Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2004-11-16

Real-time Image Enhancement Using Texture Synthesis

Matthew J. Sorensen
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Computer Sciences Commons

BYU ScholarsArchive Citation

Sorensen, Matthew J., "Real-time Image Enhancement Using Texture Synthesis" (2004). Theses and
Dissertations. 211.

https://scholarsarchive.byu.edu/etd/211

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/211?utm_source=scholarsarchive.byu.edu%2Fetd%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Real-time Image Enhancement using Texture Synthesis

by

Matthew Sorensen

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
Brigham Young University
November 2004

Copyright (C) 2004 Matthew Sorensen

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Matthew Sorensen

This thesis has been read by each member of the following
graduate committee and by majority vote has been found to be
satisfactory.

Date Parris K. Egbert, Chair

Date Bryan S. Morse

Date Kevin Seppi

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate's graduate committee, I have read the
thesis of Matthew Sorensen in its final form and have found that (1)
its format, citations, and bibliographical style are consistent and
acceptable and fulfill university and department style requirements;
(2) its illustrative materials including figures, tables, and charts are in
place; and (3) the final manuscript is satisfactory to the graduate
committee and is ready for submission to the university library.

Parris K. Egbert

Date Chair, Graduate Committee

Accepted for the Department

David Embley
Graduate Coordinator

Accepted for the College

G. Rex Bryce
Associate Dean, College of Physical and
Mathematical Sciences

ABSTRACT

Real-time Image Enhancement using Texture Synthesis

Matthew Sorensen
Department of Computer Science

Master of Science

This thesis presents an approach to real-time image enhancement
using texture synthesis. Traditional image enhancement techniques
are typically time consuming, lack realistic detail, or do not scale
well for large magnification factors.

Real-time Enhancement using Texture Synthesis (RETS) combines
interpolation, classification, and patch-based texture synthesis to
enhance low-resolution imagery, particularly aerial imagery. RETS
uses as input a low-resolution source image and several high-
resolution sample textures. The output of RETS is a high-resolution
image with the structure of the source image, but with detail
consistent with the high-resolution sample textures. We show that
RETS can enhance large amounts of imagery in real-time. Our
implementation can produce over twenty-five million pixels per
second on an average PC.

ACKNOWLEDGMENTS

I would like to thank Dr. Egbert and the committee
members for the time spent reviewing and assisting me in
writing this thesis. I would also like to thank my wife,
Laurie, for her support.

Table of Contents

1. INTPOAUCHION .eeeiniiiiiiiieeieecete ettt e st e e ra e e saae e s anaessseaes 1
1.1 Statement of the Problem..........cccooeviiiiriiiiniiiieeeeeee e, 1
1.2 Practical Example of Problem...........cccccvueiriiiineiiiiiiieccieecceeceeeeee e 3
1.3 Thesis STAteIMENTt.......uuvviiiieiiiiieiiiiiieeeee e eeeerarrr e e e e eeeennsssaaeeees 4

I 5F: 1) €24 (0101 U U USSP 7
2.1 Introduction to Texture Synthesis........cccceeevuieieiiieeicieiecieecceecere e 8
2.2 Introduction to Image Interpolation........c.ccceeeveeeeeiieniieeneiieeeciee e 14
2.3 Similar Work in Detail Synthesiscccceeviiieiiiieciiieicieecceeeeceeceeeeee 15
2.4 Approach Presented in this Thesis........cccceeviieiieeiiieiicciiiiecceceeeeceeeee, 19

3. OVEIVIEW: RETS ..o iiiiee e e e e e e e e e e e e e e s e e e e e e e e e e e e e e 21
3.1 Solution REQUITEMENLScccveeeiiieeeiiieeciieeeite et iee e e e e ere e e see e e veeeans 21
3.2 Inputsand OULPULcoiiieiiiiiiee e e 23
3.3 AlgOTithimn OVEIVIEW.....ccoiiiiieiiiiieeecettee ettt e are e e e 25

4. EXtracting PatCh SetsS......ccuiieciiiiciiiecieccteectectecte et 29
4.1 Traditional APProach........ccceeeeiiiieiiiiccieeeecee e 30
4.2 Introduction to Wang Tile Setscceeeviieiiiciiieeiiceeeecereee e 32
4.3 Using Wang Tiles to Build Patch Setscccccovuiieiieoiieiiiciiieicccieeeeeee, 34
4.4 Non-periodic REPetition........cceeecuiiieiieiiiiieeciieceee et 39
4.4 Stitching Diagonals into Patches.........ccoccuviieiiiieciiinciieiceccceeecceecee, 41

5. Image ENhancementcccoviiiiiiiiiiiiciiieeccee e vee e e e vaae e e 45
5.1 Classification of the Source Image........ccccceeeeeviieeiceciieeeeccreee e 46
5.2 Up-sample Source IMagecccccueeeeiuieeeciieeeieeeeceeeeceeeeceeeessveeesseseesssneens 47
5.3 Pasting PatChescccuiieiiiiiiiieccieccteeceecee et 52

5.3.1 Transferring Detail..........ccccueeiiiiiiieiieiiieeccceecccre e 54

5.3.2 RGB Detail Transfer Approach..........ccoccveeeeiiieciieiccieeccieeecieeeeeee e 55

5.3.3 Color Shiftingcciieiiieieiiieeieeccieeeee et ae e s aee e 59
5.3.4 HSV Detail Transfer Approach........ccccccoveeieeiviiiiieiiieeeeccieeeeecveee e 60
5.4 Custom Patch or Extracted Patch.......ccccccoevviiiiiiiiiiiiiiiiiiiiiiiiiicceeeeee, 63
5.5 Selecting a Patch from the Set........cooccviiiiiiiiiiiiiieeeeceeeee e, 65
5.6 Custom Patches using Interpolationccceccueeeeieeievieencieeneieeeeiee e 67
5.7 Multi-resolution SUPPOTt.....cccuiiiiiiciiiieieciree et e e e evre e e e e evaeeeeeans 71
(ST DA Y4 <11 A PRPRRPRNt 73
6.1 INtroduction t0 EVIEW....ccouuiiiiiiiiiiiccceteeeeee et 73
6.2 The SizZe ProDIEmMI...cccceiiiiieeiieeieeeeeceeeteeeee e e eaaaar e e 74
6.3 Remembering Previous Resultsccccocovuiieiieiiiiiiiciieeccceeeeecveee e 75
6.4 FilliNg HOLES..cccuuieieieeeieeeceteeeeetee ettt e e eree e e e va e e s e s aaa e e e eanns 76
e RESUILS oot eeeee b e e e e e e s aarraaaeeeeeeeeennnanaes 81
7.1 PEITOTINANICE ... esesesesssssssssesssnnnnnns 81
7.2 IMage QUALILY ..cccccuvreeieceiieeeceeee et e e e e aa e e e e e ea e e e e e e 86
7.3 SyNthesisS RESUILScciiiciiiiiiiieecceecce e e are e e 88
8. COMNCIUSION. . .uttiiiieeieiieeiiiteeeee e ceeeearr e e e e e eeeesarerereeeeeeessssssaseeeeeeeseesssnsssrereeeas 97
8.1 FULUTE WOTK..oovviiiiiieiiiiiiieieeeeeteeteeeeeeeeeeeeeeeeee e eeeeereeeeeeeesessesesssseeseesseereeeeeees 98

3310) U0T=a 21 o) 1| 2SR 101

List of Figures

Figure 1.2:
Figure 1.3:
Figure 1.4:
Figure 2.1:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 6.1:
Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 7.4:
Figure 7.5:
Figure 7.6:

Figure 1.1: Aliasing Artifacts.cccceeeeeiiieiiiccieecccceecccee e, 2
Enlargement CompariSomn.ccccceeureeeeeiuieeeeescireeeeeeenneeeeeeennnes 3
EVIEW SUCCESS. ...ciiieeeiitiiieeeeeeeeeeeeeettceeeeeeeeeeeressssneeeeeeeessssssnnnnns 5
EVIEW FailUure.uvvvvieiieiieeiiiieeeee et ennreeeeeee e 6
Texture SyNthesis......cceccciieiieciieeeccceeecccee e, 12
Examples of texture classes.....ccccecvvveeieecvreeeicccieeeeecceeeeeeeee 24
RETS Inputs and OutputS.......cccceeeeeeecireeiiccciieeeeeccieeeeeeecveeeenn 24
RETS OVEIVIEW....cciieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseseseessesessesssssseneenns 26
Traditional Patch EXtraction......cccccoceeeeeeeveieiieiieciiiccccccccecnnnnn 30
Wang Tile Set.....ccoieciiieeeeeieeeeectee e e e 32
Wang TiliNguvviieieeeeeeceee et e e 35
Automatic Wang Tile creationccceeevveeeeecccieeescccieeeeeeeee, 38
Cyclic Repetition..........ceieeeuiiieieciiiieeccccereee e e 40
Diagonal Stitching.........cccvveiieeiiiiiiicceeeeceeeccee e, 42
ClasSifiCatiON ...uuueeeeieeiiieiiiiitiiiiiiiiiiiiiiriararareeeaaaaeeeaeaseeaereaaaraasaaan 46
Interpolation COmMpPariSON.........ccccueeeeeecirreeeeceiiieeeeeceeee e e e 51
SYNThESIS StEPS .uveeieeiiieeeectteeeectee e e 53
Detail Transfer and color shift........cccccevvveviiivieiiiiiieiiiiiiiiieee, 57
Detail TransSfer... oo 58
RGB vs. HSV Detail Transfer......cccccceeeeeevivvveeeeeeeeeeeeecerveeeenen. 62
Custom Patch or Extracted Patchccoeeveeevieiiicicinnnnnne, 63
Texture Class Interpolationcccceeeeiveeeeecciieeeccceeeeceee, 68
Custom Patches ..., 69
FIlling HOLESuviiiiieeeeceteee ettt e e e 77
RETS Runtime Performanceccoeeevuvveeeeeeeeeeeecccinrreeeeeeeeeenne 82
RETS and EView Performancecccceeeeeeeeeveeeeeeeeeeeeeeeeeeennns 84
RESUIES...ciiiiiiiiiiiiiiiiiiiiieeteteteeeeereeererererrrrrearerresasrsassrssesssssaasssssaees 90
EVIEW PIODIEINScuvviviiieeiieeieeeciiireeeeeeeeeeeeenrreeeeeeeeeeee e nnnnnns 91
EView With RETS......uu e 92
ReEPEHITION coiiiiiiiiiittteeccce e e e e e e 93
(07011101 0721 3 110 s HOUUUN U UT TR 94

Figure 7.7:
Figure 7.8:

Enhancement EXxamples........cccccecvvuieeieiiiieeeiccciieeeeeecieee e 95

Chapter 1

Introduction

1.1 Statement of the Problem

During the last 30 years, researchers have developed proven
techniques for enlarging images. The primary challenge was that simply
stretching the digital image created a blocky result, because a digital image
contains only a small, finite sampling of the continuous function it
represents. Figure 1.1 shows blocky artifacts caused by repeated
magnification. Researchers were able to reduce the blocky appearance
(often referred to as aliasing) by using a smooth interpolation on the image.
Interpolation produces good results when the magnification factor is
relatively small. However, images magnified by a sizeable factor still do not

appear realistic, because interpolation enlarges the image without adding

1

Figure 1.1: Aliasing Artifacts. Here we see the effects caused by large
magnifications of aerial imagery. The top left image is a portion of the original
aerial photograph. The top right, bottom left, and bottom right images are
progressively magnified versions of the original. The magnification factors are
2x, 4%, and 16x. The bottom right image lacks detail and has very visible
aliasing artifacts.

