelling than seropositive males regardless
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of reproductive status. In contrast to the resource allocation
hypothesis, these results do not indicate that reproductive ac-
tivity suppresses immunocompetence of deer mice but rather
suggest that chronic SNV infection reduces immunocompe-
tence. Sex-based differences in swelling indicate that SNV mod-
ulates the immune system of female deer mice differently than
it does that of males, particularly during reproduction. We
propose that differences in resource allocation between males
and females could result from inherent sex-based differences
in parental investment.

Introduction

The resource allocation hypothesis proposes that expenditures
associated with maintenance functions (e.g., growth, locomo-
tion, and immune system function) are dynamic and at times
may be compromised to satisfy more immediate functions
(Sheldon and Verhulst 1996; Sinclair and Lochmiller 2000; Nel-
son et al. 2002). Thus, during periods when the energetic de-
mands of reproduction are primary, other maintenance func-
tions, including immunocompetence, will be compromised,
and animals may become more susceptible to disease (Festa-
Bianchet 1989; Gustafsson et al. 1994). For example, laboratory
studies have demonstrated that several species of small passer-
ine birds expend roughly the same amount of energy when
subjected to an immune challenge as during egg production
(Martin et al. 2003). Similar patterns have been reported in
mammals. For example, captive white-footed mice (Peromyscus
leucopus) have been shown to shift their allocation of resources
away from reproductive functions when mounting an immune
response; their testis mass was significantly reduced after sub-
cutaneous injection with an immune challenge agent (Derting
and Compton 2003). Although the hypothesis that reproducing
mammals have compromised immunocompetence is pervasive,
this idea has not been empirically tested in natural populations
of mammals exposed to native disease agents. We evaluated
this hypothesis in wild populations of deer mice (Peromyscus
maniculatus) exposed to Sin Nombre virus (SNV).

Deer mice are the primary reservoir and vector for SNV.
Secondary reservoirs include other Peromyscus species (Otteson
et al. 1996) and Neotoma lepida (Dearing et al. 1998). SNV
infection in deer mice is chronic; the virus is maintained in
the liver, lungs, kidney, and spleen for the life of the deer mouse
(Netski et al. 1999). Although this infection is not fatal (Netski
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et al. 1999), infected hosts experience an increase in concen-
trations of proinflamatory cytokines (Herbst et al. 2001), and
in response to this chronic infection, deer mice continue to
produce SNV-specific antibodies throughout their lifetime
(Netski et al. 1999). Thus, SNV presents a constant immune
challenge. Over time, persistent activation of the immune sys-
tem may reduce the ability of deer mice to respond adequately
to other types of infections (Klasing and Barnes 1988; Réberg
et al. 1998; Borkow et al. 2000).

To measure general immunocompetence of deer mice, we
used phytohemagglutinin (PHA), a rapidly acting (<12 h) im-
mune challenge agent. PHA results in profuse cytokine infil-
tration of local tissue (Martin et al. 2004, 2006) and has been
used in numerous ecological studies to assess lymphocyte ac-
tivity in a variety of animal species (Goto et al. 1978; Williams
et al. 1979; Derting and Compton 2003; Martin et al. 2004).
Because lymphocytes are effectors of the cell-mediated immune
response, PHA has been used to indirectly assess an animal’s
cell-mediated immunocompetence. The degree of swelling that
follows PHA injection is positively correlated with the level of
cell-mediated immune response. Animals that are fully im-
munocompetent produce the greatest amount of swelling,
whereas animals that are immunosuppressed produce less swell-
ing (Bize et al. 2005; Greenman et al. 2005). In general, im-
munocompetence is defined as an individual’s ability to develop
an immune response to infection or disease (Hecht and Shiel
2003). Thus, in this study, immunocompetence is defined as
the ability of the animal to mount an immune response to
PHA.

