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ABSTRACT 

 

DYNAMIC RECONFIGURABLE MACHINE TOOL CONTROLLER 

 

Wei Li 

Department of Mechanical Engineering 

Doctor of Philosophy 

 

This dissertation presents a dynamic reconfigurable control strategy based on the 

Direct Machining And Control (DMAC) research at Brigham Young University.  A 

reconfigurable framework is proposed which will allow a machine tool to be controlled 

by a variety of applications and control laws. This Reconfigurable Mechanism for 

Application Control (RMAC) paradigm uses a hierarchical architecture to configure a 

mechanism into a device driver for direct control by an application like CAD/CAM. The 

RMAC paradigm is one of a mechanism device driver assigned to each mechanism class 

or model, and uses only the master model to control the mechanism. The traditional 

M&G code language is no longer necessary since motion entities are passed directly to 

the mechanism. 

The design strategy of using dynamic-link libraries (DLL) to form a mechanism 

device driver permits a mechanism to assume different operating configurations, 



depending on the number of axes and machine resolution. For example, the machine can 

perform as a material removal machine in one instant, and then, by loading a new device 

driver, act as a Coordinate Measuring Machine (CMM). This strategy is possible because 

RMAC is a software and networked-based control architecture. Both the CAD/CAM 

planning software and the real-time control software reside on the same PC. The CAM 

process plan can thus directly control the machine without need for process plan 

decomposition into the forms supported by the controller. 

The architectural framework is explained in detail and the methodology for 

control software reconfiguration into a device driver is presented. For demonstration 

purposes two device drivers are implemented on a prototype machine to demonstrate 

feasibility and usefulness.  
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 1.1 Statement of the Problem 

Historically, manufacturing systems have passed certain distinct phases. In each 

phase, machine tools and their controllers are used by manufacturing enterprises quite 

differently. The differences between machine tools and their controllers during these 

manufacturing phases have been caused by differences in the available technologies and 

the variation in customer demands. We are now at the embryonic stage of a revolutionary 

new phase. Dedicated manufacturing systems are behind us and flexible manufacturing 

systems show more and more limitations; manufacturing systems of the future will be 

reconfigurable. 

As technologies and customers demand greater efficiency and sophistication, 

machine tools and their controllers used in current manufacturing systems must keep 

pace. This dissertation will propose and develop a new reconfigurable direct machine tool 

controller paradigm to address the problems existing in today’s machine tools and 

controllers. 

CHAPTER 1           INTRODUCTION 
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1.1.1 Dedicated manufacturing systems (DMS) 

Dedicated machine tools and controllers were widely used among manufacturing 

enterprises before the first Numerically Controlled (NC) machine was invented. During 

that time, most machine tools and controllers were purely mechanical or 

electromechanical systems. The major disadvantage of these systems was that each 

machine tool and controller was tailored for a special product.  As a result, the function of 

a dedicated machine tool controller could not be changed or upgraded without great 

difficulty.  As customer demands for different products changed over time, 

manufacturing enterprises often had to replace the dedicated machine tools and 

controllers to accommodate this demand. 

1.1.2 Flexible manufacturing systems (FMS) 

The invention of Numerically Controlled [NC] machines and their subsequent 

evolution (i.e., Computer Numerical Control [CNC], Distributed Numerical Control 

[DNC]) dramatically changed manufacturing. CNC, together with Computer Aided 

Design (CAD) and Computer Aided Manufacturing (CAM), have become core 

technologies in flexible manufacturing systems (FMS). These technologies have 

drastically changed the way parts are designed and manufactured. What was once a 

manual process in dedicated manufacturing systems has largely been transformed into a 

paperless digital process.  

CNC machines and controllers have brought many benefits into manufacturing 

systems by improving production rates, product quality, product accuracy, and machine 
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control accuracy. Meanwhile, the manufacturing flexibility has been increased over the 

dedicated machines. 

Despite the advantages of CNC systems, there are two distinct drawbacks in 

current CNC machines and their controllers that limit the implementation of new 

technologies. 

1. Even though the first CNC machine tools were developed about fifty years ago, 

CNC machine tools are still programmed today using the decades-old instruction 

code called M&G code. M&G code is a collection of ASCII code generated from 

a post-processor running independently from CAD/CAM software. It is formatted 

specifically for a machine controller and different M&G variations are often not 

interchangeable. To operate a CNC machine tool today, part geometries and their 

process instructions contained within CAD/CAM systems must be decomposed 

into the forms required for each machine’s controller. There is no direct link 

between CAD/CAM software and machine tool controllers. The process of 

generating M&G codes and feeding them into machine tool controllers is tedious, 

inefficient, and error-prone. More importantly, this old process is a bottleneck to 

further improving the CNC machining production rate, quality and flexibility. 

2. Over the past half century, many machine tool companies have attempted to build 

an ideal machine tool. But most machine tool controllers are proprietary and their 

architecture is closed. Vendors may add different dialects and vendor-specific 

syntax into the M&G codes; thus making their machining codes incompatible 

with other controllers. Under this old paradigm, a single vendor would provide the 

entire controller. Once these controllers were built and delivered to end 
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customers, it was extremely difficult for the customer or third party developers to 

upgrade the machine tool with customized functionalities. The machine tool 

controllers function as a black box; thus, end users have limited or no access to 

their internal control algorithms or hardware. 

1.1.3 Reconfigurable manufacturing systems (RMS) 

Because of these problems, there has been a worldwide effort in the past decade, 

from industry as well as from many research institutions, to propose developing a new 

architecture for open control. This new wave of research is aimed at developing open-

architecture control systems that will enable modular and reconfigurable manufacturing 

systems. 

Koren [1] proposed a reconfigurable manufacturing system (RMS) in 1999. He 

noted the deficiencies of existing CNC machine tools and controllers, which include lack 

of interchangeability, modularity, extensibility, and reconfigurabililty. He predicted that a 

new generation of reconfigurable machine tools, based on an open-architecture controller 

with adjustable modular structure, will come into existence in the next decade and will be 

the cornerstone of the RMS. 

During the last few years, two enablers for reconfigurable machine tools have 

emerged: in machine hardware, modular machine tools that offer end customers more 

machine options [2]; and, in control software, modular, open-architecture controllers that 

use reconfigurable control software. These emerging technologies will stimulate the 

design of control systems with reconfigurable hardware and software. 
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1.2 Direct Machining And Control (DMAC) 

Beginning in 1998, the Direct Machining And Control (DMAC) research group at 

Brigham Young University has been developing an open-architecture controller [39-47] 

that directly interfaces to application software like CAD/CAM (see Fig. 1.1).  

 

Fig. 1.1 Current DMAC architecture 
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The DMAC controller is a truly software-based controller and all control 

components, such as motion and servo control, are defined and developed in object 

oriented C++ code. The DMAC architecture is configured on a dual-processor platform. 

One processor runs non real-time Windows applications, such as CAD/CAM and Human 

Machine Interface (HMI). The second processor runs real-time control applications, such 

as motion planning control and servo-loop control. A direct machining interface is 

developed to allow communication between the real-time and non real-time applications. 

The DMAC architecture is designed to be independent of the interface to the control 

hardware and thus can control both machine tools and robots.  

1.3 Reconfigurable Mechanism for Application Control (RMAC) 

With this advanced DMAC control system in place at Brigham Young University, 

this dissertation proposes a more flexible and reconfigurable control architecture. The 

Reconfigurable Mechanism for Application Control (RMAC) architecture in Fig. 1.2 is 

developed to allow for machine tools to be controlled like part printing devices. This 

reconfigurable control architecture is a hierarchical and modular software structure that 

can be dynamically reconfigured for direct control, with each software module designed 

and built independently. The collection of modules necessary to enable a CAD/CAM 

process plan to directly control a machine is called a mechanism device driver. A 

mechanism can be reconfigured to perform differently by simply loading a different 

device driver for the mechanism. 

All control software modules and their interfaces are specified in a well-defined 

manner. A set of interface APIs (Application Programming Interface) are provided for 

each software module, thus allowing for control and feedback information flow among 
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these various modules. Under the RMAC paradigm, various mechanism devices are 

connected directly to CAD/CAM systems through different device drivers. Each device 

driver is designed as separate software module and is able to map the mechanism’s 

configurations and capabilities to the manufacturing process intent of a CAD/CAM 

process plan, thus allowing a CAD/CAM process planner to make run-time decisions to 

choose optimal machines to fulfill different manufacturing process requirements. The 

static DMAC open-architecture controller is thus replaced with a more flexible and 

reconfigurable RMAC controller that can be dynamically reconfigured for different 

machine tools or control applications.  

The current DMAC architecture is insufficient due to the following limitations: 

1. DMAC was built with one software control solution and connected to a 

CAD/CAM system. 

2. The current DMAC implementation can not dynamically reconfigure a single 

machine to operate differently. Each DMAC-compliant machine has one 

behavior. For instance, a milling machine cannot be operated as a CMM. 

3. The DMAC controller is not generic. Each DMAC controller is tailored for a 

specific machine tool or control application; thus, lacks the flexibility to 

dynamically vary its functionality for different machine tools or control 

applications. For instance, a three-axis mill controller cannot be used to control a 

five-axis machining center. 

4. The part printer paradigm requires a device driver architecture that does not exist 

in the current DMAC architecture. 
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Fig. 1.2 RMAC architecture 

RMAC overcomes these limitations in the current DMAC architecture with the 

following architectural improvements: 

1. RMAC is designed for more generic software solutions; thus, it is reconfigurable 

for different machines, control solutions, and CAD/CAM systems.  

2. The RMAC architecture contains a device driver manager that allows CAD/CAM 

users to select an optimal machine tool. A built-in database search engine allows 
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users to easily and quickly narrow down their machine selections and then locate 

a relevant mechanism device driver.  

3. The RMAC architecture contains a generic device driver architecture that allows 

for part printer paradigm. Any machine-specific configurations and capabilities, 

such as machine limits, maximum federate, etc, are built into a mechanism device 

database and are directly accessible to the device driver software. The device 

driver has standard driver interface and APIs to communicate with CAD/CAM 

systems and the machine open-architecture controller. As a result, various 

CAD/CAM systems and machine tools can be connected to the device drivers 

through the same driver interface and APIs. By loading relevant device drivers, 

RMAC allows for reconfiguring a single machine to operate differently. 

4. The RMAC architecture contains a generic and reconfigurable open-architecture 

controller. This RMAC reconfigurable controller contains the generic control 

codes that are applicable to various machine tools and control applications. Any 

mechanism-specific control codes are designed and built as separate dynamic-link 

libraries (DLLs). Thus, RMAC open-architecture controller can be reconfigured 

to apply on different machine tools. 

5. Under the RMAC architecture, a configuration system is developed to allow the 

run-time mapping of any mechanism-specific control codes from the relevant 

DLLs into the RMAC reconfigurable controller for the selected machine tool. 

The RMAC paradigm provides new opportunities for manufacturing 

organizations and machine tool end users. Manufacturing enterprises can introduce 

greater flexibilities into their manufacturing systems. Fig. 1.2 shows how  one machine 
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tool can be operated differently. If the manufacturing operations need a three-axis mill, 

the user loads a three-axis mill device driver prior to machining. But if products or 

customer demands change over time, such that manufacturing operations require a five-

axis mill, it may be necessary to add a two-axis rotary table. RMAC provides the user a  

relevant five-axis mill device driver, so the same machine can be commanded as a five-

axis mill. Once all the parts are made, by adding a measurement probe and loading a 

relevant CMM driver, the machine can be commanded as a CMM machine to inspect the 

parts during their manufacturing. These flexibilities cannot be realized with any 

conventional machine tools or even with the current DMAC controller.  

1.4 Research Objectives 

The objectives of this research are then to propose, develop, and demonstrate an 

architecture for a dynamic reconfigurable machine tool controller using the direct control 

and device driver paradigms. Specifically, the research objectives are to (1) develop a 

generic and reconfigurable control architecture that would allow direct control to be 

easily reconfigured for different machines, control applications, and CAD/CAM systems; 

(2) develop a configurable device driver architecture so that a CAD/CAM process would 

be mapped into an appropriate machine, thus allowing for the mathematical CAD model 

to drive the connected machine tool directly without tessellating into thousands of line 

and arc segments ; (3) develop standardized device driver interface and a set of interface 

APIs so that All CAD/CAM packages would connect to a standard driver software 

interface, and all machine tools accept that driver interface through the RMAC 

reconfigurable controller; and (4) demonstrate the reconfigurable control architecture on 

a prototype mill.  
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Achieving these design objectives requires a reconfigurable controller to posses 

the following general characteristics: 

1. Modularity: In a reconfigurable controller, all machine-specific software 

components should be modular (e.g., kinematics, machine actuator mapping, 

servo control, I/O interface, etc). These software modules should be designed 

independently into separate dynamic-link libraries (DLLs) so that they can be 

easily added to the controller, removed from the controller, or replaced by other 

modules during system reconfiguration. 

2. Portability:  A reconfigurable controller should be vendor-neutral so that end 

users can easily integrate new machine hardware or software from any third party 

vendors.  

3. Customization:  A reconfigurable should be flexible enough to allow end users to 

integrate customized control modules with the aid of open-architecture 

technology, providing the exact control functions that end users need. 

4. Run-time reconfigurability: A desired dynamic reconfigurable machine should 

be reconfigurable at run-time without shutting down the machine tool.  

5. Verifiability: A reconfigurable controller should enable end users to verify its 

functionality upon system reconfiguration. 

1.6 Outline of Dissertation 

I.  Introduction 

Chapter one introduces the objective and contribution of this dissertation and 

defines the research scope. 

 



12 

II. Literature review 

Chapter two reviews the past and present research on open-architecture 

controllers and some more recent research projects on reconfigurable control systems. 

The research of Direct Machining And Control (DMAC), which is the foundation 

platform for the proposed reconfigurable controller, is also reviewed. 

III. RMAC software architecture 

Chapter three presents an overall architecture for a dynamic reconfigurable 

machine tool controller. 

IV. Methodology 

Chapter four describes in greater details for each software module and interface 

defined within the RMAC architecture. It then presents the general methodology for 

reconfiguring the RMAC controller. 

V. Prototype implementation 

Chapter five first shows the implementation of a dynamic reconfigurable 

controller on a three-axis tabletop mill by developing a machine device driver specific to 

this mill. It then shows the proposed implementation of this research on a Tarus five-axis 

full-size mill, and a Coordinate Measuring Machine (CMM). Finally, it presents the 

simulation of the RMAC controller on a commercial CAD/CAM program. 

VI. Results 

Chapter six presents the experimental results of the prototype developed as 

explained in chapter four. 
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VII. Summary and Recommendations 

Chapter seven summarizes this research and gives some recommendations for 

future research. 
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This chapter reviews research related to this dissertation, including research in the 

field of open-architecture control systems, reconfigurable control systems, and 

reconfigurable robot systems. A modernized machining code standard, called STEP-NC, 

is also reviewed. Finally, the Direct Machining And Control (DMAC) architecture, the 

foundation architecture for this dissertation, is also reviewed. 

 

2.1 Related Research 

2.1.1 Open-architecture control (OAC) system 

In the past decade, there has been a growing demand from machine tool end users, 

as well as from machine tool manufacturers, to open the current proprietary control 

systems. A new concept of open-architecture control was proposed and introduced in 

both industry and academia. This new type of open-architecture control is a necessary 

enabler for integrated CAD/CAM and sensor-based control. 

CHAPTER 2           LITERATURE REVIEW 
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Three active industrial consortiums, the OSE (Open System Environment for 

controller) [3] of Japan, the OSACA (Open System Architecture for Controls within 

Automation systems) [5, 6] of Europe, and the OMAC (Open Modular Architecture 

Controllers) [4] consortium of the U.S., define and promote the use of open-architecture 

controllers to replace the older, closed CNC systems. Their objectives consist of defining 

and developing a set of APIs that enable control vendors to supply standard components. 

These components are then delivered to the machine tool suppliers to be integrated into 

different control systems, and the integrated control systems and machines are finally 

delivered to end users to satisfy their specific needs. 

In academia, several research projects were undertaken to open CNC control. One 

of the earliest research projects in open-architecture control was the Next Generation 

workstation/machine Controller (NGC) [7] in 1989, sponsored by the US Air Force. The 

goals for the NGC program were to provide a commercial version of an expanded 

machine tool environment that would integrate CAD/CAM and sensor-based machining. 

