
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2005-01-09

Dynamic Reconfigurable Machine Tool Controller Dynamic Reconfigurable Machine Tool Controller

Wei Li
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mechanical Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Li, Wei, "Dynamic Reconfigurable Machine Tool Controller" (2005). Theses and Dissertations. 235.
https://scholarsarchive.byu.edu/etd/235

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/235?utm_source=scholarsarchive.byu.edu%2Fetd%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

DYNAMIC RECONFIGURABLE MACHINE TOOL CONTROLLER

 by

Wei Li

A dissertation submitted to the faculty of

Brigham Young University

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Mechanical Engineering

Brigham Young University

April 2005

Copyright © 2005 Wei Li

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Wei Li

This dissertation has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date W. Edward Red, Committee Chair

Date C. Greg Jensen

Date Carl D. Sorensen

Date Robert H. Todd

Date Timothy W. McLain

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation of Wei Li in
its final form and have found that (1) its format, citations, and bibliographical style are
consistent and acceptable and fulfill university and department style requirements; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the graduate committee and is ready for sub-mission to the
university library.

Date W. Edward Red
 Chair, Graduate Committee

Accepted for the Department

 Matthew R. Jones
 Graduate Coordinator

Accepted for the College

 Douglas M. Chabries
Dean, Ira A. Fulton College of Engineering
and Technology

ABSTRACT

DYNAMIC RECONFIGURABLE MACHINE TOOL CONTROLLER

Wei Li

Department of Mechanical Engineering

Doctor of Philosophy

This dissertation presents a dynamic reconfigurable control strategy based on the

Direct Machining And Control (DMAC) research at Brigham Young University. A

reconfigurable framework is proposed which will allow a machine tool to be controlled

by a variety of applications and control laws. This Reconfigurable Mechanism for

Application Control (RMAC) paradigm uses a hierarchical architecture to configure a

mechanism into a device driver for direct control by an application like CAD/CAM. The

RMAC paradigm is one of a mechanism device driver assigned to each mechanism class

or model, and uses only the master model to control the mechanism. The traditional

M&G code language is no longer necessary since motion entities are passed directly to

the mechanism.

The design strategy of using dynamic-link libraries (DLL) to form a mechanism

device driver permits a mechanism to assume different operating configurations,

depending on the number of axes and machine resolution. For example, the machine can

perform as a material removal machine in one instant, and then, by loading a new device

driver, act as a Coordinate Measuring Machine (CMM). This strategy is possible because

RMAC is a software and networked-based control architecture. Both the CAD/CAM

planning software and the real-time control software reside on the same PC. The CAM

process plan can thus directly control the machine without need for process plan

decomposition into the forms supported by the controller.

The architectural framework is explained in detail and the methodology for

control software reconfiguration into a device driver is presented. For demonstration

purposes two device drivers are implemented on a prototype machine to demonstrate

feasibility and usefulness.

ACKNOWLEDGEMENTS

I would like to thank my graduate advisor, Dr. Red, for all his support and

patience through the past four and half years. I would like to thank the other members of

my graduate committee, Dr. Jensen, Dr. McLain, Dr. Sorensen, and Dr. Todd, for their

excellent support and encouragement. I would also like to thank the members of the

Direct Machining and Control research group at Brigham Young University.

I owe a special debt of gratitude to my parents and family. They have always been

there to offer their support and encouragement. I would like to express appreciation to all

of my friends who have given help and support during this endeavor.

I owe a special thanks to the English editors, Lynn Holm and Brooke Barker, for

their great effort to edit and refine my English writing.

Finally, I would like to thank Brigham Young University, especially the

department of Mechanical Engineering. I have learned greatly in the past four and half

years to be a better person. With the education I received from here, I have laid a good

foundation for my future professional career.

vii

TABLE OF CONTENTS

CHAPTER 1 Introduction... 1

1.1 Statement of the Problem.. 1

1.1.1 Dedicated Manufacturing Systems (DMS).. 2

1.1.2 Flexible Manufacturing Systems (FMS).. 2

1.1.3 Reconfigurable Manufacturing Systems (RMS).. 4

1.2 Direct Machining And Control (DMAC) ... 5

1.3 Reconfigurable Mechanism for Application Control (RMAC) 6

1.4 Research Objectives.. 10

1.5 Outline of Dissertation.. 12

CHAPTER 2 Literature Review.. 15

2.1 Related Research... 15

2.1.1 Open-architecture control (OAC) system .. 15

2.1.2 Reconfigurable control system .. 17

2.1.3 Reconfigurable robot system ... 20

2.1.4 Summary of the past research .. 21

2.1.5 STEP-NC ... 23

2.2 Direct Machining And Control (DMAC) ... 24

CHAPTER 3 RMAC Software Architecture .. 27

3.1 Traditional CNC Paradigm vs. RMAC Paradigm... 27

3.2 RMAC Control Schemes .. 30

3.2.1 Position and velocity control ... 30

3.2.2 Force or hybrid force/position control ... 35

3.3 RMAC Software Architecture .. 37

3.3.1 RMAC software modules and interfaces ... 37

viii

3.3.2 Control information flow in RMAC .. 41

CHAPTER 4 Methodology... 43

4.1 CAD/CAM ... 43

4.2 Device Driver Manager .. 49

4.2.1 Device tree ... 50

4.2.2 Device driver database... 51

4.2.3 Device driver object... 54

4.2.4 Interface to CAD/CAM.. 55

4.3 Device Driver ... 57

4.3.1 Device database ... 59

4.3.2 Device object ... 60

4.3.3 Device object example for a three-axis mill .. 64

4.3.4 Interface to CAD/CAM.. 66

4.3.5 Interface to the RMAC reconfigurable controller.. 68

4.4 RMAC_Config Interface ... 68

4.5 RMAC_CAM Interface ... 71

4.6 RMAC Reconfigurable Controller ... 72

4.7 Simulation System ... 75

4.8 New Sequence of Operations ... 76

CHAPTER 5 Prototype Implementation... 79

5.1 Control Hardware ... 79

5.1.1 Three-axis tabletop mill ... 79

5.1.2 Five-axis full-size Tarus mill ... 81

5.1.3 CMM.. 82

5.2 Control Software System ... 83

5.2.1 DMACXYZ tabletop mill device driver .. 83

5.2.2 TarusXYZCA five-axis mill device driver .. 84

5.2.3 CMM device driver.. 85

5.3 Simulation .. 87

CHAPTER 6 Experimental Results .. 89

6.1 Simulation ... 89

ix

6.2 Three-axis Tabletop Mill Experiment... 90

6.2.1 Direct reconfigurable machining application start-up 90

6.2.2 Machine search&selection dialog box ... 92

6.2.3 Jog dialog box .. 95

6.2.4 Experiments ... 96

CHAPTER 7 Conclusions and Recommendations ... 101

7.1 Conclusions... 101

7.2 Recommendations... 105

BIBLIOGRAPHY….... ... 107

APPENDICES ..……... 115

Appendix I .. 117

Appendix II ... 121

Appendix III.. 125

Appendix IV.. 131

x

LIST OF TABLES

Table 4-1 Device driver database.. 52

Table 4-2 Mechanism device database.. 61

Table 6-1 Direct reconfigurable machining process vs. conventional process. 99

xi

LIST OF FIGURES

Figure 1.1 Current DMAC architecture. .. 5

Figure 1.2 RMAC architecture... 8

Figure 2.1 Illustration of the flexible DMAC software structure............................... 26

Figure 3.1 Traditional CNC paradigm. .. 28

Figure 3.2 RMAC paradigm .. 30

Figure 3.3 RMAC controlling steps on position and velocity control 31

Figure 3.4 Hybrid force/position control.. 36

Figure 3.5 Software modules and interfaces in RMAC architecture. 39

Figure 3.6 RMAC reconfigurable controller architecture. ... 40

Figure 3.7 Device driver manager. ... 40

Figure 3.8 Device driver... 40

Figure 3.9 Flow of information between CAD/CAM and the RMAC controller. 42

Figure 4.1 UG and CATIA process plans. ... 44

Figure 4.2 Machine configuration user interface under UG and CATIA. 46

Figure 4.3 Selected machine tools under UG and CATIA... 47

Figure 4.4 Machine characteristics dialog box under UG and CATIA...................... 48

Figure 4.5 Simulation under UG and Delmia... 49

Figure 4.6 Device tree structure .. 51

Figure 4.7 The Device_Driver_Object data structure .. 54

Figure 4.8 The Device_Object data structure... 62

Figure 4.9 DMACXYZ device object. ... 65

Figure 4.10 COM-based plug-ins connected to the RMAC controller. 69

Figure 4.13 Reconfiguring the RMAC controller for a three-axis tabletop mill 73

Figure 5.1 Three-axis tabletop mill ... 80

xii

Figure 5.2 Five-axis full-size Tarus mill ... 81

Figure 5.3 Sugino V9 for CMM .. 82

Figure 5.4 DMACXYZ tabletop mill device driver .. 84

Figure 5.5 TarusXYZCA full-size mill device driver ... 85

Figure 5.6 CMM device driver .. 86

Figure 5.7 DMACXYZ simulation ... 88

Figure 5.8 TarusXYZCA simulation ... 88

Figure 6.1 Start up direct reconfigurable machining application 90

Figure 6.2 Direct reconfigurable machining tool bar .. 91

Figure 6.3 Machine search and selection dailog box .. 93

Figure 6.4 Search machines enabled ... 94

Figure 6.5 Selected machines .. 95

Figure 6.6 Tool jog dialog box .. 96

Figure 6.7 Direct machining a car headlight on the three-axis mill 98

Figure 6.8 GM headlight surface with process plan and the machined part 98

Figure 6.9 GM headlight surface with two process plans and the machined part ... 100

1

 1.1 Statement of the Problem

Historically, manufacturing systems have passed certain distinct phases. In each

phase, machine tools and their controllers are used by manufacturing enterprises quite

differently. The differences between machine tools and their controllers during these

manufacturing phases have been caused by differences in the available technologies and

the variation in customer demands. We are now at the embryonic stage of a revolutionary

new phase. Dedicated manufacturing systems are behind us and flexible manufacturing

systems show more and more limitations; manufacturing systems of the future will be

reconfigurable.

As technologies and customers demand greater efficiency and sophistication,

machine tools and their controllers used in current manufacturing systems must keep

pace. This dissertation will propose and develop a new reconfigurable direct machine tool

controller paradigm to address the problems existing in today’s machine tools and

controllers.

CHAPTER 1 INTRODUCTION

2

1.1.1 Dedicated manufacturing systems (DMS)

Dedicated machine tools and controllers were widely used among manufacturing

enterprises before the first Numerically Controlled (NC) machine was invented. During

that time, most machine tools and controllers were purely mechanical or

electromechanical systems. The major disadvantage of these systems was that each

machine tool and controller was tailored for a special product. As a result, the function of

a dedicated machine tool controller could not be changed or upgraded without great

difficulty. As customer demands for different products changed over time,

manufacturing enterprises often had to replace the dedicated machine tools and

controllers to accommodate this demand.

1.1.2 Flexible manufacturing systems (FMS)

The invention of Numerically Controlled [NC] machines and their subsequent

evolution (i.e., Computer Numerical Control [CNC], Distributed Numerical Control

[DNC]) dramatically changed manufacturing. CNC, together with Computer Aided

Design (CAD) and Computer Aided Manufacturing (CAM), have become core

technologies in flexible manufacturing systems (FMS). These technologies have

drastically changed the way parts are designed and manufactured. What was once a

manual process in dedicated manufacturing systems has largely been transformed into a

paperless digital process.

CNC machines and controllers have brought many benefits into manufacturing

systems by improving production rates, product quality, product accuracy, and machine

3

control accuracy. Meanwhile, the manufacturing flexibility has been increased over the

dedicated machines.

Despite the advantages of CNC systems, there are two distinct drawbacks in

current CNC machines and their controllers that limit the implementation of new

technologies.

1. Even though the first CNC machine tools were developed about fifty years ago,

CNC machine tools are still programmed today using the decades-old instruction

code called M&G code. M&G code is a collection of ASCII code generated from

a post-processor running independently from CAD/CAM software. It is formatted

specifically for a machine controller and different M&G variations are often not

interchangeable. To operate a CNC machine tool today, part geometries and their

process instructions contained within CAD/CAM systems must be decomposed

into the forms required for each machine’s controller. There is no direct link

between CAD/CAM software and machine tool controllers. The process of

generating M&G codes and feeding them into machine tool controllers is tedious,

inefficient, and error-prone. More importantly, this old process is a bottleneck to

further improving the CNC machining production rate, quality and flexibility.

2. Over the past half century, many machine tool companies have attempted to build

an ideal machine tool. But most machine tool controllers are proprietary and their

architecture is closed. Vendors may add different dialects and vendor-specific

syntax into the M&G codes; thus making their machining codes incompatible

with other controllers. Under this old paradigm, a single vendor would provide the

entire controller. Once these controllers were built and delivered to end

4

customers, it was extremely difficult for the customer or third party developers to

upgrade the machine tool with customized functionalities. The machine tool

controllers function as a black box; thus, end users have limited or no access to

their internal control algorithms or hardware.

1.1.3 Reconfigurable manufacturing systems (RMS)

Because of these problems, there has been a worldwide effort in the past decade,

from industry as well as from many research institutions, to propose developing a new

architecture for open control. This new wave of research is aimed at developing open-

architecture control systems that will enable modular and reconfigurable manufacturing

systems.

Koren [1] proposed a reconfigurable manufacturing system (RMS) in 1999. He

noted the deficiencies of existing CNC machine tools and controllers, which include lack

of interchangeability, modularity, extensibility, and reconfigurabililty. He predicted that a

new generation of reconfigurable machine tools, based on an open-architecture controller

with adjustable modular structure, will come into existence in the next decade and will be

the cornerstone of the RMS.

During the last few years, two enablers for reconfigurable machine tools have

emerged: in machine hardware, modular machine tools that offer end customers more

machine options [2]; and, in control software, modular, open-architecture controllers that

use reconfigurable control software. These emerging technologies will stimulate the

design of control systems with reconfigurable hardware and software.

5

1.2 Direct Machining And Control (DMAC)

Beginning in 1998, the Direct Machining And Control (DMAC) research group at

Brigham Young University has been developing an open-architecture controller [39-47]

that directly interfaces to application software like CAD/CAM (see Fig. 1.1).

Fig. 1.1 Current DMAC architecture

6

The DMAC controller is a truly software-based controller and all control

components, such as motion and servo control, are defined and developed in object

oriented C++ code. The DMAC architecture is configured on a dual-processor platform.

One processor runs non real-time Windows applications, such as CAD/CAM and Human

Machine Interface (HMI). The second processor runs real-time control applications, such

as motion planning control and servo-loop control. A direct machining interface is

developed to allow communication between the real-time and non real-time applications.

The DMAC architecture is designed to be independent of the interface to the control

hardware and thus can control both machine tools and robots.

1.3 Reconfigurable Mechanism for Application Control (RMAC)

With this advanced DMAC control system in place at Brigham Young University,

this dissertation proposes a more flexible and reconfigurable control architecture. The

Reconfigurable Mechanism for Application Control (RMAC) architecture in Fig. 1.2 is

developed to allow for machine tools to be controlled like part printing devices. This

reconfigurable control architecture is a hierarchical and modular software structure that

can be dynamically reconfigured for direct control, with each software module designed

and built independently. The collection of modules necessary to enable a CAD/CAM

process plan to directly control a machine is called a mechanism device driver. A

mechanism can be reconfigured to perform differently by simply loading a different

device driver for the mechanism.

All control software modules and their interfaces are specified in a well-defined

manner. A set of interface APIs (Application Programming Interface) are provided for

each software module, thus allowing for control and feedback information flow among

7

these various modules. Under the RMAC paradigm, various mechanism devices are

connected directly to CAD/CAM systems through different device drivers. Each device

driver is designed as separate software module and is able to map the mechanism’s

configurations and capabilities to the manufacturing process intent of a CAD/CAM

process plan, thus allowing a CAD/CAM process planner to make run-time decisions to

choose optimal machines to fulfill different manufacturing process requirements. The

static DMAC open-architecture controller is thus replaced with a more flexible and

reconfigurable RMAC controller that can be dynamically reconfigured for different

machine tools or control applications.

The current DMAC architecture is insufficient due to the following limitations:

1. DMAC was built with one software control solution and connected to a

CAD/CAM system.

2. The current DMAC implementation can not dynamically reconfigure a single

machine to operate differently. Each DMAC-compliant machine has one

behavior. For instance, a milling machine cannot be operated as a CMM.

3. The DMAC controller is not generic. Each DMAC controller is tailored for a

specific machine tool or control application; thus, lacks the flexibility to

dynamically vary its functionality for different machine tools or control

applications. For instance, a three-axis mill controller cannot be used to control a

five-axis machining center.

4. The part printer paradigm requires a device driver architecture that does not exist

in the current DMAC architecture.

8

Fig. 1.2 RMAC architecture

RMAC overcomes these limitations in the current DMAC architecture with the

following architectural improvements:

1. RMAC is designed for more generic software solutions; thus, it is reconfigurable

for different machines, control solutions, and CAD/CAM systems.

2. The RMAC architecture contains a device driver manager that allows CAD/CAM

users to select an optimal machine tool. A built-in database search engine allows

9

users to easily and quickly narrow down their machine selections and then locate

a relevant mechanism device driver.

3. The RMAC architecture contains a generic device driver architecture that allows

for part printer paradigm. Any machine-specific configurations and capabilities,

such as machine limits, maximum federate, etc, are built into a mechanism device

database and are directly accessible to the device driver software. The device

driver has standard driver interface and APIs to communicate with CAD/CAM

systems and the machine open-architecture controller. As a result, various

CAD/CAM systems and machine tools can be connected to the device drivers

through the same driver interface and APIs. By loading relevant device drivers,

RMAC allows for reconfiguring a single machine to operate differently.

4. The RMAC architecture contains a generic and reconfigurable open-architecture

controller. This RMAC reconfigurable controller contains the generic control

codes that are applicable to various machine tools and control applications. Any

mechanism-specific control codes are designed and built as separate dynamic-link

libraries (DLLs). Thus, RMAC open-architecture controller can be reconfigured

to apply on different machine tools.

