
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2004-11-23

Automating the Extraction of Domain-Specific Information from Automating the Extraction of Domain-Specific Information from

the Web-A Case Study for the Genealogical Domain the Web-A Case Study for the Genealogical Domain

Troy L. Walker
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Walker, Troy L., "Automating the Extraction of Domain-Specific Information from the Web-A Case Study for
the Genealogical Domain" (2004). Theses and Dissertations. 214.
https://scholarsarchive.byu.edu/etd/214

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/214?utm_source=scholarsarchive.byu.edu%2Fetd%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

AUTOMATING THE EXTRACTION OF DOMAIN-SPECIFIC

INFORMATION FROM THE WEB—A CASE STUDY

FOR THE GENEALOGICAL DOMAIN

by

Troy Walker

A thesis submitted to the faculty of

 Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2004

Copyright © 2004 Troy Walker

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Troy Walker

This thesis has been read by each member of the following graduate committee and by

a majority vote has been found to be satisfactory.

Date David W. Embley, Chair

Date Dan R. Olsen

Date Robert P. Burton

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Troy Walker

in its final form and have found that (1) its format, citations, and bibliographical style

are consistent and acceptable and fulfill university and department style requirements;

(2) its illustrative materials including figures, tables, and charts are in place; and (3) the

final manuscripts is satisfactory to the graduate committee and is ready for submission

to the university library.

Date David W. Embley
Chair, Graduate Committee

Accepted for the Department

 David W. Embley
Graduate Coordinator

Accepted for the College

 G. Rex Bryce
Associate Dean, College of Physical and
Mathematical Sciences

ABSTRACT

AUTOMATING THE EXTRACTION OF DOMAIN SPECIFIC INFORMATION

FROM THE WEB—A CASE STUDY FOR THE GENEALOGICAL DOMAIN

Troy Walker

Department of Computer Science

Master of Science

 Current ways of finding genealogical information within the millions of pages

on the Web are inadequate. In an effort to help genealogical researchers find desired

information more quickly, we have developed GeneTIQS, a Genealogy Target-based

Information Query System. GeneTIQS builds on ontology-based methods of data

extraction to allow database-style queries on the Web. This thesis makes two main

contributions to GeneTIQS. (1) It builds a framework to do generic ontology-based

data extraction. (2) It develops a hybrid record separator based on Vector Space

Modeling that uses both formatting clues and data clues to split pages into component

records. The record separator allows GeneTIQS to extract data from the complex

documents common in genealogy. Experiments show that this approach yields 92%

recall and 93% precision on documents from the Web.

ACKNOWLEDGMENTS

I would like to thank all those who supported me in this pursuit. I am grateful to

Dr. Embley for his mentoring and advice over the years and for his careful editing of

this thesis. I thank all of the professors at Brigham Young University who have helped

expand my vision of the beauty of computer science.

I thank my parents, family, and wife for the stimulating environment I enjoy, for

their efforts on my behalf, for their emotional support, and for making me want to be

better.

This research has been supported in part by the National Science Foundation

under grant #IIS-0083127.

Table of Contents

Table of Contents ..vii

List of Tables..ix

List of Figures...xi

Chapter 1 Introduction...1

Chapter 2 Related Work ..5

Chapter 3 The Extraction Ontology ..9

Chapter 4 The Extraction System..15

4.1 User Query...16

4.2 URL List..18

4.3 URL Selector ...19

4.4 Document Retriever and Structure Recognizer ...19

4.5 Extraction Modules ...20

4.5.1 Single-Record or Multiple-Record Engine..21

4.5.2 Specialized Extraction Modules ..21

4.5.3 Other Extraction Modules ...22

4.6 Data Constrainer..23

4.7 Result Filter ...24

4.8 Result Presenter ...25

Chapter 5 VSM-Based Record Separation ..27

5.1 The Problem of Record Separation ...27

5.2 Previous Work...30

 vii

5.3 Vector Space Modeling ...32

5.4 Improved Method of Record Separation ...35

5.5 Problems and Refinements ..36

5.5.1 Schema Differences...37

5.5.2 Over-richness of Data..38

5.5.3 Missed Simple Patterns ...38

Chapter 6 Experimental Results ..41

6.1 Test Documents ...41

6.2 Results ...42

6.2.1 Single-record Documents ..43

6.2.2 Simple Multiple-record Documents ..44

6.2.3 Complex Multiple-record Documents...45

6.3 Summary of Results ..47

Chapter 7 Conclusion and Future Work..49

7.1 Future Work...49

Bibliography ..51

Appendix A Test Documents ..55

 viii

List of Tables

Table 1: Ontology Vector..33

Table 2: DOM Tree Selections and Vector Scores ...36

Table 3: Single-record Document Results...43

Table 4: Simple Multiple-record Document Results...44

Table 5: Results for Old Record Separator..44

Table 6: Complex Multiple-record Document Results ...46

Table 7: Sources of Single-record Test Documents ..55

Table 8: Sources of Simple Multiple-record Test Documents ..56

Table 9: Sources of Complex Multiple-record Test Document ..56

 ix

List of Figures

Figure 1: Extraction Ontology for Genealogy Domain...10

Figure 2: Regular Expressions for Matching Locations..12

Figure 3: Exception and Context Expressions...13

Figure 4: System Overview...15

Figure 5: Generated Query Form ..17

Figure 6: Expanded Query Form...17

Figure 7: Extraction Results Presented to the User ...24

Figure 8: Extraction Results with Relationship Expanded..25

Figure 9: Single-Record Document...28

Figure 10: Simple Multiple-Record Document...29

Figure 11: Complex Multiple-Record Document..30

Figure 12: Illustration of VSM Measures..34

Figure 13: Records That Should Be Recombined ...47

 xi

Chapter 1

Introduction

The genealogy domain is a clear example of the growth of data on the internet

and the challenge of locating data of interest. Over the years, various organizations

including governments, companies, and churches have made genealogical information

available online. In addition, thousands of individuals have posted the results of their

personal genealogical research. This collection of data is constantly growing. In

March 2003, a search for ‘Walker Genealogy’ on Google [Goo04] returned 199,000

documents. Just one year later, the same search yielded 338,000 documents. It is clear

that users are no longer limited by the availability of information; instead, they are

limited by their ability to find the information they want.

 Currently, users have two means of finding the information they want:

directories and search engines. A directory contains links to web resources for a

specific topic along with a summary of the information contained in each resource. The

genealogy categories in Yahoo [Yah04] and dmoz [dmoz04] list only 2,673 and 6,399

sites respectively. Cyndi’s List [Cyn04], a directory tailored specifically to genealogy,

offers more information—217,950 sites. Directories are laboriously compiled by

hand—content creators or moderators submit additions. Since directories require

human effort, they are limited in number and tend to be general in scope. Since

Cyndi’s list contains only 150 categories, researchers will have an average of 1,400

sites to look at once they have narrowed their search to one category. Users of

directories must find the topic that best matches their needs and are unlikely to find a

 1

perfect match. For this reason, directories are ideal for a new user becoming acquainted

with an area of interest, but offer little help for specific information needs.

 Search engines make more information available than directories at the possible

cost of relevancy. We have already seen how many documents are available through

Google for ‘Walker Genealogy.’ Some of these pages are advertisements while others

are gateway pages taking advantage of Google’s algorithms to appear on as many

searches as possible. These pages contain no genealogical information. The majority

of these results, however, represent a wealth of information. Fortunately, search

engines give researchers more power in refining their search. When looking for a

certain person with a given birth date, they can enter a name and birth date as keywords

for a search. However, there is no guarantee that the matching date found in the result

is a birth date or even that it corresponds with the matched name.

 There are limitations to both of these approaches. Both offer users links to

documents that may contain the information they need; however, it is up to the users to

read the documents to find it. Both options are limited in their query capability. Search

engine users benefit from answers made specifically for their needs, but are limited to

simple keyword searches.

 Various commercial genealogy sites [Anc04, Gen04, Roo04] exist to help users

find the information they need. They offer directories and search engines better tuned

for finding genealogical information as well as genealogical records such as census and

death records to help users find information. Typically, they allow users to submit their

family trees to a communal database. Although these sites contain a wealth of

 2

information, they do not cover all of the data available on the Web. If the information

needed cannot be found on these sites, users are back to browsing pages one by one.

 To aid users in managing this deluge of information, we have built a system to

extract genealogical information from relevant Web pages. This allows more

structured, database-style queries on the information. We built our system on the

foundation of previous work done in the Data Extraction Group of Brigham Young

University and made improvements necessary for extracting genealogical data.

We designed a general framework for a system able to extract genealogy data

from the Web. We included in this framework the components required to extract data

from web pages. As time goes on, more methods of retrieving data will undoubtedly

appear. We designed our framework to easily accept modules to include these sources

in extraction. Although we designed it with genealogy in mind, nothing in this

framework is genealogy-specific. Since Genealogy is a particularly complex domain,

we argue that success in this domain will likely carry over to most domains.