(a) Image stretched (b) Bicubic Interpolation (c) Detail added

Figure 1.2: Enlargement Comparison. Comparison of three enlargements
of a 15x11 pixel image. All three images have been scaled 32 times the original
size. (a) Shows the image being stretched; this is called Nearest Neighbor
Interpolation. (b) Shows bicubic interpolation smoothing the image. (c) Shows
results using Image Enhancement by Texture Synthesis to add detail.

appropriate detail. Figure 1.2 compares the results of bicubic interpolation

and an enhanced image.

1.2 Practical Example of Problem

The graphics research lab at Brigham Young University has
previously developed an application named EView that uses aerial imagery
and elevation data to generate virtual environments. As can be seen in
Figure 1.3, the results are visually appealing when seen from a viewpoint far
from the surface of the terrain. However, when the viewpoint is near the
surface of the terrain (see Figure 1.4), EView must magnify the low-

resolution aerial imagery (e.g., one pixel per square meter) by a large factor.

3

Merely stretching the images produces badly aliased terrain. Using an
interpolation algorithm reduces the blocky appearance but does not add
details such as rock, grass, bushes, and dirt that we expect of virtual
environments. There is a need for an image enhancement algorithm that
synthesizes a higher-resolution image and automatically inserts visually

appropriate detail.

1.3 Thesis Statement

For certain classes of images (e.g., aerial photographs), real-time
image enhancement using texture synthesis (RETS) can produce visually
realistic results in real-time. This process receives as input a low-resolution
source image and high-resolution sample textures. From these inputs, the
process automatically produces a high-resolution version of the source
image with local characteristics matching the high-resolution sample
textures.

RETS includes several new advancements over previous techniques.
First, we combine patch-based texture synthesis with image interpolation.
Second, our algorithm enlarges images inserting detail locally similar to
supplied sample images in real-time. Third, RETS allows multiple texture

classes to appear in a single synthesized image.

Figure 1.3: EView Success. Images produced by EView when the
viewpoint is far from the surface. The images are very detailed and
appear photorealistic.

Figure 1.4: EView Failure. Images produced by EView when the
viewpoint is near the surface of the terrain. The images lack detail and
appear blocky. The research presented here will address this problem.

6

Chapter 2

Background

This chapter begins by introducing previous approaches to texture
synthesis. We discuss the strengths and weaknesses of each approach as
well as why texture synthesis alone does not solve the image enhancement
problem. We then briefly introduce interpolation as it applies to this thesis.
Two recently published solutions to the image enhancement problem are
then discussed, including the limitations of these approaches and how they
differ from our approach. An introduction to the approach taken in this

thesis is then presented.

2.1 Introduction to Texture Synthesis

This section reviews previous work in texture synthesis and image
interpolation. Research in texture synthesis began in the 1980s. Early
attempts at texture synthesis focused on procedural method to synthesize
two-dimensional and three-dimensional textures. Each procedure was
written to generate a specific texture (ex. wood, marble, water, etc.). While
this approach could produce good results, writing a new synthesizer for
every type of desired texture is impractical.

Research next focused on sample-based texture analysis and
synthesis. Sample based texture synthesis attempts to create a new texture
similar to a sample. The analysis phase of this technique decomposes the
sample texture to identify its statistical properties. The synthesis phase then
uses the statistical characteristics to create a new texture with similar
properties.

In [HB95], Heeger and Bergen introduced pyramid-based texture
synthesis. Here a sample texture is decomposed using a steerable pyramid
transform. A result texture is seeded with noise and is decomposed in a
steerable pyramid. Iteratively, the histogram of the noise pyramid is

coerced to match the histogram of the sample’s pyramid. While this

approach produced reasonable results for some stochastic textures, it cannot
synthesize structured textures.

Recent research has focused on two primary methods: pixel-based
[Asho1, Bong7, EF99, HB95, IBG03, WL0o0o, WL02] and patch-based [EFo02,
LLo1, XGSoo]. Both methods are based on the Markov Random Field
(MRF). Pixel-based synthesis techniques generate images one pixel at a
time. For each pixel in the destination image, the sample texture is searched
for a pixel with a neighborhood matching the neighborhood in question.
The destination pixel is then generated based on a “best fit” measure.
Though pixel-based synthesis produces reasonable results for a wide variety
of textures, it is computationally very expensive.

Efros and Leung introduced the neighborhood searching approach of
pixel-based texture synthesis [EF99]. Their revolutionary method made
previous techniques obsolete, because the neighborhood approach was
much simpler and produced better results for more classes of textures. They
showed that their technique worked very well on complex textures that
contained both structure and stochastic elements.

Efros and Leung’s approach takes as input a sample texture. The
output is a synthesized texture that has the same local characteristics as the
sample texture. The neighborhood approach synthesizes textures one pixel
at a time from left to right, top to bottom. The top-left pixel in the
synthesized texture is chosen randomly. For all other pixels in the

synthesized texture, the algorithm searches the sample texture for a
9

neighborhood (32x32 block of pixels) that closely matches the neighborhood
of the pixel in question. While this technique produces good results on
many textures, it is very slow and on occasion can produce textures that
reflect only part of a sample texture.

Wei and Levoy improved the pixel-based neighborhood approach by
significantly accelerating that technique [WLoo]. They succeeded in
producing comparable results in a fraction of the time by using multi-
resolution synthesis and tree-structured vector quantization.

Their approach synthesized the resulting texture several times at
multiple resolutions. First, a low-resolution version of the sample was
synthesized. This is similar to using large brush strokes to paint the general
structure of the texture. Next smaller brush strokes will be used to add in
more detail. After the lowest resolution is synthesized, higher resolution
versions are created adding more detail. The advantage of multi-resolution
synthesis is that it allows the use of a much smaller neighborhood when
searching the sample texture. Using smaller neighborhoods decreases the
time spent in the searching algorithm.

Wei and Levoy further improved the search performance by building
a tree structured data object to store all possible neighborhoods from the
sample texture. This data object allows for rapid searching for a matching
neighborhood. When combining their tree structured searching with multi-
resolution synthesis, Wei and Levoy produced good results much faster than

the previous neighborhood technique.
10

Ashikhman further decreased the search time by limiting the
neighborhoods to search based on results from previous searches [Asho1].
Ashikhman found that when synthesizing natural textures such as flowers
and grass, this shortcut did not significantly affect the result’s quality.
However, in general, textures produced by [Asho1] are lower in quality than
textures produced by other neighborhood techniques.

Pixel-based neighborhood texture synthesis seemed to be the defacto
standard approach for all texture synthesis research until recently. In 2000,
another revolutionary approach was published based on patch-based texture
synthesis. Patch-based texture synthesis constructs an image by pasting
square patches into the image at each step. Before the synthesis begins, a
set of possible patches is extracted from the sample texture. Each of these
patches is a small square piece of the sample texture. Patches are pasted
into the destination image from left to right, then top to bottom.

The first patch is chosen randomly. To choose subsequent patches,
the patch set is searched for the patch that best matches the neighborhood.
Since the synthesis process generates a whole patch at each step, patch-
based synthesis is an order of magnitude faster than pixel-based synthesis.
For example, with a patch size of 32x32, a patch-based method would
synthesize 1024 pixels each iteration, whereas pixel-based synthesis must
perform a search for every pixel synthesized. Although the overhead cost of
each iteration is more expensive for the patch-based system, the amount of

texture generated stills give a significant overall performance improvement.
11

Texture synthesis is the process of

with local characteristics like a sample image. The smaller
the samples textures. The larger images are synthesized images

z 5
0n <
S8y 8
= 2,
m oy
o]
@« B
) o
= ol
= <
5 S
<
Ts a,
%o o]
i
a.E2F
0 ga =
£E87
BE S S
o pu{
= 585

12

Patch-based synthesis was first proposed by Xu, Guo, and Shum
[XGSoo0]. Patch-based synthesis was quite a breakthrough, because the
reasonably simple algorithm produced very good results an order of
magnitude faster than previous texture synthesis algorithms. While results
were more repetitious than pixel-based methods, they were also much more
predictable in quality.

Liang et al. simplified patch-based synthesis further and added three
accelerators to synthesize moderate sized textures in real-time [LLo1]. The
first accelerator was to search for matching patches in a lower resolution.
Then, patches that were marked as good prospects were searched in higher
resolutions using an approximate nearest neighbor searching algorithm.
This search was further accelerated using principle component analysis,
which compares only some of the pixels from each patch that represent the
greatest differences between the patches.

Efros and Freeman used patch-based synthesis for texture transfer
[EFo2]. This allows them to transfer one texture (e.g., an orange peel
texture) onto another image (e.g., a photo of a banana).

Cohen et al. used Wang Tiles for patch-based synthesis [CSHDo3].
This eliminated the high dimensional search and thus reduced synthesis
time even more. This important performance enhancement will be
discussed more in Chapter Four. After experimenting with both pixel and
patch-based synthesis techniques, we have determined that a patch-based

approach is more appropriate for our application. The patch-based
13

approach gives us the desired image quality and the required speed. Figure

2.1 shows textures created using patch-based texture synthesis.

2.2 Introduction to Image Interpolation

Image interpolation is a very mature topic that received much
attention in the graphics community during the 1980s. Image scaling is the
process of taking a source image and extending it to create a larger image.
The primary problem with enlarging images using interpolation is that the
larger result contains the same amount of discrete data as the smaller source
image. Thus, visual discontinuities and artifacts are introduced into the
enlarged image. Interpolation is the primary technique used for image
scaling. Many interpolation formulas exist that provide varying levels of
continuity when transitioning between data points. @ The type of
interpolation chosen will determine the continuity and smoothness of the
enlarged image.

The most common types of interpolation are bilinear and bicubic
[Dodg7]. Bilinear interpolation uses a 2x2 neighborhood of data points to
calculate pixel color between data points. Bicubic interpolation uses a 4x4
neighborhood of data points to calculate pixel color. Although bicubic
interpolation produces smoother, more continuous results, it is significantly

more expensive than bilinear interpolation, and thus less practical for use in

14

real-time systems. Many other interpolation methods have been proposed
(see [PKT83] for a comparison). Most of these were developed to achieve

the smoothing of bicubic interpolation with less computation.

2.3 Similar Work in Detail Synthesis

Although the papers mentioned in the previous two sections address
texture synthesis and image interpolation, none of them solves the problem
of inserting detail into an image. To date we have discovered only two

papers that attempts to solve the problem of detail insertion.

2.3.1 Image Hallucination

In [SZTS03], Sun et al. use a learning based approach to super-
resolution. Their algorithm takes as input a low-resolution source image
and several training images. Their algorithm produces a high-resolution
version of the source image with edges both smooth and sharp. Their two-
step approach begins by creating a training set of primitives and finishes
with image synthesis.