5. Under the RMAC architecture, a configuration system is developed to allow the

run-time mapping of any mechanism-specific control codes from the relevant

DLLs into the RMAC reconfigurable controller for the selected machine tool.

The RMAC paradigm provides new opportunities for manufacturing

organizations and machine tool end users. Manufacturing enterprises can introduce

greater flexibilities into their manufacturing systems. Fig. 1.2 shows how one machine

10

tool can be operated differently. If the manufacturing operations need a three-axis mill,

the user loads a three-axis mill device driver prior to machining. But if products or

customer demands change over time, such that manufacturing operations require a five-

axis mill, it may be necessary to add a two-axis rotary table. RMAC provides the user a

relevant five-axis mill device driver, so the same machine can be commanded as a five-

axis mill. Once all the parts are made, by adding a measurement probe and loading a

relevant CMM driver, the machine can be commanded as a CMM machine to inspect the

parts during their manufacturing. These flexibilities cannot be realized with any

conventional machine tools or even with the current DMAC controller.

1.4 Research Objectives

The objectives of this research are then to propose, develop, and demonstrate an

architecture for a dynamic reconfigurable machine tool controller using the direct control

and device driver paradigms. Specifically, the research objectives are to (1) develop a

generic and reconfigurable control architecture that would allow direct control to be

easily reconfigured for different machines, control applications, and CAD/CAM systems;

(2) develop a configurable device driver architecture so that a CAD/CAM process would

be mapped into an appropriate machine, thus allowing for the mathematical CAD model

to drive the connected machine tool directly without tessellating into thousands of line

and arc segments ; (3) develop standardized device driver interface and a set of interface

APIs so that All CAD/CAM packages would connect to a standard driver software

interface, and all machine tools accept that driver interface through the RMAC

reconfigurable controller; and (4) demonstrate the reconfigurable control architecture on

a prototype mill.

11

Achieving these design objectives requires a reconfigurable controller to posses

the following general characteristics:

1. Modularity: In a reconfigurable controller, all machine-specific software

components should be modular (e.g., kinematics, machine actuator mapping,

servo control, I/O interface, etc). These software modules should be designed

independently into separate dynamic-link libraries (DLLs) so that they can be

easily added to the controller, removed from the controller, or replaced by other

modules during system reconfiguration.

2. Portability: A reconfigurable controller should be vendor-neutral so that end

users can easily integrate new machine hardware or software from any third party

vendors.

3. Customization: A reconfigurable should be flexible enough to allow end users to

integrate customized control modules with the aid of open-architecture

technology, providing the exact control functions that end users need.

4. Run-time reconfigurability: A desired dynamic reconfigurable machine should

be reconfigurable at run-time without shutting down the machine tool.

5. Verifiability: A reconfigurable controller should enable end users to verify its

functionality upon system reconfiguration.

1.6 Outline of Dissertation

I. Introduction

Chapter one introduces the objective and contribution of this dissertation and

defines the research scope.

12

II. Literature review

Chapter two reviews the past and present research on open-architecture

controllers and some more recent research projects on reconfigurable control systems.

The research of Direct Machining And Control (DMAC), which is the foundation

platform for the proposed reconfigurable controller, is also reviewed.

III. RMAC software architecture

Chapter three presents an overall architecture for a dynamic reconfigurable

machine tool controller.

IV. Methodology

Chapter four describes in greater details for each software module and interface

defined within the RMAC architecture. It then presents the general methodology for

reconfiguring the RMAC controller.

V. Prototype implementation

Chapter five first shows the implementation of a dynamic reconfigurable

controller on a three-axis tabletop mill by developing a machine device driver specific to

this mill. It then shows the proposed implementation of this research on a Tarus five-axis

full-size mill, and a Coordinate Measuring Machine (CMM). Finally, it presents the

simulation of the RMAC controller on a commercial CAD/CAM program.

VI. Results

Chapter six presents the experimental results of the prototype developed as

explained in chapter four.

13

VII. Summary and Recommendations

Chapter seven summarizes this research and gives some recommendations for

future research.

14

15

This chapter reviews research related to this dissertation, including research in the

field of open-architecture control systems, reconfigurable control systems, and

reconfigurable robot systems. A modernized machining code standard, called STEP-NC,

is also reviewed. Finally, the Direct Machining And Control (DMAC) architecture, the

foundation architecture for this dissertation, is also reviewed.

2.1 Related Research

2.1.1 Open-architecture control (OAC) system

In the past decade, there has been a growing demand from machine tool end users,

as well as from machine tool manufacturers, to open the current proprietary control

systems. A new concept of open-architecture control was proposed and introduced in

both industry and academia. This new type of open-architecture control is a necessary

enabler for integrated CAD/CAM and sensor-based control.

CHAPTER 2 LITERATURE REVIEW

16

Three active industrial consortiums, the OSE (Open System Environment for

controller) [3] of Japan, the OSACA (Open System Architecture for Controls within

Automation systems) [5, 6] of Europe, and the OMAC (Open Modular Architecture

Controllers) [4] consortium of the U.S., define and promote the use of open-architecture

controllers to replace the older, closed CNC systems. Their objectives consist of defining

and developing a set of APIs that enable control vendors to supply standard components.

These components are then delivered to the machine tool suppliers to be integrated into

different control systems, and the integrated control systems and machines are finally

delivered to end users to satisfy their specific needs.

In academia, several research projects were undertaken to open CNC control. One

of the earliest research projects in open-architecture control was the Next Generation

workstation/machine Controller (NGC) [7] in 1989, sponsored by the US Air Force. The

goals for the NGC program were to provide a commercial version of an expanded

machine tool environment that would integrate CAD/CAM and sensor-based machining.

One of the first large-scale research initiatives was done by Wright et al. [8, 9] in

1988. They proposed the MOSAIC (Machine Tool Open System Advanced Intelligent

Controller) architecture, in which a real-time version of UNIX is chosen as the operating

platform and VME bus is used as the de-facto communication bus that can communicate

the machining information to the controller. This group of researchers coined the term

“open-architecture controller”. In a parallel effort to the open system in the PC industry,

these researchers envisioned that by using industrial PC as the control hardware basis,

machine tool industry can open the current closed controller architecture so that different

17

hardware and software vendors could work on different elements of the control system

and integrate their products into a seamless robust controller.

Koren et al. [10], in the Engineering Research Center for Reconfigurable

Machining System at the University of Michigan, proposed an open CNC system, named

UMOAC, which allows interchanging motion control tasks as a feature of

reconfigurability. The UMOAC architecture is designed in a distributed platform: the

HMI and motion control runs in the main controller, while the servo control runs on a

DSP board that communicates with main computer via VME bus or any other network

protocol such as TCP/IP. A common Windows-based HMI API is defined for different

CNC systems. The UMOAC is also designed to be used on their reconfigurable machine

tool [11].

Yellowley et al. [12] at the University of British Columbia proposed and

developed a UBC open-architecture controller. The National Institute of Standards and

Technology (NIST) [13] applied the NGC open-architecture framework into its Enhanced

Machine Controller (EMC) project. The EMC offered real-time, open-architecture

control based on open source and community software development, and was suitable for

a variety of machines, including machine tools, robots, and Coordinate Measuring

Machine (CMM). There are a number of other researchers [14-17] who applied the

principle of open-architecture control to different control applications.

2.1.2 Reconfigurable control system

More recently, with open-architecture control as a basis, some researchers have

gone one step further, proposing to develop reconfigurable machine tool controllers in

which the same machine tool controller can be reconfigured to control different types of

18

machine tools. This in turn will allow end users to have even more flexible control

systems on their factory floors.

One of the first large-scale initiatives was launched by the European Union (EU)

in the early 1990s. In a European Union-sponsored report [18] a strategy was outlined to

ensure the long-term survivalability of the European machine tool industry. This report

stressed the need for machine tools to be designed and built modularly, allowing machine

tool manufacturers to specialize in particular modules instead of complete systems.

System integrators could then build complete systems from the modules according to end

users’ specific needs. This strategy requires splitting a machine tool into a set of

autonomous functional units that can be “plug-and-play” interfaced to form complete

systems for particular customers’ needs.

Several European projects are currently under development to achieve this design

goal. The European MOSYN (Modular Synthesis of Advanced Machine Tools) project

[19], lead by the Hannover University, looks at customer-specific configurations of

modular machine tools. The Reconfigurable Machining Systems [20] of the Special

Research Program (SRP) 467, sponsored by the German Research Foundation, are aimed

at developing models for structuring and configuring reconfigurable manufacturing

systems (RMS). To be reconfigurable, well-defined interface layers and concepts for

functional units as modules of RMS are introduced and under development.

In the U.S., the Engineering Research Center of Reconfigurable Machining

Systems (ERC/RMS) was founded at the University of Michigan in 1996. Koren et al.,

from ERC/RMS [11], presented “Reconfigurable Machine Tools”, in which they

19

developed new machine tools whose mechanical configurations and software-based open

controllers [10] can both be reconfigured at run-time.

Altintas et al. [18] presented an open and reconfigurable modular tool kit as a

design tool for future machine tools and machining monitoring systems. In their system,

they used a real-time preemptive operating system (ORTS) for machine-level real-time

tasks and an enhanced Windows-NT-based environment, running on a PC, for

applications such as HMI. The motion control boards were off-the-shelf DSP boards,

running under ORTS, and had built-in algorithms that cannot be interchanged or

modified externally by end users. This limited the implementation of any new advanced

motion control algorithms. Rather than using a graphic tool to reconfigure their

controller, the reconfiguration of their machine tools and controller was accomplished by

running a series of script commands. Due to the nature of the script language,

reconfiguring their controller at run-time is not easy or user-friendly.

Birla [21] presented a reconfigurable machine tool controller in his Ph.D.

dissertation “Software Modeling for Reconfigurable Machine Tool Controller” in 1997.

He used two well-known computer science paradigms to define all controller

components, object-oriented programming (OOP) and finite state machine (FSM). All

these components were designed to be reusable, scalable, and portable. A component

library was developed from which the control components could be selected and

reconfigured into a control system. Similar research was also undertaken by S. Wang and

K.G. Shin [22], who proposed a reconfigurable software architecture for machine control

systems. One limitation with Birla’s work was that he did not fully implement his work

20

with a graphic configuration tool and there was no simulation tool available to validate

the control system upon the controller reconfiguration.

 Similar works on reconfigurable control systems can also be found from S. Kolia

et al. [24], S. Birla et al. [25], and D. Kalita et al. [27].

2.1.3 Reconfigurable robot system

Another research area that is related to this dissertation is in the field of

reconfigurable robot systems. A pioneer research project in reconfigurable robot systems

is the Chimera RTOS Project [26] in the Advanced Manipulators Laboratory at Carnegie

Mellon University (CMU). The Chimera architecture is based on port-based objects

(PBO), which are similar to component-based objects. The objectives of the Chimera

project are to develop a control architecture that will support reconfigurable robots,

integrated sensor control, dynamic controller reconfiguration, and collaboration through

code sharing. In the Chimera architecture, the entire control system is viewed as an

interconnection of components forming a system configuration that will provide an exact

system response. Each component is defined as a port-based object with some input and

output ports. A graphic software assembly tool is used to configure the robotic

manipulator system at run-time and a PBO library is developed and is available to the

system integrators for run-time control system reconfiguration.

Zhang et al. [28], at Xerox Palo Alto Research Center, developed software

architecture for Modular Self-Reconfigurable Robots. Their software architecture is a

multi-master/multi-slave structure running in a multi-threaded environment. The

architecture is implemented on a Motorola PowerPC under the real-time operating system

vxWorks. The master controllers are responsible for motion planning, synchronizing

21

slave controllers, and reconfiguring slave controllers. Based on the different motion and

configuration requirements, the slave controllers can reconfigure their software modules

at run-time. The communications between master and slave controllers are through a

CANBus.

In the past few years, I.M. Chen [29], K. Feldmann and M. Wenk [30], and W.J.

Schonlau [31] have conducted similar research on reconfigurable robot software

architectures.

2.1.4 Summary of the past research

The current state of open-architecture and reconfigurable machine controllers has

evolved from a number of diverse development efforts. The design goal of these research

projects is to develop a vendor-neutral, tool-neutral, and controller-neutral architecture.

The resulting architectures represent a wide range of design strategies and solutions.

However, despite their differences, there are some commonalities and prevailing trends

that are shared by all of these previous development efforts.

Most of the proposed open-architecture and reconfigurable machine controllers

use Windows as the operating platform. As Windows has become the de facto operating

system (OS) in the PC industry, more and more control vendors choose Windows as their

control software OS platform.

A prevailing trend that can be found in these control architectures is that the

control systems are becoming more software-based. All of these control architectures use

either object-oriented codes or component-based languages to define their control

22

modules. Software-based control architecture has made the entire control system very

flexible, highly modular, and easy to upgrade.

More control architectures use a dual-processor platform, where one processor

runs non real-time Windows application program and the other processor runs a real-time

operating system such as VenturCom RTX, VxWorks, QNX, or a real-time extension of

Windows to do real-time motion, servo, and I/O control. There are a growing number of

design strategies that have adopted distributed control solutions, where the server side

controller runs application programs such as CAD/CAM and HMI while the client side

controller runs motion, servo and I/O control. Until a hard real-time network protocol is

developed, this distributed control solution will have difficulties satisfying the hard real-

time constraints of machine tool controllers.

Even though significant research has been made into open-architecture and

reconfigurable control systems, and a wide variety of design strategies and solutions that

have been proposed, these developed architectures are still insufficient because of several

major limitations.

First, even though these development efforts apply open-architecture principles to

enable machine end users to gain greater access to proprietary internal control algorithms,

these control architectures still rely on machine-dependent M&G codes. Thus, these so-

called open control and reconfigurable control systems are still not truly interchangeable,

reconfigurable, or open to end users or any third party developers. Currently, a

CAD/CAM vendor must develop a postprocessor to generate a machine-specific M&G

code for each machine tool controller. This represents a tremendous burden on any

23

CAD/CAM organization. Only by completely eliminating the machine-dependent M&G

codes will a truly open and reconfigurable control system be feasible.

Second, these developed control architectures are still dependent upon some

customized hardware. The control architectures in [8], [9], [10], [12], and [14] use DSP

boards in motion control and many motion control algorithms are embedded inside these

motion control boards. They cannot be interchanged or modified externally by end users

or third party developers, which limit the interchangeabilities and the reconfigurability of

these proposed control systems.

Third, these control architectures do not maintain associativity between the CAD

model, CAM system, and the CNC machine. As a result, this is a great deterrent to fully

integrated CAD/CAM and sensor-based control.

2.1.5 STEP-NC

With the limitations seen in those past machine control systems and the problems

existed in the current standard (ISO 6983) of machining instruction code, namely M&G

code, a modernized machining code standard (ISO 14649), called STEP-NC, is being

developed. With the development and introduction of this new ISO standard 14649,

STEP-NC extends the STEP geometric data exchange standard (ISO 10303), a neutral

data exchange format, into the manufacturing domain by defining a two-way interface

between CAM process planning systems and NC control systems. STEP-NC is a neutral

data description language designed to be CAM independent and NC machine-tool

independent; thus, the post-processing of process plans into M&G codes specific to each

machine is no longer necessary.

24

Currently, under the IMS project [32-36] called STEP-NC in Europe and Asia,

and Super Model in USA, industrialists and academics are collaborating to deliver a new

data model as an ISO 14649 standard for CNC machines and to develop STEP-NC

controllers. Parallel to these development efforts, researchers [37, 38] are developing a

new generation of CAM systems that are designed to be completely STEP-NC

compatible and independent of NC machine tools.

Even though STEP-NC provides a better link between CAM systems and CNC

machine tools, it has not taken the integration process far enough. There is still no direct

associativity between the parametric CAD model and the STEP-NC file. Because of this,

many disadvantages can still be found that are commonly found in the M&G code (ISO

6983). For instance, if the original CAD model from which the STEP-NC file was created

is modified, those changes were not reflected on the STEP-NC file that already left the

system. The STEP-NC file, which is loaded into a STEP-NC compliant controller, is not

parametric, meaning that any change in the geometry on the machine tool controller

cannot be done. But even if it could be done, those changes would not be reflected back

to the original CAD model from which the STEP-NC file was created.

2.2 Direct Machining And Control (DMAC)

The proposed dynamically reconfigurable machine tool controller in this

dissertation is based on the Direct Machining And Control research at Brigham Young

University. In the past six years, the DMAC research group has developed a direct

machining architecture that allows CAD/CAM applications to run machining process

directly on a DMAC controller.

25

Prior to this dissertation, research work [39-48] has connected the DMAC

controller directly to ParaSolids, Unigraphics, Alias, GibbsCAM, CATIA and PC-DMIS,

a popular part dimensional inspection application. Fig. 2.1 shows the DMAC flexible

software structure to connect to these CAD/CAM systems. The idea is to take full

advantage of the 3D modeling and tool path planning capabilities of CAD/CAM

packages and to utilize a DMAC open-architecture controller to run the derived

machining processes directly. This approach completely eliminates the machine-

dependent M&G codes and establishes a direct link between CAD model, CAM system,

and CNC machine. The design strategy of the DMAC architecture is the foundation from

which integrated CAD/CAM and sensor-based control can be truly realized.

The DMAC architecture is configured on a dual-processor platform with

CAD/CAM applications running on the first processor and all the real-time control

applications running on the second processor.

The tool paths and process plans generated from CAD/CAM applications are

passed down directly to the motion planner [39, 44] through a Direct Machine Interface

[41]. The motion planner is composed of a trajectory generator and a kinematics object.

The motion planner will generate all motion setpoints, position, speed, and acceleration,

for each independent joint at each trajectory step. These joint setpoints are first mapped

into the actuator setpoints and are then fed to the Servo Controller.

The Servo Controller [40, 45] receives actuator position, speed, and acceleration

setpoints from the motion planner. Then based on certain control laws, such as

Proportional-Integral-Derivative (PID) and feed forward control, the control effort, in the

26

form of torque commands, is calculated and sent down to each motor through a hardware

interface.

Fig. 2.1 Illustration of the flexible DMAC software structure

The DMAC architecture is fully software-based and can be configured to

communicate directly with any CAD/CAM system, given the right interface

functionality. Presently, the DMAC controller supports linear, circular, and Nurbs-based

motion, which are the general motions required for a machine tool controller. This

general architecture will be the basis from which a newer reconfigurable controller

(RMAC) will be developed, and will be explained in the rest of this dissertation.

