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ABSTRACT

DOES THE HALTING NECESSARY FOR HARDWARE TRACE COLLECTION

INORDINATELY PERTURB THE RESULTS?

Myles G. Watson

Department of Computer Science

Master of Science

Processor address traces are invaluable for characterizing workloads and testing

proposed memory hierarchies. Long traces are needed to exercise modern cache de-

signs and produce meaningful results, but are difficult to collect with hardware mon-

itors because microprocessors access memory too frequently for disks or other large

storage to keep up. The small, fast buffers of the monitors fill quickly; in order to

obtain long contiguous traces, the processor must be stopped while the buffer is emp-

tied. This halting may perturb the traces collected, but this cannot be measured

directly, since long uninterrupted traces cannot be collected. We make the case that

hardware performance counters, which collect runtime statistics without influencing

execution, can be used to measure halting effects. We use the performance counters

of the Pentium 4 processor to collect statistics while halting the processor as if traces



were being collected. We then compare these results to the statistics obtained from

unhalted runs. We present our results in terms of which counters are affected, why,

and what this means for trace-collection systems.
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Chapter 1

Introduction

This thesis uses the hardware performance counters available in the Pentium 4 proces-

sor to explore the effects of halting the processor for trace collection. Trace collection

allows a designer to use memory access histories from current processors to test pro-

posed memory hierarchies.

This chapter introduces the problem to be solved and lays out the organization

for the rest of the thesis. It starts by explaining the growing difference between

processor and DRAM speeds, and how memory hierarchies help to mitigate the effects

of this difference. It then introduces trace-driven simulation as an important tool for

evaluating memory hierarchy designs. After focusing on hardware trace collection

using BYU Address Collection Hardware (BACH)[1, 2], we point out some possible

sources of perturbation introduced by the system. This perturbation is quantified by

the experiments in this work, using hadware performance counters.

1.1 Processor Memory Speed Gap

The widening gap between CPU and main memory speeds makes memory subsys-

tem design critical. According to Hennessey and Patterson [3], CPU speeds have been

growing at 55% per year, while main memory (DRAM) speeds have been growing at

7% per year. Figure 1.1 illustrates the effect of this difference (note the logarithmic

1



Figure 1.1: The CPU-DRAM performance gap. Notice the logarithmic scale of the

Y axis.

scale of the Y axis). The difference between the rates can be attributed to the dif-

ference in design goals. While processor designers are focused on increasing speed,

DRAM suppliers are focused on increasing densities and therefore capacity (DRAM

sizes are doubling every two years [4]). In order to continue to increase in perfor-

mance, CPUs must access main memory less frequently. One way to do this is by

using a hierarchical memory design.

Memory Hierarchies

The role of memory hierarchies is to approach the speed of the processor while

managing overall system cost. Caches do this by organizing small fast blocks of

memory (usually SRAM) to take advantage of temporal and spatial locality [5]. Ex-

pensive SRAM can run at the speed of the processor, but the cost is prohibitive for
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main memory in current systems. If the most frequently used data is kept in the

cache, then for much of the time the processor will be able to execute as though main

memory were as fast as the cache.

There are many parameters to a memory hierarchy design. These include the

number of levels in the hierarchy and bandwidth between levels. For each level, the

capacity, associativity, block size, and replacement policy must be chosen. Since

the optimal values are workload dependent and most of these parameters contribute

substantially to the cost, the trade-offs must be weighed carefully.

Study Methods

Researchers employ several methods to study the trade-offs among cache parame-

ters, price, and performance. These methods include queuing theory, analytical mod-

els, and simulation. Because of the difficulty in accurately modeling the interactions

of components of the system, simulation is often the method of choice. Trace-driven

simulation uses the memory access history of a workload as input to a simulator in

order to obtain cache and performance measurements.

1.2 Trace-Driven Simulation

Trace-driven memory simulation has been an important tool in the evaluation of

memory hierarchies for many years. There are several types of trace-driven simulation,

differentiated by how traces are collected, stored, and processed [6]. Traces can be

collected using functional simulation of the architecture [7], instrumenting the source

or executable code of a benchmark [8], or connecting a hardware probe to the processor

pins. The traces can then be stored in a raw format like BYU Address Trace Format

[9] and Dinero [10], in a compressed format like PDATS [11, 12], or fed directly to a

simulator without intermediate storage [7, 13, 14].

As memory hierarchies continue to grow in size, the length of traces needed to

3



exercise them also grows. This growth makes all phases of trace-driven simulation

more difficult, and influences implementation decisions for tracing systems.

1.3 Trace Collection

In this work we are more concerned with trace collection than trace storage or trace

processing, so we explain the relative merits of trace collection using simulation, code

instrumentation, or hardware probes. These three methods are part of a continuum;

simulation introduces the most slowdown and is the most flexible, and hardware

probes are the least flexible and introduce the least slowdown.

Simulation

Simulation is the most flexible approach because it allows trace collection for

various hardware with the same system. It allows researchers to study hardware that

is not available, and the hardware or software contributions to total performance.

One drawback is that it slows execution by several orders of magnitude based on the

level of detail at which it is run, and is therefore prone to errors due to insufficient

detail. Other drawbacks are the time needed to implement an accurate simulator of

a modern architecture and the lack of details necessary to do so.