In the first step, a set of image primitives is created from the natural

training images. The primitives are obtained by using a primal sketch edge-

15

detection algorithm. Both high frequency and low frequency versions of
each primitive are obtained.

In the second step, primitives are found in the low-resolution source
image using the same technique as used on the training images. For each
low frequency primitive found in the source image, the low frequency
primitives in the training set are searched to find a similar structure. Once a
low frequency primitive is found, the corresponding high-frequency version
is used to enhance the low frequency source image with the high frequency
data. This is only done for the intensity of the image at each pixel. The color
channels are interpolated.

While the approach taken in [SZTS03] is very successful at enhancing
images at a relatively low level of magnification (3x), their algorithm does
not meet our needs in two areas. First, they algorithm is 3-4 orders of
magnitude too slow for our needs. Their approach creates a high-resolution
image for moderately sized input images in 20-100 seconds. Obviously, this
cannot meet our needs of real-time enhancement.

Second, they do not attempt to insert detail on a large scale. Although
their approach uses Markov techniques found in texture synthesis, the
approach is targeting the problem of edge handling during super-resolution.
This is more similar to edge directed interpolation or edge reconstruction
than it is to texture synthesis. The resulting images do have both smooth
and sharp edges, but the image does not have significant amounts of new

detail.
16

2.3.2 Detail Synthesis for Image-based texturing

The second paper that addresses the problem of detail insertion has a
strong emphasis on image-based modeling and rendering. In [IBGO03]
Ismer, Bala, and Greenberg use texture synthesis to insert detail. They use a
multi-resolution pixel-based synthesis technique to coerce a poorly sampled
texture to look more like a high quality sample texture. Their technique is
very similar to Wei and Levoy’s approach, but the comparison operator used
during the search has been slightly modified. Instead of comparing the
neighborhoods from the sample texture to only the synthesized pixel in the
destination image, they also compare the prospective neighborhood against
the corresponding area in the image to be enhanced with detail. This
significantly increases the search time required for finding matching
neighborhoods.

The problem and solution presented by Ismer, Bala, and Greenberg
have several similarities as those presented here. The problem they address
is enhancing low quality imagery and adding appropriate detail. They use
texture synthesis techniques as a basis for their approach. However, there
are three fundamental differences in our techniques.

The first difference is that [IBG03] uses a multi-resolution pixel-
based synthesis approach. After implementing and evaluating two pixel-

based methods and two patch-based methods, we have chosen to use a

17

patch-based approach. The patch-based approach produces visually
pleasing results and is an order of magnitude faster than the most optimized
pixel-based methods. Since real-time performance is one of the primary
goals of this work, using a patch-based approach should provide significant
speedup over the technique presented in [IBG03].

The second difference is that like other texture synthesis algorithms
to date, [IBG03] does not address the need for using multiple sample
textures. Their system requires the user to separate the source image into
pieces of different textures. Each area of the image can then be enhanced
separately. The algorithm presented here allows multiple sample textures as
input and multiple texture classes in the resulting image.

The third difference is that Ismer, Bala, and Greenberg focus on
inserting detail on a relatively low scale of magnification. Their examples
show textures of bricks that appear fuzzy because the camera angle was not
perpendicular to the surface or the camera was a significant distance from
the brick wall. Their detail insertion algorithm cleans up the texture by
coercing the fuzzy bricks to look more like bricks in a sample texture. In
contrast, the algorithm presented here focuses on detail insertion at a much

higher scale of magnification (scaling factors from four to 128).

18

2.4 Approach Presented in this Thesis

In order to solve the problem of real-time, detail synthesizing image
enhancement, we use a combination of interpolation and texture synthesis.
Our approach uses bilinear or bicubic interpolation as in traditional scaling
algorithms to avoid aliasing and to provide smooth transitions between
different classes of textures. In addition, it uses texture synthesis to solve
two important problems:

1. It allows the user to specify the detail to be inserted into the output
image by providing a representative sample for the system to
replicate. These sample textures can be hand drawn, scanned images,
or digital photos. There are no special requirements imposed on the
input samples (i.e., the sample textures do not need to be able to tile
seamlessly).

2. Applying texture synthesis appropriately will allow us to avoid the
unnatural repetition of texture tiles that can occur with standard

texture mapping.

The primary contribution of our approach is that it allows real-time
detail insertion from multiple sample textures. This chapter has described
several partial solutions to this problem, but none of the current approaches

provide real-time image enhancement using texture synthesis. In addition,

19

none of the texture synthesis papers allows the use of multiple sample

images.

20

Chapter 3

Overview: RETS

This chapter presents an overview of our approach to real-time image
enhancement using texture synthesis (RETS). We begin by stating the
requirements a solution must meet. We then define the inputs and outputs
of the algorithm. Finally, we present a brief overview of our approach to

solve the problem stated.

3.1 Solution Requirements

As previously stated, the purpose of the algorithm presented here is to
enhance a source image with texture in real-time. Before discussing how we

do this, we first list goals we want the system to accomplish:

21

1. The ability to synthesize a high-resolution version of a low-resolution
source image.

2. The system should be able to insert appropriate detail from sample
textures.

3. The system must run in real-time.

4. There should be no popping when transitioning from a source image
to a synthesized image when used in MIP mapping systems.

5. The system should support multiple sample textures.

6. The system should allow for multi-resolution output.

Each one of the stated goals is very important in ensuring this
algorithm can be used in real world applications. The first goal is the base
objective of this thesis. The second goal allows the user to input sample
textures easily. The second goal also requires that new detail be added.
Adding detail is critical for large levels of magnification. The third goal of
real-time performance is critical so that this technology can be used in
interactive applications. Together, goals four and goal six allow RETS to be
used with rendering systems that support MIP-Mapping (eg. OpenGL and
DirectX). Goal five will enable our system to synthesize images with
multiple texture classes. This is in contrast with all current texture synthesis

algorithms that support only one input texture.

22

3.2 Inputs and Output

A user or program utilizing our enhancement technique is required to
provide two items of input. The first is a low-resolution image to be
enhanced. Our algorithm has been designed around the specific application
of enhancing low-resolution aerial-imagery. Aerial imagery has the special
property of being locally similar, meaning if a small 32x32 sub-image of an
aerial photo is selected, it is very likely that you could find many other 32x32
sub-images in the same image that look very similar. For example, if you
selected a sub-image of grass, you could find many other sub-images of
grass that look very much like the first, but not exactly the same. Though
this thesis will focus on enhancing aerial images, the technique could be
applied to other classes of imagery as well.

The second item of input is a set of sample textures. The term texture
as used in this thesis defines a special class of images. Textures should be
locally similar. If you select any two sub-images of a texture (above a certain
size), those two sub-images should always look similar. Thus, a digital
photograph of a person would not be a texture as we are using the term,
because a sub-image of the person’s arm would not look like a sub-image of
the person’s nose. However, a digital photograph of a wheat field would

meet our definition of a texture, because it is likely that any two sub-images

23

would look very similar. Figure 3.1 shows an example of several sample

textures. Notice that each of these passes the test of being locally similar.

In traditional patch-based synthesis, the user is allowed to input only
one texture sample to be used in synthesis. However, in our version of
texture synthesis the user supplies multiple sample textures. The user
should supply one sample texture for each type of texture that will occur in
the destination image.

As shown in Figure 3.2, the output of RETS is a single high-resolution
image that has the general structure of the source image and the texture

qualities of the high-resolution sample textures.

24

Source Image

E Enhanced Image

Sample Textures

Enhancement

Figure 3.2: RETS Inputs and Outputs. The enhancement process takes
two types of inputs. In the top left is the low-resolution source image. In the
bottom left are two high-resolution input textures. On the right is the high-
resolution enhanced image. The enhanced image has the general structure of
the source image, but with detail consistent with the sample textures.

3.3 Algorithm Overview

The process begins by extracting one patch set for each sample
texture supplied by the user. A patch set is a set of smaller sub-images

created from a sample texture. Next, we classify the source image into areas

25

a) Source Image b) Classify

¢) Up-sample d) Synthesize

Figure 3.3: RETS Overview. (a) The low-resolution source image to be
enhanced. (b) The source image is classified into areas of different texture
classes. (c) The classified area and the original image are up-sampled. The
up-sampled classified area is used to smooth transitions between areas of
different texture classes. The up-sampled version of the original is used to
reduce aliasing. (d) The last step uses a modified patch-based texture
synthesis algorithm to create the high-resolution result.

of different texture classes. Here, the image is divided into regions (water,
grass, and trees, etc.). Finally, we use a modified patch-based texture
synthesis technique to synthesize a high-resolution image. We start in the
top left corner. From our classification step, we know the texture class the
area in question is best represented by, so we select a patch from the
matching set. We then proceed through the image left to right, top to
bottom selecting patches that match the area in question (see Figure 3.3).
These steps will be discussed in the following sections as of this thesis:

1. Extract patches from sample textures (Chapter 4)

2. Classify source image (Section 5.1)

3. Up-sample the source image (Section 5.2)

4. Synthesize high-resolution result (Sections 5.3-5.7)

27

28

Chapter 4

Extracting Patch Sets

Patch extraction is the first step in the enhancement process. This
step can be done as a preprocess step and need not be a real-time operation.
This chapter will describe how most patch-based texture synthesis
techniques extract patch sets and a weakness of this approach. The majority
of the chapter will then discuss in detail an alternative approach for creating
optimized patch sets, including modifications needed to support image
enhancement (in contrast to texture synthesis alone). This alternative

approach is based on Wang Tiles, which we will describe in this chapter.

29

Figure 4.1: Traditional Patch Extraction. Traditional patch extraction
selects all sub-images of a given size (ex. 32x32). This approaches is trivial to

implement but creates very large patch sets.

4.1 Traditional Approach

Most patch-based texture synthesis techniques create the patch set by
simply extracting all sub-images of a given size (e.g., 32x32) [EFo2, LLo1,
XFSoo0]. While this is very easy to implement, it creates patch sets of a very
large size. For example, if the texture was of size 512x512 and the patch size
was 32x32, the resulting patch set would contain 230,400 patches.

In most patch-based texture synthesis algorithms, very large patch
sets increase image synthesis time. Later, during the synthesis step, we
must often search through patch sets for a patch best matching our current
boundary conditions. In performing the search, we must compare the edge

of each patch with the edge of our current boundaries. The first patch-based

30

texture synthesis technique used brute force searches. Although the first
patch-based approach was much faster than pixel-based synthesis
techniques, this technique was still very inefficient. Subsequent papers
focused on optimizing the search with approximate nearest neighbor (ANN)
searches, multi-resolution searches, and principal component analysis
(PCA). Although the enhancements helped tremendously, the algorithm
was still limited to small texture samples. It could not support large texture
samples and still synthesize results in real-time.

Recently, in [CSHDo03], Cohen et al. presented a technique for
building optimized patch sets from a sample texture. These patch sets have
the advantage of being very small, in terms of the number of patches used,
when compared with patch sets created using the previous technique. Small
patch sets improve performance during the enhancement process. Even
though the patch sets are small, the patches work well together and can tile
with little disparity. The technique used by Cohen et al. is based on Wang

Tiles.