Our primary objective was to test the resource allocation
hypothesis in wild deer mice in different reproductive states
that had been exposed to SNV, using PHA to gauge cell-
mediated immunity. We first validated the efficacy of PHA in
generating immune responses in laboratory-bred deer mice
and then applied this technique to wild populations. We com-
pared differences in immune response between SNV-sero-
positive and seronegative wild deer mice that were either re-
productive or nonreproductive. The resource allocation
hypothesis predicts that reproductive animals should be less
immunocompetent, as evidenced by smaller immune re-
sponses after PHA injection, than nonreproductive animals.
Furthermore, because chronic infection is thought to depress
the immune system, we predicted that SNV-seropositive deer
mice would mount a smaller immune response, as indicated
by reduced swelling after PHA injection, than seronegative
deer mice. Finally, we predicted that nonreproductive deer
mice who were also SNV seronegative would mount the
greatest immune response after PHA challenge, whereas deer
mice who were both reproductive and SNV seropositive were
expected to mount the smallest immune response.

Methods
Laboratory Validation of PHA Technique

Adult (>3 mo of age), nonreproductive, laboratory-bred deer
mice were obtained from the Peromyscus Genetic Stock Center
(Columbia, SC) and were held under standard conditions at
the University of Utah for the duration of the laboratory study.
Because a range of PHA doses have been used on a variety of
species, we first determined the appropriate dose for deer mice.
To this end, we randomly assigned individuals to low-dosage
or high-dosage PHA treatment groups. Each treatment group
contained nine males and nine females. Before injection with
PHA, we measured diameters of left and right hind limbs to
the nearest 0.01 mm using a handheld Starrett micrometer
(Athol, MA). The low-dosage treatment group was injected in
the musculature of the ventral side of the left hind limb with
0.1 mL of a 0.04 mg/mL solution of crystalline PHA (Sigma
L9017) diluted in phosphate-buffered saline (PBS). The high-
dosage treatment group was injected with 0.1 mL of a 0.08 mg/
mL PHA solution. As an internal control, the right hind limbs
of all deer mice were injected with an identical volume (0.1
mL) of PBS. Hind limb diameters were measured 3, 6, 12, and
24 h after injection.

Field-Based Immunocompetence Study

In May 2004, deer mice were livetrapped (Sherman Traps) at
four study sites near the West Tintic Mountains in the Great
Basin Desert of central Utah (Juab County). Each site consisted
of a web design of 148 traps (Mills et al. 1999) distributed over
3.14 ha. Vegetative communities of each site were dominated
by big sagebrush (Artemisia tridentata) and Utah juniper (Juni-
perus osteosperma).

After capture, deer mice were weighed, sexed, and uniquely
marked with numbered ear tags. Deer mice weighing less than
14 g were eliminated from the study because these animals are
considered to be juveniles (Borucki et al. 2000; Calisher et al.
2001). Reproductive condition of individual deer mice was de-
termined by physical examination; females were considered re-
productive if they were visibly perforate, pregnant, or lactating,
whereas males were considered reproductive if they were visibly
scrotal. To determine the SNV infection status of animals, we
collected ~ 0.2 mL of blood from the retro-orbital sinus of all
deer mice. Blood was immediately stored on dry ice and later
in a —80°C freezer until being tested for SNV antibodies. After
blood collection, diameters of the left and right hind limbs of
all deer mice were measured to the nearest 0.01 mm. Left hind
limbs of wild deer mice were injected with 0.1 mL of a 0.08
mg/mL PHA solution, whereas their right hind limbs were
injected with 0.1 mL of PBS. After PHA injections, deer mice
were held in live traps in a shaded, isolated outdoor area for
at least 6 h before remeasurement of hind limbs. Hind limbs
were remeasured between 6 and 7 h after capture. Once final
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hind limb diameters had been determined, deer mice were
released at their locations of capture. In total, deer mice re-
mained in captivity for less than 8 h and were directly handled
for less than 10 min each. All personnel involved in trapping
and handling rodents took precautions for working with ani-
mals potentially infected with hantavirus (CDC 1995), and all
techniques used in the handling, capturing, and processing of
deer mice were approved by the Institutional Animal Care and
Use Committee at the University of Utah (05-03011).