Instrumentation

Instrumenting the benchmark is done by inserting code snippets, which record in-

formation available during execution. This information may include which basic block

is being executed or what virtual memory addresses are being accessed. It allows the

program to run at much closer to normal execution speeds. Adding instrumentation

changes the memory footprint and the execution path of a benchmark. These changes

introduce slowdowns, which change the speed of other system components relative to

the CPU. Another drawback is that it is architecture specific, requiring the researcher

to have the hardware. It also requires an instrumented operating system to collect

complete traces.

4



Hardware Probes

Using hardware probes is the most machine specific of these techniques. A hard-

ware probe is designed to connect electrically to the processor pins and record the

memory transactions. It allows the collection of complete address traces [1]. Here

complete means that both operating system and user references are recorded. Tracing

with a hardware probe allows the processor to run at full speed until the fast memory,

or buffer, fills. This is one drawback, because the buffers are not large enough to hold

interesting traces; the processor must be halted while the buffer is emptied in order

to collect contiguous traces longer than one buffer in length. Another drawback is

that probes are expensive to build or buy. This is especially true considering the rate

of replacement necessary to stay abreast of current processor technology.

Figure 1.3 represents the halting of a workload for trace collection. The goal is

to construct contiguous traces of halted runs that are indistinguishable from a trace

captured without halting the processor. Since an interesting trace of the memory

references is larger than a practical buffer, it must be collected in pieces and reassem-

bled. In the figure this means that the results of a cache simulation using the four

buffers of scenario B or the seven buffers of scenarios C and D would be equivalent to

the cache simulation using the single trace collected in scenario A. Scenario A shows

the normal execution of the program. Scenarios B, C, and D represent the same

program while traces are being collected by different tracing systems. The tracing

system in scenario B has twice as large of a buffer as C or D, and B and C empty

their buffers twice as fast as D. Since the cost of a tracing system increases with the

speed and depth of the buffers, it is of interest to know what effect these parameters

have on the system being traced, and therefore on the workload being collected.

5



Figure 1.2: The general method of hardware trace collection with a finite buffer.

Program execution refers to the benchmark running, when the trace is being collected.

Note that the time between interruptions increases with larger buffers, and the time

the processor spends halted decreases as the speed of emptying the buffer increases.

1.4 BACH: BYU Address Collection Hardware

BACH collects complete address traces using a hardware probe [1]. The current

implementation of BACH uses Tektronix microprocessor probes and logic analyzers

that can buffer 8 million memory references. When the buffer fills, the logic analyzer

causes a high priority interrupt on the system under test, which spins in a tight loop

until the logic analyzer empties its buffer and releases the interrupt. The number

of times this interrupt service routine is entered depends on the length of the buffer

and the length of the trace to be collected. One BACH trace of the SPEC CPU2000

benchmark 181.mcf with caches enabled is over 6.4 billion references long, meaning

that more than 800 buffers must be collected [9].

Possible Sources of Error

BACH introduces some perturbation in traces that it collects. Some possible

sources of error are memory references, bus traffic, and changes in processor state

due to the tracing device driver; another is the reordering of interrupt handlers.
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Each time the device driver on the system under test enables tracing, a few mem-

ory references from the driver code will be captured. This effect can be minimized

or eliminated with careful post-processing of the trace to remove references in the

memory range of the driver. The changes in the machine state caused by the tracing

device driver can not be removed. Cache lines, page table entries, and other resources

that are used by the device driver displace state used by the workload and change

subsequent execution. This is minimized by writing driver code that uses as few

resources as possible.

Due to the asynchronous nature of interrupts, they continue to occur while the

processor is waiting for the logic analyzer buffer to empty. Interrupts from sources

such as the timer, disk drive, and network card queue up and wait until tracing is

re-enabled. Since a buffer takes longer than a timer tick to empty, the beginning of

every buffer will contain at least the references for the timer tick service routine. In

order to minimize the number of interrupts that queue up, BACH traces are collected

with the network disabled and in single-user mode in Linux.

1.5 Summary

In this chapter, we motivated the use of trace-driven simulation to evaluate mem-

ory hierarchies. We then discussed trace collection, and the use of hardware probes.

We focused on BACH, and pointed out potential sources of inaccuracies.

1.6 Thesis Statement and Layout

We submit that halting the processor is a negligible source of error in trace-driven

simulation with a sufficiently large tracing buffer. In order to make that case, we

present experiments and results that measure the differences in execution caused

by halting the processor with varying frequencies and for various lengths of time.

Chapter 2 describes the experiments we designed and details hardware performance

7



counters. Chapter 3 presents our results, and Chapter 4 gives our conclusions and

possible future work.

8



Chapter 2

Experiments

This chapter starts by explaining what we wanted to accomplish and the experiments

that we designed. It then describes hardware performance counters and gives some

details about the counters available on the Pentium 4 processor. Finally it explains

how we chose the counters for our experiments, how we access them, and the statistical

methods we use.