4.2 Introduction to Wang Tile Sets

A Wang Tile set is a collection of square texture tiles with each edge

color-coded based on the properties of the image at that edge. The tile set

31

Wang Tile Set.
have color-coded

¥ Wang Tile Sets can be used to tile
a plane with texture.

has a fixed number of color-codes for the horizontal edges and a fixed
number of color-codes for the vertical edges. For example, a Wang Tile set
could have two vertical color-codes and two horizontal color-codes. In this
case, sixteen different tiles can be created by combining the color-coded
edges. With h as the number of horizontal color-codes, and v as the number
of vertical color-codes, we can calculate the number of possible tiles and the
smallest valid tile set as defined below.

2h %2

Number of tiles possible = ;
N

Smallest valid tile set = hv

Wang tile sets do not need to be of any particular size. With two
horizontal and two vertical color-codes, one could create a valid tile set
ranging in size from four to sixteen tiles. If one chose a tile set of size eight,

one must then choose eight of the sixteen possible tiles. Thus, many

32

different sets can be created from the same two horizontal and vertical
color-codes.

Wang Tiles are used to tile portions of a plane. Tiles are laid onto the
plane in raster scan ordering, beginning in the top left. The first tile is
chosen randomly. Subsequent tiles must have edges that match the color-
codes of the tiles already laid down.

To ensure that we can tile the plane successfully, we must guarantee
that there exists a tile for all possible top-left color-code combinations. As
long as this criterion is met, we are guaranteed that we will have at least one
tile that can be placed in every location. Thus, we will always we able to tile
a plane without encountering a boundary condition for which there exists no
appropriate patch.

In order to avoid repetition caused by periodic tiling, we must have at
least two tiles whose color-code edges match all top-left combinations. This
assures us that our tiling can be non-periodic, because at each step we will
always have a minimum of two tiles that match the current boundary areas.
By randomly choosing between two or more matching tiles, we introduce the
randomness required to ensure our tiling will be non-periodic.

Once we have a set of tiles that meet the criteria specified above, we

can tile the plane in the following manner (see Figure 4.3):

1. Randomly select a tile for the top left corner.

33

4.3

Tile the first row by choosing tiles that have left edges matching the
right edge of the previous tile.

Select a tile for the first column of the next row by matching the top
edge to the bottom edge of the above tile.

Tile the remainder of the row by selecting tiles that match both the
tile to the left and above the area in question.

Repeat steps three and four for each row until finished.

Using Wang Tiles to Build Patch Sets

Now that Wang Tiles have been introduced, this section will show

how one can use the concept of Wang Tiles to create optimized patch sets.

First, we must choose the number of horizontal and vertical color- codes.

The number of horizontal color-codes does not need to be equal to the

number of vertical color-codes. Increasing the number of color-codes can

improve the quality of the synthesized result, but also increases the

minimum size of the set and increases the computation time required to

build the set.

Second, we must choose how many tiles will match each top-left edge

combination. From the rules stated in the previous section, we know that

34

(© (d)

Figure 4.3: Wang Tiling. Above are the steps to tile a plane using Wang
Tiles. (a) The top left tile is chosen randomly. The next tile is chosen to
match the right edge of the previously tile. (b) The first row is completed by
continuing to match the right edge of the previous tile. (c¢) The first tile of
the second row is chosen to match the bottom edge of the above tile.
(d) Subsequent tiles must match both left and top boundary conditions.

we must have at least two tiles that match each possible top-left
combination. As with the number of color-codes, using three or more tiles
to match all constraints can increase the quality of the resulting texture, but

at the cost of a larger set size and generation time. Note, however, that
35

patch sets can be pre-computed. Thus, neither the number of color-codes
nor the number of tiles to match each top-left combination have an effect on
the speed at which an image is enhanced. We have found that five
horizontal and five vertical color-codes combined with two tiles for each top-
left combination produces high-quality results.

Once we have chosen the above-mentioned parameters, we can
calculate the size of the resulting patch set. The size of the patch set is

defined by the following formula:

Patch setsize=h*v*n

where
h = number of horizontal color-codes
v = number of vertical color-codes

n = number of tiles to match each top-left combination

So, for h=5, v=5, n=2 we have a patch set of size fifty. Normally, the size of
the patch set is less than the number of possible tiles. In that case, only a
portion of the possible tiles will be selected for inclusion in the patch set.
Once we have determined the patch set size, we then build the patch
set. The steps taken in building the patch sets are (see Figure 4.4):
1. Randomly select h + v diagonal sub-images from the sample texture

(Figure 4.4a). For the example shown in the figure h=2 and v=2, thus

36

we have selected two diagonal images for horizontal edges and two
diagonals images for vertical edges.

. For each top-left color-code combination find the best n
combinations. This is done by first selecting a diagonal sub-image for
the top and another diagonal sub-image for the left edge of the tiles.
In Figure 4.4b, there are four top-left combinations possible by
combining our horizontal and vertical diagonals.

. Try all possible combinations for the right and bottom diagonals. As
can be seen in Figure 4.4c, we can create four different combinations
for each top-left combination. Thus, sixteen tiles are created.

. Calculate the error of each tile by comparing the boundary areas
where the diagonal regions overlap. The error between overlapping
boundary areas is equal to the difference between the corresponding
RGB values.

. After calculating the error for all possible combinations, select the
tiles with the least error and add these tiles to the prospective set.
Remember, a Wang Tile set is only a subset of all possible tiles that
can be created using the diagonals selected in step one. We want our
set to have the least possible overall error, so we select tiles that have
the least disparity along diagonal boundaries.

. Now that we have a complete patch set, we calculate the error of the
entire prospective patch set. This is done by summing the error of all

tiles that were added to the prospective set in step 2.
37

Horizontal
Diagonals

Vertical
Diagonals

(a) (b) ©)

PR

(d)

Figure 4.4: Automatic Wang Tile creation. (a) Select diagonal sub-
images from the sample texture. (b) Group diagonals into all top-right edge
color combinations. (c) For each top-right color combination, try all
combinations. Select those with least disparity where diagonals meet. (d) Trim
large diagonals into square patches (e) Stitch pieces into patches.

38

7. If the error is less than a user-defined threshold, keep the set and exit.
If the error exceeds the threshold, but has the least error thus far,
store the set. If we have surpassed a user-defined number of
iterations, return the best set thus far. If none of the above conditions

have been met, go back to step one and repeat.

4.4 Non-periodic Repetition

By ensuring at least two tiles from each set match all top-left edge
color combinations, we guarantee that a tiling can be non-periodic.
However, certain tile sets can have a sub-set of tiles that can take over the
tiling. In Figure 4.5, we see four tiles that were part of a much larger tile set.
However, during our research we noticed that when the complete tile set
was used for texture synthesis, over fifty percent of the resulting image was
synthesized using only these four tiles. The other forty-six tiles were rarely
used. On closer inspection, we found that once these tiles were first used,
the rest of the image used only these four tiles. When this occurs, the
resulting texture appears very repetitive even though it is technically non-
periodic.

You will notice that these four tiles alone are a valid Wang Tile set.

They can tile a plane without ever finding boundary conditions they cannot

39

Figure 4.5: Cyclic Repetition. These four tiles, which were generated
as part of a much larger set of tiles, cause cyclic repetition. Notice that all
four tiles have green top and bottom edges. Avoiding tiles with two edges of
the same color drastically reduces the occurrence of these subsets.

match. The set also matches all its own boundary conditions with two
possible tiles. Since the large set containing these tiles was created with
only two tiles matching each top-left edge color combination, these tiles are
the only tiles that can match boundary conditions produced by this subset.
Thus, randomly choosing between the two tiles that match the boundary
condition does not allow us to escape the repetition caused by this cyclic
tiling.

Since we cannot avoid repetition if a tile set has a subset like the one
previously described, we must ensure that our tile sets never contain such
subsets. Notice that all four tiles have green top and bottom edges. By
limiting our Wang Tiles to have unique colors for its top, bottom, left, and

right edges, we assure that small cyclic sets like Figure 4.4 cannot exist.

40

Much larger cyclic subsets are still possible, but are several orders of

magnitude less probable.

4.4 Stitching Diagonals into Patches

Once we have selected the diagonals to use and the formation in
which they will be placed, the diagonals must be stitched together and
trimmed into square patches. Simply pasting the diagonals together will
cause noticeable discontinuities along the two interior diagonal seams.
Although diagonals are selected in a manner to maximize the continuity
across boundaries, they will not be perfect. To further minimize the
discontinuities, a stitching technique is used to join the diagonals.

In [CSHDo3], Cohen et al. use the stitching technique presented by
Efros and Freeman in [EFo2]. The technique is called minimum error
boundary cut. Dynamic programming is used to find the least cost path
through the overlapping boundary region of two diagonal pieces. The cost
function is the difference between RGB values at the point in question. The
difference function is calculated as the sum of the squared differences of the
three components. Although using a minimum error boundary cut produces
much better results than simply pasting the diagonals together, it has

disadvantages. First, the results are visually mediocre at best. This

41

(b) (c)

Figure 4.6: Diagonal Stitching. (a) Stitching the diagonal pieces to form
a patch. (b) Feathering is used to fade out one edge as the next edge fades in.
(c) The result is a smooth transition between diagonals.

approach performs poorly on structured textures with patterns that are not
axis aligned and textures with smooth transitions in color. Second, this
technique is computationally more expensive than other proposed solutions.
An alternative method, used in [LLo1], produces comparable results, is
more efficient, and is much simpler to implement.

In [LLo1], Liang et al. use cross edge filtering to join pieces of an
image. The technique was originally used by Szeliski and Shum to stitch
together multiple digital photographs to create a larger panoramic picture
[SS97]. As can be seen in Figure 4.6, pixels are simply weighted according
to their distance from the edge of the diagonal. Pixels closer to the edge
receive less weight. This feathering approach fades out one diagonal as the
next diagonal is faded in. This simple blending approach is easy to

implement but produces very good results. We have experimented with

42

combining both the least error path and cross edge filtering, but the results
were not significantly better than cross edge filtering alone. Thus, the
technique we use is cross-edge filtering.

Once the diagonal pieces have been stitched together, the large
diagonal image created is then trimmed into a square patch. We do this for
each patch. At this point, we also calculate the average color of each patch
in the set. Later this is used to transfer the texture or detail represented by
these patches to other areas of color space. For example, patches of dirt can
be used to synthesize dark brown dirt, light brown dirt, or dirt with a
reddish tint. Finally, the patch set including the patches, average color, and
parameters with which the set was built are written to a file to be utilized by

the real-time enhancement process.

43

44

Chapter 5

Image Enhancement

This chapter details the real-time process of enhancing the source
image. The first section discusses how we classify the source image into
areas matching the texture classes represented by the input sample textures.
The second section describes how to up-sample the source image to the
desired output resolution. In the third section, we will overview the process
of tiling the patches into the destination image. The fourth section details
how we choose an appropriate patch at each step. The fifth section
discusses the need for custom patches and how they are to be constructed.
Finally, we will discuss how this approach supports multi-resolution

enhancements.

45

—>

Figure 5.1: Classification. Classification is the process of dividing the

source image into areas of different texture classes.