One of the first large-scale research initiatives was done by Wright et al. [8, 9] in 

1988. They proposed the MOSAIC (Machine Tool Open System Advanced Intelligent 

Controller) architecture, in which a real-time version of UNIX is chosen as the operating 

platform and VME bus is used as the de-facto communication bus that can communicate 

the machining information to the controller. This group of researchers coined the term 

“open-architecture controller”. In a parallel effort to the open system in the PC industry, 

these researchers envisioned that by using industrial PC as the control hardware basis, 

machine tool industry can open the current closed controller architecture so that different 
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hardware and software vendors could work on different elements of the control system 

and integrate their products into a seamless robust controller.  

Koren et al. [10], in the Engineering Research Center for Reconfigurable 

Machining System at the University of Michigan, proposed an open CNC system, named 

UMOAC, which allows interchanging motion control tasks as a feature of 

reconfigurability. The UMOAC architecture is designed in a distributed platform: the 

HMI and motion control runs in the main controller, while the servo control runs on a 

DSP board that communicates with main computer via VME bus or any other network 

protocol such as TCP/IP. A common Windows-based HMI API is defined for different 

CNC systems. The UMOAC is also designed to be used on their reconfigurable machine 

tool [11]. 

Yellowley et al. [12] at the University of British Columbia proposed and 

developed a UBC open-architecture controller.  The National Institute of Standards and 

Technology (NIST) [13] applied the NGC open-architecture framework into its Enhanced 

Machine Controller (EMC) project. The EMC offered real-time, open-architecture 

control based on open source and community software development, and was suitable for 

a variety of machines, including machine tools, robots, and Coordinate Measuring 

Machine (CMM). There are a number of other researchers [14-17] who applied the 

principle of open-architecture control to different control applications.  

2.1.2 Reconfigurable control system 

More recently, with open-architecture control as a basis, some researchers have 

gone one step further, proposing to develop reconfigurable machine tool controllers in 

which the same machine tool controller can be reconfigured to control different types of 
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machine tools. This in turn will allow end users to have even more flexible control 

systems on their factory floors. 

One of the first large-scale initiatives was launched by the European Union (EU) 

in the early 1990s. In a European Union-sponsored report [18] a strategy was outlined to 

ensure the long-term survivalability of the European machine tool industry. This report 

stressed the need for machine tools to be designed and built modularly, allowing machine 

tool manufacturers to specialize in particular modules instead of complete systems. 

System integrators could then build complete systems from the modules according to end 

users’ specific needs. This strategy requires splitting a machine tool into a set of 

autonomous functional units that can be “plug-and-play” interfaced to form complete 

systems for particular customers’ needs.  

Several European projects are currently under development to achieve this design 

goal. The European MOSYN (Modular Synthesis of Advanced Machine Tools) project 

[19], lead by the Hannover University, looks at customer-specific configurations of 

modular machine tools. The Reconfigurable Machining Systems [20] of the Special 

Research Program (SRP) 467, sponsored by the German Research Foundation, are aimed 

at developing models for structuring and configuring reconfigurable manufacturing 

systems (RMS). To be reconfigurable, well-defined interface layers and concepts for 

functional units as modules of RMS are introduced and under development. 

In the U.S., the Engineering Research Center of Reconfigurable Machining 

Systems (ERC/RMS) was founded at the University of Michigan in 1996. Koren et al., 

from ERC/RMS [11], presented “Reconfigurable Machine Tools”, in which they 
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developed new machine tools whose mechanical configurations and software-based open 

controllers [10] can both be reconfigured at run-time.   

Altintas et al. [18] presented an open and reconfigurable modular tool kit as a 

design tool for future machine tools and machining monitoring systems. In their system, 

they used a real-time preemptive operating system (ORTS) for machine-level real-time 

tasks and an enhanced Windows-NT-based environment, running on a PC, for 

applications such as HMI. The motion control boards were off-the-shelf DSP boards, 

running under ORTS, and had built-in algorithms that cannot be interchanged or 

modified externally by end users. This limited the implementation of any new advanced 

motion control algorithms. Rather than using a graphic tool to reconfigure their 

controller, the reconfiguration of their machine tools and controller was accomplished by 

running a series of script commands. Due to the nature of the script language, 

reconfiguring their controller at run-time is not easy or user-friendly. 

Birla [21] presented a reconfigurable machine tool controller in his Ph.D. 

dissertation “Software Modeling for Reconfigurable Machine Tool Controller” in 1997.  

He used two well-known computer science paradigms to define all controller 

components, object-oriented programming (OOP) and finite state machine (FSM). All 

these components were designed to be reusable, scalable, and portable. A component 

library was developed from which the control components could be selected and 

reconfigured into a control system. Similar research was also undertaken by S. Wang and 

K.G. Shin [22], who proposed a reconfigurable software architecture for machine control 

systems. One limitation with Birla’s work was that he did not fully implement his work 



20 

with a graphic configuration tool and there was no simulation tool available to validate 

the control system upon the controller reconfiguration.  

 Similar works on reconfigurable control systems can also be found from S. Kolia 

et al. [24], S. Birla et al. [25], and D. Kalita et al. [27]. 

2.1.3 Reconfigurable robot system  

Another research area that is related to this dissertation is in the field of 

reconfigurable robot systems. A pioneer research project in reconfigurable robot systems 

is the Chimera RTOS Project [26] in the Advanced Manipulators Laboratory at Carnegie 

Mellon University (CMU). The Chimera architecture is based on port-based objects 

(PBO), which are similar to component-based objects. The objectives of the Chimera 

project are to develop a control architecture that will support reconfigurable robots, 

integrated sensor control, dynamic controller reconfiguration, and collaboration through 

code sharing. In the Chimera architecture, the entire control system is viewed as an 

interconnection of components forming a system configuration that will provide an exact 

system response. Each component is defined as a port-based object with some input and 

output ports. A graphic software assembly tool is used to configure the robotic 

manipulator system at run-time and a PBO library is developed and is available to the 

system integrators for run-time control system reconfiguration. 

Zhang et al. [28], at Xerox Palo Alto Research Center, developed software 

architecture for Modular Self-Reconfigurable Robots. Their software architecture is a 

multi-master/multi-slave structure running in a multi-threaded environment. The 

architecture is implemented on a Motorola PowerPC under the real-time operating system 

vxWorks. The master controllers are responsible for motion planning, synchronizing 
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slave controllers, and reconfiguring slave controllers. Based on the different motion and 

configuration requirements, the slave controllers can reconfigure their software modules 

at run-time. The communications between master and slave controllers are through a 

CANBus. 

In the past few years, I.M. Chen [29], K. Feldmann and M. Wenk [30], and W.J. 

Schonlau [31] have conducted similar research on reconfigurable robot software 

architectures. 

2.1.4 Summary of the past research 

The current state of open-architecture and reconfigurable machine controllers has 

evolved from a number of diverse development efforts. The design goal of these research 

projects is to develop a vendor-neutral, tool-neutral, and controller-neutral architecture. 

The resulting architectures represent a wide range of design strategies and solutions. 

However, despite their differences, there are some commonalities and prevailing trends 

that are shared by all of these previous development efforts.  

Most of the proposed open-architecture and reconfigurable machine controllers 

use Windows as the operating platform. As Windows has become the de facto operating 

system (OS) in the PC industry, more and more control vendors choose Windows as their 

control software OS platform. 

A prevailing trend that can be found in these control architectures is that the 

control systems are becoming more software-based. All of these control architectures use 

either object-oriented codes or component-based languages to define their control 
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modules. Software-based control architecture has made the entire control system very 

flexible, highly modular, and easy to upgrade. 

More control architectures use a dual-processor platform, where one processor 

runs non real-time Windows application program and the other processor runs a real-time 

operating system such as VenturCom RTX, VxWorks, QNX, or a real-time extension of 

Windows to do real-time motion, servo, and I/O control. There are a growing number of 

design strategies that have adopted distributed control solutions, where the server side 

controller runs application programs such as CAD/CAM and HMI while the client side 

controller runs motion, servo and I/O control. Until a hard real-time network protocol is 

developed, this distributed control solution will have difficulties satisfying the hard real-

time constraints of machine tool controllers. 

Even though significant research has been made into open-architecture and 

reconfigurable control systems, and a wide variety of design strategies and solutions that 

have been proposed, these developed architectures are still insufficient because of several 

major limitations. 

First, even though these development efforts apply open-architecture principles to 

enable machine end users to gain greater access to proprietary internal control algorithms, 

these control architectures still rely on machine-dependent M&G codes. Thus, these so-

called open control and reconfigurable control systems are still not truly interchangeable, 

reconfigurable, or open to end users or any third party developers. Currently, a 

CAD/CAM vendor must develop a postprocessor to generate a machine-specific M&G 

code for each machine tool controller. This represents a tremendous burden on any 
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CAD/CAM organization. Only by completely eliminating the machine-dependent M&G 

codes will a truly open and reconfigurable control system be feasible. 

Second, these developed control architectures are still dependent upon some 

customized hardware. The control architectures in [8], [9], [10], [12], and [14] use DSP 

boards in motion control and many motion control algorithms are embedded inside these 

motion control boards. They cannot be interchanged or modified externally by end users 

or third party developers, which limit the interchangeabilities and the reconfigurability of 

these proposed control systems. 

Third, these control architectures do not maintain associativity between the CAD 

model, CAM system, and the CNC machine. As a result, this is a great deterrent to fully 

integrated CAD/CAM and sensor-based control.  

2.1.5 STEP-NC 

With the limitations seen in those past machine control systems and the problems 

existed in the current standard (ISO 6983) of machining instruction code, namely M&G 

code, a modernized machining code standard (ISO 14649), called STEP-NC, is being 

developed. With the development and introduction of this new ISO standard 14649, 

STEP-NC extends the STEP geometric data exchange standard (ISO 10303), a neutral 

data exchange format, into the manufacturing domain by defining a two-way interface 

between CAM process planning systems and NC control systems. STEP-NC is a neutral 

data description language designed to be CAM independent and NC machine-tool 

independent; thus, the post-processing of process plans into M&G codes specific to each 

machine is no longer necessary. 
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Currently, under the IMS project [32-36] called STEP-NC in Europe and Asia, 

and Super Model in USA, industrialists and academics are collaborating to deliver a new 

data model as an ISO 14649 standard for CNC machines and to develop STEP-NC 

controllers. Parallel to these development efforts, researchers [37, 38] are developing a 

new generation of CAM systems that are designed to be completely STEP-NC 

compatible and independent of NC machine tools.  

Even though STEP-NC provides a better link between CAM systems and CNC 

machine tools, it has not taken the integration process far enough. There is still no direct 

associativity between the parametric CAD model and the STEP-NC file. Because of this, 

many disadvantages can still be found that are commonly found in the M&G code (ISO 

6983). For instance, if the original CAD model from which the STEP-NC file was created 

is modified, those changes were not reflected on the STEP-NC file that already left the 

system. The STEP-NC file, which is loaded into a STEP-NC compliant controller, is not 

parametric, meaning that any change in the geometry on the machine tool controller 

cannot be done. But even if it could be done, those changes would not be reflected back 

to the original CAD model from which the STEP-NC file was created. 

2.2 Direct Machining And Control (DMAC) 

The proposed dynamically reconfigurable machine tool controller in this 

dissertation is based on the Direct Machining And Control research at Brigham Young 

University. In the past six years, the DMAC research group has developed a direct 

machining architecture that allows CAD/CAM applications to run machining process 

directly on a DMAC controller. 
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Prior to this dissertation, research work [39-48] has connected the DMAC 

controller directly to ParaSolids, Unigraphics, Alias, GibbsCAM, CATIA and PC-DMIS, 

a popular part dimensional inspection application. Fig. 2.1 shows the DMAC flexible 

software structure to connect to these CAD/CAM systems. The idea is to take full 

advantage of the 3D modeling and tool path planning capabilities of CAD/CAM 

packages and to utilize a DMAC open-architecture controller to run the derived 

machining processes directly. This approach completely eliminates the machine-

dependent M&G codes and establishes a direct link between CAD model, CAM system, 

and CNC machine. The design strategy of the DMAC architecture is the foundation from 

which integrated CAD/CAM and sensor-based control can be truly realized. 

The DMAC architecture is configured on a dual-processor platform with 

CAD/CAM applications running on the first processor and all the real-time control 

applications running on the second processor.  

The tool paths and process plans generated from CAD/CAM applications are 

passed down directly to the motion planner [39, 44] through a Direct Machine Interface 

[41]. The motion planner is composed of a trajectory generator and a kinematics object. 

The motion planner will generate all motion setpoints, position, speed, and acceleration, 

for each independent joint at each trajectory step. These joint setpoints are first mapped 

into the actuator setpoints and are then fed to the Servo Controller.  

The Servo Controller [40, 45] receives actuator position, speed, and acceleration 

setpoints from the motion planner. Then based on certain control laws, such as 

Proportional-Integral-Derivative (PID) and feed forward control, the control effort, in the 
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form of torque commands, is calculated and sent down to each motor through a hardware 

interface.   

Fig. 2.1  Illustration of the flexible DMAC software structure 

The DMAC architecture is fully software-based and can be configured to 

communicate directly with any CAD/CAM system, given the right interface 

functionality. Presently, the DMAC controller supports linear, circular, and Nurbs-based 

motion, which are the general motions required for a machine tool controller. This 

general architecture will be the basis from which a newer reconfigurable controller 

(RMAC) will be developed, and will be explained in the rest of this dissertation. 
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This chapter proposes and develops a new software architecture for a dynamically 

reconfigurable machine tool controller. It then presents the necessary software modules 

and interfaces defined within the RMAC architecture.  

 

3.1 Traditional CNC Paradigm vs. RMAC Paradigm 

In a traditional CNC paradigm, one machine tool controller is dedicated to a 

particular CNC machine tool. The functionality of that controller cannot be changed by 

end users for controlling different machines. For example, a CNC controller designed for 

a three-axis mill cannot be used to control a five-axis machining center. 

Fig. 3.1 shows the standard steps used to plan a process and conduct it on a 

machine tool: 

• Model a part using a CAD system. 

• Create tool paths using a CAM system. 

CHAPTER 3           RMAC SOFTWARE 
ARCHITECTURE 
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• Output a CL or APT file that contains tool path geometry data. 

• Post-process the CL or APT file to obtain an M&G-code file, which then is 

delivered to the machine 

• Operate the machine until the part (or batch of parts) is made. 

 

Fig. 3.1 Traditional CNC paradigm 

CL and APT files are independent of machine tool controllers, but the M&G file 

is machine-specific. This conventional data flow from CAD to CAM systems and to a 

CNC machine tool creates the disassociativity between the original CAD model and the 

driving machining codes, namely M&G codes. The CAD description is not used directly 

on the machine; instead it must go through a machine-specific post-processor (of which 

there are estimated to be about 5,000 in existence). Due to many different dialects and 

vendor-specific additions to the language, M&G codes are not always interchangeable 

between different controllers and machines. This obsolete standard assumes that 

information flows from the CAD to the shop floor, and does not enable feedback of 

experience from the shop floor back to the designer. 
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As a result, there is a growing demand from machine tool end users to develop a 

new generation of machine tool controllers that are both highly flexible and dynamically 

reconfigurable based on newer manufacturing process requirements. For example, end 

users of a three-axis mill may require the addition of new sensor-assisted application-

specific modules to efficiently and cost-effectively convert the mill into an inspection 

system. Also, a machine tool controller designed for a milling operation may be required 

to support a turning operation as well. Moreover, with the ever growing number of 

parametric CAD models widely used in product design, end users of CAD/CAM and 

machine tools expect the information flow between CAD/CAM and machine tools to be 

bi-directional, which would promote feedback from the shop floor back to the CAD 

designer. Therefore, these new requirements from manufacturing companies and machine 

tool end users pose new challenges for designing future machine tool controllers. 

Fig. 3.2 presents the RMAC paradigm. Under this new paradigm, machine tools 

are controlled similar to the way printers are controlled by a personal computer. All 

machine tools are directly connected to CAD/CAM applications through different device 

drivers. This driver software acts as an interface between CAD/CAM systems and the 

control software. CAD/CAM users can select different machines to execute the process 

plans based on manufacturing process requirements. By calling a specific device driver, 

the tool paths and process plans generated from the CAD/CAM applications can be sent 

directly through the driver’s interface. The software driver can then enable the same 

reconfigurable controller for controlling the machine that is connected through this 

driver. Under the RMAC paradigm, CAD/CAM software, device driver software, and 

control software all reside in the same PC, thus allowing the CAD description to be used 
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directly on the machine. Doing so makes the information flow bi-directional; the CAD 

master model is sent to the controller through a device driver interface, and the 

modifications made on the shop floor can be fed back to update the original CAD model 

through the same interface. 