2.1 Using Performance Counts to Detect Perturbation

We base our experiments on the idea that performance counts can be used to char-

acterize periods of execution. In other words, a benchmark run multiple times should

produce similar performance counts for each run. Perturbation, or interference, from

an outside source should affect the performance counts to the extent that it affects

the execution of the benchmark. In this work we wish to quantify the perturbation

introduced by halting the execution of a benchmark for trace collection.

Since we are interested in quantifying the perturbation introduced by BACH,

the halting method is fixed in our experiments, and we vary the time for which

the processor is halted and the frequency of halting. These parameters correspond

to the speed with which the tracing buffer can empty and the depth of the buffer,

respectively.

9



Varying Halting Times

In order to quantify the effect of increasing halting times, we chose two frequencies

at which to halt the processor. For the first, we chose the minimum amount of time

for BACH’s buffers to fill. The second we chose to be four times faster to give us

another data point representing the same logic analyzer collecting references from a

faster bus.

We calculated the minimum time to fill BACH’s buffer starting with the maximum

frequency with which a 2.4 GHz Pentium 4 processor with a 400 MHz front-side bus

can make memory requests. Since the 400 MHz bus makes requests at 100MHz, and

there are at least six bus cycles per request, there can be at most 16 million requests

per second. Our logic analyzer can buffer 8 million requests, or one half second of

requests at the maximum rate. We thus chose to halt the processor every 1.2 billion

cycles, or approximately every one half second.

We compare not halting the processor, halting it for the shortest amount of time

possible, and spinning in a tight loop for 1/4, 1/2, 1, 2, or 8 seconds. Each time the

processor is halted, we disable interrupts and spin in a tight loop for a given halting

time. We approximate the halting time with a nested loop where the inner loop

executes 1.2 Million times, or about a millisecond. This means that total execution

time for a benchmark is given by equation 2.1, where t is the number of seconds the

benchmark is halted each time, x is the normal time to completion for the benchmark,

and f is the execution time in seconds between halting times. Halting every 1/8

second for 2 seconds therefore increases the runtime to 17x. In order to reduce total

execution time, when halting every 1/8 second we consider fewer wait times, see Table

2.1.

tx/f + x (2.1)
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Execution Time Between Halting Halting Time

No Halting N/A

1/8 second 0, 1/2, and 2 seconds

1/2 second 0, 1/4, 1/2, 1, 2, and 8 seconds

Table 2.1: Experiments for Determining the Effect of Halting for Different Lengths

of Time. We consider fewer hating times when halting every 1/8 second to reduce

run times.

Varying Halt Frequencies

In order to quantify the effect of halting frequency, we held the halting time

constant and varied the frequency of halting. These times were not chosen to represent

the current halting time of BACH, which is on the order of tens of minutes. Instead

we chose times that we feel represent feasible solutions, given the sustained write

bandwidth of modern disks and arrays. We chose halting times of every two seconds

and every one half second.

We compare not halting the processor to halting the processor every 1/10, 1/2, 1,

2, and 8 seconds. Again to save time we use fewer data points when halting for two

seconds. Table 2.2 shows the runs for these experiments.

Halting Time Execution Time Between Halting

No Halting N/A

1/2 second 1/10, 1/2, 1, 2, 8 seconds

2 seconds 1/2 and 2 seconds

Table 2.2: Experiments for Determining the Effect of Halting With Different Fre-

quencies. Note that the number of runs for this experiment was reduced in the same

manner as the previous experiment to reduce run times.
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2.2 Hardware Performance Counters

Background

Modern microprocessors are complex. Their decoupled out-of-order and specula-

tive execution engines make it difficult to predict how well specific code will run [15].

In order to help find and fix performance problems, architects include performance

counters. These counters allow the counting of architectural events, such as cache

misses and branch mispredictions, without significant overhead in terms of execu-

tion time, and without modifying the code. This allows designers to improve the

architecture and developers to tune their algorithms to the hardware.

Designers can run code segments and compare the expected and actual counts. If

there are significant differences, they narrow the search for the reason the code behaves

poorly. The code can then be rewritten to perform better, and/or the architecture

can be modified in the next revision. There are several software tools that allow the

programmer to access performance counts [16, 17, 18, 19].

2.3 Performance Monitoring Features of the Pentium 4 Processor

The Intel Pentium 4 processor has more counters available for simultaneous event

counting than its predecessors [20, 21]. In the Pentium Pro, Pentium II, and Pentium

III processors, there are only two counters available for simultaneous use. This limits

the experiments that can be run because of the difficulties involved with correlating

the counts among different runs. The Pentium 4 processor has 18 counters available,

which can each be configured to count a variety of events.

Organization and Setup

The performance counters on the Pentium 4 processor are distributed in groups

throughout the chip to reduce routing overhead [16]. Groups consist of counters,

event selection control registers (ESCRs), and counter configuration control registers

(CCCRs), as shown in Figure 2.1. Each counter has its own CCCR, which selects

12



Figure 2.1: Performance Counter Blocks in the Pentium 4 processor. Note that each

event selector may be used to count various events. For simplicity we have only shown

two event selectors with this counter block.

an ESCR’s signals to count and sets filtering options and overflow conditions. Some

events may happen more than once per clock cycle, so the counters can increment by

up to fifteen each clock cycle. The CCCRs’ filtering mechanisms allow the program-

mer to specify event counting thresholds, count inversion, and edge filtering.