5.1 Classification of the Source Image

The first step in the real-time portion of the image enhancement
process is to classify the source image (see Figure 5.1). The classifier can be
as simple as finding the sample texture whose average color value is nearest
the color value of the source pixels. The classifier can also be a more robust
Bayesian classifier, taking into account pixel color, average neighbor color,
maximum neighbor color, minimum neighbor color, etc.

The accuracy of the classifier is dependant on the type of image that is
being enhanced. There have been many classifiers built for specific types of
images. One example is a classifier built at the University of Utah by

Premoze et al. for classifying panchromatic aerial imagery [PTS]. Their

46

classifier used pixel brightness, average neighborhood brightness, minimum
neighborhood brightness, maximum neighborhood brightness, elevation,
slope, aspect, and the angle to the southern border as features for the
Bayesian classifier.

After implementing both the simple approach (nearest average color)
and a Bayesian classifier, we chose to use the simple approach. The simple
approach is to classify each pixel to the texture with an average color nearest
to the pixel’s color. Distance is computed as the sum of the squared
differences of the three color components. This simple approach has two
advantages. The first advantage is that color shifting is reduced during the
synthesis process. Section 5.3 will give details on why this is the case. The
second advantage of using the simpler classification method is that it is
computationally less expensive than alternatives. This is important in that

the focus of this thesis is real-time image enhancement.

5.2 Up-sampling the Source Image

Previously we stated that a requirement of our solution is that the
solution must synthesize enhanced images that would not cause visual
popping when transitioning between the original and the synthesized image.
This means that in rendering systems that support MIP mapping, the

original image could be used at one level of the MIP map and enhanced

47

images could be used at higher levels of the MIP map. To ensure that there
is no noticeable visual popping when the rendering system transitions from
the original source image to an enhanced image, we must guarantee that a
down-sampled version of the enhanced image has minimal differences in
colors at each pixel when compared to the original source image. Essentially
this means that for a given area in the source image, the corresponding area
in the destination image should have the same average color.

In addition to reducing the popping problem, a darker area of grass
found in the source image should be enhanced to become a more detailed,
darker area of grass regardless of the color of the grass in the sample
texture. Likewise, a light area of grass in the source image should be
enhanced to become a more detailed light area of grass.

The two problems stated above can be solved by guaranteeing that the
average color of an area in the destination image matches the average color
of the corresponding area in the source image. We do this by up-sampling
the source image to the desired output resolution and then inserting the
texture or detail into that image. The process of inserting detail into the up-
sampled data modifies individual pixel values to add texture, but average
color values for an area must still match the color values of the
corresponding area in the source image. Section 5.3.1 details how we can
insert texture into an image without changing the average color values of

local areas.

48

When up-sampling the source image to a higher resolution there are
many re-sampling functions that could be used. Nearest neighbor re-
sampling simply stretches the image and would produce harsh
discontinuities and jagged edges. Bilinear and bicubic interpolating
functions create smooth transitions and can be used on images to avoid the
blocky appearance caused by nearest neighbor re-sampling. Many other
interpolating functions can be used to resample an image. Each produces a
different interpolation of the source image and each has different
computational costs. Due to their relatively low computational cost and
acceptable quality of the results, we have implemented bilinear and bicubic
re-sampling in our system.

Bicubic interpolation uses a 4x4 grid of sixteen data points from the
original image to calculate the data for each point in the re-sampled image.
Using this data the bicubic function creates C2 continuous output. Bilinear
interpolation uses only a 2x2 grid of four data points. Using this data,
bilinear interpolation creates only a level one continuous image. Following

are both the bicubic and bilinear interpolating functions.

49

3 3
bicubiclnterpolation(x,y) = ZZ[WU. -original (i, j)]

i=0 j=0

w; = R(i —dx)-R(dy — j)

R(x) = é[P(x+ 2)’ —4P(x+1) +6P(x)’ —4P(x—1)"]

{x >0— x}
P(x)=

x<0—-0

1 1
bilinearInterpolation(x’,y") = ZZ[WU. eoriginal(x+i,y+ j)]

i=0 j=0

w,; = R(i—dx)® R(dy— j)

—1<xL0—>x+1
R(x)=
0<x<1l—>1—x

As can be seen from the above functions, bicubic interpolation is
significantly more expensive than bilinear interpolation. Though the
bilinear results are not as smooth as the bicubic results, they are adequate
for our needs and provide significant performance benefits over bicubic
interpolation. Thus, our implementation uses the bilinear functions.

Since the red, green, and blue components must be interpolated for
every pixel in the destination image, this step is the most computationally
expensive part of the enhancement process. To improve performance, we
build lookup tables containing the blending weights (w; in the above

equations). This significantly reduces the amount of computation necessary

50

for interpolating each pixel. Once we have up-sampled the source image we
have a larger image that has smooth color transitions. The image appears to
be a larger, blurry version of the source image, but lacks detail to look

realistic.

Figure 5.2: Interpolation Comparison. Comparison of bilinear and
bicubic interpolation. (a) Original image (magnified using nearest-
neighbor interpolation). (b) Bilinear interpolation of a. Notice the jagged
edges have been removed. (c) Bicubic interpolation of a. (d) Bilinear
interpolation has been used to smooth the seams between textures classes.
(e) Example of texture synthesis using bicubic interpolation between
texture classes.

51

5.3 Pasting Patches

Once the tiles have been built and the original image has been up-
sampled and interpolated, we then synthesize the destination image. The
synthesis process combines the texture from patches and the colors of the
up-sampled source image to create the destination image. This process
creates the destination image one block at a time in raster scan ordering.
We begin in the upper left corner of the destination image and move left to
right until we complete a row. After completing the first row, subsequent
rows are synthesized moving top to bottom.

Each block pasted into the destination image will correspond to a
square area the size of a pixel in the source image. This corresponding area
is not centered on a pixel. Instead, the area will be one-forth of four pixels
with the area’s corners corresponding to a pixel center in the source image.
This distinction is necessary for creating custom patches to smooth
transitions between areas of different texture classes (discussed in Section
5.5). Since each patch pasted into the destination image will always
correspond to the area of one pixel in the source image, we will vary the
patch size used for synthesis to accommodate our goal of multi-resolution

output (discussed more at the end of this section).

52

(a) Patch Sets

(b) Synthesis

(c) Result

Figure 5.3: Synthesis Steps.
(a) Patch sets used for texture.
One set for each texture class is
needed. (b) Appropriate patches
are pasted into the result, left to
right, top to bottom. Patches are
chosen such that their top and left
edges match the bottom left edges
of patches already pasted into the
image. (c) The resulting image.

53

For each block of the destination image synthesized, we must select
an appropriate patch. This patch is chosen from the patch sets built, as
described in Chapter Four, or a custom patch is created by combining
multiple existing patches.

The method for choosing an appropriate patch is the subject of the
following section. Once a patch has been selected, we chose the proper
resolution of the patch.

Previously it was stated that a patch used in the destination image
would always correspond to an area the size of one pixel in the source image.
Thus, the patch size required is dependant upon the level of magnification
being used in the current enhancement operation. For a two times
magnification we would use a patch of size 2x2. For a four times
magnification we would use a patch size of 4x4. Thus, for all patches we
need access to versions of the patch at various resolutions. This is
accomplished by computing and storing scaled versions of a patch. Scaling

is done with the interpolating function previously mentioned.

5.3.1 Transferring Detail

Once a patch has been chosen and we have obtained the appropriate
version based on the level of magnification, we must combine the texture

from the patch with the color from the up-sampled source image.
54

Combining these two pieces can be thought of as transferring the detail or
texture from the patch to the up-sampled image. We are inserting detail
from the patch into the blurry, detail lacking, up-sampled source image.

Figure 5.4 shows an example of detail transfer. Image (a) shows the
original texture. Image (c) represents the blurry image needing detail.
Image (d) shows the result of transferring detail from image (a) into image
(c). Figure 5.5 shows more results of detail transfer.

We have used two methods to transfer the detail from the patches
into the up-sampled source image. One method works in RGB color space
and the other in HSV color space. First, the RGB approach will be discussed
followed by the HSV alternative approach. The discussion will include a

comparison of the resulting image quality and performance.

5.3.2 RGB Detail Transfer Approach

The RGB approach begins by creating detail patches from the texture
patches previously built. A detail patch is like a texture patch except that it
does not contain absolute colors. Instead, the values stored in a detail patch
are the differences between the corresponding value in the texture patch and
the average color of the patch. Whereas a texture patch can tell us that at
position (3,5) the pixel value is red [r=255, g=0, b=0], a detail patch will tell

us that the pixel is 10 units more red and 5 units less green than the average

95

color of the original texture patch. The texture patches contain color
intensities ranging from zero to 255, while the detail patches contain color
intensity offsets ranging from -255 to 255.

To combine a detail patch with a block from our up-sampled source
image, we simply add the value from the detail patch to the corresponding
component from the up-sampled source image. Some pixels will be
darkened; others will be lightened. Some pixels will become more blue and
others more red. However, because the sum of all differences between each
pixel in the texture patch and the average color of the texture patch is near
zero in all three color bands, the sum of all components for each color band
in the detail patch will be near zero. So, while we lighten some pixels and
darken others, it has little net effect on the overall color of the area. This
preserves the average colors of the source image while adding detail. Thus,
when a RETS enhanced image is used with MIP mapping, popping artifacts
can be avoided when transitioning between original imagery and enhanced

imagery.

5.3.3 Color Shifting

While zero net change in color to a local area is ideal, we do introduce
a small amount of color shifting caused by overflow. When adding a

component from a detail patch to a component from the up-sampled source

56

()

Figure 5.4: Detail Transfer and color shift. (a) Original texture.
(b) Average color of the texture (a) (¢) The image containing the desired
texture. (d) The resulting image created by differencing image (a) and
image (b), and then adding the result to image (c). Image (d) has the
texture characteristics of image (a), but the average color of image (c).
Image (d) was created using the RGB texture transfer approach. Notice
the pink tint of the leaves.

57

(b)

Figure 5.5: Detail Transfer. Examples of various texture being
transferred to different area of color space. The original sample
textures are the smaller images on the left. The large images on the
right are the resulting images created using the RGB approach to detail
transfer. The image used as the destination for the detail transfer can
be seen as image (b) in Figure 5.6.

58

image the result can be less than zero or greater than 255. When this
happens, we must clamp the value at the limit and discarded the excess
value. Exceeding these limits is caused by two contributing factors. First,
overflow will happen more often the greater the deviance for pixels in the
texture patch from the average color of the texture patch. Second, overflow
will occur more often the greater the distance between the average color of
the patch and the color of the area the detail is being transferred to.

For example, if the texture patch has a value at some pixel of [r = 10,
g =10, b=10] and the patch has an average color of [r =150, g=150,
b = 150], the detail patch would have a corresponding value [r = -140, g = -
140, b = -140]. If this is applied to a pixel from the up-sampled source
image with a value of [r = 40, g = 40, b = 40], the resulting value will be [r=-
100, g=-100, b=-100]. This value must be adjusted to [r=0, g=0, b=0].