 Existing methods of record separation, where a document is divided into

separate records where each record contains information about one object (e.g. a

person), were ineffective on pages with complex formatting, like genealogy pages. We

realized that improvement in this area would be essential to any extraction effort

involving genealogy. We created a method to find records in a document using Vector

Space Modeling scores, which finds and separates applicable data in even complex

documents.

Our system for extracting genealogical information from the web is called

GeneTIQS—Genealogical Target-based Information Query System. We present the

 3

details of GeneTIQS as follows. In Chapter 2, we evaluate existing methods of data

extraction and show that we have likely chosen the only extraction method that

promises to work well in the genealogy domain. Chapter 3 explains the conceptual

model used to specify the domain of interest for extraction. Chapter 4 describes our

system and its components. Chapter 5 describes our improved method of record

separation that is able to handle complex pages such as those commonly found in

genealogy. Chapter 6 shows the effectiveness of our system by applying our work to

experimental data. Finally, Chapter 7 concludes the thesis, discussing the limitations

we found and possible future work.

 4

Chapter 2

Related Work

 To extract wanted data from a Web site, a computer agent must be able to locate

the data of interest. Initial efforts at automatic information extraction from the Web

involved manually writing page-specific wrappers. These wrappers were tailored to

certain Web pages, were tedious to write and debug, and often broke when the format

of the target Web page changed.

Because of this, researchers have worked on the semiautomatic generation of

wrappers. Currently, there are at least 39 semi-automatic wrapper generators [KT02].

[LRS+02] divides these into five categories:

• Languages for wrapper development were developed because of the

difficulty of writing and debugging Web extraction programs in existing

programming languages. TSIMMIS [HGN+97] and Garlic [RS97] are

examples of this approach.

• HTML-aware tools create wrappers that locate data based on location within

the tree created by parsing the documents’ HTML. They do so either semi-

automatically with one example, or automatically with many example pages

from one source. W4F [SA99] is a popular tool in this category

• Wrapper induction tools attempt to recognize patterns in a labeled set of

training pages. Ariadne [KMA+98] automatically creates a grammar to

recognize patterns from labeled examples.

 5

• Modeling-based tools use methods similar to wrapper induction tools to

match a data structure provided by the user. DEByE [LRS02] is one

example.

• NLP-based tools use Natural Language Processing techniques to extract

information from free text. Some are able to extract directly from HTML

documents while others need plain text input.

• Ontology-based tools rely on a conceptual model of the data to be extracted.

BYU’s Ontos [ECJ+99] pioneered this approach. According to [LRS+02],

this approach has the advantage of being adaptive and resilient.

 The wrappers generated by the first three approaches will extract data from

pages similar to the pages on which they were trained. They will work on pages from

the same site with the same format. That means they must train on each data source.

Since we are interested in extracting data from pages created by thousands of hobbyists,

this would be a time consuming task. Even if wrappers were generated for all of these

sites, maintaining these wrappers would be challenging. Since these approaches rely on

the formatting of pages to guide extraction, they would stop working if the pages

changed significantly. In addition, many of these do not support nested data while a

good number can only handle one record per page. With these approaches, both setting

up data extraction and maintenance is a problem

 NLP-based tools are not ideal for genealogy either. These tools use clues from

the structure of parsed sentences to identify data of interest. Most Web pages with

genealogical information use a terse assortment of terms and fragments instead of

complete sentences.

 6

 Ontology-based tools are adaptive. They have the advantage of being able to

extract data without training on the format of those pages. Rather than using a wrapper

for each site related to an application domain, they use an ontology that wraps all pages

related to a domain. They are also resilient to changes in pages. The Data Extraction

Group (DEG) at Brigham Young University has developed a data extraction method

using ontologies. Instead of relying on formatting to find the data of interest, the DEG

approach focuses on the data itself. Rather than creating a page-specific wrapper, we

create a domain-specific wrapper (i.e. application domain, not Web domain) which we

call an extraction ontology. These ontologies are conceptual models of the data that

makes up a narrow domain of interest and will be discussed further in Chapter 3. Other

researchers are also exploring the use of ontologies in data extraction. [dRC+98]

outlines a system for extracting data in the university department domain from any Web

site. [SMN01] uses the conceptual model as a framework and allows the user to create

page-specific wrappers by specifying mappings between a Web page and the

conceptual model.

 The DEG system accurately extracts data in simple domains such as car

advertisements and job postings. It uses clues from the format of the page to locate

blocks of data, and the conceptual model to extract the data. The approach works well

in the regularly formatted pages of newspapers’ Web sites, but breaks down in the

genealogy domain and others where the page formatting can be more complex (This

will be discussed more in Chapter 5). The DEG has also worked on extraction from data

within tables [ETL02, Tao03] and in the hidden Web behind forms [Che02]. In this

 7

thesis, we describe our efforts to combine and improve these methods in order to

produce a better data extraction system—one that works for genealogy.

 8

Chapter 3

The Extraction Ontology

 An extraction ontology is an augmented conceptual model of the information

pertaining to a narrow domain of interest. We represent the conceptual model of our

ontologies as Object-oriented System Model (OSM) diagrams as described in [Emb98].

In particular, we use a sub-model of OSM, the Object Relationship Model, which

models objects and relationships between objects. We augment this model with data

frames [Emb80], which are descriptions of the data types to which objects belong.

Figure 1 shows the OSM diagram of our genealogy ontology.

 ORM diagrams can contain object sets, which are drawn as boxes, and

relationship sets, which are drawn as lines connecting the boxes. These make up the

schema of a database. Each object set may be either lexical (represented by a solid

border) or non-lexical (represented by a dashed border) depending on the contained

objects. A lexical object is an object that is indistinguishable from its representation.

The object set Name is lexical because a name is indistinguishable from its

representation as a string of characters. Object sets containing numbers, dates, and

even images are also lexical. Non-lexical objects are those that must be represented by

a surrogate within a computer. The object set Person is non-lexical because there is no

way to store a person in a computer. Instead, the system generates some identifier to

represent the person.

 In an extraction ontology, one object set is designated as the primary object set.

This is the highest-level concept we are interested in extracting. An arrow and a dot

 9

designate the primary object set in our diagrams. When extracting, we will only keep

information that relates to an instance of this primary object set. In our genealogy

ontology in Figure 1, Person is the primary object set.

 Relationship sets connect the object sets in an extraction ontology. The

relationship sets have labels and reading-direction arrows that tell how to construct the

name of the relationship set. The relationship between Person and Gender reads,

Person has Gender. In relationship sets relating more than two object sets, we replace

the arrow with a diamond and the label expands to include the names of all object sets

involved. The relationship between Person, Relationship, and RelationName has the

name RelationName is Person’s Relationship.

 10

1:*
1:*

0:3:*

RelationName is Person’s Relationship

2

0:0.6:*

has

1

0:0.5:1

has

1

0:0.6:1

has

1

0:0.9:1

has

1:*

0:1

has

1:*

0:1

has

1:*

0:1

has

1:*

0:1

has

1:*

0:1

has
1:*

0:1

has
1:*

0:1

has

1:*

0:1

has 1:*

0:1

has

1:*

0:1

has

1:*

0:1

has

1:*

0:1

has

1:*

0:1
has

1:*

0:1

has

1:*

0:1

has

1:*

0:1

has
1:*

0:1

has
1:*

0:1

has
1:*

0:1
has

1:*

0:1

has

1

0:0.95:1

has

1:*

0:1

has

1:*

0:1

has

1:*

0:1

has

1:*

0:1

has
1:*

0:1

has

1:*
0:0.99:1

has1:* 0:0.8:1
has

RelationName Relationship

DateDate

Christening Location Burial Location

YearMonthDayYearMonthDay Day YearMonth

Marriage Location

Date

YearMonthDay

Date

Death Location

MarriageBurialChristeningDeath

YearMonthDay

Birth Location

NameGender

Date

Birth

Person

Figure 1: Extraction Ontology for Genealogy Domain

The relationships within a relationship set link one member of each object set to

which the relationship set connects. On each connection to an object set, a relationship

set is labeled with a participation constraint. A participation constraint indicates how

many times an object in the connecting object set may participate in this relationship

set. The participation constraint consists of a minimum, optional average, and

maximum number separated by colons. In our notation, a star represents an arbitrarily

large number. When the minimum and maximum are the same, they may be

represented by one number. The participation constraint next to Person on the

relationship set between Person and Gender indicate that a person object may be

related to at most one gender. The average value of 0.8 indicates that on pages that

include gender information, we expect to find a gender for 80% of the people. A

person, we know, must have exactly one gender, but we must allow no gender because

we may have partial data or mistakes in extraction.