27

This chapter proposes and develops a new software architecture for a dynamically

reconfigurable machine tool controller. It then presents the necessary software modules

and interfaces defined within the RMAC architecture.

3.1 Traditional CNC Paradigm vs. RMAC Paradigm

In a traditional CNC paradigm, one machine tool controller is dedicated to a

particular CNC machine tool. The functionality of that controller cannot be changed by

end users for controlling different machines. For example, a CNC controller designed for

a three-axis mill cannot be used to control a five-axis machining center.

Fig. 3.1 shows the standard steps used to plan a process and conduct it on a

machine tool:

• Model a part using a CAD system.

• Create tool paths using a CAM system.

CHAPTER 3 RMAC SOFTWARE
ARCHITECTURE

28

• Output a CL or APT file that contains tool path geometry data.

• Post-process the CL or APT file to obtain an M&G-code file, which then is

delivered to the machine

• Operate the machine until the part (or batch of parts) is made.

Fig. 3.1 Traditional CNC paradigm

CL and APT files are independent of machine tool controllers, but the M&G file

is machine-specific. This conventional data flow from CAD to CAM systems and to a

CNC machine tool creates the disassociativity between the original CAD model and the

driving machining codes, namely M&G codes. The CAD description is not used directly

on the machine; instead it must go through a machine-specific post-processor (of which

there are estimated to be about 5,000 in existence). Due to many different dialects and

vendor-specific additions to the language, M&G codes are not always interchangeable

between different controllers and machines. This obsolete standard assumes that

information flows from the CAD to the shop floor, and does not enable feedback of

experience from the shop floor back to the designer.

29

As a result, there is a growing demand from machine tool end users to develop a

new generation of machine tool controllers that are both highly flexible and dynamically

reconfigurable based on newer manufacturing process requirements. For example, end

users of a three-axis mill may require the addition of new sensor-assisted application-

specific modules to efficiently and cost-effectively convert the mill into an inspection

system. Also, a machine tool controller designed for a milling operation may be required

to support a turning operation as well. Moreover, with the ever growing number of

parametric CAD models widely used in product design, end users of CAD/CAM and

machine tools expect the information flow between CAD/CAM and machine tools to be

bi-directional, which would promote feedback from the shop floor back to the CAD

designer. Therefore, these new requirements from manufacturing companies and machine

tool end users pose new challenges for designing future machine tool controllers.

Fig. 3.2 presents the RMAC paradigm. Under this new paradigm, machine tools

are controlled similar to the way printers are controlled by a personal computer. All

machine tools are directly connected to CAD/CAM applications through different device

drivers. This driver software acts as an interface between CAD/CAM systems and the

control software. CAD/CAM users can select different machines to execute the process

plans based on manufacturing process requirements. By calling a specific device driver,

the tool paths and process plans generated from the CAD/CAM applications can be sent

directly through the driver’s interface. The software driver can then enable the same

reconfigurable controller for controlling the machine that is connected through this

driver. Under the RMAC paradigm, CAD/CAM software, device driver software, and

control software all reside in the same PC, thus allowing the CAD description to be used

30

directly on the machine. Doing so makes the information flow bi-directional; the CAD

master model is sent to the controller through a device driver interface, and the

modifications made on the shop floor can be fed back to update the original CAD model

through the same interface.

Fig. 3.2 RMAC paradigm

3.2 RMAC Control Schemes

The RMAC architecture developed in this research is generic, and therefore

applicable to various control applications, such as machining, welding, robotics, etc. For

these different applications, the control software must be flexible enough to

accommodate different control schemes.

3.2.1 Position and velocity control

For most modern machine tools or robots, position and velocity control is the

most widely used method.

31

To control a machine tool or robot’s position and velocity in Cartesian space, a

CAD/CAM application needs to generate a series of tool paths along which the

mechanism’s tool must follow. The process plan may also specify path following speeds

and a spindle rpm. Fig. 3.3 shows how RMAC controls such a mechanism.

Fig. 3.3 RMAC controlling steps on position and velocity control

From the diagram, the first step consists of generating Cartesian tool paths inside

a CAD/CAM package. Since these paths are associated with the master CAD model and

are used directly to drive the RMAC compliant mechanism, whenever the CAD model is

changed, the associated tool paths will be updated and automatically reflected in the

machined part.

The generated Cartesian tool paths are then sent down to the RMAC controller to

produce the mechanism tool’s desired motion. A Cartesian trajectory generator is used to

interpolate the tool paths to generate the tool position and orientation that the tool can

follow.

To follow the desired Cartesian tool path, position, velocity, and acceleration

setpoints must be found for each individual joint. This requires a mapping between a

mechanism’s Cartesian space and its joint space.

32

The transformation between Cartesian space and joint space requires an

understanding of the mechanism kinematics. For instance, forward kinematics consists of

calculating the position in Cartesian space, given a set of joint position. Inverse

kinematics is the reverse of the forward kinematics: it involves calculating the joint

positions necessary to position the tool at a given point in Cartesian space. The forward

Jacobian consists of calculating the velocity of the tool in Cartesian space, given a set of

joint speed, and, the inverse Jacobian consists of calculating the joint speeds necessary to

generate the desired tool velocity in Cartesian space. Reference [50] contains three

chapters that cover, in detail, the kinematics computations.

To find joint position, velocity, and acceleration given a desired Cartesian tool

path, Inverse kinematics is used to map a mechanism’s Cartesian state to its joint state.

The inverse Jacobian is used to map a mechanism’s Cartesian velocity to its joint

velocity. Equation Θ’= J-1(Θ)υ relates the joint speed vector to the corresponding tool

speed vector, where Θ’ denotes the joint speed vector and υ, the tool speed vector. J-1(Θ)

is the inverse Jacobian matrix and is mechanism-specific. The joint accelerations can

usually be derived by differentiating the joint velocities at two consecutive trajectory

steps. However, because inverse kinematics and the inverse Jacobian are machine-

dependent, each different RMAC-complaint mechanism requires a specific inverse

kinematics and inverse Jacobian algorithm.

To drive a physical motor, position, velocity, and acceleration setpoints must be

found for each individual actuator. This requires a mapping between a mechanism’s joint

space and its actuator space.

33

Typically, a mechanism’s axes are not directly actuated by motors. Instead, they

are connected and actuated by intermediate mechanisms, such as ball screws, gears, or

pistons. The manner in which actuators may be connected to move a kinematic joint

varies among different mechanisms. For instance, some mechanisms use a ball screw to

enable an angular motor to drive a linear kinematic joint. Sometimes, two actuators work

together in a differential pair to move a single joint. At other times, a linear actuator

rotates a revolute joint through the use of a four-bar linkage. In all, there are many other

ways in which actuators can be connected to drive kinematic joints.

To find actuators’ position, velocity, and acceleration given a setpoint of joint

position, velocity, and acceleration, a machine actuator map object needs to be

developed. The machine actuator map object contains a set of functions to determine the

mappings between actuator space and joint space. These mappings are mechanism-

specific and must be designed and implemented for each RMAC-complaint mechanism.

Once the actuator’s setpoints of position, velocity, and acceleration have been

determined, they are passed down to the servo controller [30].

Servo control deals with establishing mathematical models to compute the control

effort—in the form of a torque value—necessary to move control system variables to

some desired value, or “reference” value. Depending on what control methods are

utilized, these control system variables may be position, velocity, or contact force.

In the field of feedback control of dynamic systems [51, 52], control researchers

have developed several different control laws based on different control criteria. The

concept of these control laws is to create different mathematics models, which can

represent the dynamic system. Such models allow for computing the servo control effort

34

necessary to move the actuator system to follow the commanded position or velocity

within the designed tolerances.

Consequently, the servo control algorithms may be machine-specific as different

mechanisms require different servo algorithms based on the machine tolerance or

customer requirements. Therefore, for each RMAC-complaint mechanism, a specific

servo control algorithm needs to be developed and implemented for each kinematics

joint.

Once the servo controller calculates the necessary torque value for each actuator,

this torque value needs to be sent to each digital motor drive through a digital control

interface.

For any RMAC-compliant mechanism, a digital interface is necessary to connect

the digital control devices with the controller software. With the increasing digitization of

control applications, and with the evolution of computer communication hardware, there

are many possible communication standards, such as IEEE 1394, USB2, and proprietary

fiber optic communication protocols, that can be chosen to enable communication

between the digital motor drive and the controller software. Therefore, each RMAC-

complaint mechanism may require a specific digital control interface.

Finally, to connect any external I/O sensor, such as limit switches or coolant

on/off switches, to the RMAC controller, a digital I/O interface needs to be developed.

For each RMAC compliant mechanism, a different I/O board may be chosen to handle

the I/O connections. Therefore, a mechanism-specific digital I/O interface needs to be

designed and implemented for each mechanism to be controlled.

35

The above outline shows that even though the kinematic structure of different

RMAC-compliant mechanisms may vary, these mechanisms are still similar in how they

are controlled. In the end, the ability to allow top-level CAD/CAM applications to switch

controlling from one machine to another, or from one control application to another at

run-time, has become a great challenge for control software designers.

3.2.2 Force or hybrid force/position control

While position and velocity control are widely used in machine tools and robots,

there are other occasions when position control alone may not suffice. For instance, for

robotics welding, assembling, and friction stir welding operations, the position of the tool

is not specified as the control variable. Instead, the contact force or the combination of

force and position are the system variables that need to be controlled.

Force control, or hybrid force/position control schemes, are quite different from

position control. Fig. 3.4 shows a hybrid force/position control scheme applied on a

three-axis kinematic structure. This kinematic structure has three prismatic joints moving

individually along X, Y, and Z directions. The X and Y prismatic joints are free to move,

while the Z axis is constrained so that the tool cannot move in the Z direction. The tool is

currently normal to the XY plane and is in contact with a surface parallel to the XY

plane.

The solution to this hybrid force/position control problem is to control joints X

and Y with a position controller while simultaneously controlling the contact force along

the Z axis with a force controller. Here, Xd and Yd are the desired positions which feed

into the position controller. ddd YXX
••••

,, , and dY
••

are the desired velocity and acceleration

36

points for joints X and Y, and are generated from the motion planner described in section

3.2.1. These motion setpoints need to be fed into the position controller to compute a

necessary torque value. X and Y are the actual positions, which are fed back from the

digital motor drives.

The Z axis is out of the motion planning loop. Fd is the desired contact force that

needs to be controlled. The actual force (F) is measured by a force sensor, which is

attached to the Z axis. This value is fed back to the force controller for computing the

necessary control effort for joint Z.

As illustrated, these control schemes are quite different in terms of the control

characteristics and the control methods utilized. To take advantage of these control

methods and to integrate them into RMAC, a flexible software architecture must be

developed, allowing for easy reconfiguration of these different control methods.

Fig. 3.4 Hybrid force/position control

37

3.3 RMAC Software Architecture

The overall software architecture for the RMAC control system is shown in Fig.

1.2. As can be seen from this figure, the RMAC control system is decomposed into

separate hierarchically organized software modules, with CAD/CAM applications and the

device driver manager sitting at the top and the RMAC reconfigurable controller at the

bottom. Residing between the CAD/CAM systems and the RMAC reconfigurable

controller are the device driver software and the COM interfaces. Motion control and

configuration commands flow from CAD/CAM to the RMAC reconfigurable controller

through the device driver and the COM interfaces. The machining feedback information

flow from the RMAC reconfigurable controller back to CAD/CAM through the same

device driver and COM interfaces. To allow for these control and feedback information

flows, three interfaces and their interface APIs are developed.

3.3.1 RMAC software modules and interfaces

Fig. 3.5 shows the necessary software modules and the interfaces defined within

the RMAC architecture. The software system is composed of the following six different

programs:

• CAD/CAM system creates 3D representations of physical models and generates

the manufacturing process plans.

• Device driver manager maintains a device driver database relevant to a

collection of different mechanism devices and their driver DLLs (see Fig. 3.7).

Meanwhile it provides interface APIs for CAD/CAM users to query for a proper

machine and then locates a driver DLL for that machine.

38

• Device driver maintains a device database relevant to the details of a mechanism

(see Fig. 3.8). By accessing this database, the device driver software knows

exactly how to properly operate this mechanism. It then connects this physical

mechanism directly to a CAD/CAM application and processes the CAD/CAM

function calls to enable easy reconfiguration of the RMAC reconfigurable

controller necessary for direct control.

• RMAC_Config interface directs the configuration commands from a device

driver to the RMAC controller to allow the reconfiguration of the motion planner,

servo controller, and the underlying digital control interface.

• RMAC_CAM interface directs the motion and control commands to the RMAC

controller, receives the machining feedback information, and sends it to a device

driver software.

• RMAC open-architecture reconfigurable controller (see Fig. 3.6) receives the

configuration commands from the device driver. It uses a configuration system to

map any mechanism-specific or application-specific control codes from the

relevant DLL libraries. It then interpolates motion and control commands to

generate the necessary torque values to drive each individual actuator.

Control and feedback information flows among these software modules through

the following three interfaces:

• Device driver manager interfaces to CAD/CAM: The device driver manager

exposes interface APIs to CAD/CAM to allow the CAD/CAM applications to

access the device driver database for obtaining the necessary machine information.

39

• Device driver interfaces to CAD/CAM: The device driver exposes interface

APIs to CAD/CAM allowing the CAD/CAM applications to access the device

database for obtaining the detailed machine information. This machine

information is then used to reconfigure the RMAC controller necessary for

executing manufacturing process plans on the selected machine tool.

• Device driver interfaces to the RMAC reconfigurable controller: The device

driver software communicates with the RMAC reconfigurable controller through

two COM interfaces and they are RMAC_Config and RMAC_CAM. The device

driver software contains an instance of the RMAC_Config and RMAC_CAM,

thus, all the interface APIs defined within these two COM interfaces are directly

accessible to the device driver software.

Fig. 3.5 Software modules and interfaces in RMAC architecture

40

Fig. 3.6 RMAC reconfigurable controller architecture

Fig. 3.7 Device driver manager Fig. 3.8 Device driver

41

3.3.2 Control information flow in RMAC

To better understand how control and feedback information flows among these

different software systems, or, more specifically, how motion command flows from

CAD/CAM applications to the RMAC reconfigurable controller and the feedback

information flows from the RMAC controller to CAD/CAM, an example is given as

shown in Fig. 3.9.

From Fig. 3.9, it assumes that CAD/CAM users have selected a machine and a

device driver DLL has been loaded into memory. Here, a CAD/CAM application

generates a Nurbs tool path and seeks to send this tool path to a RMAC-compliant

mechanism for direct machining. It makes a driver service function call named

Machine_MoveInNurbs. Upon receiving this interface function call, the device driver

interprets this CAD/CAM function and makes a COM interface call named

MoveAlongNurbs. The RMAC_CAM interface is used to direct this service routine to the

RMAC controller. MoveAlongNurbs is the final function expected by the RMAC

controller. Once the RMAC controller receives this service call, the motion planner

interpolates the Nurbs tool path and generates the necessary motion setpoints. These

motion setpoints are then sent to the servo controller to calculate the torque values. The

torque values are sent to each individual motor drive at each trajectory step, and

consequently, the tool is commanded to move along the Nurbs tool path.

During this operation, the digital motors actual position and speed are fed back to

the servo controller through the digital control interface. These joints setpoints are then

sent to the motion planner. The motion planner calculates the mechanism speed using

forward kinematics algorithm. Once the device driver software makes a COM interface

42

call GetFeedrate, the motion planner will send the actual machine federate value to the

device driver. The device driver will send this value to CAD/CAM upon receiving the

driver service call Machine_GetFeedrate. At this point, the mechanism actual federate

value is fed back to CAD/CAM application for either display or debugging purposes.

Fig. 3.9 Flow of information between CAD/CAM and the RMAC reconfigurable controller

The next chapter will describe each part of the software system involved in this

information flow in details. The interface APIs enabling this information flow will also

be discussed.

43

This chapter describes in greater details for each software module and interface

defined within the RMAC architecture. It then presents the methodology for

reconfiguring the RMAC reconfigurable controller necessary for controlling different

machines.

4.1 CAD/CAM

CAD/CAM systems are computer-aided engineering tools that are widely used to

assist product design and manufacturing. Fig. 4.1 shows a Ford GT top surface being

modeled and process planned in Unigraphics (UG) and CATIA. The manufacturing

process plans generated from UG and CATIA are highlighted (see Fig. 4.1).

Traditionally, these manufacturing process plans must be post-processed into the

ASCII APT and M&G files to be executed on a machine. To overcome this post-

processing limitation, a device driver is developed for each individual machine to be

CHAPTER 4 METHODOLOGY

44

a) UG

b) CATIA

Fig. 4.1 UG and CATIA process plans

connected directly with CAD/CAM systems. Whenever CAD/CAM users generate the

manufacturing process plans and are ready to execute them on a machine, they will first

45

select a machine to perform the process. CAD/CAM software will automatically load a

relevant device driver and then pass the process plans directly to that machine through the

device driver. This parallels the way printers work in Windows. For instance, whenever a

Microsoft Word user wants to print a document, the document is sent through a printer

driver directly to the printer. There is no need to store and maintain intermediate process

files. Instead, a unique printer driver establishes a direct link between the computer and

the printer. The printer driver knows exactly how to operate the printer as desired by end

users.

Because many different machines exist that are feasible for executing a

manufacturing process plan, a customized graphic user interface is embedded inside

CAD/CAM systems to assist users in selecting the best machine tool. This is shown in

Fig. 4.2.

In Fig. 4.2, the configuration dialog boxes are designed as a plug-in user interface

to UG and CATIA. These dialog boxes allow CAD/CAM users to see the different

machines, and provide users with enough information to select the proper machine to

perform the process. To better assist CAD/CAM users, the device driver manager also

has a built-in search engine, enabling them to narrow down their selection to a few

machines, based on various machine filter schemes. Fig. 4.3 shows two selected machine

tools classified as five-axis mills, with a working volume greater than 100x100x100 mm.

46

a) UG

b) CATIA

Fig. 4.2 Machine configuration user interface under UG and CATIA

47

a) UG

b) CATIA

Fig. 4.3 Selected machine tools under UG and CATIA

If CAD/CAM users want more information about a particular machine’s

characteristics to make a better decision, they can open a new dialog box by clicking the

machine characteristics button (as shown in Fig. 4.2 and Fig. 4.4).