In general, if we transfer a texture to an area that is significantly more
intense in any color band than the patch average for that color band, we will
reduce the overall intensity of that color band for that area of the image.
While this can be a problem and should be taken into consideration when
building patch sets, the error introduced is usually insignificant. In our
tests, overflow normally causes a 1.3% shift in each color band, but does not
seem to be enough to cause any noticeable popping when transitioning
between the original image and an enhanced image when using MIP

mapping.

59

In addition to the color shift introduced by overflow, the hue of our
texture is often affected during the transfer. Figure 5.4 shows an example of
the hue being shifted. Hue is affected most when a texture has areas of very
different hue combined with high intensity and saturation levels. An
example of this was found when using a texture of green grass partially
covered by large light brown and orange leaves. When this texture was
transferred to a darker area the net RGB changes were near zero, but at any
given pixel the ratio of red to green to blue was different from both the up-
sampled source and the texture. This ratio is what defines the hue.
Therefore, in this experiment we found that the leaves had a slight twinge of
pink instead of being purely brown and orange. This hue shifting can be
avoided by working in HSV color space instead of RGB space. As is usually
the case, the benefits gained by the HSV approach come with additional

costs.

5.3.4 HSV Detail Transfer Approach

Our HSV approach to transferring detail preserves the hue found in
the original texture sample at the cost of not being quite as accurate at
preserving the local average color of the source image. The HSV approach is

also computationally more expensive. In the HSV approach, a detail patch

60

does not contain RGB differences between the texture patch and the average

color of the patch. Instead, each pixel in the detail patch contains:

1. The hue from the texture patch

2. The difference between the texture patch saturation at that pixel and
the patch’s average saturation

3. The difference between the texture patch intensity at that pixel and

the patch’s average intensity

Note that the hue is not stored as an offset from the average hue of the
entire patch, but instead is simply the hue found at that location in the
texture patch.

To combine the up-sampled source image with our HSV detail patch,
we first convert the RGB value of our up-sampled source pixel to HSV space.
We then add the saturation component to the saturation offset found in the
HSV detail patch. Then, we do likewise for the intensity. However, for the
hue, we use only the value from the HSV detail patch. Thus, the hue found
in the source image does not have any effect on this part of the image
enhancement. Lastly, we must convert this HSV value to RGB color space.

The HSV approach does succeed in eliminating the hue shifting seen
using the RGB approach. Although it does increase the amount of color

shifting away from the up-sampled source image, the error was still within a

61

Figure 5.6: RGB vs. HSV Detail Transfer. Comparison of RGB detail
transfer and the HSV alternative. (a) Sample texture. (b) Image lacking detail.
(c) Combination of items a and b using RGB detail transfer. Notice the pink
tint seen in the leaves. (d) Result created using HSV detail transfer. (e)
Another example using RGB transfer. (f) An image created using the HSV
approach.

62

(@ (b)

Figure 5.7: Custom Patch or Extracted Patch. (a) Part of a source
image. Each patch will represent an area the size of one pixel in the
source image. The area is shown by the black box. (b) The same area in
the classified source image. Note that two texture classes are represented
in this area. Thus, a custom patch will be needed for this area.

reasonable tolerance. Our limited testing shows a color shift of 1.8%. The
biggest drawback of the HSV detail transfer approach is that it costs more
computationally. Using the HSV approach increases the computation time
of the enhancement algorithm by three to four times. Because of the high
cost of the HSV approach, we have chosen to use the RGB detail transfer
approach for all real-time image enhancement operations. Figure 5.6 shows

a comparison of RGB and HSV detail transfer.

63

5.4 Custom Patch or Extracted Patch

Up to this point, we have not described the details of choosing an
appropriate patch for each step in the pasting process. In this section, we
will address that topic. Patches pasted into the image will be either a patch
chosen from one of the sample sets or a custom-built patch to handle seams
between areas of different texture classes. To decide whether the patch will
come from a stored set or will be custom built, we reference the classified
version of the source image. We analyze the four pixels in the source image
corresponding to the area the patch will cover and count the number of
unique texture classes represented by those four pixels. See Figure 5.7.

There are two possibilities:

1. All four pixels are of the same texture class.

2. Two or more classes are represented in the four pixels.

If all four source-pixels are of the same class, we do not need to
interpolate this patch. This means that the patch is not involved in a seam
between texture classes. In this case, we select an extracted patch from the
appropriate set that best matches the boundary areas above and to the left of
the patch. We will discuss this in detail in the next section. If two or more

texture classes are represented by the four pixels, then we must build a

64

custom patch to smooth the transition between areas of different texture

classes. Custom patches will be discussed in Section 5.7.

5.5 Selecting a Patch from the Set

There are several methods for selecting an appropriate patch from a
given set. In [EF02], Efros and Freeman use a brute force search. Their
method compares the boundaries of every patch in the set against the
known boundaries. As they do this, they create a qualifying set of patches
that satisfy the boundary constraints within some specified error tolerance.
Then they randomly select a patch from the qualifying set. The random
selection is very important to image quality ensuring that replication and
patterns are minimized. If no patches match the boundary areas within the
defined error tolerance, the patch with the least error is used. Though the
exhaustive search approach is very easy to implement and produces good
results, it is much too slow for our needs.

In [LLo1] Liang et al. use three significant performance accelerators
to decrease the amount of time necessary in choosing a matching patch from
a set. First, they build a kd-tree [LLo1, Mou98] to organize the patches.
This enables the use of an Approximate Nearest Neighbor (ANN) search to
find the qualifying set of patches. The second enhancement is to first search

a lower-resolution version of the data points creating a set of candidates.

65

The higher-resolution versions of these candidates are then searched to find
the qualifying set. The final acceleration technique is to use principal
component analysis (PCA) to reduce the number of data points for the query
vector. These three steps produce a qualifying set. One patch is randomly
chosen from this set to be pasted into the destination image. The three
improvements reduced the synthesis time by 99%.

Another approach we investigated is to pre-compute all possible
searches and store this information in a lookup table. While this would be
the quickest at runtime, it is unrealistic for most patch-based texture
synthesis algorithms because of the size of the patch set. Using traditional
patch-based techniques, a look-up table for a single sample of 64x64 pixels
requires approximately eight megabytes of memory. Though this may be
reasonable for some applications, the table size grows exponentially. A
256x256 sample requires approximately 20 gigabytes of memory. This is
clearly not reasonable.

Fortunately, we are able to build optimized patch sets using Wang
Tiles as discussed earlier. This enables us to build small patch sets even
when the input sample textures are large. Because of the small number of
patches contained in each set, we can build look-up tables without using
large amounts of memory. For each patch set, we build one table of
dimension n by n (where n is the number of patches in the set) and two
tables n by one. Remember we should have a patch set for every texture

class in our source image. In the first table, we store a pointer to the patch
66

that should be used for each top left boundary condition (patches above and
to the left of the area in question). The entry found at table[top,left] will be
a list of patches that can be pasted seamlessly next to its neighbors. The two
smaller tables are used for the first row and first column when we have only
a patch above or to the left of the location in question, but not both. All
three of these tables are built when the patch set is loaded. They are created
using information stored in the patch set files about the patch edge color-
coding. Using these lookup tables, RETS can have instant access to the
correct patches for any boundary condition without having to perform a

costly search.

5.6 Custom Patches using Interpolation

If the four pixels spoken of in Section 5.4 represent two or more
texture classes, the corresponding patch is involved in a seam between areas
of different texture classes. To reduce discontinuities along seams, we
construct custom patches. Figure 5.8 shows an image enhanced without
custom patches and a second image enhanced using custom patches. The
second image looks significantly better. Figure 5.9 shows an example in
which a custom patch is required.

In preparation to construct this patch, we select one patch from the

appropriate set for each of the classes that will be involved in this patch.

67

Figure 5.8: Texture Class Interpolation. The top image demonstrates
the problem of seams between areas of different texture classes. The
discontinuities can be reduced by creating custom patches using bilinear
interpolation.

68

Figure 5.9: Custom Patches. (a) The first two patches are purely
rock and thus are selected from a set. (b) The third patch is mostly rock,
but the top right corner is green and thus should be grass. For this
patch, we use bilinear interpolation to transition from rock to grass. (c)
The fourth patch is mostly grass with a little rock. (e) Enlarged version
of the four patches. Seams are not noticeable.

69

Thus, we will select between two and four patches. In selecting each of

the patches, we may or may not need to match the boundaries of the top and
left patches currently in place. In order to determine whether the patch
must match the top and/or left patches currently in place, the following

criteria are used:

1. Do either of the left two pixels have the same texture class as the
patch being selected? If so, this patch must match the patch to the
left.

2. Do either of the top two pixels have the same texture class as the

patch being selected? If so, this patch must match the patch above it.

Once we have determined the matching requirement for this patch,
we can then pick the patches we will use to create the custom patch. After
the patches have been selected, a custom patch is produced by blending the
chosen patches extracted from our sample texture. To smooth seams and
reduce aliasing we use bicubic interpolation. For each pixel in the custom
patch, all of the selected patches contribute to the pixel according to a

bilinear blending function. The color of each pixel is:

70

1 1

customPatch(x’,y") = ZZ[WU ® patch,(x, y)]

i=0 j=0

Wy, = R(i—dx)® R(dy— j)

—1<xL0—> x+1
R(x) =
0<xZ<1l—=1—x

This interpolation produces smooth transitions that blend patches of
different classes. After the patch is created, it can be converted to a detail
patch and pasted into the destination image just as those found in the patch
sets extracted from the original sample textures. Figure 5.9 shows an
example of using custom patches to smooth transitions between texture

classes.

5.7 Multi-resolution Support

The sixth requirement for our solution as defined in Chapter Three is
that it must have multi-resolution support. By this, we mean that our
enhancement process should be able to synthesize enhanced versions of a
source image at different resolutions. All enhanced versions of a source
image should look alike, albeit with different sizes and levels of detail. A
simple but unacceptable approach is to synthesize the highest supported

level of magnification and then down-sample to the various requested

71

resolutions. While this would solve the problem, it is unacceptable from the
perspective of performance. If we request to enhance a 256x256 image to
512x512, we would not want to synthesize an image 32,768 pixels wide and
then down sample the result to 512x512.

Fortunately, our synthesis technique lends itself to multi-resolution
support. To accomplish this, for each patch, we have access to scaled
versions of each patch at sizes from 2x2 to 256x256. Based on the requested
level of magnification, we choose the appropriate version of each patch.
Since each patch will replace an area the size of a pixel in the source image,
using the 2x2 version of the patch will create an enhanced image twice the
width and height of the source image. Using a patch size of 256x256 will
create an enhanced image 256 times wider and taller than the source image.
This approach allows multi-resolution enhancement without performance

degradation.

72

Chapter 6

EView

In this chapter we will introduce EView, an application using the
image enhancement approach presented in this thesis. We will then discuss
three special problems encountered in integrating the enhancement
algorithm into EView: massive image size, remembering previous results,

and filling holes.

6.1 Introduction to EView

As part of this thesis, we have integrated RETS into a real-time virtual
environment application named EView. EView, developed at Brigham
Young University, automatically combines elevation data and aerial imagery

to produce massive virtual environments covering hundreds of square miles.

73

Originally designed to allow users to fly around the environment, it has
since been enhanced to allow users to bike or hike along mountain trails.