 In addition to the components seen in the OSM diagram, an extraction ontology

also has a data frame for each object set. A data frame contains recognizers to identify

data that belongs to an object set. These recognizers consist of extended regular

expressions that match values, the context typically surrounding values, and keywords

usually located close to a value. Our matchers support macro substitution and the

inclusion of lexicons. This helps ontology engineers keep their regular expressions

manageable.

 11

Macros:
 CapPhrase: (([A-Z][A-Za-z]*)|of|the|on)(\s+(([A-Z][A-Za-z]*)|of|the|on)){0,3}
Value Phrases:
1. {CapPhrase}\,(\s+){CapPhrase}(\.?)\,(\s+){State}
2. {CapPhrase}\,(+){State}
3. {CapPhrase}\,(+){CapPhrase}\,(+){CapPhrase}\,(+){Country}
4. {CapPhrase},(+){CapPhrase},(+){Country}
5. {State}

Figure 2: Regular Expressions for Matching Locations

 Figure 2 shows the matchers used to find locations in our extraction ontology.

The words within braces are labels of macros or lexicons defined elsewhere. The

macro named CapPhrase matches strings of capitalized words while allowing some

non-capitalized prepositions. State and Country are lexicons. These are external text

files containing all the states and countries plus any abbreviations and variations of

spelling we could anticipate. Our genealogy ontology also uses lexicons for given

names, surnames, and months.

Besides the regular expressions in Figure 2, an ontology engineer optionally

specifies other regular expressions to refine the matches. Figure 3 shows the

expressions that correspond to the fifth value phrase in Figure 2. Exception expressions

allow the system to rule out invalid matches, and right and left context expressions

specify the context surrounding legitimate values. Our state lexicon contains two-letter

postal abbreviations because they are commonly used to save space when city and

county are given as in the first and second value phrase in Figure 2. Abbreviations are

seldom used in situations that match this value phrase where the state is alone as it is in

the fifth matcher. Without exception expressions in Figure 3, many English words

(IN=Indiana, ON=Ontario, OR=Oregon) would be interpreted as state or province

 12

names by this matcher. Figure 3 shows the expressions that correspond to the fifth

value phrase in Figure 2. The value phrase containing {State} contains an exception

expression that filters out matches that are two letters long. In Figure 3, we also have

left and right context expressions that ensure the state match occurs on word

boundaries.

Figure 3: Exception and Context Expressions

We have previously claimed that ontology creation requires a few dozen hours

of work. The DEG has recently developed tools to create and edit extraction ontologies

graphically. It appears that this improvement has made it possible to create ontologies

in even less time. Most of this time consists of testing and refining the ontology.

 13

Chapter 4

The Extraction System

 In this chapter, we will outline the components of our system, GeneTIQS, for

extracting genealogy data. We have designed an architecture for querying extracted

data from ontologically specified domains. Figure 4 shows the basic components and

illustrates how data flows among the components in this architecture. We have

implemented many (but not all) of these components to build GeneTIQS.

 The system is initially given an Ontology (Chapter 3), which describes the

application domain, which is genealogy for GeneTIQS. It then automatically creates a

query form from the Ontology. The user can use this form to enter a User Query

(Section 4.1). Given a URL List (Section 4.2), the URL Selector (Section 4.3) selects

Uniform Resource Locators (URLs) that are likely to contain data relevant to the query.

The Document Retriever and Structure Recognizer (Section 4.4) downloads a document

for each URL from the Web and analyzes its structure to determine which extraction

URL
Selector Other

Extraction
Modules

Single- or
Multiple-Record

Engine

URL
List

User
Query

Result
Filter

Document
Retriever

and
Structure

Recognizer

Data
Constrainer

Ontology

Result
Presenter

URL
Selector Other

Extraction
Modules

Single- or
Multiple-Record

Engine

URL
List

User
Query

Result
Filter

Document
Retriever

and
Structure

Recognizer

Data
Constrainer

Ontology

Result
Presenter

Figure 4: System Overview

 15

module could best handle the document. The Extraction Module (Section 4.5) it selects

then separates the document into records and produces candidate matches for all of the

object sets in the ontology. In addition, the Extraction Module can submit URLs of

additional sources of data it may find back to the Document Retriever and Structure

Recognizer. The Data Constrainer (Section 4.6) takes candidate matches and converts

them to objects and relationships that conform to the constraints in the Ontology. The

Result Filter (Section 4.7) discards the data that does not match the User Query. As

extraction continues for a list of URLs, the Result Presenter (Section 4.8) displays the

information extracted so far to the user and gives the option to halt processing. In the

remainder of this chapter, we will further explain these components.

4.1 User Query

 Our system will be of the most benefit in situations where many sites must be

examined before filling the information need. We noted earlier that Google has

indexed over 300,000 web sites dealing with Walker genealogy alone. With all of the

surnames possible and allowing for overlap, there are probably tens of millions of

genealogy pages on the internet. A query will allow GeneTIQS to focus its extraction

on data that is likely to be of use to the user. If users are interested in extracting all of

the data possible, they can simply enter a blank query.

 When we initialize our system with a genealogy ontology, GeneTIQS generates

an HTML form to accept user queries from the object sets in the ontology. This form

allows for arbitrary conjunctive queries over the sources. Starting at the primary object

set, the form generator follows the relationship sets to other object sets. When the form

 16

generator encounters an object set that is allowed only once, it will do one of two

things. If the object set has a relationship that the form generator has not yet traversed,

the form generator will generate a button for that object set. When this button is

pressed, it will create a sub-form for that object set and its children. The button

disappears to ensure that the sub-form only appears once. If the object set is not related

to a new object set, the form generator simply creates a form field for that object set.

When the form generator encounters an object set that is allowed many times, it creates

a button for that object set. The button does not disappear when pressed so that it

allows multiple sub-forms for that object set.

Figure 5 shows the form derived from our genealogy ontology in Figure 1. Since

Figure 5: Generated Query Form

Figure 6: Expanded Query Form

 17

Gender and Name do not have relationships to anything other than the primary object

set and they can only occur once, they appear as form fields. Buttons allow sub-queries

over the other object sets. As an example, Figure 6 shows the form as it appears after

pressing the ‘Add Birth’ and ‘Add Relationship’ buttons. Since the ontology only

allows only one Birth object for each Person, the ‘Add Birth’ button disappears when

pressed. The ‘Add Relationship’ button, on the other hand, remains when pressed since

multiple Relationship objects are allowed.

4.2 URL List

 Our system needs a list of relevant information sources to help it answer user

queries. We provide it with a list of URLs that point to documents that are relevant to

the domain of interest. Two alternatives exist for creating this list. A human can

browse the Web and manually judge relevancy, or a targeted web crawler programmed

to classify pages automatically based on relevancy to the domain of interest can

generate the list. A web crawler must be courteous to the owners of servers and other

users by limiting frequency of access and respecting the limitations set forth by the

server owners as specified in the robots.txt file. [Xu03] provides a classifier that judges

relevancy with decision trees trained on ontological features and presents experimental

data on cars and obituaries. In a production system, the classifier would probably need

to be tuned to maximize its performance on the domain of interest. Since source

discovery is not the in the scope of this thesis, we simply created our URL lists by hand.

 18

4.3 URL Selector

 Rather than search all these pages for each query, a URL Selector can select the

URLs likely to contain information relevant to the current query. A URL Selector would

rely on summary information stored along with the URLs during the source discovery

phase to rule out improbable sources and prioritize the probable ones. This would

reduce processing time, network utilization, and the impact on remote Web servers,

allowing faster answers to queries while minimizing cost. Since our experimental URL

lists are relatively short and do not include summary information, in our prototype, we

have implemented a dummy URL Selector that simply selects all URLs for processing.

We leave development of a smart URL Selector for future work.

 Once URLs are selected for extraction, processing could easily be distributed

across multiple computers. All this would require is a framework for dividing the

selected URLs among processors and gathering the resulting data. In our experiments,

GeneTIQS processed about 50 kilobits per second on an 800 MHz machine. About a

thousand systems could be extracting simultaneously without overwhelming a T3

connection to the internet. Although not implemented in our prototype system, this

optimization would be crucial to providing timely results in a production system.

4.4 Document Retriever and Structure Recognizer

 Once the system has a URL likely to contain data relevant to the query,

GeneTIQS is ready to start processing. First, the Document Retriever contacts the host

site and downloads the document identified by the URL. The Structure Recognizer then

determines which Extraction Module can best process the page.

 19

 In order to make the system easily expandable, the Structure Recognizer

maintains a list of all Extraction Modules available. When presented with a document

to analyze, it submits the document to each module and asks for a confidence measure.

This measure represents the module’s confidence that it can process the given

document. The Structure Recognizer simply forwards processing to the module with

the highest confidence.