This dialog box contains detailed information about the machine, such as machine

configuration, working volume, machine limits, maximum feederate, maximum spindle

speed, etc. Such information assists CAD/CAM users in making a more informed

decision about whether to use this machine to perform the process.

CAD/CAM applications use a device driver manager to obtain all machine

characteristics information. The next section will describe in detail how the device driver

manager obtains this information and what functions are exposed to CAD/CAM software

for obtaining the necessary machine information to assist in the machine selection

process.

48

a) UG b) CATIA

Fig. 4.4 Machine characteristics dialog box under UG and CATIA

49

Once CAD/CAM users select a proper machine, they can choose to perform the

manufacturing process either by moving a connected machine to follow the desired tool

paths and cutting a part, or by simulating the same operations on a virtual machine built

inside the CAD/CAM applications. CAD/CAM users can set this virtual or machining

option in the machine characteristic dialog box (see Fig. 4.4). Fig. 4.5 shows a process

plan being simulated in UG and DELMIA, a simulation tool for CATIA users.

a) UG b) DELMIA

Fig. 4.5 Simulations under UG and DELMIA

4.2 Device Driver Manager

The device driver manager (see Fig. 3.7) is a DLL running independently from

CAD/CAM systems. The functions of the device driver manager are as follows:

• Maintain a device driver database relevant to a collection of different machines

and their driver DLLs.

50

• Uses a device tree structure to organize different device driver DLLs.

• Provide built-in database search engine to assist CAD/CAM users to narrow down

their selected machines based on various searching schemes.

• Provide interface APIs to communicate with CAD/CAM applications.

4.2.1 Device tree

The device driver manager organizes a collection of device driver DLLs in a

device tree structure (see Fig. 4.6). The base of this tree is called a root, and is

represented by a root device driver folder. Under this root device driver folder, different

mechanism device drivers are collected into sub folders according to their machine types

(i.e. milling machine, robot, and CMM). At the second level of the device tree are nodes

(branches) or end nodes (leafs). For example, as a branch, the milling machine node

divides into three new nodes: the three-axis, four-axis, and five-axis node. Thus, all the

three-axis mill device drivers are placed under the three-axis folder. Likewise, the four-

axis and five-axis mill device drivers are placed under the four-axis and five-axis folders.

As a result, the device tree’s hierarchy reflects the structure and classification of the

device drivers.

The purpose for a hierarchical structure is threefold: first, it enables easier

management of different device drivers. Second, it provides an extensible foundation for

adding new device drivers to the existing device driver database. Third, the tree structure

allows the device driver manager to easily locate a device driver. By knowing the

mechanism device type and the device driver name, the device driver manager can easily

locate that device driver by traversing the tree from the root until it reaches a leaf.

51

Fig. 4.6 Device tree structure

4.2.2 Device driver database

The device driver manager maintains a database called the device driver database.

Table 4-1 displays the contents of this database. This database contains the minimum

amount of information relevant to a mechanism and its device driver. Its purpose is to

allow CAD/CAM users to inquire about a mechanism and its device driver to assist their

evaluation and selection of a machine tool.

The design form for the database is Microsoft Access, a low-end relational

database program widely used on small and medium sized databases. The standard user

and application program interface to a relational database is the structured query

language (SQL). SQL statements are used both for interactive queries for information

from a relational database, and for gathering data for reports.

52

T
ab

le
 4

-1
 D

ev
ic

e
dr

iv
er

 d
at

ab
as

e

53

Since a manufacturing organization may have hundreds of different machines for

CAD/CAM users to choose from, the device driver manager implements a built-in

database search engine (in SQL syntax) to assist CAD/CAM users in their search for a

particular machine. By using this search engine, CAD/CAM users can easily narrow

down their selection to a few machines. For instance, if CAD/CAM users wish to find a

five-axis mill classified machine, with a working volume greater than 150x150x150 mm,

and a mechanism spindle greater than 5 hp, one SQL query in the database will narrow

their selection to a single machine: TarusXYZCA, (see Table 4-1). This searching and

selection process reduces the need for CAD/CAM users to review every available

machine before finding one capable of performing the manufacturing process.

Once CAD/CAM users select a machine, the device driver manager is responsible

for locating a relevant mechanism device driver. The combination of the second, third,

and fourth columns are used to assist the device driver manager to track and locate a

device driver. The mechanism type and mechanism number of joints columns are used by

the device driver manager to traverse the device tree, while the mechanism device driver

is the driver name that the device driver manager searches for. Once the device driver

manager finds all of this information, it sends the information back to CAD/CAM

systems.

Once the device driver manager obtains the minimum amount of information

relevant to a specific mechanism, it can pass this machine and device driver information

back to the CAD/CAM user interface (as discussed in section 4.1) for machine evaluation

and selection purposes.

54

4.2.3 Device driver object

To assist the process of retrieving mechanism and device driver related

information from the device driver database, a device driver object data structure is

defined, as shown in Fig. 4.7.

Fig. 4.7 The Device_driver_object data structure

This complete device driver object data structure is defined in the device driver

manager’s header file, as shown in Appendix I. The following excerpt is an example:

55

typedef struct _DEVICE_DRIVER_OBJECT{

char MechanismName[100];

char DeviceDriver[100];

…

char DeviceDriverVersion[100];

}DEVICE_DRIVER_OBJECT, *PDEVICE_DRIVER_OBJECT;

The device driver manager uses the device driver object data structure to represent

each device driver. According to this data structure, each field corresponds to one column

in the device driver database.

The device driver manager will declare an ODBC (Open DataBase Connectivity)

object. It then uses this ODBC object to access the device driver database and set up each

field defined within the device driver object. ODBC is designed to be database-

independent. The MFC (Microsoft Foundation Class) library contains well-defined

function calls that allow the ODBC object to access any data source, local or remote. The

ODBC object can use SQL statements to query the device driver database and assist

CAD/CAM users in searching for correct machines.

4.2.4 Interface to CAD/CAM

 The device driver manager is designed as a DLL and is a stand-alone program;

thus, it must expose some interface APIs to enable communication with CAD/CAM

systems.

The interface APIs are separated into two groups: functions that allow CAD/CAM

systems to access the device driver database, and functions that return the selected

machine information back to CAD/CAM.

56

CAD/CAM applications call the first group of interface APIs to operate on a

device driver database. Three interface API examples—with no input parameters—are

listed for demonstration.

• OpenDeviceDriverDatabase()

• CloseDeviceDriverDatabase()

• GetTotalNumberOfRecords()

Function OpenDeviceDriverDatabase() allows the CAD/CAM applications to

connect to the device driver database. Function CloseDeviceDriverDatabase() disconnect

the database from CAD/CAM. The last function GetTotalNumberOfRecords() returns the

total number of machine records contained within the device driver database.

CAD/CAM applications call the second group of interface APIs to obtain

information related to a selected machine. This machine information will then be

displayed to CAD/CAM users, as described in section 4.1, for proper machine evaluation

and selection. Two API examples are given below.

• Machine_GetDeviceDriver()

• Machine_GetMechanismMaxFeedrate()

The first function, Machine_GetDeviceDriver(), returns the selected device driver

name to CAD/CAM applications. The second function,

Machine_GetMechanismMaxFeedrate(), returns the mechanism maximum feedrate value

to CAD/CAM.

Appendix II provides a more detailed list and description of these interface APIs.

57

4.3 Device Driver

A device driver (see Fig. 3.8) must be developed to connect a mechanism device

directly to CAD/CAM. It may be useful to think of a complete mechanism device driver

as a container for a collection of methods and classes. These methods and classes can be

called by CAD/CAM systems to perform various operations on the connected mechanism

device and to read back the mechanism operational parameters, such as current feedrate,

spindle speed, joint value, current torque, etc. Each device driver must be able to entirely

determine a particular mechanism’s behavior and understand exactly how to make the

mechanism work for the user. Specifically, the device driver should be designed with the

following functions:

• Apply a self-contained device database to expose the details of a mechanism

device.

• Expose functions required by CAD/CAM.

• Communicate directly with the RMAC reconfigurable controller.

The device driver is designed as a dynamic-link library (DLL). DLL is currently

the de-facto library form for Windows device drivers [54, 55]. Because it is the only

library that can be explicitly loaded by Windows at run-time, all of the device drivers

running under Windows are designed as DLLs. Windows end users frequently need to

install new devices, or to upgrade their old devices with a new functionality. And,

because of the independent and run-time loadable nature of DLL, end users can easily

upgrade their exiting devices with new functionality. Here, end users do not need to know

all of the details about a device; rather, they simply download a device driver DLL from

58

the device manufacturer and use the Windows device manager to install it. The Windows

system will then load the device driver into memory and operate this device as the end

user desires.

Similar to the Windows device driver concept, this research also uses DLL as the

device driver form. Besides being run-time loadable by an application program, there are

a few other advantages of using DLL to map mechanism-specific modules into a device

driver. The following advantages comprise the rationale for choosing DLL as the device

driver form.

First, DLLs are compiled and linked independently from the applications that use

them. They are separate executable files containing functions or classes that can be called

by application programs and other DLLs to perform certain functions or computations.

Therefore, DLLs can be updated without requiring applications to be recompiled or

relinked.

Second, DLLs are run-time modular while C++ classes are only build-time

modular. This means that the loading of a DLL can be determined at run-time while the

loading of a C++ class must be determined at link time. A C++ class can be designed and

formed into a static library, but to use this library, an application program must first link

this library into its executable file in order to run. Once the library is linked to an

application, it becomes a permanent part of the application’s executable file. All of the

subsequent calls to the library functions or classes are resolved at link time, thus making

the functionality of the application software no longer changeable at run-time.

Third, if several applications work together as a system, and they all share

common DLLs, the entire system can be updated or improved by replacing the common

59

DLLs with enhanced versions. A bug fix for one of the DLLs fixes the bug in all

applications that use it. Likewise, speed improvements or new functionality

developments benefit all applications that use the DLLs.

Again, the need for a reconfigurable machine tool controller centers on the need

to change controller functionality at run-time, depending upon which machine the

CAD/CAM user chooses to perform a manufacturing process plan.

The functionality of a DLL makes it the perfect form for a mechanism device

driver. By using DLLs, the mechanism-specific software modules can be designed,

linked, and debugged independently. These DLLs are separate executable files and are

completely independent of all other software. The reconfigurable controller paradigm is

one of a mechanism device driver assigned to a mechanism class. The CAD/CAM

applications can make a run-time decision to load a device driver DLL for a particular

mechanism class or control application upon the user’s request; thus making the

mechanism assume different operating configurations depending on the number of axes,

machine resolutions, and the relevant mechanism device driver functions. If the

functionality of a mechanism device driver needs to be updated or enhanced, the driver

developers only need to update this device driver DLL.

4.3.1 Device database

Each device driver has a self-contained device database, as shown in Table 4-2.

The primary purpose for developing this device database is to allow CAD/CAM users to

easily access any machine information before they select a particular machine to execute

the manufacturing processes. The secondary purpose is to allow the device driver to

60

correctly configure the RMAC controller based on information contained within the

device database.

As shown in Table 4-2, the device database contains three categories of

information that are relevant to a mechanism device: 1) primary machine characteristics,

such as the tool changers and number and type of axes, etc; 2) machine operational

parameters, such as mechanism maximum feedrate, spindle maximum RPM, mechanism

positioning and repeatability tolerance, etc; 3) machine-specific motion planning and

servo controlling capabilities, such as kinematics, servo control law and servo gains used

on each axis, joint to actuator mapping, etc.

4.3.2 Device object

A device object data structure, shown in Fig. 4.8, serves two purposes. First, it

assists CAD/CAM applications to easily access machine information contained within the

device database. Second, it contains the exact information necessary for the device driver

to set up a mechanism’s operational parameters and reconfigure the RMAC controller for

controlling this specific mechanism.

The device object data structure is declared in the device driver manager’s header

file and is shown in Appendix I. The following excerpt is an example of its structure:

61

T
ab

le
 4

-2
 M

ec
ha

ni
sm

 d
ev

ic
e

da
ta

ba
se

62

typedef struct _DEVICE_OBJECT{

char MechanismName[100];

int NumOfJoints;

int MechanismJointType[DMAC_MAX_JNT];

…

char MechanismSpindleServoControlLaw[100];

}DEVICE_OBJECT, *PDEVICE_OBJECT;

Fig. 4.8 Device_object data structure

63

The device driver uses the device object data structure to represent each

mechanism device. In Fig. 4.8, each field corresponds to one column in the device

database (see Table 4-2). Here, the device driver creates an instance of an ODBC object.

It then uses this ODBC object to access any data defined within the device database.

Upon obtaining this data, the device driver transmits it to the corresponding fields defined

within the device object. After the device object’s data structure is completely filled up,

all of the mechanism-related information will be made available to CAD/CAM users

upon their request. The first data field defined within this data structure is the mechanism

name. The second to the seventeenth data fields all relate to the mechanism’s

characteristics. These sixteen fields of data serve two purposes. First, CAD/CAM users

can access this information when they are evaluating a machine. Second, the device

driver can use this data to correctly set up a machine before end users can operate that

machine.

The last five fields all relate to the machine-specific motion planning, servo

controlling capabilities, and the underlying communication hardware used by each

machine.

For reconfiguring the RMAC controller to control different mechanisms,

machine-specific software modules must be separated and encapsulated into DLLs, thus

making the RMAC controller completely generic.

As described in section 3.2, to command a mechanism’s tool to follow a desired

tool path, a series of computations must be taken to generate the commanded torque

values to send to each digital motor drive. As for different mechanisms or machine tools,

some of these computations vary from one mechanism to another. Under the RMAC

64

architecture, they are no longer designed within the RMAC controller, but are designed

and built as separate DLLs that can be dynamically loaded and mapped into the RMAC

controller upon a user’s request. Since the RMAC controller no longer contains these

mechanism-specific algorithms, it becomes critical for a device driver software to instruct

the RMAC controller to map these algorithms from corresponding DLLs at run-time so

that the RMAC controller’s functionality is adaptable to a selected mechanism. The

mapping method and the interface APIs that enable these mappings will be described in

the subsequent sections.

4.3.3 Device object example for a three-axis mill

To better understand this device object, the following example is demonstrated.

Once the three-axis mill device driver creates an instance of the device object, it searches

the three-axis tabletop mill device database (see Table 4-2). By accessing the data defined

within this database, the device driver correctly sets up the device object data structure, as

shown in Fig. 4.9. The second to the seventeenth data fields are machine-specific

operational parameters. For the mechanisms joint parameters, only joint type is shown in

this figure.

The last five fields are machine-specific motion planning, servo controlling

algorithms, and the underlying digital control interface—all necessary components for

controlling this mechanism. As can be seen from this figure, the names of the DLLs

corresponding to these machine-specific algorithms are mapped into this device object

data structure. The device driver software will use the RMAC_Config interface APIs to

pass the DLL names to the RMAC controller. The RMAC controller can then locate the

65

DLLs and import all the necessary motion planning and servo controlling algorithms into

its controller software.

Fig. 4.9 DMACXYZ device object

66

Because this mill is a three-axis mechanism, each of the kinematic axis needs a

specific servo control algorithm. For this case, the X, Y, and Z axes all use the same PID

servo control algorithm. Thus, if the Z axis uses a different servo control algorithm, such

as a force control algorithm, the device driver maps a different servo control DLL name

into this data structure, resulting in a flexible architecture that allows for easy

reconfiguration of different servo control methods into the RMAC controller.

4.3.4 Interface to CAD/CAM

A device driver is run-time loaded by CAD/CAM applications upon a user’s

request. The communication between the device driver and CAD/CAM systems are

through a set of device driver interface APIs.

The interface APIs are divided into three groups: 1) functions that allow

CAD/CAM systems to access the device database, 2) functions that return this specific

machine information back to CAD/CAM, and 3) functions that instruct the RMAC open-

architecture controller to set up correct operational parameters and configure the motion

planning and servo controlling specific to this mechanism.

The first two groups of interface APIs share similarities with the interface APIs

between the device driver manager and CAD/CAM systems. CAD/CAM applications

can call the first group of interface APIs to operate on a device database. Two similar

interface API examples (with no input parameters) are given below.

• OpenDeviceDatabase()

• CloseDeviceDatabase()

67

Function OpenDeviceDatabase allows the CAD/CAM applications to connect to

the device database. Function CloseDeviceDatabase disconnects the database from

CAD/CAM.

The second group of interface APIs are used to obtain information related to a

specific mechanism. One example, Machine_GetMechanismNumOfJoints(), returns the

number of joints to CAD/CAM applications.

CAD/CAM applications use the third group of interface APIs to instruct the

RMAC controller to set up correct machine parameters and reconfigure its controller

software prior to executing a manufacturing process plan. Four examples, with no input

parameters, are listed as follows:

• Machine_SetMechanismMaxFeedrate()

• Machine_ConfigureMotionPlanner()

• Machine_ConfigureServoController()

• Machine_ConfigureDigitalControlInterface()

CAD/CAM applications use function Machine_SetMechanismMaxFeedrate() to

instruct the RMAC controller to set up the mechanism’s maximum federate. The last

three APIs are generic functions that CAD/CAM applications can call to instruct the

RMAC controller to reconfigure its controller software modules. Under the RMAC

architecture, various device drivers can be connected to a CAD/CAM application.

Therefore, CAD/CAM applications must use generic APIs to communicate with different

device drivers. The actual interpretation of these functions is done internally in the driver

software. Based on the information contained within a device object (see Fig. 4.8), the

68

device driver then calls the relevant RMAC_Config interface APIs to correctly configure

the RMAC controller.

Appendix III provides a list and description of these interface APIs.

4.3.5 Interface to the RMAC reconfigurable controller

 A device driver connects CAD/CAM applications to the RMAC reconfigurable

controller. It receives process instructions from CAD/CAM and then passes them to the

RMAC controller.

 The device driver software uses two COM interfaces, RMAC_Config and

RMAC_CAM, to communicate with the RMAC controller. It uses the RMAC_Config

interface APIs to instruct the RMAC reconfigurable controller to correctly set up machine

parameters and to map mechanism-specific motion planning and servo controlling

algorithms into its controller software. Once the device driver software finishes

reconfiguring the RMAC controller, it then uses the RMAC_CAM interface APIs to pass

process instructions to the RMAC controller. The device driver software contains an

instance of the RMAC_Config and RMAC_CAM objects. As a result, the interface APIs

contained within these two COM interfaces are directly available to the device driver.