Fig. 3.2 RMAC paradigm 

3.2 RMAC Control Schemes 

The RMAC architecture developed in this research is generic, and therefore 

applicable to various control applications, such as machining, welding, robotics, etc. For 

these different applications, the control software must be flexible enough to 

accommodate different control schemes. 

3.2.1 Position and velocity control 

For most modern machine tools or robots, position and velocity control is the 

most widely used method.  
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To control a machine tool or robot’s position and velocity in Cartesian space, a 

CAD/CAM application needs to generate a series of tool paths along which the 

mechanism’s tool must follow. The process plan may also specify path following speeds 

and a spindle rpm. Fig. 3.3 shows how RMAC controls such a mechanism. 

Fig. 3.3 RMAC controlling steps on position and velocity control 

From the diagram, the first step consists of generating Cartesian tool paths inside 

a CAD/CAM package. Since these paths are associated with the master CAD model and 

are used directly to drive the RMAC compliant mechanism, whenever the CAD model is 

changed, the associated tool paths will be updated and automatically reflected in the 

machined part. 

The generated Cartesian tool paths are then sent down to the RMAC controller to 

produce the mechanism tool’s desired motion. A Cartesian trajectory generator is used to 

interpolate the tool paths to generate the tool position and orientation that the tool can 

follow.  

To follow the desired Cartesian tool path, position, velocity, and acceleration 

setpoints must be found for each individual joint. This requires a mapping between a 

mechanism’s Cartesian space and its joint space.  
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The transformation between Cartesian space and joint space requires an 

understanding of the mechanism kinematics. For instance, forward kinematics consists of 

calculating the position in Cartesian space, given a set of joint position. Inverse 

kinematics is the reverse of the forward kinematics: it involves calculating the joint 

positions necessary to position the tool at a given point in Cartesian space. The forward 

Jacobian consists of calculating the velocity of the tool in Cartesian space, given a set of 

joint speed, and, the inverse Jacobian consists of calculating the joint speeds necessary to 

generate the desired tool velocity in Cartesian space. Reference [50] contains three 

chapters that cover, in detail, the kinematics computations.  

To find joint position, velocity, and acceleration given a desired Cartesian tool 

path, Inverse kinematics is used to map a mechanism’s Cartesian state to its joint state. 

The inverse Jacobian is used to map a mechanism’s Cartesian velocity to its joint 

velocity. Equation Θ’= J-1(Θ)υ relates the joint speed vector to the corresponding tool 

speed vector, where Θ’ denotes the joint speed vector and υ, the tool speed vector. J-1(Θ) 

is the inverse Jacobian matrix and is mechanism-specific. The joint accelerations can 

usually be derived by differentiating the joint velocities at two consecutive trajectory 

steps. However, because inverse kinematics and the inverse Jacobian are machine-

dependent, each different RMAC-complaint mechanism requires a specific inverse 

kinematics and inverse Jacobian algorithm. 

To drive a physical motor, position, velocity, and acceleration setpoints must be 

found for each individual actuator. This requires a mapping between a mechanism’s joint 

space and its actuator space.   
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Typically, a mechanism’s axes are not directly actuated by motors. Instead, they 

are connected and actuated by intermediate mechanisms, such as ball screws, gears, or 

pistons. The manner in which actuators may be connected to move a kinematic joint 

varies among different mechanisms. For instance, some mechanisms use a ball screw to 

enable an angular motor to drive a linear kinematic joint. Sometimes, two actuators work 

together in a differential pair to move a single joint. At other times, a linear actuator 

rotates a revolute joint through the use of a four-bar linkage. In all, there are many other 

ways in which actuators can be connected to drive kinematic joints. 

To find actuators’ position, velocity, and acceleration given a setpoint of joint 

position, velocity, and acceleration, a machine actuator map object needs to be 

developed. The machine actuator map object contains a set of functions to determine the 

mappings between actuator space and joint space. These mappings are mechanism-

specific and must be designed and implemented for each RMAC-complaint mechanism. 

Once the actuator’s setpoints of position, velocity, and acceleration have been 

determined, they are passed down to the servo controller [30].  

Servo control deals with establishing mathematical models to compute the control 

effort—in the form of a torque value—necessary to move control system variables to 

some desired value, or “reference” value. Depending on what control methods are 

utilized, these control system variables may be position, velocity, or contact force. 

In the field of feedback control of dynamic systems [51, 52], control researchers 

have developed several different control laws based on different control criteria. The 

concept of these control laws is to create different mathematics models, which can 

represent the dynamic system. Such models allow for computing the servo control effort 
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necessary to move the actuator system to follow the commanded position or velocity 

within the designed tolerances. 

Consequently, the servo control algorithms may be machine-specific as different 

mechanisms require different servo algorithms based on the machine tolerance or 

customer requirements. Therefore, for each RMAC-complaint mechanism, a specific 

servo control algorithm needs to be developed and implemented for each kinematics 

joint. 

Once the servo controller calculates the necessary torque value for each actuator, 

this torque value needs to be sent to each digital motor drive through a digital control 

interface.   

For any RMAC-compliant mechanism, a digital interface is necessary to connect 

the digital control devices with the controller software. With the increasing digitization of 

control applications, and with the evolution of computer communication hardware, there 

are many possible communication standards, such as IEEE 1394, USB2, and proprietary 

fiber optic communication protocols, that can be chosen to enable communication 

between the digital motor drive and the controller software. Therefore, each RMAC-

complaint mechanism may require a specific digital control interface.  

Finally, to connect any external I/O sensor, such as limit switches or coolant 

on/off switches, to the RMAC controller, a digital I/O interface needs to be developed. 

For each RMAC compliant mechanism, a different I/O board may be chosen to handle 

the I/O connections. Therefore, a mechanism-specific digital I/O interface needs to be 

designed and implemented for each mechanism to be controlled. 
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The above outline shows that even though the kinematic structure of different 

RMAC-compliant mechanisms may vary, these mechanisms are still similar in how they 

are controlled. In the end, the ability to allow top-level CAD/CAM applications to switch 

controlling from one machine to another, or from one control application to another at 

run-time, has become a great challenge for control software designers. 

3.2.2 Force or hybrid force/position control 

While position and velocity control are widely used in machine tools and robots, 

there are other occasions when position control alone may not suffice. For instance, for 

robotics welding, assembling, and friction stir welding operations, the position of the tool 

is not specified as the control variable. Instead, the contact force or the combination of 

force and position are the system variables that need to be controlled. 

Force control, or hybrid force/position control schemes, are quite different from 

position control. Fig. 3.4 shows a hybrid force/position control scheme applied on a 

three-axis kinematic structure. This kinematic structure has three prismatic joints moving 

individually along X, Y, and Z directions. The X and Y prismatic joints are free to move, 

while the Z axis is constrained so that the tool cannot move in the Z direction. The tool is 

currently normal to the XY plane and is in contact with a surface parallel to the XY 

plane.  

The solution to this hybrid force/position control problem is to control joints X 

and Y with a position controller while simultaneously controlling the contact force along 

the Z axis with a force controller. Here, Xd and Yd are the desired positions which feed 

into the position controller. ddd YXX
••••

,, , and dY
••

are the desired velocity and acceleration 
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points for joints X and Y, and are generated from the motion planner described in section 

3.2.1. These motion setpoints need to be fed into the position controller to compute a 

necessary torque value. X and Y are the actual positions, which are fed back from the 

digital motor drives. 

The Z axis is out of the motion planning loop. Fd is the desired contact force that 

needs to be controlled. The actual force (F) is measured by a force sensor, which is 

attached to the Z axis. This value is fed back to the force controller for computing the 

necessary control effort for joint Z. 

As illustrated, these control schemes are quite different in terms of the control 

characteristics and the control methods utilized. To take advantage of these control 

methods and to integrate them into RMAC, a flexible software architecture must be 

developed, allowing for easy reconfiguration of these different control methods. 

Fig. 3.4 Hybrid force/position control 
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3.3 RMAC Software Architecture 

The overall software architecture for the RMAC control system is shown in Fig. 

1.2. As can be seen from this figure, the RMAC control system is decomposed into 

separate hierarchically organized software modules, with CAD/CAM applications and the 

device driver manager sitting at the top and the RMAC reconfigurable controller at the 

bottom. Residing between the CAD/CAM systems and the RMAC reconfigurable 

controller are the device driver software and the COM interfaces. Motion control and 

configuration commands flow from CAD/CAM to the RMAC reconfigurable controller 

through the device driver and the COM interfaces. The machining feedback information 

flow from the RMAC reconfigurable controller back to CAD/CAM through the same 

device driver and COM interfaces. To allow for these control and feedback information 

flows, three interfaces and their interface APIs are developed.    

3.3.1 RMAC software modules and interfaces 

Fig. 3.5 shows the necessary software modules and the interfaces defined within 

the RMAC architecture. The software system is composed of the following six different 

programs:  

• CAD/CAM system creates 3D representations of physical models and generates 

the manufacturing process plans. 

• Device driver manager maintains a device driver database relevant to a 

collection of different mechanism devices and their driver DLLs (see Fig. 3.7). 

Meanwhile it provides interface APIs for CAD/CAM users to query for a proper 

machine and then locates a driver DLL for that machine. 
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• Device driver maintains a device database relevant to the details of a mechanism 

(see Fig. 3.8). By accessing this database, the device driver software knows 

exactly how to properly operate this mechanism. It then connects this physical 

mechanism directly to a CAD/CAM application and processes the CAD/CAM 

function calls to enable easy reconfiguration of the RMAC reconfigurable 

controller necessary for direct control. 

• RMAC_Config interface directs the configuration commands from a device 

driver to the RMAC controller to allow the reconfiguration of the motion planner, 

servo controller, and the underlying digital control interface. 

• RMAC_CAM interface directs the motion and control commands to the RMAC 

controller, receives the machining feedback information, and sends it to a device 

driver software. 

• RMAC open-architecture reconfigurable controller (see Fig. 3.6) receives the 

configuration commands from the device driver. It uses a configuration system to 

map any mechanism-specific or application-specific control codes from the 

relevant DLL libraries. It then interpolates motion and control commands to 

generate the necessary torque values to drive each individual actuator. 

Control and feedback information flows among these software modules through 

the following three interfaces: 

• Device driver manager interfaces to CAD/CAM: The device driver manager 

exposes interface APIs to CAD/CAM to allow the CAD/CAM applications to 

access the device driver database for obtaining the necessary machine information.   
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• Device driver interfaces to CAD/CAM: The device driver exposes interface 

APIs to CAD/CAM allowing the CAD/CAM applications to access the device 

database for obtaining the detailed machine information. This machine 

information is then used to reconfigure the RMAC controller necessary for 

executing manufacturing process plans on the selected machine tool. 

• Device driver interfaces to the RMAC reconfigurable controller: The device 

driver software communicates with the RMAC reconfigurable controller through 

two COM interfaces and they are RMAC_Config and RMAC_CAM. The device 

driver software contains an instance of the RMAC_Config and RMAC_CAM, 

thus, all the interface APIs defined within these two COM interfaces are directly 

accessible to the device driver software. 

Fig. 3.5 Software modules and interfaces in RMAC architecture 
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Fig. 3.6 RMAC reconfigurable controller architecture 

Fig. 3.7 Device driver manager Fig. 3.8 Device driver 
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3.3.2 Control information flow in RMAC 

To better understand how control and feedback information flows among these 

different software systems, or, more specifically, how motion command flows from 

CAD/CAM applications to the RMAC reconfigurable controller and the feedback 

information flows from the RMAC controller to CAD/CAM, an example is given as 

shown in Fig. 3.9.    

From Fig. 3.9, it assumes that CAD/CAM users have selected a machine and a 

device driver DLL has been loaded into memory. Here, a CAD/CAM application 

generates a Nurbs tool path and seeks to send this tool path to a RMAC-compliant 

mechanism for direct machining. It makes a driver service function call named 

Machine_MoveInNurbs. Upon receiving this interface function call, the device driver 

interprets this CAD/CAM function and makes a COM interface call named 

MoveAlongNurbs. The RMAC_CAM interface is used to direct this service routine to the 

RMAC controller. MoveAlongNurbs is the final function expected by the RMAC 

controller. Once the RMAC controller receives this service call, the motion planner 

interpolates the Nurbs tool path and generates the necessary motion setpoints. These 

motion setpoints are then sent to the servo controller to calculate the torque values. The 

torque values are sent to each individual motor drive at each trajectory step, and 

consequently, the tool is commanded to move along the Nurbs tool path.  

During this operation, the digital motors actual position and speed are fed back to 

the servo controller through the digital control interface. These joints setpoints are then 

sent to the motion planner. The motion planner calculates the mechanism speed using 

forward kinematics algorithm. Once the device driver software makes a COM interface 
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call GetFeedrate, the motion planner will send the actual machine federate value to the 

device driver. The device driver will send this value to CAD/CAM upon receiving the 

driver service call Machine_GetFeedrate. At this point, the mechanism actual federate 

value is fed back to CAD/CAM application for either display or debugging purposes. 

Fig. 3.9 Flow of information between CAD/CAM and the RMAC reconfigurable controller

The next chapter will describe each part of the software system involved in this 

information flow in details. The interface APIs enabling this information flow will also 

be discussed. 
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This chapter describes in greater details for each software module and interface 

defined within the RMAC architecture. It then presents the methodology for 

reconfiguring the RMAC reconfigurable controller necessary for controlling different 

machines.  

 

4.1 CAD/CAM 

CAD/CAM systems are computer-aided engineering tools that are widely used to 

assist product design and manufacturing. Fig. 4.1 shows a Ford GT top surface being 

modeled and process planned in Unigraphics (UG) and CATIA. The manufacturing 

process plans generated from UG and CATIA are highlighted (see Fig. 4.1). 

Traditionally, these manufacturing process plans must be post-processed into the 

ASCII APT and M&G files to be executed on a machine. To overcome this post-

processing limitation, a device driver is developed for each individual machine to be  

CHAPTER 4           METHODOLOGY 
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a) UG 

 

b) CATIA 

Fig. 4.1 UG and CATIA process plans 

connected directly with CAD/CAM systems. Whenever CAD/CAM users generate the 

manufacturing process plans and are ready to execute them on a machine, they will first 
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select a machine to perform the process. CAD/CAM software will automatically load a 

relevant device driver and then pass the process plans directly to that machine through the 

device driver. This parallels the way printers work in Windows. For instance, whenever a 

Microsoft Word user wants to print a document, the document is sent through a printer 

driver directly to the printer. There is no need to store and maintain intermediate process 

files. Instead, a unique printer driver establishes a direct link between the computer and 

the printer. The printer driver knows exactly how to operate the printer as desired by end 

users. 

Because many different machines exist that are feasible for executing a 

manufacturing process plan, a customized graphic user interface is embedded inside 

CAD/CAM systems to assist users in selecting the best machine tool.  This is shown in 

Fig. 4.2.  

In Fig. 4.2, the configuration dialog boxes are designed as a plug-in user interface 

to UG and CATIA. These dialog boxes allow CAD/CAM users to see the different 

machines, and provide users with enough information to select the proper machine to 

perform the process. To better assist CAD/CAM users, the device driver manager also 

has a built-in search engine, enabling them to narrow down their selection to a few 

machines, based on various machine filter schemes. Fig. 4.3 shows two selected machine 

tools classified as five-axis mills, with a working volume greater than 100x100x100 mm. 
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a) UG 

 

b) CATIA 

Fig. 4.2 Machine configuration user interface under UG and CATIA 
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a) UG 

 

b) CATIA 

Fig. 4.3 Selected machine tools under UG and CATIA 

If CAD/CAM users want more information about a particular machine’s 

characteristics to make a better decision, they can open a new dialog box by clicking the 

machine characteristics button (as shown in Fig. 4.2 and Fig. 4.4).  

This dialog box contains detailed information about the machine, such as machine 

configuration, working volume, machine limits, maximum feederate, maximum spindle 

speed, etc. Such information assists CAD/CAM users in making a more informed 

decision about whether to use this machine to perform the process. 