 In addition to accepting the URLs given by the URL Selector, the Document

Retriever also accepts URLs from the Extraction Modules as they find other sources of

data. For example, an Extraction Module that processes forms would submit links to

the pages that result from form submission. This could also be used to follow links on

any web page.

4.5 Extraction Modules

 The Extraction Modules make up the core of the GeneTIQS system. They are

responsible for extracting attribute-value pairs from the document and returning them

grouped by record. Each module implements a simple API that exposes two methods.

One analyzes the structure of a document and determines the module’s confidence that

it can process this document. The Structure Recognizer uses this method to select an

Extraction Module for each document. The other method initializes the extraction

process.

The main module we built to extract from single-record and multiple-record

documents cannot extract data perfectly from every page on the Internet. Some pages

employ formatting that the main module does not handle well. Other Internet resources

 20

cannot be accessed through the usual HTTP request. To expand the system to accept

these sources, other Extraction Modules can be added. These modules can be

specializations of current modules, or provide access to a new class of information

sources.

4.5.1 Single-Record or Multiple-Record Engine

 The majority of web sites in the genealogy domain contain single-record and

multiple-record documents. This module extracts data from these documents in two

steps. First, if it is a multiple-record document—a document that contains information

on multiple people—the module splits it into sections containing one record each. This

process as described in Chapter 5 is a major contribution of this thesis. Once it

separates the records, the module finds the candidate matches for the object sets in the

ontology using the recognizers found in their data frames. Since we intend this module

to be the generic processor for HTML documents, it outputs a low confidence score (0.1)

for any documents that it can parse. This allows more specialized modules to override

it easily.

4.5.2 Specialized Extraction Modules

 A specialized extraction module extracts data from a class of pages that a more

general module handles inadequately. An example would be a module to extract data

from HTML tables. Some web sites, particularly those generated from databases,

present data as tables containing headers that identify the data in the columns below.

Each record occupies one row of the table. This configuration causes problems for our

standard extractor because it cannot find the keywords that correspond to data on the

 21

page. Pages containing tables also present an opportunity for increased accuracy: Once

a column is identified as containing a given attribute, a table module can accept all cells

in that column as matches for that attribute. A module specialized for tables can adapt

to variations and misspellings that would break the regular expressions of the main

module and can reject extraneous matches found elsewhere in the document. [Tao03]

explains techniques to extract data from tables as well as techniques to distinguish a

valid table from HTML tables used merely for formatting. In the future, we hope to

wrap these techniques to build a specialized module for table processing.

 Specialized extraction modules need not be restricted to ontology-based

techniques. If the accuracy of extraction is unsatisfactory for a certain site that contains

enough data, we could create a site-specific wrapper using a non-ontological technique

for that site and place it in a module. This module would create its confidence score for

a document simply by determining that the URL comes from a pre-identified site for

which the site-specific wrapper was created.

4.5.3 Other Extraction Modules

 A possible module to provide access to a new class of source information would

be one to extract data from forms. Although attempts have been made at extracting all

information behind a form using statistical methods [LES+02], this approach cannot

handle submission of form fields that require text input. [Chen02] describes a

technique to map the schema of a form to the schema of a global ontology. Once these

mappings are discovered, it takes terms from a query to fill the fields of the form. For

those form fields that do not match a query term, it combinatorially attempts all

possibilities. In this way, it can create multiple submissions for one form. Since each

 22

of these submissions could result in a page with any format, a module using this

technique would encode each submission as a URL with an HTML GET query appended

to the end and add it to the Document Retriever’s queue. Wrapping this technique in an

extraction module might allow the system to handle multiple-step forms not currently

supported.

 Other sources of information could be exploited in this way. A module could

easily extract data from GEDCOM files found on the Web. Modules could be created to

accept data from databases, web services, or the semantic web. With the exception of

databases, these technologies are not widely used—particularly in the genealogical

domain. As they gain popularity, they could become rich sources of information,

motivating the creation of modules to support them.

4.6 Data Constrainer

 Once an Extraction Module identifies attribute/value pairs in the document, the

Data Constrainer binds them to objects and relationships that conform to the

constraints in the extraction ontology. Two problems can occur during this binding

process: conflicts and ambiguities. A conflict arises when a portion of the document

matches the recognizers for two or more object sets. An ambiguity occurs when more

candidate matches exist for an object than are allowed by its participation constraints.

The DEG has developed heuristics for managing these problems in its Ontos system

[ECG+99]. Members of the DEG are currently constructing a framework for improving

these heuristics and adding new heuristics [Wes03]. We have delayed significant

improvements to these heuristics pending the completion of this initiative. However,

 23

we have made one improvement. One heuristic uses keyword proximity to identify

correct matches, which fails, of course, when no keywords exist in the ontology or

when none exist in the document. For this case, we refined the heuristic to take

advantage of the tendency for related information to occur in close proximity in a

document. When no keyword exists for an object, we use the proximity of a related

object instead of keyword proximity.

4.7 Result Filter

 Once the Data Constrainer produces objects and relationships from the matches

in the document, the Result Filter can evaluate the applicability of each record to the

query posed by the user. It discards any records that do not satisfy the query.

Figure 7: Extraction Results Presented to the User

 24

4.8 Result Presenter

 Once GeneTIQS has extracted data that conforms to the ontology and the user’s

query, the Result Presenter displays this data on the user’s web browser. Figure 7

shows an example. The browser window is split into two frames: The top frame

contains the extraction results while the bottom frame shows the source documents.

The Result Presenter creates the schema of the tables in the result pane with the

algorithms for generating nested XML schema in [EM01, EM03]. Each row of the table

contains the extracted information on one person. The table’s columns consist of

attributes such as Gender, Name, Birth Location, and so on. The values of the

attributes for which only one value may exist appear directly in their column. For

attributes that may occur many times, a Show button appears instead. When the user

clicks this button, a new table emerges below the current row showing the values of this

attribute. Figure 8 shows the names of relatives of Adeline Theresa Marie Adams,

which appeared when we clicked the Show button in Adeline’s row in the Relationship

column.

 25

Figure 8: Extraction Results with Relationship Expanded

 Because a user may not wish to wait for a long extraction process involving

many pages, the Result Presenter also includes a Stop button. If users find the

information they want they can stop, or if they find that the query needs refinement,

they can stop the process before it completes and begin again.

 26

Chapter 5

VSM-Based Record Separation

 When we initially investigated building a system for extracting genealogical

information, we discovered that record separation was a major obstacle. Previous

efforts at solving the problem proved ineffective on the variety of pages found in the

genealogical domain. This chapter explains the problem of record separation, previous

work in record separation, the basics of Vector Space Modeling (VSM) as applied to

record separation, an improved method of record separation, and some refinements we

have made to resolve problems we encountered.

5.1 The Problem of Record Separation

 In order to extract the information related to each person in a genealogical

document, the computer needs to separate the document into records. Each record

should contain information on only one person. This greatly simplifies the task of

selecting values and linking them together as objects and relationships. We divide web

pages into three categories based on how they present information: single-record

documents, simple multiple-record documents, and complex multiple-record

documents. Some web pages include information on only one person per page (single-

record documents). Others list many people’s information on one page. The

information on these pages must be split appropriately. Some multiple-record

documents have a simple pattern that is constant throughout the page. One HTML tag

consistently separates the records in these documents (simple multiple-record

 27

Figure 9: Single-Record Document

documents). Other multiple-record documents are not separable by one HTML tag

because they have more complex formatting (complex multiple-record documents).

Since all three of these categories are common in the genealogy domain, we want to be

able to extract from all three categories.

Figure 9 through Figure 11 show an example of each category of document.

The document in Figure 9 contains only one record. The document in Figure 10

contains many records, each separated by an <hr> tag. The document in Figure 11 is an

example of a more complex separation. Each row in a table in the document

corresponds to a generation. Each row has a different number of cells containing data.

In some cases, these cells contain information about a man as well as his wife. For

example, the last cell in the third row is for James Walker, but it also contains

 28

information about his wife, including her parents and death date. On the other hand, the

cell immediately to the left contains information on only one person, his sister

Elyzabeth.

Figure 10: Simple Multiple-Record Document

 29

Figure 11: Complex Multiple-Record Document

5.2 Previous Work

 A previous effort at record separation proved successful in certain domains

[EJN99]. The record separator in [EJN99] begins by parsing the document’s HTML into

a Document Object Model (DOM) tree. It then locates the subtree containing the objects

of interest by finding the node in the DOM tree with the most child nodes (highest fan-

out). It determines a record separating tag using a combination of five heuristics and

uses occurrences of this tag to partition the document into records. [BLP01] expands

on these techniques with different heuristics that were more accurate on the pages in

which they were interested.