4.4 RMAC_Config Interface

To connect any control input to the RMAC reconfigurable controller, multiple

COM-based control plug-ins have been developed. This COM-based control plug-in,

developed by Direct Controls, Inc., acts as the interface between the RMAC

reconfigurable controller and an external control source. Fig. 4.10 shows a few existing

69

COM interfaces that have been implemented. It also shows a newly developed COM

interface that allows for reconfigurable control.

Fig. 4.10 COM-based plug-ins connected to theRMAC reconfigurable controller

The design strategy of developing a separate RMAC_Config interface that is

completely independent of the RMAC_CAM interface separates the machine

reconfiguration and direct machining process instructions into two COM interfaces; thus

the RMAC_CAM interface can still be used on any existing DMAC controllers. The

RMAC_CAM COM interface is a separate plug-in that can be connected to the RMAC

controller when necessary. It contains well-defined function calls that allow a device

driver to instruct the RMAC controller to reconfigure its motion planner, servo controller,

and digital control interface, which, in turn, is necessary to control a particular RMAC-

compliant mechanism.

70

1. SetMechanismNumActuators

2. SetMechanismJointControlMethod

3. SetMechanismJointServoControlLaw

4. SetMechanismJointServoControlGains

5. SetMechanismSpindleControlMethod

6. SetMechanismSpindleServoControlLaw

7. SetMechanismSpindleServoControlGains

The interface functions contained within the RMAC_Config interface are divided

into three groups. The first group of interface APIs reconfigures the motion planner. The

set of functions within this group contains methods to allow the device driver to instruct

the RMAC controller to map mechanism-specific kinematics and machine actuator

mapping algorithms from the corresponding DLLs, or to correctly set up machine

parameters. The second group of interface APIs reconfigures the servo controller. Each

kinematics joint may need a specific control method and servo control algorithm. The

interface APIs within this group contain the methods to configure each kinematics joint

with a desired servo control algorithm. The last group of interface APIs reconfigures the

digital control interface and digital I/O interface.

The provided functions with no description (see Appendix IV – for description)

are as follows:

 Group 3: Configure digital control interfa

1. SetMechanismKinematics

2. SetMechanismActuatorMap

3. SetMechanismNumJnts

4. SetMechanismNumSpindle

6. SetMechanismJointType

7. SetMachanismJointLimitType

8. SetMechanismJointMaxLimit

9. SetMechanismJointMinLimit

10. SetMechanismJointMaxSpeed

11. SetMechanismJointMaxAcceleration

12. SetMechanismJointMaxJerk

13. SetMechanismSpindleMaxRPM

Group 1: Configure motion planner Group 2: Configure servo controller

1. SetMechanismDigitalControlInterface

2. InitializeMechanismDigitalControlInterface

3. SetMechanismDigitalIOInterface

4. InitializeMechanismDigitalIOInterface

71

4.5 RMAC_CAM Interface

After a device driver instructs the RMAC controller to reconfigure its control

software components, the RMAC controller is ready to take motion and control

commands for direct machining.

Once control commands have been accepted by the device driver software, they

are ready to be passed to the RMAC controller. The device driver communicates with the

RMAC controller through a COM interface called RMAC_CAM. RMAC_CAM is

directly interfaced with the motion planner, and allows the device driver to pass motion

commands to the RMAC controller as well as to send and receive other control

information.

The interface APIs defined within the RMAC_CAM COM interface are divided

into two groups. The first group of APIs relates to the milling machine; the second group

relates to the CMM.

The milling machine APIs are further divided into two sub groups. The first group

is used by the device driver to instruct the RMAC controller in executing manufacturing

process plans. The second group allows the device driver to obtain current operational

parameters, such as the current spindle speed.

Similarly, the interface APIs defined for the CMM are also divided into two sub

groups. The first group of APIs relates to a measurement process plan; the second group

relates to current machining operational parameters.

Appendix IV provides a list and description of the RMAC_CAM interface APIs.

72

4.6 RMAC Reconfigurable Controller

The existing DMAC architecture does not permit reconfigurable control. To

control a particular machine, any machine-specific functions or classes currently must be

designed and built into a DMAC controller. After these machine-specific modules are

linked to the DMAC controller, they become a permanent part of the DMAC system. As

a result, the DMAC controller becomes unchangeable at run-time for controlling different

machines. For instance, DMAC can control a three-axis tabletop mill, a three-axis Sugino

mill, and a five-axis Tarus mill. However, each of these controllers is tailored for a

particular machine. End users cannot use the three-axis Sugino mill’s controller to control

the five-axis Tarus mill.

To allow reconfiguration of the motion planner and servo controller necessary for

controlling different mechanisms, some additions and modifications must be made to

DMAC’s existing architecture, as shown in Fig. 3.6.

As described in section 4.3, any machine-specific module is designed and linked

separately into a DLL. This module must first be mapped into the RMAC controller

before CAD/CAM applications can send down process plans to the RMAC controller for

direct machining. The software module is mapped into the RMAC controller through a

configuration system, as displayed in Fig. 3.6 and Fig. 4.11.

The configuration system is directly interfaced with the RMAC_Config COM

interface so that it can receive configuration commands from this interface. Based on

these different configuration instructions, the configuration system will do one of two

operations. It will either set up a correct machine operational parameter, such as machine

73

joint limits; or load the corresponding DLLs and then map any mechanism-specific

module, such as the machine kinematics object, into the RMAC controller.

After the configuration system finishes all of these configuration processes, the

RMAC controller is dynamically reconfigured for a particular mechanism. CAD/CAM

applications can then pass the manufacturing process instructions to the RMAC controller

for direct machining.

To better understand how this reconfiguration process occurs, Fig. 4.11

demonstrates how the RMAC controller is reconfigured for a three-axis tabletop mill.

Fig. 4.11 Reconfiguring the RMAC controller for a three-axis tabletop mill

74

Here, the motion planning, servo controlling, and digital control interface

modules, which are specific to this three-axis mechanism, are all designed and linked as

separate DLLs. To correctly control this three-axis tabletop mill, the RMAC controller

needs to map these mechanism-specific software modules into the controller software.

The device driver software, in this case the DMACXYZ.dll, uses the following

RMAC_Config interface function calls to pass these DLL names to the RMAC

controller. For instance, the driver software (DMACXYZ.dll) calls the interface function

SetMechanismKinematics(char* pDMACKin) to pass the kinematics DLL name

(DMACXYZKinematics.dll) to the RMAC controller. Upon receiving this name, the

RMAC controller locates the DLL and loads it into the memory. It then imports the

corresponding kinematics class from this loaded DLL. For convenience, this three-axis

mill kinematics class is also named DMACXYZKinematics. Likewise, the RMAC

controller can import all other necessary machine-specific software modules (at run-time)

for controlling this three-axis mill.

SetMechanismKinematics(char* pDMACKin)

SetMechanismActuatorMap(char* pDMACMachineActMap)

SetMechanismJointControlMethod(int JntNum, SHORT DMACServoControlMethod)

SetMechanismJointServoControlLaw(int JntNum, char* pControlLaw)

SetMechanismDigitalControlInterface(char* pMotorInterface)

SetMechanismDigitalIOInterface(char* pIOInterface)

In addition to mapping these mechanism-specific software components into the

RMAC controller, the device driver software must instruct the RMAC controller to

correctly set up the machining operational parameters that are specific to this three-axis

75

mechanism. For instance, the device driver obtains the mechanism maximum feedrate

from the device object data structure and uses the following RMAC_Config function call

to correctly set up the RMAC controller:

SetMechanismMaxFeedrate(double MaxFeedrate)

After this reconfiguration process, the necessary mechanism-specific algorithms

are mapped into the RMAC controller, as shown in Fig. 4.11, and the machining

operational parameters are correctly set up. At this point, the RMAC controller is

dynamically adapted, and therefore capable of controlling the three-axis mechanism.

4.7 Simulation System

As introduced in section 4.1, a simulation system is developed inside CAD/CAM

systems, thus, enabling end users to debug and validate a controller’s functionality

without operating the real machine tool when the controller is reconfigured.

CAD/CAM users can set the device driver to work in a virtual mode (see Fig.

4.4). The only difference between virtual mode and real control mode is that the servo

algorithms reflect the motion directly back to CAD/CAM systems as kinematics joint

values. These joint values are used by CAD/CAM systems to update the animation

display. UG has a built-in machine simulator allowing UG users to build a virtual

machine. This virtual machine can be simulated by taking the kinematics joint setpoints

at each trajectory step. CATIA does not have a built-in machine simulator, but it can be

integrated with DELMIA. Similar to UG, DELMIA users can build a virtual machine that

can be animated by taking the motion setpoints from the RMAC controller through a

device driver interface.

76

Whenever a user or CAD/CAM applications switches the controller to a different

mechanism, the simulation system is used to run the machining process plans on a virtual

machine to validate the controller’s functionality.

The simulation system serves two purposes. First, it enables CAD/CAM users to

estimate cycle time for a manufacturing process plan. Second, the simulation system

checks any collisions that might occur during a process plan. This, in turn, assists

CAD/CAM users in verifying a machine tool before they run the manufacturing process

plan directly on a physical machine.

Once the controller’s functionality is verified, the machining process plans can be

sent down to the RMAC controller to execute the process on a physical machine.

4.8 New Sequences of Operations

Under the RMAC architecture, the sequence of control information flow is as

follows:

1. CAD/CAM users create a solid model.

2. Users generate the manufacturing process plan.

3. Users search and select a best machine tool to perform the process plan.

4. The device driver manager locates the device driver and informs it to CAD/CAM.

5. CAD/CAM loads the device driver and communicates directly with the driver.

6. The device driver uses the RMAC_Config interface to instruct the RMAC

controller to reconfigure its motion planner, servo controller, and digital control

interface for the selected machine.

77

7. CAD/CAM applications pass the process plans to the device driver.

8. The device driver interprets the process plans and uses the RMAC_CAM

interface to pass motion and control commands to the RMAC controller for direct

machining.

9. The RMAC controller executes the manufacturing process plans and operates the

machine to make a desired part.

With the development of the RMAC architecture, it changes the traditional

machine control method. Under this new paradigm, CAD/CAM users can select an

optimal machine to meet the specific needs of a manufacturing operation. A device driver

will then be automatically loaded to connect the select machine tool to the CAD/CAM

system, thus allowing the manufacturing process plans to be executed directly on the

selected machine tool. The post-processing of these process plans into the traditional

M&G files is no longer necessary.

78

79

This chapter first shows the successful implementation of the RMAC architecture

on a three-axis tabletop mill. It then shows the proposed implementation of RMAC on a

Tarus five-axis full-size mill, and a Coordinate Measuring Machine (CMM). Lastly, it

demonstrates the simulation of a three-axis tabletop mill and a five-axis full-size mill in

UG using the developed RMAC controller.

5.1 Control Hardware

5.1.1 Three-axis tabletop mill

To implement this reconfigurable controller on a three-axis tabletop mill, a device

driver was developed to connect it directly with CATIA.

The controller runs on a Dual-Pentium 1 GHz computer. One processor runs

Windows XP, under which CATIA operates; the second processor uses VentureCom’s

CHAPTER 5 PROTOTYPE IMPLEMENTATION

80

Real-time Extensions (RTX) for Windows XP, using multiprocessor version 5.1.1. This

makes machine tool control possible by giving the controller a real-time environment.

The machine tool is a three-axis tabletop mill shown in Fig. 5.1. Each mill axis is

controlled by a digital torque drive developed by Semifusion, Inc. These digital torque

drives send and receive digital data via two fiber-optic cables that connect them to the

computer. The controller software uses these digital torque drives as torque slaves,

sending commanded torque to the motors and receiving actual position, speed, torque,

current, and errors as feedback, all as digital information. In the future, this mill will use

IEEE 1394 Firewire to replace its current fiber optic communication protocol.

Fig. 5.1 Three-axis tabletop mill

81

5.1.2 Five-axis full-size Tarus mill

Aside from the three-axis table top mill, this research will also be implemented on

a five-axis full-size Tarus mill, donated by General Motors (GM). A device driver to

connect this mechanism directly with CATIA needs to be completed.

Fig. 5.2 shows this Tarus mill. Each motor is controlled by an ORMEC

ServoWire SM digital drive. Communication between the RMAC controller and each

digital motor drive is handled by the IEEE 1394 Firewire, which is able to send

information fast enough to control multiple motors at rates above 4000 Hz.

I/O connections are handled through an ICP DAS data acquisition system. The

system consists of a PCI card (model no: PIO-D48) that is mounted in the host computer,

and a daughter board (model no: DB-24P) that connects to the PCI card and provides the

actual I/O connections.

Fig. 5.2 Five-axis full-size Tarus mill

82

5.1.3 CMM

The third implementation of this research will be on a Sugino V9, donated by

Sugino Machine, Inc. of Japan, for in-cycle measurement.

The physical mill is a three-axis mill shown in Fig. 5.3. Its digital motor

communication protocol, IEEE 1394 firewire, and its I/O connections are the same as

those previously mentioned for the five-axis Tarus mill. As a result, the controller

software uses the same digital control interface and digital I/O interface to communicate

with the digital devices.

Fig. 5.3 Sugino V9 for CMM

83

5.2 Control Software System

5.2.1 DMACXYZ tabletop mill device driver

Fig. 5.4 diagrams the overall control software system. The major development

effort to control this mechanism was to develop a device driver, named DMACXYZ.dll,

to connect this mill directly to CAD/CAM systems.

A mechanism-specific device database, named DMACXYZ.mdb, has been

designed to contain detailed information about this mechanism device. Three separate

DLLs were designed to contain mechanism-specific kinematics, machine actuator

mapping, and servo control algorithms. These three DLLs are

DMACXYZKinematics.dll, DMACXYZMachineActMap.dll, and

DMACXYZPIDServoControlLaw.dll.

In addition, DMACISAInterface.dll and DMACISAIOInterface.dll were

developed. These two DLLs contain the API functions to handle communication among

the RMAC controller, the digital motor drives, and the I/O sensors. The device driver

software contains the interface APIs to instruct the RMAC controller to map these

mechanism-specific algorithms into its memory space, which is necessary for controlling

this mechanism.

The device driver DMACXYZ.dll, the device database DMACXYZ.mdb, and the

other five DLLs are located in the three-axis folder, which is subordinate to the milling

machine folder, as described in section 4.2.1.

84

Fig. 5.4 DMACXYZ tabletop mill device driver

5.2.2 TarusXYZCA five-axis mill device driver

Fig. 5.5 shows the diagram of the proposed overall control software system for

the Tarus five-axis mill. To control this mechanism, a device driver, named

TarusXYZCA.dll, must be developed.

The development work for this device driver shares some similarities with that of

the DMACXYZ device driver described in the previous section. A mechanism-specific

device database, named TarusXYZCA.mdb, must be developed to contain detailed

information about this mechanism device. TarusXYZCAKinematics.dll,

TarusXYZCAMachineActMap.dll, TarusXYZCAPFFServoControlLaw.dll,

TarusXYZCAFirewireInterface.dll, and TarusXYZCAICPDasIOInterface.dll are under

development. These DLLs contain the kinematics, machine actuator mapping, and servo

control algorithms that are specific to this mechanism. In addition, the last two DLLs

contain a set of APIs that can be mapped into the RMAC controller to allow it to

communicate with the digital motor drives and the I/O sensors.

85

The device driver TarusXYZCA.dll, the device database TarusXYZCA.mdb, and

the other five separate DLLs are placed in the five-axis folder, as shown in Fig. 4.6.

Fig. 5.5 TarusXYZCA full-size mill device driver

5.2.3 CMM device driver

Fig. 5.6 diagrams the proposed overall software system for CMM control. To

create direct CMM control, it was necessary to develop a generic, high level driver

named WADriver.dll, and a machine-specific low level driver named WAILLDriver.dll.

These connect the Sugino V9 directly with the PC-DMIS. Further, the WADriver exposes

generic function calls to allow the PC-DMIS to command the CMM generically. The low

level driver (WAILLDriver) interprets the generic functions and sends down the motion

or control commands required by the RMAC controller.

The CMM high level driver (WADriver.dll) and low level driver

(WAILLDriver.dll) have been developed and implemented. Further work needs to be

done to integrate these drivers to the overall software system shown in Fig. 5.6.

86

The CMM driver allows the RMAC controller to act as a CMM controller,

regardless of what type of machine is actually being controlled. This flexibility allows the

RMAC controller to pause the cutting process, and switch to a measurement mode. The

part can then be measured in-process, and the results can be used immediately to update

the manufacturing process, and to compensate for measured errors.

Fig. 5.6 CMM device driver

The CMM driver uses the kinematics currently loaded for the machine under

control. Because of this, the driving software remains blind to the type of machine under

control and thus simply passes motion commands as normal. The RMAC CMM driver

then provides functionality for commands related to measurement. Unique commands are

included for measuring a part manually or automatically, obtaining the position of the

measured hit, switching the probe on and off, checking for measurement errors, and

setting measurement parameters. By adding these functions, any controlled machine can

be used as a CMM.

While many controllers offer some CMM functionality, their commands are

limited to the basic M&G commands that manufacturers have implemented, giving them

87

limited abilities to communicate the results. The RMAC CMM driver allows an external

CMM software package to obtain complete control of the machine. The first

implementation of this driver has been demonstrated by utilizing the PC-DMIS

measurement software package. PC-DMIS is the world leader in measurement software,

and provides many advanced capabilities for part measurement and result reporting. By

using this software, RMAC can offer a capable and familiar CMM user interface for

measurement specialists.

5.3 Simulation

A simulation for implementing the three-axis tabletop mill and Tarus five-axis

mill device drivers has been successfully created in Unigraphics (UG), as shown in Fig.

5.7 and Fig. 5.8. A machine selection user interface (see Fig. 4.2) has also been

developed inside UG, providing end users with a graphic tool to dynamically reconfigure

the controller, and to change machine tool parameter settings. As displayed, whenever a

user picks up a new machine, the CAD/CAM software will unload the old device driver

DLL, and load the new device driver DLL into its memory. By importing the necessary

motion planning and servo controlling algorithms into the RMAC controller, the

functionality of the RMAC controller changes from a three-axis to a five-axis mill at run-

time.