Sin Nombre Antibody Detection

Enzyme-linked immunosorbent assays (ELISAs) were used to
screen deer mouse blood for immunoglobulin G (IgG) anti-
bodies to SNV. Because deer mice produce virus-specific IgG
antibodies continuously after infection with SNV, presence of
antibodies is a reliable indicator of SNV infection (Borucki et
al. 2000; Botten et al. 2003; Safronetz et al. 2006). In this pro-
cess, wells of polyvinyl chloride microtiter plates (Dynatech)
were coated overnight at 4°C with recombinant nucleocapsid
antigen diluted 1 : 2,000 in PBS. A nonhantavirus recombinant
antigen was used as a negative control. After incubation, un-
bound antigen was removed from wells by washing three times
with wash buffer. Deer mouse serums were heat inactivated by
placing in a 55°C water bath for 30 min. Heat-inactivated se-
rums were diluted 1: 100 in serum-dilution buffer containing
powdered nonfat milk, Tween 20, and 10x PBSinal:1:20
ratio. The diluted sera solution was added to the antigen-coated
wells, and plates were then incubated at 37°C for 60 min. Plates
were then washed three times with wash buffer (1:20 Tween
and 10 x PBS) and incubated at 37°C for 30 min with 100 uL
of ABTS Microwell Peroxidase Substrate solution (Kirkegaard
and Perry Laboratories; Borucki et al. 2000). Absorbance (405
nm) was recorded with a Versa Max Tunable Microplate Reader
(VWR International), and values >3 standard deviations from
those of the negative control wells contained on each plate were
considered positive for anti-SNV antibodies (Borucki et al.
2000). All steps in the heat activation of sera were performed
in a laminar flow hood in a BSL-3 facility at the University of
Nevada. The presence of SNV-specific antibodies in adults is
strongly correlated with active SNV infections; ELISA results
for SNV antibodies have a concordance of about 70% with the
presence of viral RNA in blood as determined by reverse-tran-
scriptase polymerase chain reaction (Rowe et al. 1995; Otteson
et al. 1996). The remaining 30% of seropositive animals in-
cludes adults with antibody titers too low for detection and/or
uninfected juveniles with maternal antibodies from SNV-
positive dams.

Statistical Analyses

To evaluate the possibility that left and right hind limbs of deer
mice were naturally different in size, we used paired #-tests to

compare differences in diameter between left and right hind
limbs before initial injections. We used repeated-measures
ANOVA to determine whether injection with PBS alone resulted
in hind limb swelling and whether male and female deer mice
differed in their response to PBS injection. In this model, hind
limb diameter was the dependent, repeatedly measured variable
and sex was the independent variable.

For the laboratory validation study, we used repeated-mea-
sures ANOVA to determine whether PHA-induced swelling dif-
fered between the high and low dosages of PHA or between
male and female deer mice across time intervals. In this model,
hind limb diameter was the dependent, repeatedly measured
variable, whereas sex, dosage, and interaction terms were the
independent variables. Differences between individual time in-
tervals were determined using least squares means comparisons,
with Bonferroni adjustments for multiple comparisons. Results
of these post hoc tests were used to determine the most ap-
propriate time interval to measure postinjection swelling in deer
mice held under field conditions.

To determine whether wild deer mice respond differently to
PHA injection than laboratory-bred deer mice, we used one-
way ANOVA for both males and females. PHA-induced swelling
was the dependent variable, and the habitat (laboratory or field)
was the independent variable.

To determine differences in the proportion of SNV-sero-
positive male and female deer mice, x* analysis was used. To
determine whether PHA-induced swelling differed between
males and females, a one-way ANOVA was used, with sex as
the independent categorical factor. Then, for both males and
females, independent two-way ANOVAs were used to deter-
mine whether PHA-induced swelling differed with reproductive
condition or SNV infection status. Differences between indi-
vidual categories were measured using least squares means com-
parisons with Tukey-Kramer adjustments for multiple com-
parisons. Differences in all statistical analyses were considered
to be statistically significant if o <0.05.

Results
Laboratory Validation of PHA Technique

We found no differences between the left and right hind limb
diameters of captive deer mice before injection (right = 3.05
mm vs. left = 3.13 mm; t,, = 146, P = 0.17). Injection with
PBS as an intra-animal control did not elicit a swelling response
in captive deer mice; their hind limb diameters did not change
over consecutive time intervals (F, ;; = 0.32, P = 0.87). Like-
wise, there was no difference in response to PBS injection be-
tween male and female deer mice (E ,, = 0.05, P = 0.90).
Therefore, we estimated PHA swelling response by subtracting
the diameter of the treatment limb before injection with PHA
from the treatment limb diameter after injection.