 There are three problems with this approach. First, it assumes that all input

documents are multiple-record documents. When given a single-record document, the

 30

record separator attempts to find some separation and thus always gives incorrect

results. Second, on many pages, the highest fan-out heuristic selects a portion of the

document that does not contain the data of interest. This often occurs in documents

containing navigation bars with many links, or selection boxes containing many

options. The problem is worse when a page contains a small number of records. Third,

this approach separates on only one level of the tree. Because of the hierarchical nature

of genealogical data, many Web sites use nested lists, tables, or some other formatting

to denote ancestor or descendent generations. This approach cannot handle complex

multiple-record documents.

 Two clues aid in record separation: structure and content. A well-designed page

will have a format that assists readers in distinguishing records (e.g., tree nodes in

Figure 11). Readers can also determine where record divisions occur based on the data

they contain (e.g., a second name and another birth date denotes a new person). The

approaches mentioned above primarily use structural clues in separation, although the

ontology heuristic described in [EJN99] does use counts of data frame matches to

produce its candidate tag. Structural clues alone, however, do not work for genealogy

because there are usually not enough records on a page to describe the complex patterns

used. It would be difficult to create an accurate record separator based purely on

content. In a domain where data always appears in a certain order or all data is always

present, it may be straightforward, but in genealogy, this is not the case. Missing data,

imperfect matchers, and unpredictable order combine to make this approach infeasible.

 [EX00] introduces a technique utilizing both kinds of clues. This technique is

explained further in [EX01]. The hybrid method of [EX00] and [EX01] first produces

 31

candidate records using the techniques in [EJN99]. Next, the method refactors records

based on the data they contain according to VSM measures of each record. It detects

headers and footers and determines whether they contain information that pertains to all

records on the page. It merges adjacent records containing complementary data and

splits records containing too much data. Because it still uses the highest fan-out

heuristic to locate the information of interest, the approach in [EX00] and [EX01] fails

to resolve completely any of the three problems mentioned above. For single-record

documents, it loses all data outside the highest fan-out node, and although it could

theoretically recombine any incorrectly split information within the single-record

document to recover the correct record, conflicting matches to names and names of

relatives prevent it from doing so. This method does nothing to recover from cases

when it chooses the wrong subtree for separating. Finally, since it discards all

hierarchical information when creating the candidate records, it must split candidate

records based only on content and can handle only the simplest cases.

5.3 Vector Space Modeling

 Like [EX00] and [EX01], we use VSM for separating records. Unlike [EX00]

and [EX01], however, we do not first seek the highest fan-out tree, neither do we limit

ourselves to separation based on one HTML tag. VSM comes from the field of

information retrieval. A set of features from a document makes up the values in a

vector from which useful cosine and magnitude measures are derived. When doing

separation, we use the object sets from the extraction ontology as dimensions in the

vector space.

 32

 First, we create a vector that represents a prototypical record of genealogical

data from the participation constraints in the ontology. [EX01] calls this the Ontology

Vector (OV). We use the average from the participation constraints when given. When

no average is given, we infer an average midway between the minimum and maximum

values using a sufficiently large number (100) to replace stars. We do not include

dimensions for all object sets; instead, we include dimensions for those object sets most

closely related to the primary object set. These object sets give us the information most

helpful for separating instances of the primary object set while more indirectly related

object sets have more of a potential for ambiguity and conflicts or for being completely

unrelated. The dimensions selected by this algorithm from our genealogy ontology

appear in Table 1 along with the averages that make up the OV and the vector itself.

 For each candidate record, another vector records the matches found in a portion

of the document. [EX00] calls this the Document Vector, but since we also use this

measure for various portions of a document, in this thesis we will call it the Subtree

Vector (SV) to avoid confusion. The number of matches for each object set found

within the subtree rooted at a node makes up the vector for that node. We judge each

SV by its cosine score and magnitude score.

 Large values along any dimension skew these measures, so object sets that are

allowed many times tend to have too much weight in these measures. We normalize all

vectors prior to finding VSM scores by dividing each value in the vectors by the

 Gender Name Birth Death Christening Burial Marriage Relationship Relation
Name

Average 0.80 0.99 0.95 0.90 0.60 0.50 0.6 3.0 3.0
Ontology
Vector { 0.8, 0.99, 0.95, 0.9, 0.6, 0.5, 0.6, 3.0, 3.0}

Table 1: Ontology Vector

 33

corresponding average in OV. This reduces the effect that attributes for which many

values are expected have on record separation. We normalize OV in the same way (the

value for each dimension becomes one).

S1

S2

S3

S1

S2

S3

Figure 12: Illustration of VSM Measures

The cosine of the acute angle between any two vectors in n-space is the dot

product of the two vectors divided by the product of their magnitudes. This provides a

reliable method of determining the similarity of SV to OV. Cosine measures close to

one occur when the angle between two vectors is small. A small angle between SV and

OV shows that the subtree likely contains data that relates to the ontology. The

magnitude of SV divided by the magnitude of OV yields a rough estimate of the number

of records in SV, which is accurate enough to decide whether to split a record.

 Figure 12 shows vectors for three sections of a hypothetical web document

projected into two dimensions for simplicity. The dotted line represents the OV. The

angle between S1 and OV is small, meaning that the cosine measure of S1 is close to one

 34

so we know that the data in S1 closely matches the ontology. The magnitude of S1

indicates that it contains many records (probably four or five) and needs to be split. On

the other hand, S2 has a lower cosine measure. It contains either partial information or

information not pertaining to genealogy. S3 has a high cosine measure and a magnitude

close to one. These scores show that it is probably a single record related to genealogy.

5.4 Improved Method of Record Separation

 Our improved method of record separation confronts the problems of [EX01] by

traversing more of the tree and by maintaining format information throughout the

process. Starting with the root of the tree, it evaluates the subtree rooted at each node

in a depth-first traversal. If its magnitude measure is less than a threshold value (e.g.,

1.8), we accept it as a record. If not, we split the subtree using the separator tag

heuristics of [EJN99]. In cases where these heuristics fail to find a separator (usually

when a node has fewer than four child nodes), we simply use the subtrees that are

children of the current node. We then use a technique from [EX01] to recombine these

subtrees where appropriate. Finally, we discard the subtrees with low cosine scores

(less than 0.6) and repeat the process with the remaining subtrees.

 35

 Table 2 shows a selection of the DOM tree representing the document in Figure

11 as well as the corresponding SVs, cosine scores, and magnitude scores. At the first

level, there are only two children: <!DOCTYPE> and <html>. <!DOCTYPE> has a low

cosine score so we throw it out. <html> has a high cosine score so we keep it. Since

<html> has a large magnitude, we split it into <head> and <body>. We discard <head>

and split <body>. Because <body> has many child nodes, we find a separating tag,

<div>, and divide the children accordingly. All but the second <div> tag are dropped

because of their cosine scores. After repeating this process and dividing based on table

rows and then table cells, we eventually start finding individual records. The <td> in

the example is a table cell that happens to contain one record. Other table cells in this

document actually contain multiple records and need to be split further.

5.5 Problems and Refinements

As we implemented this algorithm, we encountered three problems that limited its

effectiveness. First, differences between our ontology and the schema used within

documents often caused cosine measures to be too low. Second, the over-richness of

 Subtree Vector Cosine Magnitude
<!DOCTYPE…> { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0} 0.00 0.00
<html> { 0.0, 149.0, 89.0, 76.0, 0.0, 0.0, 48.0, 23.0, 23.0} 0.97 111.59
 <head>
 …
 </head>

{ 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0} 0.58 0.58

 <body> { 0.0, 148.0, 89.0, 76.0, 0.0, 0.0, 48.0, 23.0, 23.0} 0.97 111.15
 <div>

…header...
 </div>

{ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0} 0.00 0.00

 <div>
 …

{0.0, 146.0, 88.0, 76.0, 0.0, 0.0, 48.0, 23.0, 23.0} 0.97 109.98

 <td>
 …

{0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0} 0.99 1.06

Table 2: DOM Tree Selections and Vector Scores

 36

data, particularly in single-record documents, often caused magnitude measures to be

too high. We introduced refinements into our algorithm to cope with these problems.

Third, when separating simple multiple-record documents, our algorithm was

sometimes outperformed by the old method because it did not take advantage of simple

patterns in the data.

5.5.1 Schema Differences

Not everyone agrees about what attributes are needed to describe a person in

genealogy. We designed our genealogy ontology to hold as much data as we were

likely to find in genealogy pages on the Web. It contains many attributes such as

Gender, Burial, and Christening for which most Web sites do not include data. The fact

that these attributes do not appear on a page does not mean that the page is not about

genealogy. However, it does affect the cosine scores of the document. This can cause

valid records to have cosine scores slightly below the threshold resulting in valid

records’ being discarded.