CAD/CAM applications use a device driver manager to obtain all machine 

characteristics information. The next section will describe in detail how the device driver 

manager obtains this information and what functions are exposed to CAD/CAM software 

for obtaining the necessary machine information to assist in the machine selection 

process. 
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a) UG b) CATIA 

Fig. 4.4 Machine characteristics dialog box under UG and CATIA 
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Once CAD/CAM users select a proper machine, they can choose to perform the 

manufacturing process either by moving a connected machine to follow the desired tool 

paths and cutting a part, or by simulating the same operations on a virtual machine built 

inside the CAD/CAM applications. CAD/CAM users can set this virtual or machining 

option in the machine characteristic dialog box (see Fig. 4.4 ). Fig. 4.5 shows a process 

plan being simulated in UG and DELMIA, a simulation tool for CATIA users. 

a) UG b) DELMIA 

Fig. 4.5 Simulations under UG and DELMIA 

4.2 Device Driver Manager 

The device driver manager (see Fig. 3.7) is a DLL running independently from 

CAD/CAM systems. The functions of the device driver manager are as follows: 

• Maintain a device driver database relevant to a collection of different machines 

and their driver DLLs. 
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• Uses a device tree structure to organize different device driver DLLs. 

• Provide built-in database search engine to assist CAD/CAM users to narrow down 

their selected machines based on various searching schemes. 

• Provide interface APIs to communicate with CAD/CAM applications.   

4.2.1 Device tree 

The device driver manager organizes a collection of device driver DLLs in a 

device tree structure (see Fig. 4.6).  The base of this tree is called a root, and is 

represented by a root device driver folder.  Under this root device driver folder, different 

mechanism device drivers are collected into sub folders according to their machine types 

(i.e. milling machine, robot, and CMM). At the second level of the device tree are nodes 

(branches) or end nodes (leafs). For example, as a branch, the milling machine node 

divides into three new nodes: the three-axis, four-axis, and five-axis node. Thus, all the 

three-axis mill device drivers are placed under the three-axis folder. Likewise, the four-

axis and five-axis mill device drivers are placed under the four-axis and five-axis folders. 

As a result, the device tree’s hierarchy reflects the structure and classification of the 

device drivers. 

The purpose for a hierarchical structure is threefold: first, it enables easier 

management of different device drivers. Second, it provides an extensible foundation for 

adding new device drivers to the existing device driver database. Third, the tree structure 

allows the device driver manager to easily locate a device driver. By knowing the 

mechanism device type and the device driver name, the device driver manager can easily 

locate that device driver by traversing the tree from the root until it reaches a leaf. 
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Fig. 4.6 Device tree structure 

4.2.2 Device driver database 

The device driver manager maintains a database called the device driver database. 

Table 4-1 displays the contents of this database. This database contains the minimum 

amount of information relevant to a mechanism and its device driver. Its purpose is to 

allow CAD/CAM users to inquire about a mechanism and its device driver to assist their 

evaluation and selection of a machine tool. 

The design form for the database is Microsoft Access, a low-end relational 

database program widely used on small and medium sized databases. The standard user 

and application program interface to a relational database is the structured query 

language (SQL). SQL statements are used both for interactive queries for information 

from a relational database, and for gathering data for reports.  
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Since a manufacturing organization may have hundreds of different machines for 

CAD/CAM users to choose from, the device driver manager implements a built-in 

database search engine (in SQL syntax) to assist CAD/CAM users in their search for a 

particular machine. By using this search engine, CAD/CAM users can easily narrow 

down their selection to a few machines.  For instance, if CAD/CAM users wish to find a 

five-axis mill classified machine, with a working volume greater than 150x150x150 mm, 

and a mechanism spindle greater than 5 hp, one SQL query in the database will narrow 

their selection to a single machine: TarusXYZCA, (see Table 4-1). This searching and 

selection process reduces the need for CAD/CAM users to review every available 

machine before finding one capable of performing the manufacturing process.   

Once CAD/CAM users select a machine, the device driver manager is responsible 

for locating a relevant mechanism device driver. The combination of the second, third, 

and fourth columns are used to assist the device driver manager to track and locate a 

device driver. The mechanism type and mechanism number of joints columns are used by 

the device driver manager to traverse the device tree, while the mechanism device driver 

is the driver name that the device driver manager searches for. Once the device driver 

manager finds all of this information, it sends the information back to CAD/CAM 

systems.  

Once the device driver manager obtains the minimum amount of information 

relevant to a specific mechanism, it can pass this machine and device driver information 

back to the CAD/CAM user interface (as discussed in section 4.1) for machine evaluation 

and selection purposes. 
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4.2.3 Device driver object 

To assist the process of retrieving mechanism and device driver related 

information from the device driver database, a device driver object data structure is 

defined, as shown in Fig. 4.7. 

 

Fig. 4.7 The Device_driver_object data structure 

This complete device driver object data structure is defined in the device driver 

manager’s header file, as shown in Appendix I. The following excerpt is an example: 
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typedef struct _DEVICE_DRIVER_OBJECT{ 

char  MechanismName[100]; 

char  DeviceDriver[100]; 

… 

char  DeviceDriverVersion[100]; 

}DEVICE_DRIVER_OBJECT, *PDEVICE_DRIVER_OBJECT; 

The device driver manager uses the device driver object data structure to represent 

each device driver. According to this data structure, each field corresponds to one column 

in the device driver database.  

The device driver manager will declare an ODBC (Open DataBase Connectivity) 

object. It then uses this ODBC object to access the device driver database and set up each 

field defined within the device driver object. ODBC is designed to be database-

independent. The MFC (Microsoft Foundation Class) library contains well-defined 

function calls that allow the ODBC object to access any data source, local or remote. The 

ODBC object can use SQL statements to query the device driver database and assist 

CAD/CAM users in searching for correct machines. 

4.2.4 Interface to CAD/CAM 

 The device driver manager is designed as a DLL and is a stand-alone program; 

thus, it must expose some interface APIs to enable communication with CAD/CAM 

systems.  

The interface APIs are separated into two groups: functions that allow CAD/CAM 

systems to access the device driver database, and functions that return the selected 

machine information back to CAD/CAM. 
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CAD/CAM applications call the first group of interface APIs to operate on a 

device driver database. Three interface API examples—with no input parameters—are 

listed for demonstration.  

• OpenDeviceDriverDatabase() 

• CloseDeviceDriverDatabase() 

• GetTotalNumberOfRecords() 

Function OpenDeviceDriverDatabase() allows the CAD/CAM applications to 

connect to the device driver database. Function CloseDeviceDriverDatabase() disconnect 

the database from CAD/CAM. The last function GetTotalNumberOfRecords() returns the 

total number of machine records contained within the device driver database. 

CAD/CAM applications call the second group of interface APIs to obtain 

information related to a selected machine. This machine information will then be 

displayed to CAD/CAM users, as described in section 4.1, for proper machine evaluation 

and selection. Two API examples are given below.  

• Machine_GetDeviceDriver() 

• Machine_GetMechanismMaxFeedrate() 

The first function, Machine_GetDeviceDriver(), returns the selected device driver 

name to CAD/CAM applications. The second function, 

Machine_GetMechanismMaxFeedrate(), returns the mechanism maximum feedrate value 

to CAD/CAM. 

Appendix II provides a more detailed list and description of these interface APIs. 
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4.3 Device Driver 

A device driver (see Fig. 3.8) must be developed to connect a mechanism device 

directly to CAD/CAM. It may be useful to think of a complete mechanism device driver 

as a container for a collection of methods and classes. These methods and classes can be 

called by CAD/CAM systems to perform various operations on the connected mechanism 

device and to read back the mechanism operational parameters, such as current feedrate, 

spindle speed, joint value, current torque, etc. Each device driver must be able to entirely 

determine a particular mechanism’s behavior and understand exactly how to make the 

mechanism work for the user. Specifically, the device driver should be designed with the 

following functions: 

• Apply a self-contained device database to expose the details of a mechanism 

device. 

• Expose functions required by CAD/CAM.  

• Communicate directly with the RMAC reconfigurable controller. 

The device driver is designed as a dynamic-link library (DLL). DLL is currently 

the de-facto library form for Windows device drivers [54, 55]. Because it is the only 

library that can be explicitly loaded by Windows at run-time, all of the device drivers 

running under Windows are designed as DLLs. Windows end users frequently need to 

install new devices, or to upgrade their old devices with a new functionality. And, 

because of the independent and run-time loadable nature of DLL, end users can easily 

upgrade their exiting devices with new functionality. Here, end users do not need to know 

all of the details about a device; rather, they simply download a device driver DLL from 
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the device manufacturer and use the Windows device manager to install it. The Windows 

system will then load the device driver into memory and operate this device as the end 

user desires.  

Similar to the Windows device driver concept, this research also uses DLL as the 

device driver form. Besides being run-time loadable by an application program, there are 

a few other advantages of using DLL to map mechanism-specific modules into a device 

driver.  The following advantages comprise the rationale for choosing DLL as the device 

driver form.  

First, DLLs are compiled and linked independently from the applications that use 

them. They are separate executable files containing functions or classes that can be called 

by application programs and other DLLs to perform certain functions or computations. 

Therefore, DLLs can be updated without requiring applications to be recompiled or 

relinked. 

Second, DLLs are run-time modular while C++ classes are only build-time 

modular. This means that the loading of a DLL can be determined at run-time while the 

loading of a C++ class must be determined at link time. A C++ class can be designed and 

formed into a static library, but to use this library, an application program must first link 

this library into its executable file in order to run. Once the library is linked to an 

application, it becomes a permanent part of the application’s executable file. All of the 

subsequent calls to the library functions or classes are resolved at link time, thus making 

the functionality of the application software no longer changeable at run-time. 

Third, if several applications work together as a system, and they all share 

common DLLs, the entire system can be updated or improved by replacing the common 
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DLLs with enhanced versions. A bug fix for one of the DLLs fixes the bug in all 

applications that use it. Likewise, speed improvements or new functionality 

developments benefit all applications that use the DLLs. 

Again, the need for a reconfigurable machine tool controller centers on the need 

to change controller functionality at run-time, depending upon which machine the 

CAD/CAM user chooses to perform a manufacturing process plan. 

The functionality of a DLL makes it the perfect form for a mechanism device 

driver. By using DLLs, the mechanism-specific software modules can be designed, 

linked, and debugged independently. These DLLs are separate executable files and are 

completely independent of all other software. The reconfigurable controller paradigm is 

one of a mechanism device driver assigned to a mechanism class. The CAD/CAM 

applications can make a run-time decision to load a device driver DLL for a particular 

mechanism class or control application upon the user’s request; thus making the 

mechanism assume different operating configurations depending on the number of axes, 

machine resolutions, and the relevant mechanism device driver functions. If the 

functionality of a mechanism device driver needs to be updated or enhanced, the driver 

developers only need to update this device driver DLL. 

4.3.1 Device database 

Each device driver has a self-contained device database, as shown in Table 4-2. 

The primary purpose for developing this device database is to allow CAD/CAM users to 

easily access any machine information before they select a particular machine to execute 

the manufacturing processes. The secondary purpose is to allow the device driver to 
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correctly configure the RMAC controller based on information contained within the 

device database.  

As shown in Table 4-2, the device database contains three categories of 

information that are relevant to a mechanism device: 1) primary machine characteristics, 

such as the tool changers and number and type of axes, etc; 2) machine operational 

parameters, such as mechanism maximum feedrate, spindle maximum RPM, mechanism 

positioning and repeatability tolerance, etc; 3) machine-specific motion planning and 

servo controlling capabilities, such as kinematics, servo control law and servo gains used 

on each axis, joint to actuator mapping, etc. 

4.3.2 Device object 

A device object data structure, shown in Fig. 4.8, serves two purposes. First, it 

assists CAD/CAM applications to easily access machine information contained within the 

device database. Second, it contains the exact information necessary for the device driver 

to set up a mechanism’s operational parameters and reconfigure the RMAC controller for 

controlling this specific mechanism. 

The device object data structure is declared in the device driver manager’s header 

file and is shown in Appendix I. The following excerpt is an example of its structure: 
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typedef struct _DEVICE_OBJECT{ 

char  MechanismName[100]; 

int  NumOfJoints; 

int  MechanismJointType[DMAC_MAX_JNT]; 

… 

char  MechanismSpindleServoControlLaw[100]; 

}DEVICE_OBJECT, *PDEVICE_OBJECT; 

 

Fig. 4.8 Device_object data structure 
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The device driver uses the device object data structure to represent each 

mechanism device. In Fig. 4.8, each field corresponds to one column in the device 

database (see Table 4-2). Here, the device driver creates an instance of an ODBC object. 

It then uses this ODBC object to access any data defined within the device database. 

Upon obtaining this data, the device driver transmits it to the corresponding fields defined 

within the device object. After the device object’s data structure is completely filled up, 

all of the mechanism-related information will be made available to CAD/CAM users 

upon their request. The first data field defined within this data structure is the mechanism 

name. The second to the seventeenth data fields all relate to the mechanism’s 

characteristics. These sixteen fields of data serve two purposes. First, CAD/CAM users 

can access this information when they are evaluating a machine. Second, the device 

driver can use this data to correctly set up a machine before end users can operate that 

machine. 

The last five fields all relate to the machine-specific motion planning, servo 

controlling capabilities, and the underlying communication hardware used by each 

machine.  

For reconfiguring the RMAC controller to control different mechanisms, 

machine-specific software modules must be separated and encapsulated into DLLs, thus 

making the RMAC controller completely generic. 

As described in section 3.2, to command a mechanism’s tool to follow a desired 

tool path, a series of computations must be taken to generate the commanded torque 

values to send to each digital motor drive. As for different mechanisms or machine tools, 

some of these computations vary from one mechanism to another. Under the RMAC 
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architecture, they are no longer designed within the RMAC controller, but are designed 

and built as separate DLLs that can be dynamically loaded and mapped into the RMAC 

controller upon a user’s request. Since the RMAC controller no longer contains these 

mechanism-specific algorithms, it becomes critical for a device driver software to instruct 

the RMAC controller to map these algorithms from corresponding DLLs at run-time so 

that the RMAC controller’s functionality is adaptable to a selected mechanism. The 

mapping method and the interface APIs that enable these mappings will be described in 

the subsequent sections. 

4.3.3 Device object example for a three-axis mill 

To better understand this device object, the following example is demonstrated. 

Once the three-axis mill device driver creates an instance of the device object, it searches 

the three-axis tabletop mill device database (see Table 4-2). By accessing the data defined 

within this database, the device driver correctly sets up the device object data structure, as 

shown in Fig. 4.9. The second to the seventeenth data fields are machine-specific 

operational parameters. For the mechanisms joint parameters, only joint type is shown in 

this figure. 

The last five fields are machine-specific motion planning, servo controlling 

algorithms, and the underlying digital control interface—all necessary components for 

controlling this mechanism. As can be seen from this figure, the names of the DLLs 

corresponding to these machine-specific algorithms are mapped into this device object 

data structure. The device driver software will use the RMAC_Config interface APIs to 

pass the DLL names to the RMAC controller. The RMAC controller can then locate the 
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DLLs and import all the necessary motion planning and servo controlling algorithms into 

its controller software. 

 

Fig. 4.9 DMACXYZ device object 
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Because this mill is a three-axis mechanism, each of the kinematic axis needs a 

specific servo control algorithm. For this case, the X, Y, and Z axes all use the same PID 

servo control algorithm. Thus, if the Z axis uses a different servo control algorithm, such 

as a force control algorithm, the device driver maps a different servo control DLL name 

into this data structure, resulting in a flexible architecture that allows for easy 

reconfiguration of different servo control methods into the RMAC controller. 

4.3.4 Interface to CAD/CAM 

A device driver is run-time loaded by CAD/CAM applications upon a user’s 

request. The communication between the device driver and CAD/CAM systems are 

through a set of device driver interface APIs. 

The interface APIs are divided into three groups: 1) functions that allow 

CAD/CAM systems to access the device database, 2) functions that return this specific 

machine information back to CAD/CAM, and 3) functions that instruct the RMAC open-

architecture controller to set up correct operational parameters and configure the motion 

planning and servo controlling specific to this mechanism. 

The first two groups of interface APIs share similarities with the interface APIs 

between the device driver manager and CAD/CAM systems.  CAD/CAM applications 

can call the first group of interface APIs to operate on a device database.  Two similar 

interface API examples (with no input parameters) are given below.  