Table 2.3 shows a few of the events that can be counted in the Pentium 4 processor,

which block they belong to, and includes a brief description of the event. For exam-

ple, to count retired mispredicted branches, either TBPU ESCR0 or TBPU ESCR1

is programmed to select event 0x05 with bits set corresponding to which types of

branches should be counted. The CCCR connected to the chosen ESCR is set to

select that ESCR’s increment signals, and the corresponding filter and overflow bits

are set appropriately.

Event Based Sampling

Event based sampling (EBS) is another profiling method that is supported by

the Pentium 4 processor. In event based sampling, an interrupt is generated when

a counter overflows. The interrupt handler can then record some subset of the state

13



Counter Name Block Description

Retired mispred branch type TBPU Retiring mispredicted branches

by type.

Instr retired CRU Retiring instructions which may

be tagged or speculative.

Global power events FSB Time during which the processor

is not halted.

Table 2.3: These are example Pentium 4 performance counters and their descriptions

[21].

of the microprocessor, for example, the value of the program counter or architectural

registers. In this way, a histogram of instructions that cause a specific event can be

created. Using an interrupt to trigger the sample is referred to as imprecise EBS

(IEBS). In IEBS, the overhead involved with triggering an interrupt and the large

number of instructions that may currently be in flight can lead to the data being

collected 50 instructions later than the one that caused the event. This can make

fixing performance problems very difficult. As processors execute more and more

aggressively, this will continue to get worse.

Precise Event Based Sampling

To help remedy this problem, the Pentium 4 processor has included precise EBS

(PEBS). PEBS uses a micro-assist instead of an interrupt to handle the counter

overflow. This means that the event is handled completely in hardware. The sample

data gets stored to a buffer area that was previously allocated in memory, the counter

gets reset, and the processor is ready for the next occurrence. With PEBS, nearly all

samples will correspond to the instruction that caused the event.

14



Our Usage of EBS

We use IEBS to interrupt the processor after some number of clock cycles have

passed. In the interrupt service routine that we wrote, no information is collected.

Instead, the processor spins in a tight loop to simulate the time needed to empty the

tracing buffer. If we had been able to use PEBS, it would have reduced the overhead

involved, but it did not allow us to halt the machine. We could have collected the

counter values each time the processor was halted in this way, but we wished to

minimize overhead in our experiments.

2.4 Counter Selection

Now we address which counters we chose for our experiments. There are many

events that can be counted on the Pentium 4 processor, up to 18 at once. Because of

the variability in counts between runs, we decided to limit the number of counters so

that we could collect them all in a single run.

Starting Point

We started with the counters used by Gomez et al. [22]. In their work they use the

SPEC CPU2000 benchmarks to compare benchmark reduction methods. They argue

that reduction methods are of little use if they significantly change the character of the

benchmark. They compare dataset reduction and fast-forwarding techniques to the

complete benchmark. The criteria for accuracy is the amount that the performance

counts change. They use CPI (cycles per instruction), first and second level cache miss

rates, branch misprediction rate, instruction and data TLB miss rates, and degree of

speculation (percent instructions committed).

To their list, we added global power events. This counter is the preferred method

for counting clock cycles, according to the Pentium 4 processor manual. We configure

it to count all cycles when the counter is active. We use this cycle count with EBS

15



1

2 for (y=0;y<10000000;y++)

3 {

4 for (a=0;a<MISS_TIMES;a++)

5 x += buffer[a*0 x2000 ]; //Miss in the Cache

6 a--;

7 for (z=0;z<64- MISS_TIMES;z++)

8 x += buffer[a*0 x2000 ]; //Hit in the Cache

9 }

10

Figure 2.2: This is an excerpt from SimpleMisses.c, a small program which behaves

differently in the data cache depending on the value of MISS TIMES.

to halt the processor based on the amount of time that it has been executing the

benchmark.

Misses Benchmark

In order to become familiar with the performance counters and tools, we wrote

some simple programs. One program was written to cause cache misses. It consists

of nested for loops, which march through memory accessing locations that map to

the same line, 32k apart. Figure 2.2 contains an excerpt of the code. Note that the

number of memory loads and instructions executed remain the same for any setting

of MISS TIMES, because lines 5 and 8 are executed a total of 64 times.

First and Second Level Misses

Figure 2.3 is a scatter plot with the MISS TIMES on the X axis, and the number

of misses on the Y axis. When the associativity of the L1 cache is exceeded, the

number of misses increases linearly with MISS TIMES. We used the same program

to test L2 miss counts, but the counts were not correlated with MISS TIMES. There

are two different ways that the Intel manual [21] suggests to count L2 misses, one

of which is stated to be incorrect due to an erratum. The other only works when

prefetching is disabled, which affects the execution of the benchmarks; we wanted to

avoid this.
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Figure 2.3: First level data cache misses from SimpleMisses.c for several values of

MISS TIMES. Notice that when the associativity of the first level cache is exceeded,

the number of misses increases linearly with the value of MISS TIMES

17



Bus Transactions

In order to get a count that was related to the L2 miss counts, we also configured

the counters to count bus transactions and bus queue allocations. These metrics also

yielded no meaningful correlations and were several orders of magnitude smaller than

expected, so we abandoned the effort to measure L2 misses and bus activity.