The problem is that a page author’s conceptual model does not always perfectly

align with our conceptual model. If we detect these differences in schema at the page

level and compensate for them, we can more accurately find the records within the

page. We do this by pruning dimensions in our vector space. In order to detect which

object sets do have matches in a document’s schema, we count the object set matches

and prune any dimension with no matches. Since a few erroneous matches are possible,

we also prune dimensions with counts less than 5% of the average count, weighted

according to the participation constraints. The document in Figure 11 is one that shows

the need for this refinement. This document contains only names, birth dates, death

 37

dates, and some marriage events. Without any genders, burial dates, christenings, or

relatives, it took about five records forced together to achieve the required magnitude

score to make a record. Once we pruned out these dimensions, we were able to

discover the correct records.

5.5.2 Over-richness of Data

Single-record documents tend to include more complete information than

multiple-record documents. Because single-record documents tend to give children and

parents of an individual, it is not unusual to find seven name matches in one single-

record document. Single-record documents may also repeat information or have

multiple instances of one keyword. Magnitude measures for records in single-record

documents are therefore much higher than measures for multiple-record documents. To

overcome this, we programmed our separator to require a higher magnitude to split a

document than to split within a document. For example, the single-record document in

Figure 9 contains seven names and the keywords for birth and death twice. Because of

these high counts, the magnitude of this record is high enough to split the record. If

these counts were part of a larger document, this would probably mean multiple records

5.5.3 Missed Simple Patterns

Simple multiple-record documents are distinguished by a simple pattern in the

formatting. On some simple multiple-record documents, our old technique of record

separation is able to produce more correct records than this new method. In any

document, some records contain more or less details than others. Sometimes our

matchers do not accept all the valid data, such as when names are incomplete or contain

 38

words not in our lexicon. At times, this variation is enough to cause our record

separator to erroneously discard or split a valid record. We can take advantage of the

pattern in simple multiple-record documents if we can detect them. We do so when we

split a subtree by counting the ratio of records with sufficient cosine scores and low

enough magnitudes to be a single record. If there are more than three records and at

least two-thirds of them are single records, we consider all of them to be single records.

As a further refinement, we eliminate headers and footers by discarding records with

low cosine scores at the head and tail of the list. Without this refinement, for example,

our record separator would discard the records for Melissa Anne Knuteson and Dennis

M Knuteson in Figure 13 since they contain so little information. There are enough

valid records before and after these two records for this simple heuristic to detect the

pattern and include them.

Figure 13: Document with a Simple Pattern

 39

Chapter 6

Experimental Results

 While implementing GeneTIQS, we used a few example documents to debug our

code. Once our system was ready, we gathered sixteen other documents to test our

algorithm and made further refinements. When our system performed adequately on

this tuning set, we were confident it would perform well on any pages from the Web.

Two components of GeneTIQS lend themselves to testing: the extraction module and the

data constrainer. Since the data constrainer depends on heuristics that are currently

being improved, we have focused our testing on the extraction module, specifically our

improvements to record separation.

6.1 Test Documents

 We gathered test documents by searching the Web for common surnames and

genealogy. We took the first few results that contained data. To ensure stability and

reproducibility throughout our test and to reduce load on the web hosts, we created a

local cache of our test pages. Appendix A lists these pages and their sources. Since our

goal for this system is for it to handle many different web pages, we focused on

collecting a wide variety of pages.

When collecting pages, we found that there are about three generators commonly

used for genealogical web pages. Since we were interested in evaluating our system on

a variety of sources, we included only a few pages generated by each program.

 41

Although this limited the number of documents in our test sets and made it difficult to

find more, we felt this was important.

Some pages contain close to a hundred records while others contain just one. If

we had tested on these documents as they were, performance on a few pages would

have dominated our results even within one category. We did two things to reduce this

skewing. First, we trimmed long documents to between ten and twenty records. This

range allowed us to avoid truncating subtrees such as a list of children. We were

careful to preserve any footers that might exist on each document. Limiting the number

of records per page also made it easier for us to do our manual evaluation of results.

We reasoned that if we could extract the first records from a page, we could probably

extract the rest as well. Second, any time we found a source of single-record

documents, we collected three documents from that site. Unfortunately, trimming the

pages in our test set significantly reduced the number of records in our test set.

Because of this, our test set may not appear to contain enough examples to provide a

statistically significant sample. However, we felt that this did not compromise the

overall accuracy of our test since the records we retained had the same characteristics of

the records we removed from the same page.

6.2 Results

We divided our test documents into three groups: single record documents,

simple multiple-record documents, and complex multiple-record documents. For each

group of documents, we created a URL list and ran our system with an empty query to

obtain all the records. To test record separation, we compared these records to what

 42

should have been produced. Because of the nested nature of genealogical data, this was

not always simple. A name by itself in some contexts might be considered a record

while in other contexts it may just be the name of a relative within a valid record. As a

general rule, we considered information about a relative to be a distinct record if it

contained more than just a name.

 records returned correct precision recall
single1 1 1 1 100.00% 100.00%
single2 1 1 1 100.00% 100.00%
single3 1 1 1 100.00% 100.00%
single4 1 1 1 100.00% 100.00%
single5 1 1 1 100.00% 100.00%
single6 1 1 1 100.00% 100.00%
single7 1 1 1 100.00% 100.00%
single8 1 4 0 0.00% 0.00%
single9 1 1 1 100.00% 100.00%
single10 1 1 1 100.00% 100.00%
single11 1 1 1 100.00% 100.00%
single12 1 3 0 0.00% 0.00%
single13 1 1 1 100.00% 100.00%
single14 1 1 1 100.00% 100.00%
single15 1 1 1 100.00% 100.00%
single16 1 1 1 100.00% 100.00%
single17 1 1 1 100.00% 100.00%
single18 1 1 1 100.00% 100.00%
single19 1 1 1 100.00% 100.00%
single20 1 1 1 100.00% 100.00%
single21 1 1 1 100.00% 100.00%
Total 21 26 19 73.08% 90.48%

Table 3: Single-record Document Results

6.2.1 Single-record Documents

We tested 21 single-record documents. As Table 3 shows, our record separator

correctly handled most of these documents, resulting in 90% recall and 73% precision.

This success is due to the refinement we made to compensate for over-richness of data.

In two cases (single8 and single12), data was rich enough to overwhelm this

refinement. Attempting to split these records destroyed the relationships within them

 43

and produced a large number of incorrect records, which explains the relatively low

precision of 73%. We could increase the threshold to cover more of these cases, but

raising it too much would cause multiple-record documents not to be split. This

refinement performed fairly well, but it is likely that a different approach would be

needed to produce better results.

 records returned correct precision recall
simple1 19 20 19 95.00% 100.00%
Simple2 19 17 17 100.00% 89.47%
Simple3 11 11 11 100.00% 100.00%
Simple4 9 9 9 100.00% 100.00%
Simple5 12 13 11 84.62% 91.67%
Simple6 12 11 10 90.91% 83.33%
Simple7 14 10 10 100.00% 71.43%
Simple8 5 7 5 71.43% 100.00%
Simple9 14 14 14 100.00% 100.00%
Simple10 15 15 15 100.00% 100.00%
Total 130 127 121 95.28% 93.08%

Table 4: Simple Multiple-record Document Results

6.2.2 Simple Multiple-record Documents

Table 4 shows the results of our experiments on simple multiple-record

documents. By using our refinement for exploiting patterns in simple documents

(Section 5.5.3), we were able to return 7 more correct documents than we would have

 44

 records returned correct precision recall
simple1 19 22 19 86.36% 100.00%
simple2 19 20 0 0.00% 0.00%
simple3 11 14 11 78.57% 100.00%
simple4 9 10 9 90.00% 100.00%
simple5 12 16 12 75.00% 100.00%
simple6 12 23 9 39.13% 75.00%
simple7 14 22 13 59.09% 92.86%
simple8 5 10 0 0.00% 0.00%
simple9 14 16 14 87.50% 100.00%
simple10 15 16 0 0.00% 0.00%
Total 130 169 87 51.48% 66.92%

Table 5: Results for Old Record Separator

otherwise and achieved 95% precision and 93% recall. For comparison, Table 5 shows

the results of using the old record separator with the same set of documents. This

comparison is only possible for simple multiple-record documents because the old

record separator does not work on the other categories. The old record separator

completely failed on three test documents. While processing simple2 and simple10, the

record separator discarded relevant data from each record. With simple8, the highest

fan-out heuristic failed to choose the correct subtree for extraction. In most cases, our

new approach was able to produce the same correct records while returning fewer

incorrect records. In some documents, we lost the first record because it did not have a

high enough cosine score and was misinterpreted as part of the header. In simple7, less

than two thirds of the records were acceptable as single records so the algorithm did not

detect the simple pattern. From these results, we see that our record separator compares

favorably with the old record separator.