• OpenDeviceDatabase() 

• CloseDeviceDatabase() 
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Function OpenDeviceDatabase allows the CAD/CAM applications to connect to 

the device database. Function CloseDeviceDatabase disconnects the database from 

CAD/CAM.  

The second group of interface APIs are used to obtain information related to a 

specific mechanism. One example, Machine_GetMechanismNumOfJoints(), returns the 

number of joints to CAD/CAM applications. 

CAD/CAM applications use the third group of interface APIs to instruct the 

RMAC controller to set up correct machine parameters and reconfigure its controller 

software prior to executing a manufacturing process plan. Four examples, with no input 

parameters, are listed as follows:  

• Machine_SetMechanismMaxFeedrate() 

• Machine_ConfigureMotionPlanner() 

• Machine_ConfigureServoController() 

• Machine_ConfigureDigitalControlInterface() 

CAD/CAM applications use function Machine_SetMechanismMaxFeedrate() to 

instruct the RMAC controller to set up the mechanism’s maximum federate. The last 

three APIs are generic functions that CAD/CAM applications can call to instruct the 

RMAC controller to reconfigure its controller software modules. Under the RMAC 

architecture, various device drivers can be connected to a CAD/CAM application. 

Therefore, CAD/CAM applications must use generic APIs to communicate with different 

device drivers. The actual interpretation of these functions is done internally in the driver 

software. Based on the information contained within a device object (see Fig. 4.8), the 
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device driver then calls the relevant RMAC_Config interface APIs to correctly configure 

the RMAC controller. 

Appendix III provides a list and description of these interface APIs. 

4.3.5 Interface to the RMAC reconfigurable controller 

 A device driver connects CAD/CAM applications to the RMAC reconfigurable 

controller. It receives process instructions from CAD/CAM and then passes them to the 

RMAC controller. 

 The device driver software uses two COM interfaces, RMAC_Config and 

RMAC_CAM, to communicate with the RMAC controller. It uses the RMAC_Config 

interface APIs to instruct the RMAC reconfigurable controller to correctly set up machine 

parameters and to map mechanism-specific motion planning and servo controlling 

algorithms into its controller software. Once the device driver software finishes 

reconfiguring the RMAC controller, it then uses the RMAC_CAM interface APIs to pass 

process instructions to the RMAC controller. The device driver software contains an 

instance of the RMAC_Config and RMAC_CAM objects. As a result, the interface APIs 

contained within these two COM interfaces are directly available to the device driver.  

4.4 RMAC_Config Interface 

To connect any control input to the RMAC reconfigurable controller, multiple 

COM-based control plug-ins have been developed. This COM-based control plug-in, 

developed by Direct Controls, Inc., acts as the interface between the RMAC 

reconfigurable controller and an external control source. Fig. 4.10 shows a few existing 
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COM interfaces that have been implemented. It also shows a newly developed COM 

interface that allows for reconfigurable control.  

 

Fig. 4.10 COM-based plug-ins connected to theRMAC reconfigurable controller 

The design strategy of developing a separate RMAC_Config interface that is 

completely independent of the RMAC_CAM interface separates the machine 

reconfiguration and direct machining process instructions into two COM interfaces; thus 

the RMAC_CAM interface can still be used on any existing DMAC controllers. The 

RMAC_CAM COM interface is a separate plug-in that can be connected to the RMAC 

controller when necessary.  It contains well-defined function calls that allow a device 

driver to instruct the RMAC controller to reconfigure its motion planner, servo controller, 

and digital control interface, which, in turn, is necessary to control a particular RMAC-

compliant mechanism. 
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1. SetMechanismNumActuators 

2. SetMechanismJointControlMethod 

3. SetMechanismJointServoControlLaw 

4. SetMechanismJointServoControlGains 

5. SetMechanismSpindleControlMethod 

6. SetMechanismSpindleServoControlLaw 

7. SetMechanismSpindleServoControlGains 

The interface functions contained within the RMAC_Config interface are divided 

into three groups. The first group of interface APIs reconfigures the motion planner. The 

set of functions within this group contains methods to allow the device driver to instruct 

the RMAC controller to map mechanism-specific kinematics and machine actuator 

mapping algorithms from the corresponding DLLs, or to correctly set up machine 

parameters. The second group of interface APIs reconfigures the servo controller. Each 

kinematics joint may need a specific control method and servo control algorithm. The 

interface APIs within this group contain the methods to configure each kinematics joint 

with a desired servo control algorithm. The last group of interface APIs reconfigures the 

digital control interface and digital I/O interface.  

The provided functions with no description (see Appendix IV – for description) 

are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 Group 3: Configure digital control interfa

1.  SetMechanismKinematics      

2.  SetMechanismActuatorMap   

3.  SetMechanismNumJnts 

4.  SetMechanismNumSpindle 

6.  SetMechanismJointType 

7.  SetMachanismJointLimitType 

8.  SetMechanismJointMaxLimit 

9.  SetMechanismJointMinLimit 

10. SetMechanismJointMaxSpeed 

11. SetMechanismJointMaxAcceleration 

12. SetMechanismJointMaxJerk 

13. SetMechanismSpindleMaxRPM 

Group 1: Configure motion planner Group 2: Configure servo controller 

1. SetMechanismDigitalControlInterface 

2. InitializeMechanismDigitalControlInterface 

3. SetMechanismDigitalIOInterface 

4. InitializeMechanismDigitalIOInterface 
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4.5 RMAC_CAM Interface 

After a device driver instructs the RMAC controller to reconfigure its control 

software components, the RMAC controller is ready to take motion and control 

commands for direct machining. 

Once control commands have been accepted by the device driver software, they 

are ready to be passed to the RMAC controller. The device driver communicates with the 

RMAC controller through a COM interface called RMAC_CAM. RMAC_CAM is 

directly interfaced with the motion planner, and allows the device driver to pass motion 

commands to the RMAC controller as well as to send and receive other control 

information. 

The interface APIs defined within the RMAC_CAM COM interface are divided 

into two groups. The first group of APIs relates to the milling machine; the second group 

relates to the CMM.  

The milling machine APIs are further divided into two sub groups. The first group 

is used by the device driver to instruct the RMAC controller in executing manufacturing 

process plans. The second group allows the device driver to obtain current operational 

parameters, such as the current spindle speed.  

Similarly, the interface APIs defined for the CMM are also divided into two sub 

groups. The first group of APIs relates to a measurement process plan; the second group 

relates to current machining operational parameters. 

Appendix IV provides a list and description of the RMAC_CAM interface APIs. 
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4.6 RMAC Reconfigurable Controller 

The existing DMAC architecture does not permit reconfigurable control. To 

control a particular machine, any machine-specific functions or classes currently must be 

designed and built into a DMAC controller. After these machine-specific modules are 

linked to the DMAC controller, they become a permanent part of the DMAC system. As 

a result, the DMAC controller becomes unchangeable at run-time for controlling different 

machines. For instance, DMAC can control a three-axis tabletop mill, a three-axis Sugino 

mill, and a five-axis Tarus mill. However, each of these controllers is tailored for a 

particular machine. End users cannot use the three-axis Sugino mill’s controller to control 

the five-axis Tarus mill. 

To allow reconfiguration of the motion planner and servo controller necessary for 

controlling different mechanisms, some additions and modifications must be made to 

DMAC’s existing architecture, as shown in Fig. 3.6.  

As described in section 4.3, any machine-specific module is designed and linked 

separately into a DLL. This module must first be mapped into the RMAC controller 

before CAD/CAM applications can send down process plans to the RMAC controller for 

direct machining. The software module is mapped into the RMAC controller through a 

configuration system, as displayed in Fig. 3.6 and Fig. 4.11.  

The configuration system is directly interfaced with the RMAC_Config COM 

interface so that it can receive configuration commands from this interface. Based on 

these different configuration instructions, the configuration system will do one of two 

operations. It will either set up a correct machine operational parameter, such as machine 
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joint limits; or load the corresponding DLLs and then map any mechanism-specific 

module, such as the machine kinematics object, into the RMAC controller.  

After the configuration system finishes all of these configuration processes, the 

RMAC controller is dynamically reconfigured for a particular mechanism. CAD/CAM 

applications can then pass the manufacturing process instructions to the RMAC controller 

for direct machining. 

To better understand how this reconfiguration process occurs, Fig. 4.11 

demonstrates how the RMAC controller is reconfigured for a three-axis tabletop mill. 

Fig. 4.11 Reconfiguring the RMAC controller for a three-axis tabletop mill 
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Here, the motion planning, servo controlling, and digital control interface 

modules, which are specific to this three-axis mechanism, are all designed and linked as 

separate DLLs. To correctly control this three-axis tabletop mill, the RMAC controller 

needs to map these mechanism-specific software modules into the controller software.  

The device driver software, in this case the DMACXYZ.dll, uses the following 

RMAC_Config interface function calls to pass these DLL names to the RMAC 

controller. For instance, the driver software (DMACXYZ.dll) calls the interface function 

SetMechanismKinematics(char* pDMACKin) to pass the kinematics DLL name 

(DMACXYZKinematics.dll) to the RMAC controller. Upon receiving this name, the 

RMAC controller locates the DLL and loads it into the memory. It then imports the 

corresponding kinematics class from this loaded DLL. For convenience, this three-axis 

mill kinematics class is also named DMACXYZKinematics. Likewise, the RMAC 

controller can import all other necessary machine-specific software modules (at run-time) 

for controlling this three-axis mill. 

SetMechanismKinematics(char* pDMACKin) 

SetMechanismActuatorMap(char* pDMACMachineActMap) 

SetMechanismJointControlMethod(int JntNum, SHORT DMACServoControlMethod) 

SetMechanismJointServoControlLaw(int JntNum, char* pControlLaw) 

SetMechanismDigitalControlInterface(char* pMotorInterface) 

SetMechanismDigitalIOInterface(char* pIOInterface) 

In addition to mapping these mechanism-specific software components into the 

RMAC controller, the device driver software must instruct the RMAC controller to 

correctly set up the machining operational parameters that are specific to this three-axis 
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mechanism. For instance, the device driver obtains the mechanism maximum feedrate 

from the device object data structure and uses the following RMAC_Config function call 

to correctly set up the RMAC controller: 

SetMechanismMaxFeedrate(double MaxFeedrate) 

After this reconfiguration process, the necessary mechanism-specific algorithms 

are mapped into the RMAC controller, as shown in Fig. 4.11, and the machining 

operational parameters are correctly set up. At this point, the RMAC controller is 

dynamically adapted, and therefore capable of controlling the three-axis mechanism. 

4.7 Simulation System 

As introduced in section 4.1, a simulation system is developed inside CAD/CAM 

systems, thus, enabling end users to debug and validate a controller’s functionality 

without operating the real machine tool when the controller is reconfigured. 

CAD/CAM users can set the device driver to work in a virtual mode (see Fig. 

4.4). The only difference between virtual mode and real control mode is that the servo 

algorithms reflect the motion directly back to CAD/CAM systems as kinematics joint 

values. These joint values are used by CAD/CAM systems to update the animation 

display. UG has a built-in machine simulator allowing UG users to build a virtual 

machine. This virtual machine can be simulated by taking the kinematics joint setpoints 

at each trajectory step. CATIA does not have a built-in machine simulator, but it can be 

integrated with DELMIA. Similar to UG, DELMIA users can build a virtual machine that 

can be animated by taking the motion setpoints from the RMAC controller through a 

device driver interface. 
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Whenever a user or CAD/CAM applications switches the controller to a different 

mechanism, the simulation system is used to run the machining process plans on a virtual 

machine to validate the controller’s functionality.  

The simulation system serves two purposes. First, it enables CAD/CAM users to 

estimate cycle time for a manufacturing process plan. Second, the simulation system 

checks any collisions that might occur during a process plan. This, in turn, assists 

CAD/CAM users in verifying a machine tool before they run the manufacturing process 

plan directly on a physical machine. 

Once the controller’s functionality is verified, the machining process plans can be 

sent down to the RMAC controller to execute the process on a physical machine. 

4.8 New Sequences of Operations 

Under the RMAC architecture, the sequence of control information flow is as 

follows: 

1. CAD/CAM users create a solid model. 

2. Users generate the manufacturing process plan. 

3. Users search and select a best machine tool to perform the process plan. 

4. The device driver manager locates the device driver and informs it to CAD/CAM. 

5. CAD/CAM loads the device driver and communicates directly with the driver. 

6. The device driver uses the RMAC_Config interface to instruct the RMAC 

controller to reconfigure its motion planner, servo controller, and digital control 

interface for the selected machine. 



77 

7. CAD/CAM applications pass the process plans to the device driver. 

8. The device driver interprets the process plans and uses the RMAC_CAM 

interface to pass motion and control commands to the RMAC controller for direct 

machining. 

9. The RMAC controller executes the manufacturing process plans and operates the 

machine to make a desired part. 

With the development of the RMAC architecture, it changes the traditional 

machine control method. Under this new paradigm, CAD/CAM users can select an 

optimal machine to meet the specific needs of a manufacturing operation. A device driver 

will then be automatically loaded to connect the select machine tool to the CAD/CAM 

system, thus allowing the manufacturing process plans to be executed directly on the 

selected machine tool. The post-processing of these process plans into the traditional 

M&G files is no longer necessary. 
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This chapter first shows the successful implementation of the RMAC architecture 

on a three-axis tabletop mill.  It then shows the proposed implementation of RMAC on a 

Tarus five-axis full-size mill, and a Coordinate Measuring Machine (CMM). Lastly, it 

demonstrates the simulation of a three-axis tabletop mill and a five-axis full-size mill in 

UG using the developed RMAC controller. 

 

5.1 Control Hardware 

5.1.1 Three-axis tabletop mill 

To implement this reconfigurable controller on a three-axis tabletop mill, a device 

driver was developed to connect it directly with CATIA. 

The controller runs on a Dual-Pentium 1 GHz computer. One processor runs 

Windows XP, under which CATIA operates; the second processor uses VentureCom’s 

CHAPTER 5           PROTOTYPE IMPLEMENTATION
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Real-time Extensions (RTX) for Windows XP, using multiprocessor version 5.1.1. This 

makes machine tool control possible by giving the controller a real-time environment. 

The machine tool is a three-axis tabletop mill shown in Fig. 5.1. Each mill axis is 

controlled by a digital torque drive developed by Semifusion, Inc. These digital torque 

drives send and receive digital data via two fiber-optic cables that connect them to the 

computer. The controller software uses these digital torque drives as torque slaves, 

sending commanded torque to the motors and receiving actual position, speed, torque, 

current, and errors as feedback, all as digital information. In the future, this mill will use 

IEEE 1394 Firewire to replace its current fiber optic communication protocol.  

 

Fig. 5.1 Three-axis tabletop mill 
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5.1.2 Five-axis full-size Tarus mill 

Aside from the three-axis table top mill, this research will also be implemented on 

a five-axis full-size Tarus mill, donated by General Motors (GM). A device driver to 

connect this mechanism directly with CATIA needs to be completed. 

Fig. 5.2 shows this Tarus mill. Each motor is controlled by an ORMEC 

ServoWire SM digital drive. Communication between the RMAC controller and each 

digital motor drive is handled by the IEEE 1394 Firewire, which is able to send 

information fast enough to control multiple motors at rates above 4000 Hz. 

I/O connections are handled through an ICP DAS data acquisition system. The 

system consists of a PCI card (model no: PIO-D48) that is mounted in the host computer, 

and a daughter board (model no: DB-24P) that connects to the PCI card and provides the 

actual I/O connections. 

 

Fig. 5.2 Five-axis full-size Tarus mill 
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5.1.3 CMM 

The third implementation of this research will be on a Sugino V9, donated by 

Sugino Machine, Inc. of Japan, for in-cycle measurement.  

The physical mill is a three-axis mill shown in Fig. 5.3. Its digital motor 

communication protocol, IEEE 1394 firewire, and its I/O connections are the same as 

those previously mentioned for the five-axis Tarus mill. As a result, the controller 

software uses the same digital control interface and digital I/O interface to communicate 

with the digital devices. 

Fig. 5.3 Sugino V9 for CMM 
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5.2 Control Software System 

5.2.1 DMACXYZ tabletop mill device driver 

Fig. 5.4  diagrams the overall control software system. The major development 

effort to control this mechanism was to develop a device driver, named DMACXYZ.dll, 

to connect this mill directly to CAD/CAM systems. 