Deer mice produced considerable swelling in response to
PHA injection (within subjects: F, oc = 360.95, P<0.01). There
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was no significant difference in the amount of hind limb swell-
ing between the low- and high-dose injections of PHA
(E s = 0.69, P = 041) across time intervals. Female deer mice
produced a more than 28% greater swelling response than males
(females = 0.23 mm vs. males = 0.18 mm; F ,, = 12.04, P<
0.01), and there were no sex by dose interactions (F ;, =
040, P = 0.53), indicating that male and female deer mice had
similar responses to PHA concentrations. Differences in PHA-
induced swelling between male and female deer mice prompted
us to consider sex as a factor in the remainder of our statistical
analyses for the laboratory validation study.

The magnitude of swelling differed across time intervals in
both male (F 4 = 12.5, P<0.01) and female (F o = 19.9,
P<0.01; Fig. 1) deer mice. Hind limb diameters peaked 6 h
after PHA injection and at that time were significantly greater
than at the time of injection (male: ¢,, = 29.07, P< 0.01; female:
t,, = 36.20, P<0.01).

Field-Based Immunocompetence Study

Over 6 d (888 trap nights), we captured 112 unique adult deer
mice—>51 females and 61 males. There was no difference be-
tween the left and right hind limb diameters of wild deer mice
(left = 2.98 mm vs. right = 2.96 mm; t,,, = 0.64, P = 0.53).
Injection with PBS as an intra-animal control did not elicit a
marked swelling response in wild deer mice; their hind limb
diameters were unchanged from the initial to the final mea-
surement (t,,, = 0.39, P = 0.70). Of 112 deer mice captured,
IgG antibodies against SNV were detected in 36 individuals,
indicating that overall SNV seroprevalence was about 32%. SNV
seroprevalence was higher among male deer mice than among
females (males = 37% vs. females = 25%; x> = 60.02, P<
0.01). The SNV prevalence we observed is similar to that re-
ported in other deer mouse populations in the same geographic
region (Otteson et al. 1996; Douglass et al. 2001; Kuenzi et al.
2001; Mackelprang et al. 2001). Nearly 71% of deer mice sam-
pled were reproductive, including 36 females (71%) and 43
males (70%).

As in the laboratory trials, there were differences in swelling
between male and female deer after following injection with
PHA. Females produced a 12% greater swelling response than
males (females = 0.28 mm, males = 0.25 mm; F ,, = 4.29,
P = 0.04). Because of these sex-based differences, we consid-
ered male and female deer mice independently in the remainder
of our statistical analyses.

The PHA swelling response of female deer mice differed with
both infection status (F ,, = 11.99, P<0.01) and reproductive
condition (F ,; = 8.20, P<0.01). There was also a significant
infection status by reproductive condition interaction
(E 4 = 23.56, P<0.01). Nonreproductive, seropositive females
experienced the least amount of swelling, whereas females in
all other categories (reproductive, seropositive; nonreproduc-
tive, seronegative; reproductive, seronegative) had significantly

0.30+
0.254
€
£ /l = \1\
o 0.204
c
§ /,l ------ .I\\\
@ 0.15- ! \
e / \\
£ 4 ,’ A\
z / \
E 0.104 'l
T i (]
/
0.054 / \i
0.00 — T T T T
0h 3h 6h 12 h 24 h
Time Interval
— Females »=aMales

Figure 1. Change in hind limb diameter of laboratory-bred male and
female deer mice (Peromyscus maniculatus) in response to injection
with phytohemagglutinin (PHA). Hind limb diameters were measured
with a handheld micrometer before PHA injection and then 3, 6, 12,
and 24 h postinjection. Hind limb diameter peaked 6 h postinjection
and at that time was significantly different from values at the time of
injection.

greater (P<0.05) and similar amounts of swelling (P> 0.05;
Fig. 2). The PHA swelling response of male deer mice differed
with both SNV infection status (F s, = 306.77, P<0.01) and
reproductive condition (F ,, = 10.08, P<0.01), but there was
no significant infection status by reproductive condition inter-
action (F . = 0.09, P = 0.77). Seronegative males elicited
greater swelling than seropositive males regardless of repro-
duction status (P<0.01; Fig. 3).