88

Fig. 5.7 DMACXYZ simulation Fig. 5.8 TarusXYZCA simulation

89

The final objective of this dissertation is to implement the RMAC architecture on

a prototype mill. This chapter presents the experimental results of the prototype

developed, as explained in chapter four.

6.1 Simulation

As part of this research, a simulation program was developed in UG (see Fig. 5.7

and Fig. 5.8). A machine selection user interface was also developed to allow end users

to select different machines and dynamically change the controller’s functionality from

the three-axis mill to the five-axis mill. Experiments illustrated that the machine device

drivers can be successfully unloaded and loaded when users selected different machines

to run simulation. These experiments proved that dynamically reconfiguring the

controller software by loading a machine device driver is feasible.

CHAPTER 6 Experimental Results

90

6.2 Three-axis Tabletop Mill Experiment

After a device driver was developed to connect a three-axis tabletop mill (see Fig.

5.1) to CATIA, two experiments were conducted to directly machine a CATIA surface on

the three-axis tabletop mill. The following sections describe this process in greater detail.

6.2.1 Direct reconfigurable machining application start-up

To actuate the direct reconfigurable machining application, a direct reconfigurable

machining tool bar is plugged into the CATIA surface machining workbench. This

customized tool bar interacts between end users and the CATIA system. To launch the

direct reconfigurable machining application in CATIA, users must select the surface

machining option from the NC Manufacturing menu (see Fig. 6.1). The direct

reconfigurable machining tool bar will then be automatically launched, as shown in Fig.

6.2.

Fig. 6.1 Start up direct reconfigurable machining application

91

Fig. 6.2 Direct reconfigurable machining tool bar

This direct reconfigurable machining tool bar is composed of the following six

buttons:

• Reserved button: reserves for future direct machining applications. Currently,

when users click this button, a customized dialog box launches to allow them to

select a surface. When users select a surface, a new dialog box pops up to prompt

them to create tool paths. At this development stage, no customized tool path

planning algorithm has been implemented yet. But for future direct machining

applications, some advanced tool path planning algorithms, such as curvature

matched machining, can be implemented.

92

• Jog button: allows users to launch a jog dialog box. Users can then employ this

dialog box to position the cutter at any X, Y, and Z position in relation to a

coordinate system on a 3-axis mill.

• Legacy machine codes button: allows users to read legacy machine codes, such as

APT and M&G codes, and execute them on a machine tool.

• Direct machine button: allows users to send the tool paths directly to the RMAC

controller to create a physical model.

• Machine search and selection button: allows users to launch a customized

machine search and selection dialog box. Based on certain searching schemes,

users can narrow down their machine selections to choose one machine capable of

performing the manufacturing process.

• Simulation button: allows users to preview a process plan on a virtual machine

prior to executing the manufacturing process on a physical machine.

6.2.2 Machine search and selection dialog box

Once CAD/CAM users create a manufacturing process plan and launch the direct

machining tool bar (see Fig. 6.2), they must first select a machine tool to perform this

manufacturing process.

When searching for different machines, the machine search and selection dialog

box (see Fig. 6.3) forces users to only click on different machines to review the

information relevant to this machine. The “search machines” button and all of the

machine data fields are disabled to prevent users from accidental operations. If users want

to search for particular machines, they can press the “edit” button. The “search machine”

button and all of the machine search fields then become active, as shown in Fig. 6.4.

93

Fig. 6.3 Machine search and selection dialog box

94

Fig. 6.4 Search machines enabled

95

In this example, users are searching for three-axis milling machines. Fig. 6.5

displays a list of selected machine tools. If users want more details about a particular

machine, they can pick one machine and click the “machine characteristics” button (see

Fig. 6.4 and Fig. 6.5), where a machine characteristics dialog box will pop up, as shown

in Fig. 4.4.

Once users choose a proper machine to perform the manufacturing process, they

can then use the “jog” button and the “direct machine” button to operate the selected

machine to create a physical part.

Fig. 6.5 Selected machines

6.2.3 Jog dialog box

Because the three-axis tabletop mill does not have a teach pendent to allow users

to manually jog the mill, a jog dialog box (see Fig. 6.6) must be created in CATIA to

allow users to position the cutter prior to machining. This dialog box enables the

positioning of the cutter at the desired location prior to actual machining. The cutter’s

initial location must be positioned at the same location where X, Y, and Z are set to zero

96

in the frame used by the CATIA manufacturing process plan. The dialog box created to

jog the cutter has the capability of jogging the X, Y, and Z axes.

The slider provided in this dialog box is used to set the distance (in mm) that the

cutter tool will be jogged. If the slider has been set to 5 and the “JogXPlus” button is

pressed once, the cutter tool will be jogged 5 mm in the positive X direction. If the

“ToReferencePoint” button is pressed, the cutter tool will be moved back to the zero

position in the CATIA reference frame.

Fig. 6.6 Tool jog dialog box

6.2.4 Experiments

A first experiment was arranged using a scaled 3D CAD data model of a car

headlight, similar to data that would typically be used in production at GM (see Fig. 6.7).

The headlight was used because it consists of only one free-form surface, but still

demonstrates a fair amount of curvature and shape. Tool paths for the surface were

generated in CATIA and sent to a three-axis tabletop mill (see Fig. 6.7) that was directly

97

connected to CATIA through a three-axis mill device driver, called DMACXYZ.dll. The

computer runs dual Pentium III processors at 1 GHz. The non real-time CATIA

application runs on one processor while the real-time applications run on the second

processor.

The headlight surface was machined on the three-axis mill by using the three-axis

mill driver (DMACXYZ.dll), as shown in Fig. 6.7. The tool paths and the physical part

machined directly from CATIA are shown in Fig. 6.8. The same process was also

completed by using a conventional Tarus three-axis mill utilized at GM. The processing

time comparison between the direct reconfigurable machining process and the traditional

M&G method is shown in Table 6-1. As this table shows, it took four steps for the direct

reconfigurable machining process to create a physical part from a 3D CAD model.

However, it took eight steps and seventeen more minutes to create a part from the same

CAD model through the conventional M&G code method.

The resulting decrease in processing time does not come from a reduction in

actual machining time, but from a decrease in the time required for tool path post-

processing and file handling. The direct reconfigurable machining method eliminates

unnecessary intermediate files, generated for the conventional controllers, and

unnecessary process steps used on the conventional machining method. Therefore, it

greatly simplifies the traditional design-to-manufacturing processes.

98

Fig. 6.7 Direct machining a car headlight on the three-axis mill

Fig. 6.8 GM headlight surface with process plan and the machined part

99

Table 6-1 Direct reconfigurable machining process vs. conventional process

A second experiment was conducted on the three-axis prototype mill. Two

process plans were created for a GM headlight surface as shown in Fig. 6.9. The first

process plan was a sweeping operation (see Fig. 6.9.a) intended for the three-axis mill

configuration. To execute this process plan directly on the three-axis mill, a device driver

100

called DMACXYZ.dll was first loaded. After the headlight surface was made, a new

device driver called DMACXY.dll was then loaded. This driver commanded the

prototype mill as a two-axis milling machine. The face milling process plan (see Fig.

6.9.b) was then sent to the prototype mill for direct machining. Fig. 6.9.c shows the

machined part after these two operations.

(a) (b) (c)

Fig. 6.9 GM headlight surface with two process plans and the machined part

As these two experiments demonstrate, the RMAC control system streamlines the

design-to-manufacturing processes by eliminating unnecessary intermediate process steps

used in the traditional machining method. Meanwhile, it brings tremendous flexibilities

into the manufacturing systems. A single machine can be reconfigured to operate

differently to fulfill specific manufacturing operation requirements. This is a great

advantage over the traditional M&G machining method.

101

This chapter presents the research conclusions and gives recommendations for

future work.

7.1 Conclusions

 Emerging reconfigurable manufacturing systems require reconfigurable control

systems. With the technology of controller software design and the traditional machine

tool control in practice today, it is extremely difficult to develop a reconfigurable control

architecture that is completely open for easy reconfiguration of the controller software.

Based on the Direct Machining And Control research at Brigham Young

University, this dissertation describes software architecture for a dynamically

reconfigurable machine tool controller. Because this RMAC controller is completely

software-based and is independent of control hardware that is both proprietary and closed

to end users, it is possible to develop a driver-like paradigm for a reconfigurable control

system.

CHAPTER 7 CONCLUSIONS AND

RECOMMENDATIONS

102

This dissertation proposed and developed a new control architecture that will

allow mapping of each mechanism’s configuration and capability into a device driver and

use this device driver to reconfigure a RMAC open-architecture controller. This provides

CAD/CAM users with greater flexibilities to fulfill different manufacturing operations.

Under the RMAC paradigm, CAD/CAM users can search for an optimal machine

tool based on the needs of the current manufacturing process. A mechanism device driver

will then be automatically loaded to connect the selected machine tool directly to a

CAD/CAM application. With the establishment of this direct link, the exact surface

geometry, in its native mathematical format, can be passed to the device driver. The

device driver interprets the parametric tool paths and the manufacturing process

instructions contained within the process plan. It then properly reconfigures the RMAC

open-architecture controller necessary for controlling the selected machine tool. As a

result, CAD/CAM organizations no longer need to develop specific post-processing

software to interface with each individual machine tool. Instead, a standardized device

driver interface is developed to connect various machine tools directly to any CAD/CAM

application.

Moreover, with the development of the device driver architecture and the control

software reconfiguration methods, it is possible to develop new machine tools with

multiple functions. Traditionally, machine tools have only had one behavior, but this

research presents the new and unique ability to reconfigure a machine tool controller

instantaneously. By unloading and loading a mechanism device driver, the mill is

instantly commanded as a material removal machine, and, seconds later, through the

loading of a CMM driver, the machine tool can be controlled via an inspection program

103

like PC-DMIS. Experiments with UG simulation on a three-axis and five-axis mill and a

machine device driver implemented on the three-axis tabletop mill demonstrate that this

is feasible.

While this research project is not yet complete, it already demonstrates promising

and exciting capabilities. The development of this reconfigurable machine tool controller

architecture around the device driver paradigm could have a major impact on the

manufacturing organizations that still rely on the traditional M&G machining methods.

Meanwhile, it will bring some significant advantages to the machine tool industry.

First, it shifts much of the programming burden from the manufacturing process

software to the controlling software. Under this new paradigm, the tool paths entities, in

their original mathematical descriptions, are directly sent down to the controller software

which interpolates those tool paths on the controller side. Because the mathematic

representation of tool paths is independent of any machine tool controller, and because

the machine-dependent M&G codes are completely eliminated, under this new direct

control scheme, the standardized device driver interface allows different CAD/CAM

software to directly access the internal device driver functions, thus making it possible for

the same mechanism controller to communicate directly with any CAD/CAM system. It

is no longer necessary for CAD/CAM organizations to spend their valuable resources on

developing machine-specific, post-processing interface software. The interface

connection from machine control applications to CAD/CAM applications becomes much

simpler and easier.

Second, the traditional design-to-manufacturing processes will be greatly

streamlined and simplified. The traditional process of transforming the tool paths into

104

some intermediate CL and APT files and post-processing them into the M&G codes is

completely eliminated. Instead, a new way of directly controlling a machine by a

CAD/CAM application is truly realized. Under this new control paradigm, the original

CAD description can now be sent directly to the machine tool through a device driver

interface and the modifications made on the shop floor become feedback to the CAD

designer to update the original CAD models through the same interface.

Third, the separation of device driver architecture enables control vendors to work

independently on various parts of the control system. Each mechanism device driver

developer can independently design, debug, and link the mechanism device driver into an

executable DLL. The independent and modular nature of device driver software allows

endless combinations of third party hardware and control algorithms. Thus, controller

vendors can now develop more cost effective, more efficient, and more advanced

controllers.

Last but not the least, the modular and independent nature of the device driver

architecture offers an extensible software foundation for integrating any new control

algorithm. The development of the standardized interfaces between CAD/CAM software,

the device driver software, and the controller software, allows the CAD/CAM

organizations, the device driver vendors, and the controller vendors to work

independently and consistently, integrating new functionalities into their existing

products. As a result, end users experience greater benefits by easily upgrading their

existing machine tools with any new functionality developed by those different vendors.

105

7.2 Recommendations

Even though this dissertation makes several original contributions to the field of

machine control, these contributions are just the beginning of the work that is required to

successfully integrate this reconfigurable control architecture into industry. Some

improvements still need to be made to the architecture as this research project moves

forward. The following section will provide recommendations for future research.

Firstly, the proposed architecture was only successfully implemented on a three-

axis tabletop mill. As the development effort continues, some incremental extensions and

refinements need to be made into the existing control architecture and the set of device

driver interface APIs.

Secondly, the current set of device driver interface APIs are designed to only

support milling and CMM machines. Future efforts must extend the current set of

interface functions to support different types of machines, such as robots, drilling

machines, and lathes. In addition, more interface functions need to be developed to allow

the future reconfigurable control system to be applied on various manufacturing

applications, such as welding, drilling, and parts assembly.

Third, an ideal CAD/CAM system should provide true simulation of the

manufacturing process it generates. In other words, a CAD/CAM system should provide

a simulation engine that contains a set of machine tools on which the program simulates

the manufacturing process—on the computer monitor—with no difference from the

actual machine tool. The current simulation is limited to only allowing animation of the

machine tool motion. Future developments must create the capability of simulating the

106

machine dynamics so that CAD/CAM users can obtain the actual machining force and

torque information prior to physically operating a machine. This will better assist

CAD/CAM users to evaluate and select an optimal machine tool.

Lastly, and most important of all, significant efforts need to be made to ensure

collaboration between DMAC and the major CAD/CAM and controller vendors. The

ultimate goal of this research project is to successfully integrate the RMAC architecture

into industry. The support from these major CAD/CAM and controller vendors is

necessary for the success of this research.

107

.

[1] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, H.V.Brussel.,

Reconfigurable Manufacturing System, Annals of the CIRP vol. 48/2/1999, pp.

527-540.

[2] Y. M. Moon, S. Kota., Synthesis of Reconfigurable Machine Tools with Screw

Theory, Proceedings of DETC’00, ASME 2000 Design Engineering Technical

Conferences and Computers and Information in Engineering Conference,

Baltimore, Maryland, September 10-13, 2000, pp. 157-166.

[3] S. Fujita, T. Yoshida, OSE: Open System Environment for Controller, 7th

International Machine Tool Engineers Conference, Nov. 1996, pp. 234-243.

[4] OMAC Users Group, http://www.arcweb.com/omac.

[5] OSACA Organization, http://www.osaca.org.

[6] P. Lutz and W. Sperling, OSACA – The Vendor Neutral Control Architecture,

Proceedings of the European Conference on Integration in Manufacturing IiM’97,

Dresen, Germany, 1997.

BIBLIOGRAPHY

108

[7] G. Pritschow, P. Lutz, Open System Controllers – a Challenge for the Future of the

Machine Tool Industry, Annals of the CIRP vol. 42/1/1993, pp. 449-452.

[8] P. Wright, S. Schofield, Open-architecture Controllers for Machine Tools, Part 1:

Design Principles, Journal of Manufacturing Science and Engineering, vol. 120,

May 1998, pp. 417-424

[9] P. Wright, F. C. Wang, Open Architecture Controllers for Machine Tools, Part 2: A

Real-timeQuintic Spline Interpolator, Journal of Manufacturing Science and

Engineering, vol. 120, May 1998, pp. 425-432

[10] Y. Koren, Open-Architecture Controllers for Manufacturing Systems, Open

Architecture Control Systems, ITIA Series, 1998.

[11] R. G. Landers, B. K. Min, Y. Koren, Reconfigurable Machine Tools, Annals of the

CIRP, vol. 50/1/2002, pp. 269-275.

[12] K. D. Oldknow, I. Yellowley, Design, Implementation, and Validation of a System

for the Dynamic Reconfiguration of Open Architecture Machine Tool Controls,

International Journal of Machine Tools & Manufacture, vol. 41, 2001, pp. 795-808.

[13] P. Proctor, The Enhanced Machine Controller,

http://www.isd.mel.nist.gov.projects/emc/emc.htm

[14] W. P. Shackleford, F. M. Proctor, Use of Open Source Distribution for a Machine

Tool Controller, Proceeding of SPIE, vol. 4191, pp. 19-30.

[15] E. Messina, H. Huang, H. Scott, An Open Architecture Inspection System,

Proceedings of the 2000 Japan-USA Flexible Automation Conference, July 23-25,

2000, Ann Arbor, Michigan, pp. 113-118.

109

[16] D. Chang, A. Spence, S. Bigg, J. Heslip, J. Peterson, An open architecture CMM

motion controller, Proceedings of SPIE, vol. 4563 (2001), pp. 1-9.

[17] K. S. Hong, K. H. Choi, J. G. Kim, S. Lee, A PC-based open robot control system :

PC-ORC, Robotics and Computer Integrated Manufacturing, vol. 17 (2001), pp.

355-365.

[18] W.S. Atkins, Strategic Study on the EU Machine Tool Sector, Management

Consultants, 1990.

[19] M. Zatarain, E. Lejardi, and F. Egana, Modular Synthesis of Machine Tools, Annals

of the CIRP, Vol. 37/1, 1998, pp. 333-336.

[20] http://www.sfb467.uni-stuttgart.de/objectives/index.html

[21] S. Birla, Software Modeling for Reconfigurable Machine Tool Controller, Ph.D.

Dissertation, The University of Michigan, 1997.

[22] S. Wang, K.G. Shin, Constructing Reconfigurable Software for Machine Control

Systems, IEEE Transactions on Robotics and Automation, vol. 18, 2002, pp. 475-

486.

[23] N. Erol, Y. Altintas, M. Ito, Open System Architecture Modular Tool Kit for

Motion and Machining Process Control, IEEE/ASME Transactions on

Mechatronics, vol. 5, No. 3, 2000, pp. 281-191.

[24] S. Kolla, J. Mlchaloski, W. Rippy, Evaluation of Component-Based Reconfigurable

Machine Controllers, Proceedings of the World Automation Congress (WAC) 2002,

Orlando, FL, June 9-13, 2002, pp. 625-630.

110

[25] F. Proctor, J. Michaloski, S. Birla, and G. Weinert, Analysis of Behavioral

Requirements for Component-Based Machine Controllers, Proceedings of SPIE,

vol. 4191 (2001), pp. 10-18.