A mechanism-specific device database, named DMACXYZ.mdb, has been 

designed to contain detailed information about this mechanism device. Three separate 

DLLs were designed to contain mechanism-specific kinematics, machine actuator 

mapping, and servo control algorithms. These three DLLs are 

DMACXYZKinematics.dll, DMACXYZMachineActMap.dll, and 

DMACXYZPIDServoControlLaw.dll.  

In addition, DMACISAInterface.dll and DMACISAIOInterface.dll were 

developed. These two DLLs contain the API functions to handle communication among 

the RMAC controller, the digital motor drives, and the I/O sensors. The device driver 

software contains the interface APIs to instruct the RMAC controller to map these 

mechanism-specific algorithms into its memory space, which is necessary for controlling 

this mechanism. 

The device driver DMACXYZ.dll, the device database DMACXYZ.mdb, and the 

other five DLLs are located in the three-axis folder, which is subordinate to the milling 

machine folder, as described in section 4.2.1. 
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Fig. 5.4 DMACXYZ tabletop mill device driver 

5.2.2 TarusXYZCA five-axis mill device driver 

Fig. 5.5 shows the diagram of the proposed overall control software system for 

the Tarus five-axis mill. To control this mechanism, a device driver, named 

TarusXYZCA.dll, must be developed.  

The development work for this device driver shares some similarities with that of 

the DMACXYZ device driver described in the previous section. A mechanism-specific 

device database, named TarusXYZCA.mdb, must be developed to contain detailed 

information about this mechanism device. TarusXYZCAKinematics.dll, 

TarusXYZCAMachineActMap.dll, TarusXYZCAPFFServoControlLaw.dll, 

TarusXYZCAFirewireInterface.dll, and TarusXYZCAICPDasIOInterface.dll are under 

development. These DLLs contain the kinematics, machine actuator mapping, and servo 

control algorithms that are specific to this mechanism. In addition, the last two DLLs 

contain a set of APIs that can be mapped into the RMAC controller to allow it to 

communicate with the digital motor drives and the I/O sensors. 
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The device driver TarusXYZCA.dll, the device database TarusXYZCA.mdb, and 

the other five separate DLLs are placed in the five-axis folder, as shown in Fig. 4.6. 

Fig. 5.5 TarusXYZCA full-size mill device driver 

5.2.3 CMM device driver 

Fig. 5.6 diagrams the proposed overall software system for CMM control. To 

create direct CMM control, it was necessary to develop a generic, high level driver 

named WADriver.dll, and a machine-specific low level driver named WAILLDriver.dll. 

These connect the Sugino V9 directly with the PC-DMIS. Further, the WADriver exposes 

generic function calls to allow the PC-DMIS to command the CMM generically. The low 

level driver (WAILLDriver) interprets the generic functions and sends down the motion 

or control commands required by the RMAC controller.   

The CMM high level driver (WADriver.dll) and low level driver 

(WAILLDriver.dll) have been developed and implemented. Further work needs to be 

done to integrate these drivers to the overall software system shown in Fig. 5.6. 
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The CMM driver allows the RMAC controller to act as a CMM controller, 

regardless of what type of machine is actually being controlled. This flexibility allows the 

RMAC controller to pause the cutting process, and switch to a measurement mode. The 

part can then be measured in-process, and the results can be used immediately to update 

the manufacturing process, and to compensate for measured errors. 

Fig. 5.6 CMM device driver 

The CMM driver uses the kinematics currently loaded for the machine under 

control. Because of this, the driving software remains blind to the type of machine under 

control and thus simply passes motion commands as normal. The RMAC CMM driver 

then provides functionality for commands related to measurement. Unique commands are 

included for measuring a part manually or automatically, obtaining the position of the 

measured hit, switching the probe on and off, checking for measurement errors, and 

setting measurement parameters. By adding these functions, any controlled machine can 

be used as a CMM. 

While many controllers offer some CMM functionality, their commands are 

limited to the basic M&G commands that manufacturers have implemented, giving them 
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limited abilities to communicate the results. The RMAC CMM driver allows an external 

CMM software package to obtain complete control of the machine. The first 

implementation of this driver has been demonstrated by utilizing the PC-DMIS 

measurement software package. PC-DMIS is the world leader in measurement software, 

and provides many advanced capabilities for part measurement and result reporting. By 

using this software, RMAC can offer a capable and familiar CMM user interface for 

measurement specialists. 

5.3 Simulation 

A simulation for implementing the three-axis tabletop mill and Tarus five-axis 

mill device drivers has been successfully created in Unigraphics (UG), as shown in Fig. 

5.7 and Fig. 5.8. A machine selection user interface (see Fig. 4.2) has also been 

developed inside UG, providing end users with a graphic tool to dynamically reconfigure 

the controller, and to change machine tool parameter settings. As displayed, whenever a 

user picks up a new machine, the CAD/CAM software will unload the old device driver 

DLL, and load the new device driver DLL into its memory. By importing the necessary 

motion planning and servo controlling algorithms into the RMAC controller, the 

functionality of the RMAC controller changes from a three-axis to a five-axis mill at run-

time. 
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Fig. 5.7 DMACXYZ simulation Fig. 5.8 TarusXYZCA simulation 
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The final objective of this dissertation is to implement the RMAC architecture on 

a prototype mill. This chapter presents the experimental results of the prototype 

developed, as explained in chapter four. 

 

6.1 Simulation 

As part of this research, a simulation program was developed in UG (see Fig. 5.7 

and Fig. 5.8).  A machine selection user interface was also developed to allow end users 

to select different machines and dynamically change the controller’s functionality from 

the three-axis mill to the five-axis mill. Experiments illustrated that the machine device 

drivers can be successfully unloaded and loaded when users selected different machines 

to run simulation. These experiments proved that dynamically reconfiguring the 

controller software by loading a machine device driver is feasible. 

 

CHAPTER 6           Experimental Results 
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6.2 Three-axis Tabletop Mill Experiment 

After a device driver was developed to connect a three-axis tabletop mill (see Fig. 

5.1) to CATIA, two experiments were conducted to directly machine a CATIA surface on 

the three-axis tabletop mill.  The following sections describe this process in greater detail. 

6.2.1 Direct reconfigurable machining application start-up 

To actuate the direct reconfigurable machining application, a direct reconfigurable 

machining tool bar is plugged into the CATIA surface machining workbench. This 

customized tool bar interacts between end users and the CATIA system. To launch the 

direct reconfigurable machining application in CATIA, users must select the surface 

machining option from the NC Manufacturing menu (see Fig. 6.1). The direct 

reconfigurable machining tool bar will then be automatically launched, as shown in Fig. 

6.2. 

Fig. 6.1 Start up direct reconfigurable machining application 
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Fig. 6.2 Direct reconfigurable machining tool bar 

This direct reconfigurable machining tool bar is composed of the following six 

buttons: 

• Reserved button: reserves for future direct machining applications. Currently, 

when users click this button, a customized dialog box launches to allow them to 

select a surface. When users select a surface, a new dialog box pops up to prompt 

them to create tool paths. At this development stage, no customized tool path 

planning algorithm has been implemented yet. But for future direct machining 

applications, some advanced tool path planning algorithms, such as curvature 

matched machining, can be implemented. 
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• Jog button: allows users to launch a jog dialog box. Users can then employ this 

dialog box to position the cutter at any X, Y, and Z position in relation to a 

coordinate system on a 3-axis mill. 

• Legacy machine codes button: allows users to read legacy machine codes, such as 

APT and M&G codes, and execute them on a machine tool. 

• Direct machine button: allows users to send the tool paths directly to the RMAC 

controller to create a physical model. 

• Machine search and selection button: allows users to launch a customized 

machine search and selection dialog box. Based on certain searching schemes, 

users can narrow down their machine selections to choose one machine capable of 

performing the manufacturing process. 

• Simulation button: allows users to preview a process plan on a virtual machine 

prior to executing the manufacturing process on a physical machine. 

6.2.2 Machine search and selection dialog box 

Once CAD/CAM users create a manufacturing process plan and launch the direct 

machining tool bar (see Fig. 6.2), they must first select a machine tool to perform this 

manufacturing process.  

When searching for different machines, the machine search and selection dialog 

box (see Fig. 6.3) forces users to only click on different machines to review the 

information relevant to this machine. The “search machines” button and all of the 

machine data fields are disabled to prevent users from accidental operations. If users want 

to search for particular machines, they can press the “edit” button. The “search machine” 

button and all of the machine search fields then become active, as shown in Fig. 6.4.  
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Fig. 6.3 Machine search and selection dialog box 
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Fig. 6.4 Search machines enabled 
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In this example, users are searching for three-axis milling machines. Fig. 6.5 

displays a list of selected machine tools. If users want more details about a particular 

machine, they can pick one machine and click the “machine characteristics” button (see 

Fig. 6.4 and Fig. 6.5), where a machine characteristics dialog box will pop up, as shown 

in Fig. 4.4. 

Once users choose a proper machine to perform the manufacturing process, they 

can then use the “jog” button and the “direct machine” button to operate the selected 

machine to create a physical part. 

 

Fig. 6.5 Selected machines 

6.2.3 Jog dialog box 

Because the three-axis tabletop mill does not have a teach pendent to allow users 

to manually jog the mill, a jog dialog box (see Fig. 6.6) must be created in CATIA to 

allow users to position the cutter prior to machining. This dialog box enables the 

positioning of the cutter at the desired location prior to actual machining. The cutter’s 

initial location must be positioned at the same location where X, Y, and Z are set to zero 
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in the frame used by the CATIA manufacturing process plan. The dialog box created to 

jog the cutter has the capability of jogging the X, Y, and Z axes. 

The slider provided in this dialog box is used to set the distance (in mm) that the 

cutter tool will be jogged. If the slider has been set to 5 and the “JogXPlus” button is 

pressed once, the cutter tool will be jogged 5 mm in the positive X direction. If the 

“ToReferencePoint” button is pressed, the cutter tool will be moved back to the zero 

position in the CATIA reference frame. 

 

Fig. 6.6 Tool jog dialog box 

6.2.4 Experiments 

A first experiment was arranged using a scaled 3D CAD data model of a car 

headlight, similar to data that would typically be used in production at GM (see Fig. 6.7). 

The headlight was used because it consists of only one free-form surface, but still 

demonstrates a fair amount of curvature and shape. Tool paths for the surface were 

generated in CATIA and sent to a three-axis tabletop mill (see Fig. 6.7) that was directly 
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connected to CATIA through a three-axis mill device driver, called DMACXYZ.dll. The 

computer runs dual Pentium III processors at 1 GHz. The non real-time CATIA 

application runs on one processor while the real-time applications run on the second 

processor.  

The headlight surface was machined on the three-axis mill by using the three-axis 

mill driver (DMACXYZ.dll), as shown in Fig. 6.7. The tool paths and the physical part 

machined directly from CATIA are shown in Fig. 6.8.  The same process was also 

completed by using a conventional Tarus three-axis mill utilized at GM. The processing 

time comparison between the direct reconfigurable machining process and the traditional 

M&G method is shown in Table 6-1. As this table shows, it took four steps for the direct 

reconfigurable machining process to create a physical part from a 3D CAD model. 

However, it took eight steps and seventeen more minutes to create a part from the same 

CAD model through the conventional M&G code method.  

The resulting decrease in processing time does not come from a reduction in 

actual machining time, but from a decrease in the time required for tool path post-

processing and file handling. The direct reconfigurable machining method eliminates 

unnecessary intermediate files, generated for the conventional controllers, and 

unnecessary process steps used on the conventional machining method. Therefore, it 

greatly simplifies the traditional design-to-manufacturing processes. 
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Fig. 6.7 Direct machining a car headlight on the three-axis mill 

  

Fig. 6.8 GM headlight surface with process plan and the machined part 
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Table 6-1 Direct reconfigurable machining process vs. conventional process 

 

A second experiment was conducted on the three-axis prototype mill. Two 

process plans were created for a GM headlight surface as shown in Fig. 6.9. The first 

process plan was a sweeping operation (see Fig. 6.9.a) intended for the three-axis mill 

configuration. To execute this process plan directly on the three-axis mill, a device driver 
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called DMACXYZ.dll was first loaded. After the headlight surface was made, a new 

device driver called DMACXY.dll was then loaded. This driver commanded the 

prototype mill as a two-axis milling machine. The face milling process plan (see Fig. 

6.9.b) was then sent to the prototype mill for direct machining. Fig. 6.9.c shows the 

machined part after these two operations. 

 

(a)  (b)  (c)  

Fig. 6.9 GM headlight surface with two process plans and the machined part  

As these two experiments demonstrate, the RMAC control system streamlines the 

design-to-manufacturing processes by eliminating unnecessary intermediate process steps 

used in the traditional machining method. Meanwhile, it brings tremendous flexibilities 

into the manufacturing systems. A single machine can be reconfigured to operate 

differently to fulfill specific manufacturing operation requirements.  This is a great 

advantage over the traditional M&G machining method. 
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This chapter presents the research conclusions and gives recommendations for 

future work. 

 

7.1 Conclusions 

 Emerging reconfigurable manufacturing systems require reconfigurable control 

systems. With the technology of controller software design and the traditional machine 

tool control in practice today, it is extremely difficult to develop a reconfigurable control 

architecture that is completely open for easy reconfiguration of the controller software. 

Based on the Direct Machining And Control research at Brigham Young 

University, this dissertation describes software architecture for a dynamically 

reconfigurable machine tool controller. Because this RMAC controller is completely 

software-based and is independent of control hardware that is both proprietary and closed 

to end users, it is possible to develop a driver-like paradigm for a reconfigurable control 

system.  

CHAPTER 7           CONCLUSIONS AND 

RECOMMENDATIONS 
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This dissertation proposed and developed a new control architecture that will 

allow mapping of each mechanism’s configuration and capability into a device driver and 

use this device driver to reconfigure a RMAC open-architecture controller. This provides 

CAD/CAM users with greater flexibilities to fulfill different manufacturing operations.  

Under the RMAC paradigm, CAD/CAM users can search for an optimal machine 

tool based on the needs of the current manufacturing process. A mechanism device driver 

will then be automatically loaded to connect the selected machine tool directly to a 

CAD/CAM application. With the establishment of this direct link, the exact surface 

geometry, in its native mathematical format, can be passed to the device driver. The 

device driver interprets the parametric tool paths and the manufacturing process 

instructions contained within the process plan. It then properly reconfigures the RMAC 

open-architecture controller necessary for controlling the selected machine tool. As a 

result, CAD/CAM organizations no longer need to develop specific post-processing 

software to interface with each individual machine tool. Instead, a standardized device 

driver interface is developed to connect various machine tools directly to any CAD/CAM 

application. 

Moreover, with the development of the device driver architecture and the control 

software reconfiguration methods, it is possible to develop new machine tools with 

multiple functions. Traditionally, machine tools have only had one behavior, but this 

research presents the new and unique ability to reconfigure a machine tool controller 

instantaneously. By unloading and loading a mechanism device driver, the mill is 

instantly commanded as a material removal machine, and, seconds later, through the 

loading of a CMM driver, the machine tool can be controlled via an inspection program 
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like PC-DMIS. Experiments with UG simulation on a three-axis and five-axis mill and a 

machine device driver implemented on the three-axis tabletop mill demonstrate that this 

is feasible.  

While this research project is not yet complete, it already demonstrates promising 

and exciting capabilities. The development of this reconfigurable machine tool controller 

architecture around the device driver paradigm could have a major impact on the 

manufacturing organizations that still rely on the traditional M&G machining methods. 

Meanwhile, it will bring some significant advantages to the machine tool industry. 

First, it shifts much of the programming burden from the manufacturing process 

software to the controlling software. Under this new paradigm, the tool paths entities, in 

their original mathematical descriptions, are directly sent down to the controller software 

which interpolates those tool paths on the controller side. Because the mathematic 

representation of tool paths is independent of any machine tool controller, and because 

the machine-dependent M&G codes are completely eliminated, under this new direct 

control scheme, the standardized device driver interface allows different CAD/CAM 

software to directly access the internal device driver functions, thus making it possible for 

the same mechanism controller to communicate directly with any CAD/CAM system. It 

is no longer necessary for CAD/CAM organizations to spend their valuable resources on 

developing machine-specific, post-processing interface software. The interface 

connection from machine control applications to CAD/CAM applications becomes much 

simpler and easier. 