6.2.3 Complex Multiple-record Documents

Since most of the documents on the Web fall into this category, performance on

complex multiple-record documents is critical. Table 6 shows our results for this

category. Given the difficulty of the task, we consider 92% recall and precision to be a

very good result. The most common problem we encountered stemmed from

conflicting matches. While doing record separation, our system has no way of knowing

whether a name is a member of the Name object set or the RelationName object set

while doing record separation and must consider it a potential match for both object

sets. This becomes a problem when recombining fragments of a record. Figure 14

shows two records produced from complex4 that should have been recombined. The

 45

first record has matches for Name, Birth, and Marriage. The second has matches for

Name, Relationship, and Death. Although the names in the second record are really

names of relatives of the first, they prevented our system from recombining these two

records. Since it prevented the correct record from being returned and created two

incorrect records, this problem affected both the precision and recall of our record

separator.

Another problem arose in complex18. Since the document only contained four

records, its magnitude measure was low enough that it appeared to be a single-record

document. Our record separator did not attempt to split it so we lost three records.

 records returned missed extra correct precision recall
complex1 10 10 0 0 10 100.00% 100.00%
complex2 15 15 0 0 15 100.00% 100.00%
complex3 12 12 0 0 12 100.00% 100.00%
complex4 7 9 1 3 6 66.67% 85.71%
complex5 16 15 1 0 15 100.00% 93.75%
complex6 15 16 2 3 13 81.25% 86.67%
complex7 13 12 1 0 12 100.00% 92.31%
complex8 10 10 0 0 10 100.00% 100.00%
complex9 19 20 1 2 18 90.00% 94.74%
complex10 10 10 1 1 9 90.00% 90.00%
complex11 15 11 4 0 11 100.00% 73.33%
complex12 15 15 0 0 15 100.00% 100.00%
complex13 11 11 0 0 11 100.00% 100.00%
complex14 16 18 1 3 15 83.33% 93.75%
complex15 8 8 2 2 6 75.00% 75.00%
complex16 8 9 0 1 8 88.89% 100.00%
complex17 10 11 0 0 11 100.00% 110.00%
complex18 4 1 3 0 1 100.00% 25.00%
complex19 8 11 0 3 8 72.73% 100.00%
complex20 16 13 4 1 12 92.31% 75.00%
Total 238 237 21 19 218 91.98% 91.60%

Table 6: Complex Multiple-record Document Results

 46

BROWN, Edwin, Born 18 Apr 1899 in Somerset, Kentucky, Married 1928
Ruth V. Rosenburg dau. of Johan N. and Anna Marie Eriksson Rosenberg, he died 4 Aug 1960 in
Toledo, Ohio at age 61

Figure 14: Records That Should Be Recombined

6.3 Summary of Results

Our record separator achieved an overall precision of 93% and a recall of 92%.

This represents three improvements over the old record separator. First, the new record

separator can recognize single-record documents. The old record separator always split

them, but our new record separator only split about 10% in our test cases. Second, the

new record separator improves the 51% precision and 67% recall of the old record

separator respectively to 95% precision and 93% recall on simple multiple-record

documents. Third, the new record separator can separate records in complex multiple-

record documents with 92% precision and 92% recall. The old record separator always

failed to separate records in complex multiple-record documents.

We encountered two problems that we believe require techniques more

sophisticated than VSM to overcome. Magnitude measures alone are insufficient to

correctly distinguish data-rich single-record documents and multiple-record documents

with few records. In addition, unless we can resolve conflicts in matches before record

separation, we need a more accurate test of whether two records can be merged.

 47

Chapter 7

Conclusion and Future Work

 This thesis documents two contributions to the automatic extraction of

genealogical data from the Web. First, we implemented a general framework for

ontology-based information extraction. Because the framework is based on ontological

modeling, our system is able to handle Web pages taken from any source and is

resilient to changes in those pages. Second, we developed a VSM-based record

separator that achieved 93% precision and 92% recall in our experiments. In addition

to its contributions to data extraction and record separation, this research also provides

the beginning of what could be an important tool for genealogical research on the Web.

7.1 Future Work

Our extraction framework has room for improvement in several places. (1)

Because improved heuristics are currently being developed in a project outside of this

thesis, we did not test the overall extraction accuracy. Once these are in place, we will

be able to evaluate and improve the overall accuracy of the system. (2) Development of

an intelligent URL selector and parallelization will allow the system to scale to more

sources and queries. (3) Currently, GeneTIQS is only capable of extracting data from

static web pages. The addition of extraction modules using both existing and novel

techniques will open up more sources of information to the system. (4) Sometimes not

all of the information about a person is located on one page. People browsing for

information follow links to other pages with more information when they find a record

 49

interesting. Sometimes web pages also include links to other sources of information. A

method of intelligently following links to either more information on a person or more

sources of genealogical information would improve amount of information returned.

 Our experiments have shown VSM to be a useful tool for record separation. In

our experiments, we identified four points of improvement. (1) We used averages from

the participation constraints to define the OV and to normalize the SVs. Thus,

participation constraints were the basis for weights on each dimension in vector space.

Although inferring these weights in this way proved effective, a more sophisticated

method might prove more accurate. Allowing ontology designers to specify manually

the importance of each object set would give them control over these weights.

Alternatively, a machine-learning algorithm could automatically create these weights

from labeled examples. (2) The conflict between person names and relative names

caused many record separation errors. We have heuristics that resolve these conflicts,

but they presuppose record separation. Heuristics able to disambiguate these matches

before record separation would remedy this problem. (3) Most web pages employ some

regular structure to present data. Since our basic algorithm evaluates each subtree on

its own merits, it does not use this to its advantage. The refinement we added to detect

simple patterns (Section 5.5.3) did so only in a small portion of pages. Many other

methods can use patterns to recognize more data on a page. (4) The VSM scores we

used were unable to differentiate completely between single-record and multiple-record

documents. Other techniques are needed.

 50

Bibliography

[Anc04] Ancestry.com—Genealogy and Family History Records.

http://www.ancestry.com, March 2004

[BLP01] D. Buttler, L. Liu, C. Pu. A Fully Automated Object Extraction System for

the World Wide Web. In Proceedings of the 2001 International

Conference on Distrubuted Computing Systems (ICDCS'01), pages 361-

370, Phoenix, Arizona, May 2001.

[Chen02] X. Chen. Query Rewriting for Extracting Data Behind HTML Form,

Masters Thesis, Brigham Young University, Provo, Utah, March 2004.

[Cyn04] C. Howells. Cyndi’s List of Genealogy Sites on the Internet.

http://www.cyndislist.com, March 2004

[dmoz04] ODP—Open Directory Project. http://www.dmoz.org/, March 2004

[dRC+98] M. De Rosa, T. Catarci, L. Iocchi, D. Nardi, G. Santucci. Materializing the

Web. In Proceedings of the Third IFCIS International Conference on

Cooperative Information Systems (CoopIS '98), pages 24-31, New York,

August 1998.

[ECJ+99] D. Embley, E. Campbell, Y. Jiang, S. Liddle, D. Lonsdale, Y. Ng, R.D.

Smith. Conceptual-Model-Based Data Extraction from Multiple-Record

Web Documents. Data and Knowledge Engineering, 31(3): 227-251,

November 1999.

[EJN99] D. Embley, Y. Jiang, Y. Ng. Record-Boundary Discovery in Web

Documents. In Proceedings of the 1999 ACM SIGMOD International

 51

http://www.ancestry.com/
http://www.cyndislist.com/
http://www.dmoz.org/

Conference on Management of Data, pages 467-478, Philadelphia,

Pennsylvania, June 1999.

[ETL02] D. Embley, C. Tao, S. Liddle. Automatically Extracting Ontologically

Specified Data from HTML Tables with Unknown Structure, In

Proceedings of the 21st International Conference on Conceptual Modeling

(ER2002), pages 322-337, Tampere, Finland, October 2002.

[EM01] D. Embley, W. Mok. Developing XML with Guaranteed ‘Good’

Properties. In Proceedings of the 20th International Conference on

Conceptual Modeling (ER2001), pages 426-441, Yokohama, Japan,

November 2001.

[EM03] D. Embley, W. Mok. On Guaranteeing ‘Good’ Properties for XML. In

Proceedings of the 7th World Multiconference on Systemics, Cybernetics

and Informatics (SCI 2003), pages 195-199, Orlando, Florida, July 2003.

[EX00] D. Embley, L. Xu. Record Location and Reconfiguration in Unstructured

Multiple-Record Web Documents, In Proceedings of the Fifth International

Workshop on the Web and Databases (WebDB 2000), pages 123-128,

Dallas, Texas, May 2000.

[EX01] D. Embley, L. Xu. Locating and Reconfiguring Records in Unstructured

Multiple-Record Web Documents, In Lecture Notes in Computer Science,

volume 1997, pages 256-276, Springer-Verlag, Heidelberg, 2001.