[26] D. Stewart, R.A. Volpe, P.K. Khosla, Design of Dynamically Reconfigurable Real-

Time Software Using Port-Based Objects, IEEE Transactions on Software

Engineering, vol. 23 (1997), pp. 759-776.

[27] D. Kalita, P.P. Khargonekar, Formal Verification for Analysis and Design of Logic

Controllers for Reconfigurable Machining Systems, IEEE Transactions on Robotics

and Automation, vol. 18 (2002), pp. 463-474.

[28] Y. Zhang, K. D. Roufas, M. Yim, Software Architecture for Modular Self-

Reconfigurable Robots, Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, Maui, Hawaii, USA, 2001, pp. 2355-2360.

[29] I.M. Chen, Rapid response manufacturing through a rapidly reconfigurable robotic

workcell, Robotics and Computer Integrated Manufacturing, vol. 17 (2001), pp.

199-213.

[30] K. Feldmann, M. Wenk, Flexible Sensor Control Solutions for Robot Controls by

Reconfigurable Software Architectures, Proceedings of the 2000 Japan-USA

Flexible Automation Conference, 2000, pp. 847-851.

[31] W.J. Schonlau, MMS: A Modular Robotic System and Model Based Control

Architecture, Proceeding of the SPIE, vol. 3839 (1999), pp. 289-296.

[32] http://www.step-nc.org/

111

[33] S. Suh, B. Chung, B. Lee, J. Cho, S. Cheon, H. Hong, H. Lee, Developing an

Integrated STEP-Compliant CNC Prototype, Journal of Manufacturing Systems

2002, vol, pp. 350-362.

[34] Suh, Suk-Hwan; Cho, Jung-Hoon; Hong, Hee-Dong, On the architecture of

intelligent STEP-complaint CNC, Int. Journal of CIM, V.15/2, 2002, pp. 168-177.

[35] OMAC Users Group, The Value Proposition for STEP-NC, version 4, May 2002.

[36] STEP-NC consortium, ESPRIT Project EP 29708, STEP-NC Final Report, version

1, Nov. 2001.

[37] S.T. Newman, R.D. Allen, and R.S.U. Rosso, CAD/CAM solutions for STEP

complaint CNC manufacturer, Proceedings of the 1st CIRP(UK) Seminar on Digital

Enterprise Technology, 2002, pp. 123-128.

[38] R.S.U. Rosso Jr, R.D. Allen, S.T. Newman, Future Issues for CAD/CAM and

Intelligent CNC Manufacturer, Proceedings of the 19th International Manufacturing

Conference, 2002.

[39] J. Bosley, A Modular, Open-Architecture Controller for Direct Machining, M.S.

Thesis, Brigham Young University, Provo, Utah, 2000.

[40] C. L. McBride, An Open Architecture Controller for Direct Machining and Control,

M.S. Thesis, Brigham Young University, Provo, Utah, 2002.

[41] H. Miza, DEVELOPING A DIRECT MACHINING INTERFACE FOR

COMMERCIAL CAM SYSTEMS, M.S. Thesis, Brigham Young University,

Provo, Utah, 2003.

[42] C.P. Bassett, C.G. Jensen, W.E. Red, M.S. Evans, Direct Machining: a New

Paradigm for Machining Data Transfer, Proceedings of DETC2000/DFM-14298:

112

ASME 5th Design for Manufacturing Conference, Baltimore, Maryland, September

10-13, 2000.

[43] C.P. Bassett, C.G. Jensen, J.E. Bosley, Y. Luo, W.E. Red, M.S. Evans, Direct

Machining Architectures Using CAD-CAM Generative Methods, Proceedings of

the IASTED International Conference on Control and Applications 2000, pp. 287-

295.

[44] W.E. Red, M.S. Evans, C.G. Jensen, J.E. Bosley, Y. Luo, Architecture for Motion

Planning and Trajectory Control of a Direct Machining Application, Proceedings of

the IASTED International Conference on Control and Applications 2000, pp. 484-

489.

[45] M.S. Evans, W.E. Red, C.G. Jensen, C. L. McBride, G. Ghimire. Open Architecture

for Servo Control using a Digital Control Interface, Proceedings of the IASTED

International Conference on Control and Applications 2000, pp. 339-344.

[46] Frank Wei Li, T. Davis, C.G. Jensen, and W.E. Red, Rapid and Flexible

Prototyping through Direct Machining, Computer-Aided Design and Applications,

Vol. 1, Nos. 1-4, CAD'04, 2004, pp. 91-100.

[47] Wei Li, W.E. Red, C.G. Jensen, and T. Davis, “Dynamic Reconfigurable Machine

Tool Controller”, Proceedings of IMECE04, IMECE-61317, November 13–19,

2004, Anaheim, California, USA.

[48] Z.Y. Chen, W. Li, R. Cheatham, J.G. Wang, C.G. Jensen, and W.E. Red, “A

DIRECT MACHINING SYSTEM FOR COMMERCIAL CAD/CAM

PACKAGES”, Proceedings of IMECE04, IMECE-59992, November 13–19, 2004,

Anaheim, California USA.

113

[49] W.E. Red. A dynamic optimal trajectory generator for Cartesian Path following.

Robotica 2000;18:451-458.

[50] J.J.Craig, Introduction to Robotics: Mechanics and Control (Addison-Wesley, 2nd

 edition, 1989).

[51] G.F. Franklin, J.D. Powell, A.E. Naeini, Feedback Control of Dynamic Systems

(Addison-Wesley, 3rd edition, 1994).

[52] G.F. Franklin, J.D. Powell, M. Workman, Digital Control of Dynamic Systems

(Addison-Wesley, 3rd edition, 1997).

[53] G. Ghimire, Specification and Application of a Digital Control Interface, M.S.

Thesis, Brigham Young University, Provo, Utah, 2000.

[54] Walter Oney, Programming the Windows Driver Model (Microsoft Press, 1999).

[55] Microsoft, Windows 2000 Driver Design Guide (Microsoft Press, 2000).

[56] M. Klein, Windows Programmer’s Guide To DLLs and Memory Management

(SAMS, 1st edition, 1992).

114

115

APPENDICES

116

117

Device_Driver_Object and Device_Object Specification

Specification version 1.0

APPENDIX I

118

This appendix contains the definition of the Device_Driver_Object and Device_Object

data structure, as described in section 3.4.2.3 and 3.4.3.2. These two data structures are

declared in the device driver manager’s header file.

/***/
/******Data structure for the DEVICE_DRIVER_OBJECT*****/
/**/
typedef struct _DEVICE_DRIVER_OBJECT{

 int MechanismID;
 char MechanismName[100];
 char DeviceDriver[100];
 char MechanismType[100];
 char MechanismConfigurationType[100];
 int MechanismNumOfJoints;
 char MechanismWorkingVolume[100];
 double MechanismSpindleHorsePower;
 double MechanismSpindleMaxSpeed;
 double MechanismSpindleMaxTorque;
 double MechanismMaxFeedrate;
 double MechanismMaxPalletLoad;
 double MechanismPositioningTolerance;
 double MechanismRepeatabilityTolerance;
 char MechanismSpeedCapability[100];
 char DeviceDriverVersion[100];

}DEVICE_DRIVER_OBJECT, *PDEVICE_DRIVER_OBJECT;

/***/
/***********Data structure for the DEVICE_OBJECT********/
/**/
typedef struct _DEVICE_OBJECT{

 char MechanismName[100];
 char MechanismKinematics[100];
 int MechanismNumOfJoints;
 char MechanismConfiguration[100];
 char MechanismActuatorMap[100];
 char MechanismWorkingVolume[100];
 double MechanismSpindleHorsePower;
 double MechanismSpindleMaxSpeed;

119

 double MechanismSpindleMaxTorque;
 double MechanismMaxFeedrate;
 double MechanismMaxPalletLoad;
 double MechanismPositioningTolerance;
 double MechanismRepeatabilityTolerance;
 int MechanismJntTypes[DMAC_MAX_JOINTS];
 double MechanismJntMinLimit[DMAC_MAX_JOINTS];
 double MechanismJntMaxLimit[DMAC_MAX_JOINTS];
 double MechanismJntMaxSpeed[DMAC_MAX_JOINTS];
 double MechanismJntMaxAccel[DMAC_MAX_JOINTS];
 double MechanismJntMaxJerk[DMAC_MAX_JOINTS];
 char MechanismJntServoControlLaw[DMAC_MAX_JOINTS][100];
 char MechanismSpindleServoControlLaw[100];

}DEVICE_OBJECT, *PDEVICE_OBJECT;

120

121

Device Driver Manager’s Interface APIs Specification

Specification version 1.0

APPENDIX II

122

This appendix contains the definition of the device driver manager’s interface APIs, as

described in section 3.4.2.4. These interface APIs are declared in the device driver

manager’s header file.

/***/
/****** Microsoft access database functions (Using ODBC) ****/
/**/

BOOL OpenDeviceDriverDatabase()
Returns true if the device driver database is opened, otherwise, returns
false.

BOOL CloseDeviceDriverDatabase()
Returns true if the device driver database is closed, otherwise, returns
false.

int GetTotalNumberOfRecords()
Returns the total number of machine records contained within the device
driver database.

int SearchDatabaseRecordSet(char* pMachineSQLStatement)
Returns the total number of searched machines using the given SQL
statement. If none record is found, return zero.

BOOL GetDatabaseRecordSetColumns()
Returns true if are columns are obtained from the device driver database,
otherwise, returns false.

VOID OnNextRecord()
Move to the next database record.

VOID OnPreviousRecord()
Move to the previous database record.

VOID OnFirstRecord()
Move to the first database record.

VOID OnLastRecord()
Move to the last database record.

123

/***/
/************* Mechanism device related functions **********/
/**/

int Machine_GetMechanismID()
Returns the mechanism ID defined within the device driver database.

Char* Machine_GetMechanismName()
Returns the mechanism name defined within the device driver database.

Char* Machine_GetMechanismDeviceDriver()
Returns the mechanism device driver name defined within the device
driver database.

int Machine_GetMechanismDeviceDriverVersion()
Returns the mechanism device driver version defined within the device
driver database.

Char* Machine_GetMechanismType()
Returns the mechanism type defined within the device driver database.

Char* Machine_GetMechanismConfigurationType()
Returns the mechanism configuration type defined within the device
driver database.

int Machine_GetMechanismNumberOfJoints()
Returns the mechanism’s number of joints defined within the device driver
database.

Char* Machine_GetMechanismWorkingVolume()
Returns the mechanism working volume defined within the device driver
database.

double Machine_GetMechanismSpindleHorsePower()
Returns the mechanism spindle horse power defined within the device
driver database.

double Machine_GetMechanismSpindleMaxSpeed()
Returns the mechanism spindle maximum speed defined within the device
driver database.

124

double Machine_GetMechanismSpindleMaxTorque()
Returns the mechanism spindle maximum torque defined within the
device driver database.

double Machine_GetMechanismMaxFeedrate()
Returns the mechanism maximum feedrate defined within the device
driver database.

double Machine_GetMechanismMaxPalletLoad()
Returns the mechanism maximum pallet load defined within the device
driver database.

double Machine_GetMechanismPositioningTolerance()
Returns the mechanism position tolerance defined within the device driver
database.

double Machine_GetMechanismRepeatabilityTolerance()
Returns the mechanism repeatability tolerance defined within the device
driver database.

125

Device Driver’s Interface APIs Specification

Specification version 1.0

APPENDIX III

126

This appendix contains the definition of the device driver’s interface APIs, as described

in section 3.4.3.3 and 3.4.3.4. These interface APIs are declared in each device driver’s

header file. The excerpt in this appendix is from a three-axis mill device driver’s header

file-DMACXYZ.h.

/***/
/****** Microsoft access database functions (Using ODBC) ****/
/**/

BOOL OpenDeviceDatabase()
Returns true if the device database is opened, otherwise, returns false.

BOOL CloseDeviceDatabase()
Returns true if the device database is closed, otherwise, returns false.

BOOL GetDatabaseRecordSetMechanismColumns()
Returns true if all mechanism columns are obtained from the device
database, otherwise, returns false.

BOOL GetDatabaseRecordSetJointColumns(int JntNum)
Returns true if the specified joint columns are obtained from the device
database, otherwise, returns false.

/***/
/************* Mechanism related functions ***************/
/**/

Char* Machine_GetMechanismName()
Returns the mechanism name defined within the device database.

Char* Machine_GetMechanismKinematics()
Returns the mechanism kinematics defined within the device database.

Char* Machine_GetMechanismActuatorMap()
Returns the mechanism actuator mapping object defined within the device
database.

127

int Machine_GetMechanismNumberOfJoints()
Returns the mechanism’s number of joints defined within the device
database.

Char* Machine_GetMechanismConfiguration()
Returns the mechanism configuration defined within the device database.

Char* Machine_GetMechanismWorkingVolume()
Returns the mechanism working volume defined within the device
database.

double Machine_GetMechanismMaxFeedrate()
Returns the mechanism maximum feedrate defined within the device
database.

double Machine_GetMechanismSpindleHorsePower()
Returns the mechanism spindle horse power defined within the device
database.

double Machine_GetMechanismSpindleMaxSpeed()
Returns the mechanism spindle maximum speed defined within the device
database.

double Machine_GetMechanismSpindleMaxTorque()
Returns the mechanism spindle maximum torque defined within the
device database.

double Machine_GetMechanismMaxPalletLoad()
Returns the mechanism maximum pallet load defined within the device
database.

double Machine_GetMechanismPositioningTolerance()
Returns the mechanism position tolerance defined within the device
database.

double Machine_GetMechanismRepeatabilityTolerance()
Returns the mechanism repeatability tolerance defined within the device
database.

128

/***/
/************* Mechanism joint related functions **********/
/**/

int Machine_GetMechanismJntTypes(int JntNum)
Returns the mechanism joint type, for the specified JntNum, defined
within the device database.

double Machine_GetMechanismJntMaxLimit(int JntNum)
Returns the mechanism maximum joint limit, for the specified JntNum,
defined within the device database.

double Machine_GetMechanismJntMinLimit(int JntNum)
Returns the mechanism minimum joint limit, for the specified JntNum,
defined within the device database.

double Machine_GetMechanismJntMaxSpeed(int JntNum)
Returns the mechanism maximum joint speed, for the specified JntNum,
defined within the device database.

double Machine_GetMechanismJntMaxAccel(int JntNum)
Returns the mechanism maximum joint acceleration, for the specified
JntNum, defined within the device database.

double Machine_GetMechanismJntMaxJerk(int JntNum)
Returns the mechanism maximum joint jerk, for the specified JntNum,
defined within the device database.

Char* Machine_GetMechanismJntServoControlLaw(int JntNum)
Returns the mechanism servo control law, for the specified JntNum,
defined within the device database.

/***/
/**************** Configuration functions ****************/
/**/

VOID Machine_SetMechanismNumberOfJoints(int NumJnts)
Sets the mechanism number of joints for the DMAC controller.

VOID Machine_SetMechanismMaxFeedrate(double MaxFeedrate)
Sets the mechanism maximum feedrate for the DMAC controller.

VOID Machine_SetMechanismSpindleMaxSpeed(double MaxSpindleSpeed)
Sets the mechanism maximum spindle speed for the DMAC controller.

129

VOID Machine_SetMechanismSpindleMaxTorque(double MaxSpindleTorque)
Sets the mechanism maximum spindle torque for the DMAC controller.

VOID Machine_SetMechanismJntTypes(int JntNum, int JntType)
Sets the mechanism joint type for the joint specified by the JntNum.

VOID Machine_SetMechanismJntMaxLimit(int JntNum, double MaxJntLimit)
Sets the mechanism maximum joint limit for the joint specified by the
JntNum.

VOID Machine_SetMechanismJntMinLimit(int JntNum, double MinJntLimit)
Sets the mechanism minimum joint limit for the joint specified by the
JntNum.

VOID Machine_SetMechanismJntMaxSpeed(int JntNum, double MaxJntSpeed)
Sets the mechanism maximum joint speed for the joint specified by the
JntNum.

VOID Machine_SetMechanismJntMaxAccel(int JntNum, double MaxJntAccel)
Sets the mechanism maximum joint acceleration for the joint specified by
the JntNum.

VOID Machine_SetMechanismJntMaxJerk(int JntNum, double MaxJntJerk)
Sets the mechanism maximum joint jerk for the joint specified by the
JntNum.

VOID Machine_ConfigureMotionPlanner()
Generic function call to instruct the controller software to reconfigure its
motion planner. The actual interpretation of this generic function call is
done inside each device driver. Returns true if the motion planner is
successfully reconfigured. Otherwise, returns false.

VOID Machine_ConfigureServoController()
Generic function call to instruct the controller software to reconfigure its
servo controller. The actual interpretation of this generic function call is
done inside each device driver. Returns true if the servo controller is
successfully reconfigured. Otherwise, returns false.

VOID Machine_ConfigueDigitalControlInterface()
Generic function call to instruct the controller software to configure its
digital control interface. The actual interpretation of this generic function
call is done inside each device driver. Returns true if the digital control
interface is successfully configured. Otherwise, returns false.

130

131

RMAC_Config and RMAC_CAM interfaces specification

Specification version 1.0

APPENDIX IV

132

This appendix contains the definition of the RMAC_Config and RMAC_CAM interface

APIs, as described in section 3.4.4 and 3.4.5. The RMAC_Config interface APIs are

declared in the RMAC_Config COM interface header file and the RMAC_CAM

interface APIs are declared in the RMAC_CAM COM interface header file.

/***/
/**************RMAC_Config interface functions **********/
/**/

VOID SetMechanismKinematics(char* pDMACKin)
Sets the mechanism kinematics. pDMACKin is the kinematics class name
and it is used by DMAC to map the kinematics object from the
corresponding DLL.

VOID SetMechanismActuatorMap(char* pDMACMachineActMap)
Sets the mechanism actuator map. pDMACMachineActMap is the joint to
actuator map class name and it is used by DMAC to map this class from
the corresponding DLL.

VOID SetMechanismNumJnts(int NumJnts)
Sets the mechanism number of joints with the specified NumJnts.

VOID SetMechanismNumSpindle(int NumSpindle)
Sets the mechanism number of spindles with the specified NumSpindles.