Comparison of Laboratory and Wild Deer Mice

Comparisons of swelling between captive and wild deer mice
indicated that deer mice in the field elicited greater swelling
than laboratory deer mice. Wild females had 22% greater swell-
ing than laboratory-bred females (0.28 + 0.01 vs. 0.23 = 0.01
mm; F = 9.56, P<0.01), whereas the swelling of wild male
deer mice was 39% greater than that of laboratory-bred male
deer mice (0.25 = 0.01 vs. 0.18 = 0.01 mm; E ,, = 15.95, P<
0.01).

Discussion

Our primary objective was to test the resource allocation hy-
pothesis in wild deer mice in different reproductive states with
natural exposure to SNV. We predicted that reproductive deer
mice or those infected with SNV would mount a smaller im-
mune response than nonreproductive or uninfected individuals,
as gauged by swelling response after PHA injection. Below, we
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Figure 2. Mean change in hind limb diameter (% SE) of wild female
deer mice (Peromyscus maniculatus) 6 h after injection with phy-
tohemagglutinin). Deer mice were grouped into four categories based
on their reproductive condition and Sin Nombre virus infection
status: nonreproductive/seronegative (NR/—); reproductive/seroneg-
ative (R/—); nonreproductive/seropositive (NR/+); reproductive/se-
ropositive (R/+). Means labeled with different letters are statistically
significant (o < 0.05). Sample sizes for each group were as follows:
NR/— = 11; R/— = 28; NR/+ = 4 R/+ = 8.

discuss the efficacy of PHA in generating immune responses
in deer mice, the patterns of immunocompetence that we ob-
served in wild populations, and the implications of these find-
ings in the context of the resource allocation hypothesis.

Efficacy of PHA in Deer Mice

Our results demonstrate that PHA is effective in generating a
measurable swelling response in deer mice, a species in which
this technique has not been previously used. We found that
maximal swelling occurred in a relatively short period of time
(6-12 h), which is in contrast to several published studies in
birds that typically measure swelling 24 h after PHA injection
(Smits et al. 1999; Granbom et al. 2004; Haussmann et al. 2005).
That the immune response generated by PHA injection occurs
within a short time frame underscores the utility of this tech-
nique and makes the use of PHA particularly attractive for
studies where maintaining captive animals infected with bio-
hazardous agents such as SNV is not possible.

Sex-Based Differences in Immunocompetence

The results of our study are consistent with the hypothesis that
males have lower immunocompetence and therefore may be

more susceptible to infection with SNV. Male deer mice were
generally less immunocompetent than females; they experi-
enced less swelling in response to PHA challenge in both lab-
oratory and field settings. Furthermore, SNV seroprevalence of
males was nearly 1.5 times greater than that of females. In
general, disease prevalence is often higher in males than in
females, including parasitic, bacterial, and viral infections
(Grossman 1985; Moller et al. 1998; Moreno et al. 2001). A
higher incidence of infection among males has been observed
in several strains of Hantavirus, including Sin Nombre, El Moro
Canyon, Puumala, and Seoul viruses (Weigler et al. 1996; Mills
et al. 1997; Bernstein et al. 1999). Laboratory studies report
that SNV is shed and transmitted less efficiently than other
hantaviruses, which suggests that infection with SNV may de-
pend on reduced immunocompetence of the host (Dohmae et
al. 1993; Botten et al. 2002). Our results support this prediction,
indicating that in the natural environment, reduced immu-
nocompetence of male deer mice may confer greater suscep-
tibility to SNV infection.