As stated in the practical example found in the introduction of this
thesis, the views produced by EView look very good when the viewpoint is
far from the surface of the terrain. However, when the viewpoint is moved
near the surface, as in the hiking or biking usage of EView, the terrain
becomes much less attractive. As can be seen in Figure 7.4, the low-

resolution aerial imagery creates a blocky terrain, which lacks detail.

6.2 The Size Problem

Adding image enhancement to EView presents several complications.
The complications are caused by the sheer size of the images used by EView.
EView essentially has one large continuous image that represents the terrain
of the virtual environment. Normally the size of this image ranges from 600
MB to multiple GB. If we enhanced this entire image with a magnification
of 128, the resulting image would require approximate 16,384 GB of storage
space.

Obviously, enhancing all of the terrain at once is not a realistic
approach. Instead, EView requests enhancement of small pieces of the low-
resolution aerial imagery as the viewpoint moves near those areas. Often,

EView will request that the same area be enhanced several times. First, it

74

may request that a subsection of the terrain be enhanced with a
magnification of two. Later, when the user’s viewpoint is moved closer to
that subsection, an enhancement with a magnification of eight may be
requested. When the viewpoint is moved to within a few feet of an area, the
area could be enhanced by a magnification factor of 128.

While the approach of synthesizing only areas of the source image
requested by EView does alleviate memory constraint problems, it does
present complications. First, the synthesis process must remember areas of
the source image that have already been synthesized. Then when a higher-
resolution version is requested, the synthesis process must create a new
image like the previously synthesized version, but now at a higher level of
magnification. This is accomplished using the multi-resolution support
discussed in Section 5.7 coupled with a hierarchal map to store information

about areas that have been enhanced.

6.3 Remembering Previous Results

As stated in the previous paragraph, we must remember areas
previously enhanced so that we can duplicate those results later. Because of
memory constraints, we cannot simply store all enhanced images. However,

we can store all information about an enhanced area required to duplicate

75

previous results. To do this we build a hierarchal map. In a two-level map,
the first level is a two-dimensional array that points to blocks. Each block,
only allocated when first needed, contains a 2048 by 2048 array of entries.
Each entry corresponds to an area the size of one pixel in the source image.
Thus each block represents an area 2048 pixels by 2048 pixels in the source
image. Each entry stores the patch to be used in enhancing the
corresponding area of the source image. The patch information and the
color values from the source area being enhanced are the only information

needed to synthesize a high-resolution result.

6.4 Filling Holes

A second complication created by enhancing small areas in non-raster
scan order is the creation of holes. If EView requests enhancements for
areas near each other but not bordering one another and later requests an
enhancement for the hole between the previously enhanced areas,
difficulties arise. Figure 6.1 shows an example of a hole.

The difficulty caused by holes stems from the Wang Tile approach to
texture synthesis. Although the Wang Tile approach is much faster than any
other approach, it does not support filling holes without discontinuities.

Most other pixel-based and patch-based techniques do support filling holes.

76

Figure 6.1: Filling Holes. In this example, EView has requested areas
to be synthesized in a sequence leaving a hole, which has not been
enhanced. Enhancing the remaining area is problematic. The process can
begin in raster scan order as normal. The first four patches are OK. Then
we get the patch marked with the red x. No patch exists in the available
patch set to match all three boundary conditions.

Using the Wang Tile approach, we can match boundaries above and to the
left of the area seamlessly. However, when we get to the point where we
have boundary conditions below or to the right of our patches, we cannot

match them. This is because we built the patch sets to have at least two

77

matches for all top-left combinations. However, our patches will not match
all top-left-bottom-right combinations. Technically we could build a patch
set that would match all of these combinations, but at the expense of very
large patch sets. Since the reason we use the Wang Tile approach is for
small patch sets, this is counterproductive.

Although the Wang Tile approach to texture synthesis cannot fill
holes well, we can drastically reduce how often these holes occur. To do this
we use the hierarchal map discussed previously. When EView requests an
area of the imagery enhanced, we find the block the area is contained in. We
then map out what patches will be used to replace each pixel from the source
image for the entire block. We do not actually synthesize the resulting high-
resolution image for the whole block, but we map out exactly what the image
will look like. Using this approach, holes can only occur on block
boundaries. Since mapping out a block is cost-effective in terms of CPU
time and relatively cost-effective in terms of memory usage, we map out
blocks above and to the left of the current block. This further reduces the
occurrence of holes.

Now that holes rarely occur, there are two options in dealing with
them. The first is to use our Wang Tile based synthesis technique to fill the
holes and accept the small discontinuity along the bottom and right of the
result. For many applications, the discontinuities are barely noticeable even
when looking for them. These discontinuities can be further reduced by

blending the edges of the patches along the seam that does not match.
78

The second option is to use traditional patch-based synthesis on the
last row and last column of the hole. This requires a second large patch set
for each texture class. This patch set can be created from the original
texture sample by extracting all sub-images of a given size. We can then
search this large patch set for patches that will fit nicely into the right
column and bottom row. Because this search can be optimized and will
occur rarely, it should have little negative impact on overall performance.
However when this approach is used, areas of the image that require hole
filling will take significantly longer than areas that don’t require hole filling.

In our application of RETS used in EView, we have chosen not to use
traditional patch-based synthesis for hole filling. Instead, we use the Wang
Tile approach and accept the small discontinuities along the hole
boundaries. The reasoning for our choice is specific to the EView
application. EView loads and synthesizes terrain textures on a separate
thread from the rest of the program. However, the current EView
implementation does not allow multiple textures to be loaded or synthesized
in parallel. Thus, if synthesizing one texture takes a long time, no other
textures can be loaded or synthesized until the first is completed. This delay

will likely cause unacceptable popping artifacts.

79

8o

Chapter 7

Results

This chapter reviews the results of our implementation of RETS. The
first section presents a performance analysis including both the
performance strengths and weaknesses of our current implementation. The
second section shows images from a stand-alone version of RETS and

images rendered by EView using enhanced aerial imagery.

7.1 Performance

In approaching the image enhancement problem, we have focused on
real-time large-scale magnification of aerial imagery. As can be seen in

Figure 7.1, RETS can enhance images in real-time. At a magnification factor

81

RETS Runtime Performance

30

25

20 -

15 1

10 -

) I

SO E
7x 6x 5x 4x 3x

Level of Magnification

Millions of Synthesized Pixels per
Second

2x 1x

Figure 7.1: RETS Runtime Performance. This chart shows that RETS
performs fastest at higher levels of magnification. At 7x magnification, RETS
replaces every pixel in the source image with a patch with size 128x128. At
this level RETS can synthesize 26 million pixels per second. However, at 2x
magnification, RETS can synthesize less than 1 million pixels per second.
Tests were done on a 3.0 GHz processor.

of 128 times the original width, RETS can produce 27 million pixels per
second. The total expense of the enhancement algorithm is dependant upon

two factors. The first is the size of the input image. The second is the

82

RETS Runtime Performance

16

14

12

10

Seconds per Millon Source Pixels

2 I
0 , B —
6x 5x 4x

3x 2x 1x

Level of Magnification

Figure 7.2: RETS Runtime Performance. This chart shows the time it
takes to enhance one million pixels at different magnification factors. At 1x
through 4x magnification, increasing the magnification level does not
significantly increase the amount of time required to enhance an image.
Enhancing at 2x magnification only costs 27% more than 1x magnification
even though the result is 4 times larger. At magnification levels above 5x, the
synthesis time goes up exponentially, but at a slower rate than the size of the
enhanced image.

magnification factor. Because the cost of part of the algorithm is dependant
upon the size of the input image, increasing the magnification factor has a

greater impact upon the size of the resulting than it does upon the total

83

RETS and EView Performance

-g 25 21.52 21,02
9 20 1 17.06
O 15.25
D 15 -
o

10 1
g 6.03
LL

O . T T
800x600 1000x1000 1600x1200

Screen Resolution

B EView O EView + RETS

Figure 7.2: RETS and EView Performance. The chart shows the impact
of adding RETS to a real-time virtual environment program. The red bars
show EView’s average frames per second without using any image
enhancement. The yellow bars show that EView performs only slightly slower
when RETS is added.

synthesis time. Thus, if two images are synthesized from the same source
image, the first at 1x magnification and a second at 3x magnification, the
second resulting image will not take significantly longer to synthesize even

though the resulting image is significantly larger than the first synthesized.

84

As a result, the number of pixels produced per second increases as the level
of magnification becomes larger.

To prove that using RETS in a real-time interactive application is
feasible, RETS was added to EView. As can be seen in Figure 7.2, RETS had
little negative impact on EView’s performance for most display resolutions.
At the default resolution (800x600), EView ran only 1% slower with RETS
than without. At the highest resolution tested (1600x1200), EView
performed at half the frame rate with RETS incorporated into it, as
compared with running EView without RETS. While this seems to suggest
that RETS drastically slowed down EView, profiling the application showed
that the RETS process took up less that ten percent of the CPU time. The
majority of the decrease in frame rate was caused by supplying the
rendering process with 16,384 times more texture data.

Unlike other texture synthesis techniques, the computational cost of
the Wang Tiles approach is not dependant upon the size of the input sample,
the number of samples, or the size of the patch sets used for synthesis. Thus
the only inputs that affect the runtime performance of RETS are the size of

the source image and the magnification factor.

85

7.2 Image Quality

The quality of enhanced images produced by RETS is dependant on
several parameters. These parameters include the quality and number of
input sample textures, the number of patches in each set, and the time used
to generate the patch set.

The first input affecting image quality is the quality and the number
of input sample textures. As previously stated, the user should supply one
sample texture for each texture class represented in the source image. If the
user does not provide enough sample images, areas will be enhanced with
the wrong texture.

In addition to providing an appropriate number of samples, the user
must carefully choose the samples to supply. Sample textures that have
small portions of the image that drastically stand out should rarely be used.
All patch-based texture synthesis techniques use verbatim copies of the
sample texture in the synthesized result. Areas that drastically stand out
from the rest of the texture will create noticeable repetition in the
synthesized result. While all patch-based techniques suffer from this
ailment, the Wang Tile approach compounds the problem because of the
small number of patches in each set. In image (b) of Figure 7.5, there is
noticeable repetition found in the lower right corner. This is because one

rock in the image stands out from the rest of the texture.

86

Second, the quality of the synthesized images is dependant on the size
of the patch set. We derived our synthesis technique from the Wang Tile
approach, because this allowed minimal patch set size. The small patch set
size allows for real-time enhancement without consuming massive amounts
of memory. However, the cost of small patch set size is repetition. For
many textures, repetition is acceptable. Examples include wicker mats, tile
floors, brick walls, and shingled roofs. For many other textures, exact
repetition is not acceptable. Examples of these textures include rocks, dirt
roads, bushes on a hill, and trees in a meadow. While it is acceptable for two
bricks to look near identical, rocks are usually unique in size, shape, and
color.

To minimize exact repetition the size of the patch set must be
increased. In our tests, patch sets containing between 50 and 100 patches
produce little or no noticeable repetition. Figure 7.5 shows two renderings
of the same scene. The bottom image was enhanced with patch sets of size
32. Notice the visible repetition in the lower right corner. The top image
shows the same scene enhanced with patch sets of size 50. Notice that the
repetition is drastically reduced.