VOID SetMechanismJointType(int JntNum, int JointType)
Sets the mechanism joint type for the specified joint (refereed by the
JntNum). Suitable values for JointType are:

DMAC_ROT_JNT
DMAC_LIN_JNT
DMAC_SCREW_JNT

VOID SetMechanismJointLimitType(int JntNum, int JointLimitType)
Sets the mechanism joint limit type for the specified joint (refereed by the
JntNum). Suitable values for JointLimitType are:

DMAC_LIMITED_JNT
DMAC_INFINITE_JNT
DMAC_INFINITE_JNT_POS
DMAC_INFINITE_JNT_NEG

133

VOID SetMechanismJointMaximumLimit(int JntNum, double MaxJntLimit)
Sets the mechanism maximum joint limit for the specified joint (refereed
by the JntNum). MaxJntLimt is the value for the maximum joint limit.

VOID SetMechanismJointMinimumLimit(int JntNum, double MinJntLimit)
Sets the mechanism minimum joint limit for the specified joint (refereed
by the JntNum). MinJntLimt is the value for the minimum joint limit.

VOID SetMechanismJointMaximumSpeed(int JntNum, double MaxJntSpeed)
Sets the mechanism maximum joint speed for the specified joint (refereed
by the JntNum). MaxJntSpeed is the value for the maximum joint speed.

VOID SetMechanismJointMaximumAcceleration(int JntNum, double MaxJntAccel)
Sets the mechanism maximum joint acceleration for the specified joint
(refereed by the JntNum). MaxJntAccel is the value for the maximum joint
acceleration.

VOID SetMechanismJointMaximumJerk(int JntNum, double MaxJntJerk)
Sets the mechanism maximum joint jerk for the specified joint (refereed
by the JntNum). MaxJntJerk is the value for the maximum joint jerk.

VOID SetMechanismSpindleMaxRPM(double MaxSpindleRPM)
Sets the mechanism maximum spindle speed. MaxSpindleRPM is the
value for the maximum spindle speed.

VOID SetMechanismMaxFeedrate(double MaxFeedrate)
Sets the mechanism maximum feedrate. MaxFeedrate is the value for the
maximum feedrate.

VOID SetMechanismNumActuators(int NumActuators)
Sets the mechanism number of actuators with the specified NumActuators.

VOID SetMechanismJointControlMethod(int JntNum, SHORT
DMACServoControlMethod)
Sets the mechanism joint servo control method for the specified joint
(refereed by the JntNum). Suitable values for DMACServoControlMethod
are:

DMAC_POSITION_CONTROL
DMAC_VELOCITY_CONTROL
DMAC_FORCE_CONTROL

 VOID SetMechanismJointServoControlGains(int JntNum, double*
pServoControlGains)
Sets the mechanism joint servo control gains for the specified joint
(refereed by the JntNum). pServoControlGains is the pointer to an array of
servo control gains.

134

VOID SetMechanismJointServoControlLaw(int JntNum, char* pControlLaw)
Sets the mechanism joint servo control law for the specified joint (refereed
by the JntNum). Suitable values for pControlLaw are:

DMAC_PID_CONTROL
DMAC_FEEDFORWARD_CONTROL
DMAC_FEEDFORWARDFEEDBACK_CONTROL
DMAC_FUZZY_CONTROL

VOID SetMechanismSpindleControlMethod(SHORT DMACServoControlMethod)
Sets the mechanism spindle servo control method. Suitable values for
DMACServoControlMethod are:

DMAC_POSITION_CONTROL
DMAC_VELOCITY_CONTROL
DMAC_FORCE_CONTROL

VOID SetMechanismSpindleServoControlLaw(char* pControlLaw)
Sets the mechanism spindle servo control law. Suitable values for
pControlLaw are:

DMAC_PID_CONTROL
DMAC_FEEDFORWARD_CONTROL
DMAC_FEEDFORWARDFEEDBACK_CONTROL
DMAC_FUZZY_CONTROL

VOID SetMechanismSpindleServoControlGains(double* pServoControlGains)
Sets the mechanism spindle servo control gains. pServoControlGains is
the pointer to an array of servo control gains.

VOID SetMechanismDigitalControlInterface(char* pDigitalControlInterface)
Sets the mechanism digital control interface. pDigitalControlInterface is
the digital control interface class name and it is used by DMAC to map
this class from the corresponding DLL.

BOOL InitializeMechanismDigitalControlInterface()
Returns true successfully initialize mechanism’s digital control interface,
otherwise, returns false.

VOID SetMechanismDigitalIOInterface(char* pDigitalIOInterface)
Sets the mechanism digital I/O interface.

BOOL InitializeMechanismDigitalIOInterface()
Returns true successfully initialize mechanism’s digital I/O interface,
otherwise, returns false.

135

/***/
/************** RMAC_CAM interface functions ***********/
/**/
//Milling operation related functions
BOOL CycleStart(long Mode)

Returns true if successfully starts a process cycle, otherwise, returns false.
The cycle start can be set in manual mode or automatic mode.

VOID SetCycleStartStatus(BOOL status)
Sets the cycle start status (either true or false).

BOOL GetCycleStartStatus()
Returns the cycle start status (either true or false).

BOOL TurnCoolantOn()
Returns true if successfully turns on the coolant, otherwise, returns false.

BOOL TurnCoolantOff()
Returns true if successfully turns off the coolant, otherwise, returns false.

BOOL DoToolChange(long ToolNumber)
Returns true if successfully changes to the specified tool (referred by
ToolNumber), otherwise, returns false.

VOID SetAnimation(BOOL mode)
Sets the animation mode. Turns on the animation if mode is true,
otherwise, turns off the animation.

VOID SetSpindleRPM(long SpindleNumber, double RPM)
Sets the spindle RPM for the specified spindle (referred by
SpindleNumber). RPM is the spindle speed.

double GetSpindleRPM(long SpindleNumber)
Gets the spindle RPM from the specified spindle (referred by
SpindleNumber).

VOID SetSpindleMaxRPM(long SpindleNumber, double MaxRPM)
Sets the maximum spindle RPM for the specified spindle (referred by
SpindleNumber). MaxRPM is the maximum spindle speed.

double GetSpindleMaxRPM(long SpindleNumber)
Gets the maximum spindle RPM from the specified spindle (referred by
SpindleNumber).

136

VOID SetFeedrate(double Feedrate)
Sets the current feedrate. Feedrate is the set value for mechanism feedrate.

double GetFeedrate()
Gets the current feedrate.

VOID SetMaxFeedrate(double MaxFeedrate)
Sets the maximum feedrate. Maxfeedrate is the set value for mechanism
maximum feedrate.

double GetMaxFeedrate()
Gets the maximum feedrate.

VOID SetPathAccelRise(double newVal)
Sets the value for path acceleration rise. newVal is the set value for path
acceleration rise.

double GetPathAccelRise()
Gets the path acceleration rise value.

VOID SetPathAccelFall(double newVal)
Sets the value for path acceleration fall. newVal is the set value for path
acceleration fall.

double GetPathAccelFall()
Gets the path acceleration fall value.

VOID SetJointInterpSpeed(double newVal)
Sets the joint interpolation speed. newVal is the set value for joint
interpolation speed.

double GetJointInterpSpeed()
Gets the joint interpolation speed.

VOID SetJointAccelRise(long JointNum, double newVal)
Sets the value for joint acceleration rise for the specified joint (referred by
JointNum). newVal is the set value for joint acceleration rise.

double GetJointAccelRise(long JointNum)
Gets the joint acceleration rise value from the specified joint (referred by
JointNum).

VOID SetJointAccelFall(long JointNum, double newVal)
Sets the value for joint acceleration fall for the specified joint (referred by
JointNum). newVal is the set value for joint acceleration fall.

137

double GetJointAccelFall(long JointNum)
Gets the joint acceleration fall value from the specified joint (referred by
JointNum).

VOID SetPartFrame(TDMACFrame PartFrame)
Sets the part frame. PartFrame is the set part frame.

VOID SetToolInterfaceFrame(TDMACFrame ToolInterfaceFrame)
Sets the tool interface frame. ToolInterfaceFrame is the set tool interface
frame.

BOOL MoveAlongNurbsND(long MoveID, TDMACNurbsND NurbsND)
Returns true if the NurbsND path is successfully sent, otherwise, returns
false. NurbsND is the instance of the TDMACNurbsND data structure
representing the mathematics description a ND Nurbs.

BOOL MoveAlongNurbs(long MoveID, TDMACNurbs Nurbs)
Returns true if the Nurbs path is successfully sent, otherwise, returns false.
Nurbs is the instance of the TDMACNurbs data structure representing the
mathematics description a Nurbs.

BOOL MoveAlongArc3(long MoveID, TDMACVector ViaPoint, TDMACFrame
StartPoint, TDMACFrame EndPoint)
Returns true if the circular path is successfully sent, otherwise, returns
false. The circular path is defined by a start point (StartPoint), a via point
(ViaPoint), and an end point (EndPoint).

BOOL MoveAlongArc(long MoveID, long RotSign, BOOL Closed, TDMACFrame
CenterPoint, TDMACFrame StartPoint, TDMACFrame EndPoint)
Returns true if the circular path is successfully sent, otherwise, returns
false. The circular path is defined by a start point (StartPoint), an end point
(EndPoint), and a center point (CenterPoint).

BOOL MoveAlongLine(long MoveID, TDMACFrame StartPoint, TDMACFrame
EndPoint)
Returns true if the linear path is successfully sent, otherwise, returns false.
The linear path is defined by a start point (StartPoint) and an end point
(EndPoint).

BOOL MoveToPathTarget(long MoveID, TDMACFrame TargetFrame)
Returns true if the path target move is successfully sent, otherwise, returns
false. TargetFrame is the target frame that tool needs to move to.

BOOL MoveToJointTarget(long MoveID, TDMACFrame JointTargetFrame)
Returns true if the joint target move is successfully sent, otherwise, returns
false. JointTargetFrame is the target frame that tool needs to move to.

138

BOOL CycleStop(long Mode)
Returns true if successfully stops a process cycle, otherwise, returns false.
The cycle stop can be set in manual mode or automatic mode.

VOID SetCycleStopStatus(BOOL status)
Sets the cycle stop status (either true or false).

BOOL GetCycleStopStatus()
Returns the cycle stop status (either true or false).

//CMM related functions
BOOL CurrentPosition([out, retval] double pVal[5]);

Assigns the machine’s current joint values to pVal.

BOOL LastHitPosition([out, retval] double pVal[5]);
Assigns the machine’s joint values at the time of the last recorded hit to
pVal.

BOOL NumMovesInBuffer([out, retval] long *pVal);
Sets pVal equal to the number of moves currently stored in the DMAC
motion buffer.

BOOL ControlMode([out, retval] long *pVal);
Sets pVal equal to the current CMM control mode. Suitable values are:

MODE_MANUAL
MODE_AUTOMATIC_MOVE
MODE_AUTOMATIC_MEASURE
MODE_INACTIVE
MODE_STARTUP
MODE_SHUTDOWN

BOOL ControlMode([in] long newVal);
Sets the current CMM control mode equal to the value of newVal.

BOOL Parameter([in] long ParamNumber, [out, retval] double *pVal);
Sets pVal equal to the value of the control parameter defined by
ParamNumber. Suitable values for ParamNumber are:

MACH_PREHIT_DISTANCE
MACH_SEARCH_DISTANCE
MACH_RETRACT_DISTANCE
MACH_SCAN_SPEED

139

BOOL Parameter([in] long ParamNumber, [in] double newVal);
Sets the value of the control parameter specified by ParamNumber equal
to newVal. Suitable values for ParamNumber are listed above.

BOOL StatusMajorCode([out, retval] unsigned int *pVal);
Sets pVal equal to the current value of the StatusMajorCode. Suitable
values for StatusMajorCode are:

MACHINE_SUCCESS
MACHINE_ERROR

BOOL StatusMajorCode([in] unsigned int newVal);
Sets the StatusMajorCode equal to newVal.

BOOL StatusMinorCode([out, retval] unsigned int *pVal);
Sets pVal equal to the current value of the StatusMinorCode. Suitable
values for StatusMinorCode are:

MACHINE_ERR_UNKNOWN
MACHINE_ERR_EMERGENCY_STOP
MACHINE_ERR_NO_AIR
MACHINE_ERR_TRAVEL_LIMIT
MACHINE_ERR_SPEED_LIMIT
MACHINE_ERR_ACCELERATION_LIMIT
MACHINE_ERR_PROBE_NOT_ARMED
MACHINE_ERR_SCALE
MACHINE_ERR_PART_NOT_FOUND
MACHINE_ERR_UNEXPECTED_HIT
MACHINE_ERR_COMM_TIMEOUT
MACHINE_ERR_RESPONSE_TIMEOUT
MACHINE_ERR_INVALID_PARAMETER
MACHINE_ERR_INVALID_PARAMETER_VALUE
MACHINE_ERR_COMMAND_QUEUE_FULL
MACHINE_ERR_UNSUPPORTED_OPERATION
MACHINE_ERR_OTHER

BOOL StatusMinorCode([in] unsigned int newVal);
Sets the StatusMinorCode equal to vewVal.

BOOL Ok([out, retval] BOOL* pVal);
Sets pVal equal to true if no errors have occurred on the machine, false
otherwise.

BOOL NewHit([out, retval] BOOL* pVal);
Sets pVal equal to true if a hit has occurred since the calling program
lasted updated position values, false otherwise.

140

BOOL ProbeActive([out, retval] BOOL* pVal);
Sets pVal equal to true if the probe is powered on and is communicating
with the controller successfully.

BOOL Home([out, retval] BOOL* pVal);
Sends all of the joints to their home position.

BOOL StopNow();
Stops a manual measure move, and clears the command buffer. This
function should stop the machine as well, if possible.

BOOL MoveToXYZ([in] long MoveID, [in] double x, [in] double y, [in] double z, [in]
double Speed, [out, retval] BOOL* pVal);
Moves the machine to the specified X, Y, Z location at the input speed.

BOOL MoveRotaryAxis([in] long MoveID, [in] long JointNum, [in] double JointPose,
[in] long Direction, [in] double Speed, [out, retval] BOOL* pVal);
Moves the specified rotary axis to the specified position.

BOOL AutoMeasure([in] long MoveID, [in] double x, [in] double y, [in] double z, [in]
double Speed, [out, retval] BOOL* pVal);
Makes the machine move toward the specified point with the specified
speed until a hit occurs. If a hit occurs, the machine will back up from the
specified point in the opposite direction a distance that is specified by
previous calls to the interface.

BOOL MoveInArc([in] long MoveID, [in] double x, [in] double y, [in] double z, [in]
double CenterX, [in] double CenterY, [in] double CenterZ, [in] double i,
[in] double j, [in] double k, [in] double Speed, [out, retval] BOOL* pVal);
Moves the machine from it current position in an arc defined by the
included parameters.

BOOL MoveAllAxis([in] long MoveID, [in] double Position[5], [in] double LinearSpeed,
[out, retval] BOOL* pVal);
Performs a joint move to the specified joint positions at the specified
speed.

BOOL SendConditionChangedEvent([in] double JointValues[5], [in] long NumJoints,
[in] unsigned __int64 Mask, [in] unsigned __int64 Condition, [out, retval]
BOOL* pVal);
Simulates a probe hit for use when the machine is offline.

BOOL SetCalibratedPartFrame();
Sets the current part frame such that all joint values read zero at the
current position.

141

BOOL ManualMeasure();
Puts the machine into manual control mode and specifies that a probe hit
is expected.

BOOL SpinProbe([in] double RPM, [in] double Seconds, [out, retval] BOOL* pVal);
Used to switch the probe on or off by momentarily spinning the spindle.

	Dynamic Reconfigurable Machine Tool Controller
	BYU ScholarsArchive Citation

	Title Page
	Head
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Statement of the Problem
	1.1.1 Dedicated manufacturing systems
	1.1.2 Flexible manufacturing systems
	1.1.3 Reconfigurable manufacturing systems

	1.2 Direct Machining And Control
	1.3 Reconfigurable Mechanism for Application Control
	1.4 Research Objectives
	1.5 Outline of Dissertation

	Chapter 2 Literature Review
	2.1 Related Research
	2.1.1 Open-architecture control system
	2.1.2 Reconfigurable control system
	2.1.3 Reconfigurable robot system
	2.1.4 Summary of the past research
	2.1.5 STEP-NC

	2.2 Direct Machining And Control

	Chapter 3 RMAC Software Architecture
	3.1 Traditional CNC Paradigm vs. RMAC Paradigm
	3.2 RMAC Control Schemes
	3.2.1 Position and velocity control
	3.2.2 Force or hybrid force/position control

	3.3 RMAC Software Architecture
	3.3.1 RMAC software modules and interfaces
	3.3.2 Control information flow in RMAC

	Chapter 4 Methodology
	4.1 CAD/CAM
	4.2 Device Driver Manager
	4.2.1 Device tree
	4.2.2 Device driver database
	4.2.3 Device driver object
	4.2.4 Interface to CAD/CAM

	4.3 Device Driver
	4.3.1 Device database
	4.3.2 Device object
	4.3.3 Device object example for a three-axis mill
	4.3.4 Interface to CAD/CAM
	4.3.5 Interface to the RMAC reconfigurable controller

	4.4 RMAC_Config Interface
	4.5 RMAC_CAM Interface
	4.6 RMAC Reconfigurable Controller
	4.7 Simulation System
	4.8 New Sequences of Operations

	Chapter 5 Prototype Implementation
	5.1 Control Hardware
	5.1.1 Three-axis tabletop mill
	5.1.2 Five-axis full-size Tarus mill
	5.1.3 CMM

	5.2 Control Software System
	5.2.1 DMACXYZ tabletop mill device driver
	5.2.2 TarusXYZCA five-axis mill device driver
	5.2.3 CMM device driver

	5.3 Simulation

	Chapter 6 Experimental Results
	6.1 Simulation
	6.2 Three-axis Tabletop Mill Experiment
	6.2.1 Direct reconfigurable machining application start-up
	6.2.2 Machine search and selection dialog box
	6.2.3 Jog dialog box
	6.2.4 Experiments

	Chapter 7 Conclusions and Recommendations
	7.1 Conclusions
	7.2 Recommendations

	Bibliography
	Appendices
	Appendix I
	Appendix II
	Appendix III
	Appendix IV