64k Aliasing

When trying to find L2 correlations, we noticed that elapsed time did not always

correspond as nicely as L1 misses to MISS TIMES. We looked at other counters and

found that 64k aliases correlated with elapsed time. 64k aliasing occurs when the

fast match logic detects that the lower 16 bits of the address cause a hit in the cache.

The processor then assumes that it was a hit and begins executing the instructions

with the value from that location. When it is determined that the match was the

result of aliasing, the instructions that depended on that value must be canceled and

restarted. Our code is designed to miss the cache by accessing once every 32k, which

increases our chance of 64k aliasing. Page allocation may be different from run to

run, and therefore 64k aliasing also varies. We decided to include it in the counters

we use.

Allocate Remaining Available Counters

From this point, we allocated metrics to the remaining counters. We added split

loads, split stores, memory stalls due to the reorder buffer being full, and trace cache

mode counters. Split loads and stores occur when there was a replay caused at the

respective port. The reorder buffer is a structure that makes sure that instructions

retire in the correct order. The trace cache has two modes, build and deliver. The

trace cache is in build mode when it is decoding instructions. There are not enough

documented events to use all the counters in the IQ group, so we end up using 16

performance counters and the time-stamp counter; see Table 2.4.

18



Selected Pentium 4 Processor Performance Counters

64k Aliases

Global Power Events

Conditional Branches

Conditional Branch Mispredictions

Data TLB Misses

Instruction TLB Reads and Writes

Instruction TLB Misses

Instructions Retired (All)

Instructions Retired (Non-Bogus)

Level 1 Cache Misses

Loads (Requires Two Counters)

Split Loads

Split Stores

Trace Cache Build Mode

Trace Cache Deliver Mode

Time Stamp Counter

Table 2.4: These are the final counters that were selected to measure the perturbation

of halting. They were selected because they measure important performance events,

and/or could be collected simultaneously.
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2.5 Statistical Methods

We use statistical methods from the performance analysis book by Raj Jain [23].

In particular we make use of confidence intervals around the mean and an equation to

determine necessary sample sizes. We use confidence intervals to make claims about

statistically significant differences between halting frequencies and halt times. We use

the equation to calculate sample sizes to find the number of runs necessary to limit

the size of the confidence intervals with respect to the total counts.

Comparing Means Using Confidence Intervals

In order to determine the amount of perturbation introduced by halting the sys-

tem, we use confidence intervals around the mean value of each counter to find sta-

tistically significant differences. The confidence interval allows us to place bounds

on the value of the true mean with a given confidence. In other words, a 95% con-

fidence interval of (23,26) means that there is a 95% certainty that the mean of the

population is between 23 and 26. When comparing two alternatives, if the confidence

intervals do not overlap, one can state with a given confidence that the mean of the

two alternatives is different. If the confidence intervals do overlap, you cannot tell

that the means are different with that level of confidence.

(x− sz1−α/2/
√
n , x+ sz1−α/2/

√
n ) (2.2)

Confidence intervals are computed using the sample mean, standard deviation,

number of samples, and the t distribution for a given confidence level and sample

number. Equation 2.2 gives the formula for confidence intervals. The width of a

confidence interval grows with increasing confidence (decreasing α), increasing stan-

dard deviation s, and shrinks with increasing sample size n. We decided to use 95%

confidence intervals before running the experiments.
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Determining Sample Size

Formula 2.3 yields the number of samples necessary to achieve a confidence interval

of a certain size given a few samples from the distribution. Here z is the quantile of the

unit normal distribution, s is the sample standard deviation, x is the sample mean,

and r is the percent accuracy required. We used this formula to determine how many

measurements were necessary to keep the variability to 5% of the counter values for

unperturbed runs. For the integer SPEC CPU2000 benchmarks, we calculated that

we needed 3 or fewer runs for all of the counters we were interested in. We decided

to use 5 runs for each of our experiments in case there was increased variability in

the counter values when the system was halted.

n = (100zs/rx) (2.3)

2.6 Experimental Environment and Details

In this section we explain the details of our implementation of the experiments.

We describe the hardware and operating system, then the software, and then some

implementation-specific details.

Hardware and Operating System

Our Experiments are run on a Dell Optiplex GX260 with a 2.4 GHz Pentium 4

processor and 512 MB of RAM. We have installed Redhat 9 with a modified Linux

kernel based on 2.4.20-8 in order to access the performance counters. For each of our

experiments, we run all of the integer SPEC CPU2000 benchmarks, and three of the

floating-point benchmarks. The integer benchmarks were compiled with gcc, and the

floating-point benchmarks were compiled with Fujitsu’s fortran compiler. We run our

experiments in single user mode in order to limit the number of active interrupts and

mirror BACH’s style of trace collection.
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Software

The Brink and Abyss tools [24] provide an experimental environment in which to

work. They consist of a Perl script (Brink), a C program that interfaces to the device

driver (Abyss front end), and the device driver that accesses the counters (Abyss

device driver).