Second, the traditional design-to-manufacturing processes will be greatly 

streamlined and simplified. The traditional process of transforming the tool paths into 
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some intermediate CL and APT files and post-processing them into the M&G codes is 

completely eliminated. Instead, a new way of directly controlling a machine by a 

CAD/CAM application is truly realized. Under this new control paradigm, the original 

CAD description can now be sent directly to the machine tool through a device driver 

interface and the modifications made on the shop floor become feedback to the CAD 

designer to update the original CAD models through the same interface. 

Third, the separation of device driver architecture enables control vendors to work 

independently on various parts of the control system. Each mechanism device driver 

developer can independently design, debug, and link the mechanism device driver into an 

executable DLL. The independent and modular nature of device driver software allows 

endless combinations of third party hardware and control algorithms. Thus, controller 

vendors can now develop more cost effective, more efficient, and more advanced 

controllers. 

Last but not the least, the modular and independent nature of the device driver 

architecture offers an extensible software foundation for integrating any new control 

algorithm. The development of the standardized interfaces between CAD/CAM software, 

the device driver software, and the controller software, allows the CAD/CAM 

organizations, the device driver vendors, and the controller vendors to work 

independently and consistently, integrating new functionalities into their existing 

products. As a result, end users experience greater benefits by easily upgrading their 

existing machine tools with any new functionality developed by those different vendors. 
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7.2 Recommendations 

Even though this dissertation makes several original contributions to the field of 

machine control, these contributions are just the beginning of the work that is required to 

successfully integrate this reconfigurable control architecture into industry. Some 

improvements still need to be made to the architecture as this research project moves 

forward. The following section will provide recommendations for future research. 

Firstly, the proposed architecture was only successfully implemented on a three-

axis tabletop mill. As the development effort continues, some incremental extensions and 

refinements need to be made into the existing control architecture and the set of device 

driver interface APIs. 

Secondly, the current set of device driver interface APIs are designed to only 

support milling and CMM machines. Future efforts must extend the current set of 

interface functions to support different types of machines, such as robots, drilling 

machines, and lathes. In addition, more interface functions need to be developed to allow 

the future reconfigurable control system to be applied on various manufacturing 

applications, such as welding, drilling, and parts assembly.  

Third, an ideal CAD/CAM system should provide true simulation of the 

manufacturing process it generates. In other words, a CAD/CAM system should provide 

a simulation engine that contains a set of machine tools on which the program simulates 

the manufacturing process—on the computer monitor—with no difference from the 

actual machine tool. The current simulation is limited to only allowing animation of the 

machine tool motion. Future developments must create the capability of simulating the 
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machine dynamics so that CAD/CAM users can obtain the actual machining force and 

torque information prior to physically operating a machine. This will better assist 

CAD/CAM users to evaluate and select an optimal machine tool. 

Lastly, and most important of all, significant efforts need to be made to ensure 

collaboration between DMAC and the major CAD/CAM and controller vendors. The 

ultimate goal of this research project is to successfully integrate the RMAC architecture 

into industry. The support from these major CAD/CAM and controller vendors is 

necessary for the success of this research. 
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Device_Driver_Object and Device_Object Specification 

Specification version 1.0 
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This appendix contains the definition of the Device_Driver_Object and Device_Object 

data structure, as described in section 3.4.2.3 and 3.4.3.2. These two data structures are 

declared in the device driver manager’s header file. 

 

/*****************************************************/ 
/******Data structure for the DEVICE_DRIVER_OBJECT*****/ 
/****************************************************/ 
typedef struct _DEVICE_DRIVER_OBJECT{ 
 
 int  MechanismID; 
 char  MechanismName[100]; 
 char  DeviceDriver[100]; 
 char  MechanismType[100]; 
 char  MechanismConfigurationType[100]; 
 int  MechanismNumOfJoints; 
 char  MechanismWorkingVolume[100]; 
 double  MechanismSpindleHorsePower; 
 double  MechanismSpindleMaxSpeed; 
 double  MechanismSpindleMaxTorque; 
 double  MechanismMaxFeedrate; 
 double  MechanismMaxPalletLoad; 
 double  MechanismPositioningTolerance; 
 double  MechanismRepeatabilityTolerance; 
 char  MechanismSpeedCapability[100]; 
 char  DeviceDriverVersion[100]; 
 
}DEVICE_DRIVER_OBJECT, *PDEVICE_DRIVER_OBJECT; 
 
 
/*****************************************************/ 
/***********Data structure for the DEVICE_OBJECT********/ 
/****************************************************/ 
typedef struct _DEVICE_OBJECT{ 
 
 char  MechanismName[100]; 
 char  MechanismKinematics[100]; 
 int  MechanismNumOfJoints; 
 char  MechanismConfiguration[100]; 
 char  MechanismActuatorMap[100]; 
 char  MechanismWorkingVolume[100]; 
 double  MechanismSpindleHorsePower; 
 double  MechanismSpindleMaxSpeed; 
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 double  MechanismSpindleMaxTorque; 
 double  MechanismMaxFeedrate; 
 double  MechanismMaxPalletLoad; 
 double  MechanismPositioningTolerance; 
 double  MechanismRepeatabilityTolerance; 
 int  MechanismJntTypes[DMAC_MAX_JOINTS]; 
 double  MechanismJntMinLimit[DMAC_MAX_JOINTS]; 
 double  MechanismJntMaxLimit[DMAC_MAX_JOINTS]; 
 double  MechanismJntMaxSpeed[DMAC_MAX_JOINTS]; 
 double  MechanismJntMaxAccel[DMAC_MAX_JOINTS]; 
 double  MechanismJntMaxJerk[DMAC_MAX_JOINTS]; 
 char  MechanismJntServoControlLaw[DMAC_MAX_JOINTS][100]; 
 char  MechanismSpindleServoControlLaw[100]; 
 
}DEVICE_OBJECT, *PDEVICE_OBJECT; 
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Device Driver Manager’s Interface APIs Specification 

Specification version 1.0 
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This appendix contains the definition of the device driver manager’s interface APIs, as 

described in section 3.4.2.4. These interface APIs are declared in the device driver 

manager’s header file. 

 

/*****************************************************/ 
/****** Microsoft access database functions (Using ODBC) ****/ 
/****************************************************/ 
 

BOOL OpenDeviceDriverDatabase() 
Returns true if the device driver database is opened, otherwise, returns 
false. 

BOOL CloseDeviceDriverDatabase() 
Returns true if the device driver database is closed, otherwise, returns 
false. 

int        GetTotalNumberOfRecords() 
Returns the total number of machine records contained within the device 
driver database. 

int        SearchDatabaseRecordSet(char* pMachineSQLStatement) 
Returns the total number of searched machines using the given SQL 
statement. If none record is found, return zero. 

BOOL GetDatabaseRecordSetColumns() 
Returns true if are columns are obtained from the device driver database, 
otherwise, returns false. 

VOID  OnNextRecord() 
Move to the next database record. 

VOID  OnPreviousRecord() 
Move to the previous database record. 

VOID  OnFirstRecord() 
Move to the first database record. 

VOID  OnLastRecord() 
Move to the last database record. 
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/*****************************************************/ 
/************* Mechanism device related functions **********/ 
/****************************************************/ 
 

int        Machine_GetMechanismID() 
Returns the mechanism ID defined within the device driver database. 

Char*   Machine_GetMechanismName() 
Returns the mechanism name defined within the device driver database. 

Char*   Machine_GetMechanismDeviceDriver() 
Returns the mechanism device driver name defined within the device 
driver database. 

int        Machine_GetMechanismDeviceDriverVersion() 
Returns the mechanism device driver version defined within the device 
driver database. 

Char*   Machine_GetMechanismType() 
Returns the mechanism type defined within the device driver database. 

Char*   Machine_GetMechanismConfigurationType() 
Returns the mechanism configuration type defined within the device 
driver database. 

int        Machine_GetMechanismNumberOfJoints() 
Returns the mechanism’s number of joints defined within the device driver 
database. 

Char*   Machine_GetMechanismWorkingVolume() 
Returns the mechanism working volume defined within the device driver 
database. 

double   Machine_GetMechanismSpindleHorsePower() 
Returns the mechanism spindle horse power defined within the device 
driver database. 

double   Machine_GetMechanismSpindleMaxSpeed() 
Returns the mechanism spindle maximum speed defined within the device 
driver database. 
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double   Machine_GetMechanismSpindleMaxTorque() 
Returns the mechanism spindle maximum torque defined within the 
device driver database. 

double  Machine_GetMechanismMaxFeedrate() 
Returns the mechanism maximum feedrate defined within the device 
driver database. 

double   Machine_GetMechanismMaxPalletLoad() 
Returns the mechanism maximum pallet load defined within the device 
driver database. 

double   Machine_GetMechanismPositioningTolerance() 
Returns the mechanism position tolerance defined within the device driver 
database. 

double   Machine_GetMechanismRepeatabilityTolerance() 
Returns the mechanism repeatability tolerance defined within the device 
driver database. 
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Device Driver’s Interface APIs Specification 

Specification version 1.0 
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This appendix contains the definition of the device driver’s interface APIs, as described 

in section 3.4.3.3 and 3.4.3.4. These interface APIs are declared in each device driver’s 

header file. The excerpt in this appendix is from a three-axis mill device driver’s header 

file-DMACXYZ.h. 

 

/*****************************************************/ 
/****** Microsoft access database functions (Using ODBC) ****/ 
/****************************************************/ 
 

BOOL OpenDeviceDatabase() 
Returns true if the device database is opened, otherwise, returns false. 

BOOL CloseDeviceDatabase() 
Returns true if the device database is closed, otherwise, returns false. 

BOOL GetDatabaseRecordSetMechanismColumns() 
Returns true if all mechanism columns are obtained from the device 
database, otherwise, returns false. 

BOOL GetDatabaseRecordSetJointColumns(int JntNum) 
Returns true if the specified joint columns are obtained from the device 
database, otherwise, returns false. 

 

/*****************************************************/ 
/************* Mechanism related functions ***************/ 
/****************************************************/ 
 

Char*   Machine_GetMechanismName() 
Returns the mechanism name defined within the device database. 

Char*   Machine_GetMechanismKinematics() 
Returns the mechanism kinematics defined within the device database. 

Char*   Machine_GetMechanismActuatorMap() 
Returns the mechanism actuator mapping object defined within the device 
database. 
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int        Machine_GetMechanismNumberOfJoints() 
Returns the mechanism’s number of joints defined within the device 
database. 

Char*   Machine_GetMechanismConfiguration() 
Returns the mechanism configuration defined within the device database. 

Char*   Machine_GetMechanismWorkingVolume() 
Returns the mechanism working volume defined within the device 
database. 

double  Machine_GetMechanismMaxFeedrate() 
Returns the mechanism maximum feedrate defined within the device 
database. 

double   Machine_GetMechanismSpindleHorsePower() 
Returns the mechanism spindle horse power defined within the device 
database. 

double   Machine_GetMechanismSpindleMaxSpeed() 
Returns the mechanism spindle maximum speed defined within the device 
database. 

double   Machine_GetMechanismSpindleMaxTorque() 
Returns the mechanism spindle maximum torque defined within the 
device database. 

double   Machine_GetMechanismMaxPalletLoad() 
Returns the mechanism maximum pallet load defined within the device 
database. 

double   Machine_GetMechanismPositioningTolerance() 
Returns the mechanism position tolerance defined within the device 
database. 

double   Machine_GetMechanismRepeatabilityTolerance() 
Returns the mechanism repeatability tolerance defined within the device 
database. 
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/*****************************************************/ 
/************* Mechanism joint related functions **********/ 
/****************************************************/ 
 

int         Machine_GetMechanismJntTypes(int JntNum) 
Returns the mechanism joint type, for the specified JntNum, defined 
within the device database. 

double   Machine_GetMechanismJntMaxLimit(int JntNum) 
Returns the mechanism maximum joint limit, for the specified JntNum, 
defined within the device database. 

double   Machine_GetMechanismJntMinLimit(int JntNum) 
Returns the mechanism minimum joint limit, for the specified JntNum, 
defined within the device database. 

double  Machine_GetMechanismJntMaxSpeed(int JntNum) 
Returns the mechanism maximum joint speed, for the specified JntNum, 
defined within the device database. 

double  Machine_GetMechanismJntMaxAccel(int JntNum) 
Returns the mechanism maximum joint acceleration, for the specified 
JntNum, defined within the device database. 

double  Machine_GetMechanismJntMaxJerk(int JntNum) 
Returns the mechanism maximum joint jerk, for the specified JntNum, 
defined within the device database. 

Char*   Machine_GetMechanismJntServoControlLaw(int JntNum) 
Returns the mechanism servo control law, for the specified JntNum, 
defined within the device database. 

 

/*****************************************************/ 
/**************** Configuration functions ****************/ 
/****************************************************/ 

VOID  Machine_SetMechanismNumberOfJoints(int NumJnts) 
Sets the mechanism number of joints for the DMAC controller. 

VOID  Machine_SetMechanismMaxFeedrate(double MaxFeedrate) 
Sets the mechanism maximum feedrate for the DMAC controller. 

VOID  Machine_SetMechanismSpindleMaxSpeed(double MaxSpindleSpeed) 
Sets the mechanism maximum spindle speed for the DMAC controller. 
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VOID  Machine_SetMechanismSpindleMaxTorque(double MaxSpindleTorque) 
Sets the mechanism maximum spindle torque for the DMAC controller. 

VOID  Machine_SetMechanismJntTypes(int JntNum, int JntType) 
Sets the mechanism joint type for the joint specified by the JntNum. 

VOID  Machine_SetMechanismJntMaxLimit(int JntNum, double MaxJntLimit) 
Sets the mechanism maximum joint limit for the joint specified by the 
JntNum. 

VOID  Machine_SetMechanismJntMinLimit(int JntNum, double MinJntLimit) 
Sets the mechanism minimum joint limit for the joint specified by the 
JntNum. 

VOID  Machine_SetMechanismJntMaxSpeed(int JntNum, double MaxJntSpeed) 
Sets the mechanism maximum joint speed for the joint specified by the 
JntNum. 

VOID  Machine_SetMechanismJntMaxAccel(int JntNum, double MaxJntAccel) 
Sets the mechanism maximum joint acceleration for the joint specified by 
the JntNum. 

VOID  Machine_SetMechanismJntMaxJerk(int JntNum, double MaxJntJerk) 
Sets the mechanism maximum joint jerk for the joint specified by the 
JntNum. 

VOID  Machine_ConfigureMotionPlanner() 
Generic function call to instruct the controller software to reconfigure its 
motion planner. The actual interpretation of this generic function call is 
done inside each device driver. Returns true if the motion planner is 
successfully reconfigured. Otherwise, returns false. 

VOID  Machine_ConfigureServoController() 
Generic function call to instruct the controller software to reconfigure its 
servo controller. The actual interpretation of this generic function call is 
done inside each device driver. Returns true if the servo controller is 
successfully reconfigured. Otherwise, returns false. 

VOID  Machine_ConfigueDigitalControlInterface() 
Generic function call to instruct the controller software to configure its 
digital control interface. The actual interpretation of this generic function 
call is done inside each device driver. Returns true if the digital control 
interface is successfully configured. Otherwise, returns false. 
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RMAC_Config and RMAC_CAM interfaces specification 

Specification version 1.0 
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This appendix contains the definition of the RMAC_Config and RMAC_CAM interface 

APIs, as described in section 3.4.4 and 3.4.5. The RMAC_Config interface APIs are 

declared in the RMAC_Config COM interface header file and the RMAC_CAM 

interface APIs are declared in the RMAC_CAM COM interface header file. 

 

/*****************************************************/ 
/**************RMAC_Config interface functions **********/ 
/****************************************************/ 

VOID  SetMechanismKinematics(char* pDMACKin) 
Sets the mechanism kinematics. pDMACKin is the kinematics class name 
and it is used by DMAC to map the kinematics object from the 
corresponding DLL. 

VOID  SetMechanismActuatorMap(char* pDMACMachineActMap) 
Sets the mechanism actuator map.  pDMACMachineActMap is the joint to 
actuator map class name and it is used by DMAC to map this class from 
the corresponding DLL. 

VOID  SetMechanismNumJnts(int NumJnts) 
Sets the mechanism number of joints with the specified NumJnts. 

VOID  SetMechanismNumSpindle(int NumSpindle) 
Sets the mechanism number of spindles with the specified NumSpindles. 