Differential Resource Allocation

In general, our results do not support the idea that reproductive
activity suppresses immunocompetence of deer mice but rather
indicate that a chronic SNV infection can reduce the ability of
the immune system to respond to additional challenges. Our
results show that there are no appreciable differences in PHA-
induced swelling between reproductive and nonreproductive
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Figure 3. Mean change in hind limb diameter (% SE) of wild male
deer mice (Peromyscus maniculatus) 6 h after injection with phy-
tohemagglutinin. Deer mice were grouped into four categories based
on their reproductive condition and Sin Nombre virus infection
status: nonreproductive/seronegative (NR/—); reproductive/seroneg-
ative (R/—); nonreproductive/seropositive (NR/+); reproductive/se-
ropositive (R/+). Means labeled with different letters are statistically
significant (o £0.05). Sample sizes for each group were as follows:
NR/— = 13; R/— = 25; NR/+ = 5; R/+ = 18.
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males with the same infection status, and we found similar
patterns for SNV-seronegative females. Although laboratory-
based studies have shown that hantaviruses do have an im-
mediate impact on deer mice survival (Hjelle and Yates 2001;
Yee et al. 2003), our results in wild deer mice counter this
interpretation: reduced immunocompetence associated with
SNV infection could render hosts more susceptible to other
pathogenic infections, which may directly limit their longevity
or fertility. It is noteworthy that the incidence of new hantaviral
infections among hosts varies across seasons and is generally
highest during periods coinciding with peak reproductive ac-
tivity (Klein et al. 2002). Higher incidences of SNV infection
may result from behavioral changes associated with reproduc-
tion, such as increased contact and aggression among conspe-
cifics (Childs et al. 1987; Glass et al. 1998; Hinson et al. 2004;
Klein et al. 2004), rather than from differences in immuno-
competence.

Sex-based differences in the PHA-induced immune response
of deer mice indicate that SNV modulates the immune system
of females differently from that of males, particularly during
reproduction. Reproductive female deer mice that were also
SNV seropositive appeared to have elevated cell-mediated im-
munocompetence; they experienced significantly greater swell-
ing in response to PHA injection compared to females that
were SNV seropositive but nonreproductive. It is important to
emphasize that PHA measures only one facet of an animal’s
immune system function (i.e., cell-mediated immunity) and
also that energetic costs of reproduction could differ between
females in different reproductive states (e.g., perforate, preg-
nant, lactating), which we did not identify. However, our results
are in stark contrast to our original prediction that reproductive
activity leads to a reduction in general immunity and suggest
that interpretation of the resource allocation hypothesis may
not be as straightforward as originally expected.

In its most basic interpretation, the resource allocation hy-
pothesis predicts that animals will shift energetic resources to
support functions that promote reproductive success; however,
the mechanisms that males and females use to promote repro-
ductive success are inherently different. For example, male deer
mice have very little parental investment and thus enhance
reproductive success by increasing mating frequency (Armitage
1986, 1998). As such, after conception, immunocompetence of
the father has little or no influence on the fitness of their
offspring. In contrast, female deer mice have much higher pa-
rental investment because they must care for offspring from
the time of conception until weaning. It is arguable that the
allocation of resources to immune function is of paramount
importance for reproductive females because their increased
immunocompetence from the time of conception until weaning
directly benefits the fitness of their offspring. Pregnant and
lactating mothers transfer antigen-specific antibodies both
transplacentally (Simister and Story 1997) and through milk
(Russel et al. 1999; Wilson and Butcher 2004), which protects

offspring from infection during the critical time between birth
and maturation of the juvenile immune system. Increased im-
mune function also benefits reproductive females during par-
turition because tissue damage incurred during the birthing
process increases risk for contracting opportunistic infections
that may interfere with a mother’s ability to care for offspring.
To counter the natural reduction in immunocompetence that
accompanies SNV infection, seropositive females may increase
immune function during pregnancy to reduce their suscepti-
bility to such opportunistic infections.

By definition, the resource allocation hypothesis presumes
that resources are limited; however, this may be difficult to test
under field conditions because of inherent difficulties in mea-
suring resource availability and expenditures. Despite this lim-
itation, results of our study offer a rare insight into the immune
system function of wild animals and represent the first empirical
test of the resource allocation hypothesis in an endemic disease
system. Our findings further the understanding of how SNV
is regulated in the natural host system and the mechanisms
that influence seasonal variations in the prevalence of zoonotic
disease.
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