Third, the quality of the enhanced image is dependant upon the
amount of time used to generate the patch sets from the sample textures.
Section 4.3 detailed how patch sets are automatically created from sample
textures. This process uses a costly brute force search to find patch sets that

tile together with little disparity. The greater the amount of time this
87

process is given the higher the probability of finding higher quality patch
sets. This means that there will be less disparity where two patches meet in

the resulting synthesized image.

7.3 Synthesis Results

The goal of this research was to enhance low-resolution images; to
make them look better; and to do this in real-time. In this, we have
succeeded. Figure 7.3 shows three versions of an image containing grass
and rocks. The top image is the original digital photograph. The middle
image is a down-sampled version of the photograph. The down-sampled
version is representative of what the area would look like from low-
resolution aerial imagery. The bottom version is an enhanced version of the
low-resolution image. While the bottom image does not look exactly like the
top one or even quite as realistic as the top image, it looks much better and
more realistic than the low-resolution image.

Figure 7.4 shows the problem RETS is targeted at solving. This figure
contains two renderings of the same scene in EView. The top image has very
noticeable aliasing due to the low-resolution imagery. In the bottom image,
bilinear interpolation has been used to smooth the image. While this has
reduced the aliasing, the scene still lacks details. Figures 7.5, 7.6, and 7.7

show the same scene as in Figure 7.4, but the aerial imagery was enhanced

88

with RETS. Notice how much more detail the scenes contain. These results
show that RETS can be successfully used to enhance aerial imagery in real-
time. Figure 7.8 shows results from RETS not rendered in a three
dimensional application like EView. This figure shows both the source
image and the result, so it can be seen that lighter areas of the source image
have been enhanced as gray rock and darker areas of the source image have

been enhanced to be a dark green grass.

89

)

(©

Figure 7.3: Results. (a) Original digital photograph. (b) Down-
sampled version of image (a). (c) enhanced version of image (b). Note
that image (c) does not look exactly like the original, but looks much better
than the input source (b).

90

(@)

Figure 7.4: EView Problems. The top image shows a scene from
EView rendered without image enhancement or image interpolation.
The bottom image is the same scene rendered with bilinear
interpolation.

91

(a)

(b)

Figure 7.5: EView with RETS. Scenes rendered by EView using
imagery enhanced by RETS. Image (a) was enhanced with a single
texture sample. Notice that using only one sample texture, RETS
synthesizes very light areas and dark areas. Image (b) was enhanced
using two sample textures.

02

(a)

(b)

Figure 7.6: Repetition. (a) The same scene as in Figure 7.4, but
RETS has been used to enhance the low-resolution imagery. (b)
RETS has been used, but noticeable repetition is visible in the lower
right quadrant. The repetition is caused by using a patch set of
insufficient size. While the portion of the image with bricks also
suffers from repetition, it is acceptable for this type of texture.

93

(a)

(b)

Figure 7.7: Comparison. Image (a) was rendered by EView without
enhancement. Image (b) was rendered by EView using RETS enhanced
imagery.

94

(b)

(d)

Figure 7.8: Enhancement Examples. Images (a) and (c) are pieces
of an aerial photo. Images (b) and (d) are pieces of the high-resolution
version of the aerial photos which have been enhanced using RETS.
Notice that where the source image appears light in color, the
corresponding high-resolution image has gray rock. Darker areas of the
source image have been enhanced to a dark green grass.

95

96

Chapter 8

Conclusion

This thesis has presented a combination of classic interpolation and
patch-based texture synthesis to enhance low-resolution images while they
are being enlarged. We successfully designed and implemented a solution to
the real-time image enhancement problem.

RETS fulfilled each goal as specified in Chapter Three. RETS does
synthesize a high-resolution version of a low-resolution input image. Detail
is inserted in the high-resolution version consistent with sample textures.
As proven by integrating RETS into EView, RETS can be accomplished in
real-time. Furthermore, RETS is fast enough to only take up a small portion
of the CPU while EView is running. EView uses RETS to create high-
resolution images for use with MIP-mapping. No noticeable visual popping

artifacts are caused when transitioning from the original image to a

97

synthesized image. Lastly, RETS supports image enhancement at multiple
resolutions.

The original approach presented in this thesis addresses several
problems not solved in other papers. The following are new and original
techniques used by RETS:

e RETS combines patch-based texture synthesis with image
interpolation.

e RETS enlarges images locally similar to supplied sample images in
real-time.

e The algorithm presented here also handles multiple texture classes

appearing in the same image.

8.1 Future Work

Although the goals we set when this research began have been met,
there is much room for future research. One area of particular interest is
real-time enhancement using oriented texture synthesis. The texture
synthesis approach we use, like the algorithms it is based on, only orients
the texture as supplied in the input sample. Therefore, if a texture sample
shows waves moving from the top of the texture to the bottom, the synthesis
results will always contain waves moving top to bottom. However, in the
case of a coastline, waves should be perpendicular with the coastline

98

regardless of the orientation of the waves in the sample texture. Oriented
texture synthesis for use in image enhancement is a promising area for
future research.

Coupled with oriented texture synthesis is the need for a classification
algorithm that not only classifies aerial imagery but also assigns each
location an orientation vector. For example, a good classification algorithm
would not only identify certain pixels as belonging to a river but also classify
directions for each pixel. The same concept applies for roads, lakes, and
other items that have a direction component.

A third area of interest is that of oriented motion synthesis. Whereas
RETS synthesizes static textures, there is a need for motion synthesis.
Examples of motion synthesis are: waves moving towards shore, a stream

flowing, grass blowing in the wind, etc.

99

100

Bibliography

[Asho1]

[CSHDo3]

[Bouo1]

[Dod97]

[EFo2]

[Bon9g7]

[EF99]

[H2001]

[HB95]

[IBGo3]

[LLo1]

M. Ashikhmin. Synthesizing Natural Textures. In Symposium
On Interactive 3D Graphics 2001, p.217-226, March 2001.

M. Cohen, J. Shade, S. Hiller, O. Deussen. Wang Tiles for Image
and Texture Generation. In Proceedings of SIGGRAPH 2003,
p-287-294, August 2003.

P. Bourke. Bicubic Interpolation for Image Scaling.
http://astronomy.swin.edu.au/~pbourke/colour/bicubic/, May
2001.

N. A. Dodgson. Quadratic Interpolation for Image Resampling.
IEEE Transactions on Image Processing, p.1322-1326,
September 1997.

A. A. Efros and W. T. Freeman. Image Quilting for Texture
Synthesis and Transfer. In Proceedings of SIGGRAPH 2001,
p-341-346, August 2002.

J. S. De Bonet. Multiresolution sampling procedure for analysis
and synthesis of texture images. In Proceedings of SIGGRAPH

1997, p.61—-368, August 1997.

A. A. Efros and T. K. Leung. Texture Synthesis by Non-Parametric
Sampling. In Proceedings of International Conference on
Computer Vision, p.1033-1038, September 1999.

A. Hertzmann et al., Image Analogies, In Proceedings of
SIGGRAPH 2001, p.327-340, August 2001.

D. J. Heeger and J. R. Bergen. Pyramid-Based Texture
Analysis/Synthesis. In Computer Graphics Proceedings, Annual
Conference Series, p.229—238, July 1995.

R. Ismert, K. Bala, and D. Greenberg. Detail Synthesis for Image-
based texturing. Interactive 3D Graphics, p.171-175, 2003.

L. Liang, C. Liu, Y. Xu, B. Guo, and H. Shum. Real-Time Texture
Synthesis By Patch-Based Sampling. Technical Report at
Microsoft Research, March 2001.

101

[Mako6]

[Moug8]

[PFHoO]

[PKT83]

[PTS99]

[SS97]

[SZTSo3]

[WLoo]

[WLo2]

[WLo1]

[XGSoo0]

M. Makivic. Bicubic Interpolation.
www.npac.syr.edu/projects/nasa/MILOJE/final/node36.html,
July 1996.

D. M. Mount. ANN Programming Manual. University of
Maryland Computer Science Department, 1998.

E. Praun, A. Finkelstein, and H. Hoppe. Lapped Texture. In
Computer Graphics Proceedings, Annual Conference Series,
p-465—470, July 2000.

J. Parker, R. Kenyon, and D. Troxel. Comparison of interpolation
methods for image resampling. IEEE Transactions on Medical
Imaging. Vol. 2, p.258-272, March 1983.

S. Premoze, W. B. Thompson, and P. Shirley. Geospecific
rendering of alpine terrain. In Eurographics Workshop on
Rendering, p.107-118, 1999.

R. Szeliski and H.-Y. Shum. Creating full view panoramic mosaics
and environment maps. In Proceedings of SIGGRAPH 97, p.251—
258, August 1997.

J. Sun, N. Zheng, H. Tao, and H. Shum. Image Hallucination
with Primal Sketch Priors. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, p.729-736, 2003.

L. Y. Wei and M. Levoy. Fast Texture Synthesis Using Tree-
Structured Vector Quantization. In Computer Graphics
Proceedings, Annual Conference Series, p.479—488, July 2000.

L. Y. Wei and M. Levoy. Order-Independent Texture Synthesis.
Standford Computer Science Department TR-2002-01, January
2002.

L. Y. Wei and M. Levoy. Texture Synthesis over Arbitray
Manifold Surfaces. In Proceedings of International Conference
on Computer Vision p.355—360, August 2001.

Y. Q. Xu, B. Guo, and H. Y. Shum. Chaos Mosaic: Fast and

Memory Efficient Texture Synthesis. In Microsoft Research
Technical Report MSR-TR-2000-32, April 2000.

102

	Real-time Image Enhancement Using Texture Synthesis
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Statement of the Problem
	1.2 Practical Example of Problem
	1.3 Thesis Statement

	2 Background
	2.1 Introduction to Texture Synthesis
	2.2 Introduction to Image Interpolation
	2.3 Similar Work in Detail Synthesis
	2.3.1 Image Hallucination
	2.3.2 Detail Synthesis for Image-based texturing

	2.4 Approach Presented in this Thesis

	3 Overview
	3.1 Solution Requirements
	3.2 Inputs and Output
	3.3 Algorithm Overview

	4 Extract Patch Sets
	4.1 Traditional Approach
	4.2 Introduction to Wang Tile Sets
	4.3 Using Wang Tiles to Build Patch Sets
	4.4 Non-periodic Repetition
	4.5 Stitching Diagonals into Patches

	5 Image Enhancement
	5.1 Classification of the Source Image
	5.2 Up-sampling the Source Image
	5.3 Pasting Patches
	5.3.1 Transferring Detail
	5.3.2 RGB Detail Transfer Approach
	5.3.3 Color Shifting
	5.3.4 HSV Detail Transfer Approach

	5.4 Custom Patch or Extracted Patch
	5.5 Selecting a Patch from the Set
	5.6 Custom Patches using Interpolation
	5.7 Multi-resolution Support

	6 EView
	6.1 Introduction to EView
	6.2 The Size Problem
	6.3 Remembering Previous Results
	6.4 Filling Holes

	7 Results
	7.1 Performance
	7.2 Image Quality
	7.3 Synthesis Results

	8 Conclusion
	9 Future Work

	Bibliography