[Gen04] Genealogy.com—Family Tree Maker Family History Software and

Historical Records. http://www.genealogy.com, March 2004

[Goo04] Google. http://www.google.com, March 2004

 52

http://www.genealogy.com/
http://www.google.com/

[HGN+97] J. Hammer, H Garcia-Milina, S. Nestorov, M. Breunig, V. Vassalos.

Template-Based Wrappers in the TSIMMIS System. In Proceedings of the

1997 ACM SIGMOD International Conference on Management of Data,

Pages 532-535, Tucson, Arizona, May 1997.

[KMA+98] C. Knoblock, S. Minton, J. Ambite, P. Ashish, I. Muslea, A. Philpot, S.

Tejada. Modeling Web Sources for Information Integration. In

Proceedings of the Fifteenth National Conference on Artificial Intelligence

(AAAI), pages 211-218, Madison, Wisconsin, July 1998.

[KT02] S. Kuhlins, R. Tredwell. Toolkits for Generating Wrappers—A Survey of

Software Toolkits for Automated Data Extraction from Websites. In M.

Aksit, M. Mezini, R. Unland (Eds.): Objects, Components, Architectures,

Services, and Applications for a Networked World, International

Conference NetObjectDays (NODe 2002), pages 184-198, Erfurt, Germany,

October 2002.

[LRS+02] A. Laender, B. Ribeiro-Neto, A. Silva, J. Teixeira. A Brief Survey of Web

Data Extraction Tools. SIGMOD Record, 31(2):84-93, June 2002.

[LRS02] A. Laender, B. Ribeiro-Neto, A. Silva. DEByE—Data Extraction by

Example. Data and Knowledge Engineering, 40(2):121-154, February

2002.

[Roo04] RootsWeb.com Home Page. http://www.rootsweb.com, March 2004

[RS97] M. Roth, P. Schwarz. Don’t Scrap It, Wrap It! A Wrapper Architecture for

Legacy Data Sources. In Proceedings of International Conference on Very

Large Data Bases (VLDB ‘97), pages 266-275, Athens, Greece, August

 53

http://www.rootsweb.com/

1997.

[SA99] A. Sahuguet, F. Azavant. Web Ecology: Recycling HTML Pages as XML

Documents Using W4F. In Proceedings of the ACM International

Workshop on the Web and Databases (WebDB'99), pages 31-36,

Philadelphia, Pennsylvania, June 1999.

[SMN01] H. Snoussi, L. Magnin, J.Y. Nie. Heterogeneous Web Data Extraction

Using Ontology. In Proceedings of the 5th International Conference on

Autonomous Agents, pages 99-110, Montreal, Canada, May 2001.

[Tao03] C. Tao. Schema Matching and Data Extraction over HTML Tables,

Masters Thesis, Brigham Young University, Provo, Utah, September 2003.

[Wes03] A. Wessman. A Framework for Extraction Plans and Heuristics in an

Ontology-Based Data-Extraction System, Thesis Proposal, Brigham Young

University, Provo, Utah, March 2003.

[Yah04] Yahoo! http://www.yahoo.com/, March 2004

[Xu03] L. Xu. Source Discovery and Schema Mapping for Data Integration, PhD

Dissertation, Brigham Young University, Provo, Utah, July 2003.

 54

http://www.yahoo.com/

Appendix A

Test Documents

 Cached copies of the documents we used to test our system are available at

http://www.deg.byu.edu/GeneTIQS/test/. Table 7, Table 8, and Table 9 show the

sources for these documents.

single1.html http://www.cs.utk.edu/~dwalker/genealogy/PEOPLE/268.html
single2.html http://www.cs.utk.edu/~dwalker/genealogy/PEOPLE/133.html
single3.html http://www.cs.utk.edu/~dwalker/genealogy/PEOPLE/659.html
single4.html http://www.mullgenealogy.co.uk/MullSearch.ASP?indv_no=9655
single5.html http://www.mullgenealogy.co.uk/MullSearch.Asp?indv_no=4654
single6.html http://www.mullgenealogy.co.uk/MullSearch.ASP?indv_no=7495
single7.html http://www.uk-genealogy.org.uk/cgi-bin/genealogy/person.pl?496
single8.html http://www.uk-genealogy.org.uk/cgi-bin/genealogy/person.pl?35
single9.html http://www.uk-genealogy.org.uk/cgi-bin/genealogy/person.pl?59
single10.html http://members.cts.com/crash/h/hindskw/KennethHinds/24755.html
single11.html http://members.cts.com/crash/h/hindskw/KennethHinds/22838.html
single12.html http://members.cts.com/crash/h/hindskw/KennethHinds/23647.html
single13.html http://www.bdragon.com/cgi-bin/genealogy/tree.cgi/I0956.htlm
single14.html http://www.bdragon.com/cgi-bin/genealogy/tree.cgi/I0947.html
single15.html http://www.bdragon.com/cgi-bin/genealogy/tree.cgi/I0901.html
single16.html http://users.erols.com/ulrich/jbt0071.html
single17.html http://users.erols.com/ulrich/glc0074.html
single18.html http://users.erols.com/ulrich/jeu0027.html
single19.html http://www.geocities.com/Heartland/Meadows/2303/susannah.html
single20.html http://www.geocities.com/Heartland/Meadows/2303/henry.html
single21.html http://www.geocities.com/Heartland/Meadows/2303/elvira.html

Table 7: Sources of Single-record Test Documents

 55

http://www.deg.byu.edu/GeneTIQS/test/

simple1.html http://blairgenealogy.com/vermont/descendants_of_john_blair.html
simple2.html http://homepages.rootsweb.com/~edburton/names3.htm
simple3.html http://www.geocities.com/Heartland/Bluffs/6882/
simple4.html http://www.clayton-clan.org/gedhtml/tmc/n_106.html
simple5.html http://www.geocities.com/Vienna/5134/thomaswalkerrob.html
simple6.html http://www.geocities.com/white_dove41/Dillon
simple7.html http://64.235.34.221/rosehill/genthompson.htm
simple8.html http://perrussel.netfirms.com/thompson/
simple9.html http://users.adelphia.net/~buddy75/souther_details.html
simple10.html http://andrsn.stanford.edu/ind0009.html

Table 8: Sources of Simple Multiple-record Test Documents

complex1.html http://www.familyworkings.com/gedcoms/hays/dat9.htm
complex2.html http://www.geocities.com/Heartland/Estates/8053/pedigre1.html
complex3.html http://www.geocities.com/Heartland/Garden/7021/millardmiller/dat132.html
complex4.html http://www.geocities.com/Heartland/Meadows/7939/edwinbro.htm
complex5.html http://home.comcast.net/~sfburton/FamilyTree/pafg14.htm
complex6.html http://www.angelfire.com/nd/domneal/mcmillan.html
complex7.html http://www.hoopesonline.com/hoopes_family_genealogy/family00400.html
complex8.html http://www.uttoxeter.demon.co.uk/html_genealogy/desc_0.htm
complex9.html http://ramsey.users5.50megs.com/DESCENDA/desc07.htm
complex10.html http://home.tampabay.rr.com/drewsmith/d0001/g0000077.htm
complex11.html http://mcguinnessfamily.org/ancestry/p4.htm
complex12.html http://www.angelfire.com/nc/JohnMiddleton/Pedijrm1.html
complex13.html http://www.angelfire.com/mo/winkeler/scott.html
complex14.html http://home.earthlink.net/~larsrbl/Gen/genealogypage.html
complex15.html http://homepage.powerup.com.au/~ajthomps/JWT_History.htm
complex16.html http://www.geocities.com/Heartland/Plains/4897/thomson.htm
complex17.html http://www.familyworkings.com/gedcoms/ripley/dat22.htm
complex18.html http://www.papachuck.org/gene/john/d4104.htm
complex19.html http://home.cc.umanitoba.ca/~wyatt/harrison-merrickville.html
complex20.html http://members.aol.com/ArletaHowe/Anderson2.html

Table 9: Sources of Complex Multiple-record Test Document

 56

	Automating the Extraction of Domain-Specific Information from the Web-A Case Study for the Genealogical Domain
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	The Extraction Ontology
	The Extraction System
	User Query
	URL List
	URL Selector
	Document Retriever and Structure Recognizer
	Extraction Modules
	Single-Record or Multiple-Record Engine
	Specialized Extraction Modules
	Other Extraction Modules

	Data Constrainer
	Result Filter
	Result Presenter

	VSM-Based Record Separation
	The Problem of Record Separation
	Previous Work
	Vector Space Modeling
	Improved Method of Record Separation
	Problems and Refinements
	Schema Differences
	Over-richness of Data
	Missed Simple Patterns

	Experimental Results
	Test Documents
	Results
	Single-record Documents
	Simple Multiple-record Documents
	Complex Multiple-record Documents

	Summary of Results

	Conclusion and Future Work
	Future Work