Brink parses two files, a processor description file and an experiment configuration

file. From these files it creates an input file for the Abyss front end that contains the

path to the benchmark, initial counter values, sampling directives, and EBS directives.

It then runs the Abyss front end and parses the output, writing log files, event counts,

and archiving the input file.

The Abyss front end uses the directives from the input file to run the benchmark.

It decides which device driver calls to issue with what frequencies, and formats the

driver’s output.

The Abyss device driver provides functions for reading and writing the perfor-

mance monitoring counters and registers. It also includes routines for handling IEBS,

PEBS, and the interrupt service routine (ISR) for the performance counter interrupt.

Since the device driver needs specific interrupt support compiled into the kernel, it

comes with the necessary patches.

Implementation Specific Details

To isolate the effects of halting the processor, we subtract obvious effects such as

instructions executed in the wait loop, extra branches taken, etc. We multiply the

number of times that the benchmark is halted by the number of extra events caused

by each loop and by the number of times the loop is executed. For example, for each

inner loop there is an extra branch and every millisecond there is another branch

from the outer loop. This means that we subtract th(1.2M + 1) branches from the

total number, where t is the number of milliseconds the benchmark is halted each
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time and h is the number of times the benchmark is halted. The confidence intervals

are small enough to make the extra th branches from the outside loop significant.

2.7 Summary

We started this chapter by outlining our experiments. We then described hardware

performance counters and the counters available on the Pentium 4 processor, followed

by which counters we chose for our experiments. We then explained the statistical

methods we used, and some additional details.
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Chapter 3

Results

In this chapter we discuss our experimental results. We start by describing and pre-

senting graphical examples of statistically significant trends (as opposed to results

that show no significant trend). We then address each experiment’s results, describ-

ing the trends that were encountered, and their meanings. We show that although

hardware trace collection perturbs the system very little, our methodology allows

us to quantify the perturbation and make a recommendation for minimum buffer

size. Throughout this chapter we urge the reader to pay attention to the scales of

the graphs, as they were chosen to make the trends clear, not the magnitude of the

counts.

3.1 Significant Trends

In order to characterize the effects of an experiment, we graphed the confidence

intervals for each counter in each experiment. We then selected those graphs that

showed statistically significant patterns, and tabulated the results. Figure 3.1 is an

example where there is no statistically significant effect of increasing the halting time,

and is included for contrast with figures 3.2, 3.3, and 3.4, which show examples of

statistically significant effects.
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Figure 3.1: No statistically significant trend. This figure contains no trend, because

the confidence intervals contain each other’s means. Therefore, even though there is

variation, it does not indicate a pattern.
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Figure 3.2: A statistically significant increasing trend. Notice that the axes do not

cross at the origin; the scale has been chosen to allow the reader to see the shape of

the trend, not the magnitude. The total variation here is less than 5%.

Increasing

Figure 3.2 shows the confidence intervals for the time-stamp counter running the

eon benchmark with the 1/8 second halting rate. It is clear that there is a statistically

significant difference between not halting the machine and halting it for long periods

of time. The value of the time-stamp counter increases as the halting period increases,

and the size of the confidence interval grows.

Steps

Figures 3.3, 3.4, and 3.5 are the confidence intervals running the parser benchmark

with a halting rate of 1/8 of a second for ITLB misses, ITLB miss rate, and non-

bogus instructions retired, respectively. It is clear in Figures 3.3 and 3.4 that there
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Figure 3.3: A step trend. This trend is one of the most common trends during the

experiments. Notice the axes do not cross at zero, in order to present the shape

clearly to the reader. See Figure 3.4 for an idea of the magnitude of the change.

28



Figure 3.4: The same step trend as shown in Figure 3.3. This figure was included to

help the reader see the impact on miss rate of the increase in misses.
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Figure 3.5: This is a second kind of step trend that occurs frequently in the data.

There is no statistical difference in the number of instructions executed in this ex-

periment when running without halting and halting for very short lengths of time,

but halting the machine for any length of time increases the number of instructions

executed. Notice that the total variation is less than 0.01%.
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is a difference between halting and not halting the processor, but not between any

two halting times. Figure 3.4 was included to give an idea of the impact of the extra

ITLB misses. Figure 3.5 shows a significant difference between halting the processor

for one half second or longer and not halting the processor or halting it for a very

short period of time.

Statistically Unaffected Counters

Figure 3.1 presents the confidence intervals for memory stalls caused by a full

reorder buffer running the parser benchmark with the same halting rate. Note that

the mean of each confidence interval is contained by the confidence interval of the

unhalted runs. Therefore there is not a statistically significant difference in the means.

3.2 Effects of Increasing Halting Times

We discuss the effects of increasing halting times starting with which counters

were unaffected, moving to counters that were affected by halting, but not affected

by increasing the halting time, and then counters that were impacted by increasing

halting times.

Unaffected Counters

The three counters that were never significantly affected by increasing halting

times were split loads, memory stalls caused by a full store buffer, and the cycle

counter we used to sample the benchmark. The cycle counter based on global power

events being unaffected means that there was not a statistically significant amount of

extra processing time needed to complete the benchmarks as we increased the halting

time. There was not a statistically significant difference in split loads or memory

stalls caused by halting times at the granularity of halting for this experiment.