VOID  SetMechanismJointType(int JntNum, int JointType) 
Sets the mechanism joint type for the specified joint (refereed by the 
JntNum). Suitable values for JointType are: 

DMAC_ROT_JNT 
DMAC_LIN_JNT 
DMAC_SCREW_JNT 

VOID  SetMechanismJointLimitType(int JntNum, int JointLimitType) 
Sets the mechanism joint limit type for the specified joint (refereed by the 
JntNum). Suitable values for JointLimitType are: 

DMAC_LIMITED_JNT 
DMAC_INFINITE_JNT 
DMAC_INFINITE_JNT_POS 
DMAC_INFINITE_JNT_NEG  
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VOID  SetMechanismJointMaximumLimit(int JntNum, double MaxJntLimit) 
Sets the mechanism maximum joint limit for the specified joint (refereed 
by the JntNum). MaxJntLimt is the value for the maximum joint limit. 

VOID  SetMechanismJointMinimumLimit(int JntNum, double MinJntLimit) 
Sets the mechanism minimum joint limit for the specified joint (refereed 
by the JntNum). MinJntLimt is the value for the minimum joint limit. 

VOID  SetMechanismJointMaximumSpeed(int JntNum, double MaxJntSpeed) 
Sets the mechanism maximum joint speed for the specified joint (refereed 
by the JntNum). MaxJntSpeed is the value for the maximum joint speed. 

VOID  SetMechanismJointMaximumAcceleration(int JntNum, double MaxJntAccel) 
Sets the mechanism maximum joint acceleration for the specified joint 
(refereed by the JntNum). MaxJntAccel is the value for the maximum joint 
acceleration. 

VOID  SetMechanismJointMaximumJerk(int JntNum, double MaxJntJerk) 
Sets the mechanism maximum joint jerk for the specified joint (refereed 
by the JntNum). MaxJntJerk is the value for the maximum joint jerk. 

VOID  SetMechanismSpindleMaxRPM(double MaxSpindleRPM) 
Sets the mechanism maximum spindle speed. MaxSpindleRPM is the 
value for the maximum spindle speed. 

VOID  SetMechanismMaxFeedrate(double MaxFeedrate) 
Sets the mechanism maximum feedrate. MaxFeedrate is the value for the 
maximum feedrate. 

VOID  SetMechanismNumActuators(int NumActuators) 
Sets the mechanism number of actuators with the specified NumActuators. 

VOID  SetMechanismJointControlMethod(int JntNum, SHORT 
DMACServoControlMethod) 
Sets the mechanism joint servo control method for the specified joint 
(refereed by the JntNum). Suitable values for DMACServoControlMethod 
are: 

DMAC_POSITION_CONTROL 
DMAC_VELOCITY_CONTROL 
DMAC_FORCE_CONTROL 

 VOID  SetMechanismJointServoControlGains(int JntNum, double* 
pServoControlGains) 
Sets the mechanism joint servo control gains for the specified joint 
(refereed by the JntNum). pServoControlGains is the pointer to an array of 
servo control gains. 
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VOID  SetMechanismJointServoControlLaw(int JntNum, char* pControlLaw) 
Sets the mechanism joint servo control law for the specified joint (refereed 
by the JntNum). Suitable values for pControlLaw are: 

DMAC_PID_CONTROL 
DMAC_FEEDFORWARD_CONTROL 
DMAC_FEEDFORWARDFEEDBACK_CONTROL 
DMAC_FUZZY_CONTROL 

VOID  SetMechanismSpindleControlMethod(SHORT DMACServoControlMethod) 
Sets the mechanism spindle servo control method. Suitable values for 
DMACServoControlMethod are: 

DMAC_POSITION_CONTROL 
DMAC_VELOCITY_CONTROL 
DMAC_FORCE_CONTROL 

VOID  SetMechanismSpindleServoControlLaw(char* pControlLaw) 
Sets the mechanism spindle servo control law. Suitable values for 
pControlLaw are: 

DMAC_PID_CONTROL 
DMAC_FEEDFORWARD_CONTROL 
DMAC_FEEDFORWARDFEEDBACK_CONTROL 
DMAC_FUZZY_CONTROL 

VOID  SetMechanismSpindleServoControlGains(double* pServoControlGains) 
Sets the mechanism spindle servo control gains. pServoControlGains is 
the pointer to an array of servo control gains. 

VOID  SetMechanismDigitalControlInterface(char* pDigitalControlInterface) 
Sets the mechanism digital control interface. pDigitalControlInterface is 
the digital control interface class name and it is used by DMAC to map 
this class from the corresponding DLL. 

BOOL InitializeMechanismDigitalControlInterface() 
Returns true successfully initialize mechanism’s digital control interface, 
otherwise, returns false. 

VOID  SetMechanismDigitalIOInterface(char* pDigitalIOInterface) 
Sets the mechanism digital I/O interface. 

BOOL InitializeMechanismDigitalIOInterface() 
Returns true successfully initialize mechanism’s digital I/O interface, 
otherwise, returns false. 
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/*****************************************************/ 
/************** RMAC_CAM interface functions ***********/ 
/****************************************************/ 
//Milling operation related functions 
BOOL CycleStart(long Mode) 

Returns true if successfully starts a process cycle, otherwise, returns false. 
The cycle start can be set in manual mode or automatic mode. 

VOID  SetCycleStartStatus(BOOL status) 
Sets the cycle start status (either true or false). 

BOOL GetCycleStartStatus() 
Returns the cycle start status (either true or false).  

BOOL TurnCoolantOn() 
Returns true if successfully turns on the coolant, otherwise, returns false. 

BOOL TurnCoolantOff() 
Returns true if successfully turns off the coolant, otherwise, returns false. 

BOOL DoToolChange(long ToolNumber) 
Returns true if successfully changes to the specified tool (referred by 
ToolNumber), otherwise, returns false. 

VOID  SetAnimation(BOOL mode) 
Sets the animation mode. Turns on the animation if mode is true, 
otherwise, turns off the animation. 

VOID  SetSpindleRPM(long SpindleNumber, double RPM) 
Sets the spindle RPM for the specified spindle (referred by 
SpindleNumber). RPM is the spindle speed. 

double  GetSpindleRPM(long SpindleNumber) 
Gets the spindle RPM from the specified spindle (referred by 
SpindleNumber). 

VOID  SetSpindleMaxRPM(long SpindleNumber, double MaxRPM) 
Sets the maximum spindle RPM for the specified spindle (referred by 
SpindleNumber). MaxRPM is the maximum spindle speed. 

double  GetSpindleMaxRPM(long SpindleNumber) 
Gets the maximum spindle RPM from the specified spindle (referred by 
SpindleNumber). 
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VOID  SetFeedrate(double Feedrate) 
Sets the current feedrate. Feedrate is the set value for mechanism feedrate. 

double  GetFeedrate() 
Gets the current feedrate. 

VOID  SetMaxFeedrate(double MaxFeedrate) 
Sets the maximum feedrate. Maxfeedrate is the set value for mechanism 
maximum feedrate. 

double  GetMaxFeedrate() 
Gets the maximum feedrate. 

VOID  SetPathAccelRise(double newVal) 
Sets the value for path acceleration rise. newVal is the set value for path 
acceleration rise. 

double  GetPathAccelRise() 
Gets the path acceleration rise value. 

VOID  SetPathAccelFall(double newVal) 
Sets the value for path acceleration fall. newVal is the set value for path 
acceleration fall. 

double  GetPathAccelFall() 
Gets the path acceleration fall value. 

VOID  SetJointInterpSpeed(double newVal) 
Sets the joint interpolation speed. newVal is the set value for joint 
interpolation speed. 

double  GetJointInterpSpeed() 
Gets the joint interpolation speed. 

VOID  SetJointAccelRise(long JointNum, double newVal) 
Sets the value for joint acceleration rise for the specified joint (referred by 
JointNum). newVal is the set value for joint acceleration rise. 

double  GetJointAccelRise(long JointNum) 
Gets the joint acceleration rise value from the specified joint (referred by 
JointNum). 

VOID  SetJointAccelFall(long JointNum, double newVal) 
Sets the value for joint acceleration fall for the specified joint (referred by 
JointNum). newVal is the set value for joint acceleration fall. 
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double  GetJointAccelFall(long JointNum) 
Gets the joint acceleration fall value from the specified joint (referred by 
JointNum). 

VOID  SetPartFrame(TDMACFrame PartFrame) 
Sets the part frame. PartFrame is the set part frame. 

VOID SetToolInterfaceFrame(TDMACFrame ToolInterfaceFrame) 
Sets the tool interface frame. ToolInterfaceFrame is the set tool interface 
frame. 

BOOL MoveAlongNurbsND(long MoveID, TDMACNurbsND NurbsND) 
Returns true if the NurbsND path is successfully sent, otherwise, returns 
false. NurbsND is the instance of the TDMACNurbsND data structure 
representing the mathematics description a ND Nurbs. 

BOOL MoveAlongNurbs(long MoveID, TDMACNurbs Nurbs) 
Returns true if the Nurbs path is successfully sent, otherwise, returns false. 
Nurbs is the instance of the TDMACNurbs data structure representing the 
mathematics description a Nurbs. 

BOOL  MoveAlongArc3(long MoveID, TDMACVector ViaPoint, TDMACFrame 
StartPoint, TDMACFrame EndPoint) 
Returns true if the circular path is successfully sent, otherwise, returns 
false. The circular path is defined by a start point (StartPoint), a via point 
(ViaPoint), and an end point (EndPoint). 

BOOL  MoveAlongArc(long MoveID,  long RotSign, BOOL Closed, TDMACFrame 
CenterPoint, TDMACFrame StartPoint, TDMACFrame EndPoint) 
Returns true if the circular path is successfully sent, otherwise, returns 
false. The circular path is defined by a start point (StartPoint), an end point 
(EndPoint), and a center point (CenterPoint). 

BOOL MoveAlongLine(long MoveID, TDMACFrame StartPoint, TDMACFrame 
EndPoint) 
Returns true if the linear path is successfully sent, otherwise, returns false. 
The linear path is defined by a start point (StartPoint) and an end point 
(EndPoint). 

BOOL MoveToPathTarget(long MoveID, TDMACFrame TargetFrame) 
Returns true if the path target move is successfully sent, otherwise, returns 
false. TargetFrame is the target frame that tool needs to move to. 

BOOL MoveToJointTarget(long MoveID, TDMACFrame JointTargetFrame) 
Returns true if the joint target move is successfully sent, otherwise, returns 
false. JointTargetFrame is the target frame that tool needs to move to. 
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BOOL CycleStop(long Mode) 
Returns true if successfully stops a process cycle, otherwise, returns false. 
The cycle stop can be set in manual mode or automatic mode. 

VOID  SetCycleStopStatus(BOOL status) 
Sets the cycle stop status (either true or false). 

BOOL GetCycleStopStatus() 
Returns the cycle stop status (either true or false).  

 

//CMM related functions 
BOOL CurrentPosition([out, retval] double pVal[5]); 

Assigns the machine’s current joint values to pVal. 

BOOL LastHitPosition([out, retval] double pVal[5]); 
Assigns the machine’s joint values at the time of the last recorded hit to 
pVal. 

BOOL NumMovesInBuffer([out, retval] long *pVal); 
Sets pVal equal to the number of moves currently stored in the DMAC 
motion buffer. 

BOOL ControlMode([out, retval] long *pVal); 
Sets pVal equal to the current CMM control mode. Suitable values are:  
 
MODE_MANUAL 
MODE_AUTOMATIC_MOVE 
MODE_AUTOMATIC_MEASURE 
MODE_INACTIVE 
MODE_STARTUP 
MODE_SHUTDOWN 

BOOL ControlMode([in] long newVal); 
Sets the current CMM control mode equal to the value of newVal. 

BOOL Parameter([in] long ParamNumber, [out, retval] double *pVal); 
Sets pVal equal to the value of the control parameter defined by 
ParamNumber. Suitable values for ParamNumber are:  
 
MACH_PREHIT_DISTANCE 
MACH_SEARCH_DISTANCE 
MACH_RETRACT_DISTANCE 
MACH_SCAN_SPEED 
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BOOL Parameter([in] long ParamNumber, [in] double newVal); 
Sets the value of the control parameter specified by ParamNumber equal 
to newVal. Suitable values for ParamNumber are listed above. 

BOOL StatusMajorCode([out, retval] unsigned int *pVal); 
Sets pVal equal to the current value of the StatusMajorCode. Suitable 
values for StatusMajorCode are:  
 
MACHINE_SUCCESS 
MACHINE_ERROR 

BOOL StatusMajorCode([in] unsigned int newVal); 
Sets the StatusMajorCode equal to newVal. 

BOOL StatusMinorCode([out, retval] unsigned int *pVal); 
Sets pVal equal to the current value of the StatusMinorCode. Suitable 
values for StatusMinorCode are: 
 
MACHINE_ERR_UNKNOWN 
MACHINE_ERR_EMERGENCY_STOP 
MACHINE_ERR_NO_AIR 
MACHINE_ERR_TRAVEL_LIMIT 
MACHINE_ERR_SPEED_LIMIT 
MACHINE_ERR_ACCELERATION_LIMIT 
MACHINE_ERR_PROBE_NOT_ARMED 
MACHINE_ERR_SCALE 
MACHINE_ERR_PART_NOT_FOUND 
MACHINE_ERR_UNEXPECTED_HIT 
MACHINE_ERR_COMM_TIMEOUT 
MACHINE_ERR_RESPONSE_TIMEOUT 
MACHINE_ERR_INVALID_PARAMETER 
MACHINE_ERR_INVALID_PARAMETER_VALUE 
MACHINE_ERR_COMMAND_QUEUE_FULL 
MACHINE_ERR_UNSUPPORTED_OPERATION  
MACHINE_ERR_OTHER 

BOOL StatusMinorCode([in] unsigned int newVal); 
Sets the StatusMinorCode equal to vewVal. 

BOOL Ok([out, retval] BOOL* pVal); 
Sets pVal equal to true if no errors have occurred on the machine, false 
otherwise. 

BOOL NewHit([out, retval] BOOL* pVal); 
Sets pVal equal to true if a hit has occurred since the calling program 
lasted updated position values, false otherwise. 



140 

BOOL ProbeActive([out, retval] BOOL* pVal); 
Sets pVal equal to true if the probe is powered on and is communicating 
with the controller successfully. 

BOOL Home([out, retval] BOOL* pVal); 
Sends all of the joints to their home position. 

BOOL StopNow(); 
Stops a manual measure move, and clears the command buffer. This 
function should stop the machine as well, if possible. 

BOOL MoveToXYZ([in] long MoveID, [in] double x, [in] double y, [in] double z, [in] 
double Speed, [out, retval] BOOL* pVal); 
Moves the machine to the specified X, Y, Z location at the input speed. 

BOOL MoveRotaryAxis([in] long MoveID, [in] long JointNum, [in] double JointPose, 
[in] long Direction, [in] double Speed, [out, retval] BOOL* pVal); 
Moves the specified rotary axis to the specified position. 

BOOL AutoMeasure([in] long MoveID, [in] double x, [in] double y, [in] double z, [in] 
double Speed, [out, retval] BOOL* pVal); 
Makes the machine move toward the specified point with the specified 
speed until a hit occurs. If a hit occurs, the machine will back up from the 
specified point in the opposite direction a distance that is specified by 
previous calls to the interface. 

BOOL MoveInArc([in] long MoveID, [in] double x, [in] double y, [in] double z, [in] 
double CenterX, [in] double CenterY, [in] double CenterZ, [in] double i, 
[in] double j, [in] double k, [in] double Speed, [out, retval] BOOL* pVal); 
Moves the machine from it current position in an arc defined by the 
included parameters. 

BOOL MoveAllAxis([in] long MoveID, [in] double Position[5], [in] double LinearSpeed, 
[out, retval] BOOL* pVal); 
Performs a joint move to the specified joint positions at the specified 
speed. 

BOOL SendConditionChangedEvent([in] double JointValues[5], [in] long NumJoints, 
[in] unsigned __int64 Mask, [in] unsigned __int64 Condition, [out, retval] 
BOOL* pVal); 
Simulates a probe hit for use when the machine is offline. 

BOOL SetCalibratedPartFrame(); 
Sets the current part frame such that all joint values read zero at the 
current position. 
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BOOL ManualMeasure(); 
Puts the machine into manual control mode and specifies that a probe hit 
is expected. 

BOOL SpinProbe([in] double RPM, [in] double Seconds, [out, retval] BOOL* pVal); 
Used to switch the probe on or off by momentarily spinning the spindle. 
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