Counters Showing Steps

Counters that show a step trend as in Figures 3.3 and 3.5 are not affected by

increasing the halting time, for the range we tested; however, we include them to
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differentiate from those where there was no significant difference. We list them in

order of how many benchmarks showed significant steps. The following counters

are listed from most to least affected: ITLB misses, loads retired, trace cache build

mode, conditional branches, non-bogus instructions retired, all instructions retired,

data TLB misses, 64K aliases, first level cache misses, and split stores. The amount

each of these counters is affected varies from benchmark to benchmark, which we

attribute to differences in the utilization of each resource.

The most consistently affected counter was ITLB misses. Figure 3.3 is a good

example of this. The difference between the mean of the unhalted and halted values

varies from benchmark to benchmark, but the step is consistent. This is due to

the extra code involved in our interrupt service routine (ISR), which displaces ITLB

entries that were used by the benchmark. We attribute the variability in the amount

the counter is affected to its usage of ITLB entries. A related counter, ITLB reads

and writes, was also affected in the same way.

Counters With a Trend

Two counters were affected in 16 out of 30 of the benchmark runs: the time-

stamp counter and trace cache delivery mode counter, a statistically related counter

that counts the number of cycles when the trace cache is in delivery mode. For the

benchmarks where there is a marked increase in the number of cycles reported by these

counters, there are no similar trends in other counters. Our first hypothesis was that

the increased time had to do with second-level cache misses, which we have no way of

counting. We therefore ran our misses benchmark stopping it for the same lengths of

time as we had stopped the SPEC benchmarks. There was no significant trend in the

value of the time-stamp counter. We also tried this with another microbenchmark,

which spun in a tight loop similar to our interrupt timing loop. Again we found no

significant trend.
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It is interesting to note that there was no significant increase in the number of

instructions executed or times halted. Since we interrupt the processor based on the

number of cycles that the processor is not halted, there is an increase in the amount

of time that the processor is in our ISR. In the bulk of our ISR interrupts are disabled,

and the processor spins in a tight loop. One possible explanation is that our loop

is the victim of thermal throttling, meaning that the processor was dissipating too

much power and selectively disabled some resources. This would explain why our

loop took longer to execute, but only with some benchmarks.

Halting Time Summary

The effects of increasing the halting time are very small in general. In fact, it only

appears to significantly affect the total number of cycles that the benchmark is in

the ISR, which is of no importance to trace collection. The counters that exhibited a

step will be explored further in the next section on the effects of halting frequencies.

3.3 Effects of Increasing Halting Frequencies

For comparing varying halting frequencies, we again tallied the number of times

that the counters were significantly affected. In this case there were no unaffected

counters, meaning that each counter was affected for at least one of the benchmarks.

We start by explaining the three types of trends we see, then list the counters that

were affected in each way.

Shape of the Trends

There were three types of trends that we see with the affected counters: two

which change linearly after a threshold and the same step shape that we saw with

the halting times experiment. We will present the first two and refer the reader to

Figure 3.3 and the previous discussion for the third, because it only occurred in two

cases. Figures 3.6 and 3.7 show the same linear trend plotted in two different ways.

Figure 3.8 shows an example of the second type of linear trend.
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Figure 3.6: A linear trend plotted on a category axis. Figure 3.7 shows the same data

in a scatter plot to make the linear trend more obvious. This was one of the more

common trends for this experiment. Notice that the numbers on the X axis refer to

the execution time between halting, and that the total variation here is about 5%.
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Figure 3.7: A Scatter plot of the data in Figure 3.6. This figure was included to make

the linear relationship more easily visible. The line is the least squared error fit to

the means.
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Figure 3.8: A linear trend with a large unhalted confidence interval. This graph

appears much like Figure 3.6, but the large confidence interval of the unhalted run

contains the means of the other runs. This means that there is no significant trend

with the unhalted run included, but excluding the unhalted run gives a linear trend.

This was a commonly observed pattern.
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Figure 3.9: Another linear trend with a large unhalted confidence interval. This figure

was included to illustrate the difference in the magnitudes that were observed in the

trends. Compare the percentage variation of this figure to those of Figures 3.8 and

3.10.
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Figure 3.10: The ITLB Miss Rate graph corresponding to Figure 3.9. This figure was

included to help the reader understand the magnitude of the difference.
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Linear Trends

Figures 3.6 and 3.7 are two views of a good example of the most common trend that

we see with affected counters. They show the confidence intervals around the mean

for the time-stamp counter running the vortex benchmark, as the halting frequency

increases. The numbers on the X axis represent the number of billions of cycles

between halting. Note that there is no significant difference between the normal run

and the halted runs until some point on the X axis, in this case when the processor

is being halted every 1.2 billion cycles, or roughly one half second. After that point

the difference increases approximately linearly with the number of times that the

benchmark is halted. The point at which there is a significant difference varies from

benchmark to benchmark, and from counter to counter, but most counters are not

significantly affected until the frequency increases past halting once a second, or every

2.4 billion cycles.

Figure 3.8 shows an example of the next type of trend. This graph shows the

confidence intervals around the mean for the values of the conditional branch counter

running the gzip benchmark, as the halting frequency increases. It still shows the same

linear trend as the number of halting times increases, but the confidence interval of

the normal run is wider. This occurred for four of the counters when running gzip

and two counters when running mcf; both of the benchmarks exhibited this behavior

with conditional branches and non-bogus instructions retired.

It is interesting to note the effects of halting frequency on these counters in terms

of percentage of the normal value. Figures 3.8 and 3.9 illustrate this. They are both

from the same runs of the benchmark gzip, for conditional branches and ITLB misses,

respectively. The difference between halting the processor every 1.2 billion cycles to

every .24 billion cycles is over 40 percent of the mean value in the case of ITLB misses,

39



but only 7 · 10−11 percent for conditional branches. This was true for both types of

linear trends.

Halting Frequency Summary

The most common trend for the counters is one that is linear with the number of

times the benchmark is halted, i.e. inversely proportional to the halting frequency.

We expect that with a high enough halting frequency this trend would not continue,

because the benchmark would make so little progress in between interrupts. We

believe that one tenth of a second is as fast as a reasonable tracing system would halt

the processor; for tracing, the effect will be linear throughout the region of interest.

3.4 Results Summary

In our experiments, we have explored the effects of halting duration and halting

frequency for all of the integer SPEC CPU2000 benchmarks, and three of the floating

point benchmarks. The range of halting times and frequencies that we tested were

chosen to represent current and near future tracing apparati.

The time the processor was halted had no significant impact on the counters

during the time that the benchmark was running. Based on this result we expect

no significant improvement in the quality of traces collected with tracing setups that

can empty their buffers faster, within reasonable limits. It is, however, beneficial for

those that would like their traces in a timely manner to increase the speeds at which

the buffers may be emptied, see equation 2.1. Given that the time the processor is

halted has no significant impact on the quality of traces collected, as measured by

the performance counters, it is important to focus on halting frequency to improve

tracing systems.

Many of the performance counters were significantly affected by increasing the

halting frequency. The magnitude of these statistically significant differences varies

substantially among counters and among benchmarks. Larger buffers will give more
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accurate traces in general, but most of the counters are not statistically affected if

the processor is halted up to once every second. This means that a buffer size of 16

million references will be sufficient in the case that the bus is 100% utilized, or that

our current system is sufficient for practical utilization on current processors.
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Chapter 4

Conclusions and Future Work

4.1 Conclusion

In this thesis we used the performance counters of the Pentium 4 processor to

measure the effect of halting the processor with various frequencies and with several

halting times. We showed that the effects of halting are workload dependent, and

that in general they increase linearly with the number of times the benchmark is

halted. We also found that the length of time for which the processor remains halted

does not significantly affect the performance counts in which we are interested.

Based on these results, we recommend building systems for capturing hardware

traces which have buffers large enough to allow the machine to run for at least a

second between halting to minimize the perturbation in the traces.

4.2 Future Work

Future work might include exploring ways to minimize the effects of halting and

other uses for this methodology. Ways to minimize halting effects include compiling

the halting driver into the kernel so that it maps to a TLB entry already used by

the OS and defining a hardware-based halting mechanism that has very low overhead

(perhaps based on a bus stall). Another use for this technique might be testing the

warm-up time for caches. During execution of the benchmarks, you could compare
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flushing the cache to not flushing it using the counter values for the next section of

execution.
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Appendix A

Example Configuration Files

This appendix is included to give the interested reader some specifics on how to

configure Brink and Abyss with XML configuration files. It consists of a brief overview

of the file format and some examples from the configurations used in this work.

A.1 Brink Configuration Files

Configuration files are XML files that are divided into three sections: the proces-

sor identification, the program section, and the experiment section. The processor

specifies which processor the configuration file was written for, the program section

specifies which programs should be run, and the experiment section defines the ex-

periments to be run on each program.

A.2 The Program Section

The program section contains a list of tags that associate names with commands.

In Figure A.1, a2 gzip is the name given to the run of gzip that is initiated with

the command in double quotes. The names for the programs must be unique, and

they are run in lexical order. An important thing to remember is that any output

generated by the program must be redirected so that it does not interfere with the

brink and abyss tools, which communicate through standard in and out.
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1 <programs>

2 <a1_gzip command="runspec -n 1 -a run -I -l gzip>spec.out"/>

3 <a2_gzip command="runspec -n 1 -a run -I -l gzip>spec.out"/>

4 ...

5 <a5_twolf command="runspec -n 1 -a run -I -l twolf>spec.out"/>

6 </programs>

Figure A.1: This excerpt from the program section of spec1-3.txt illustrates how to

specify which programs will be run with Brink and Abyss.

A.3 The Experiment Section

The experiment section contains a list of tags that associate events with an ex-

periment name. For each event, there is a base counter and the bits which must be

set. In Figure A.2, every 0.3B 2s is the name of the experiment where clk cycles is

the name of the event used for EBS to halt the processor. The names of experiments

and events must also be unique, and they are run in lexical order.
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1 <e0normal>

2 <clk_cycles base="global_power_events">

3 <set> <running/> </set>

4 </clk_cycles>

5 <ld_miss_1L_retired_tag base="ld_miss_1L_retired"/>

6 <ld_retired_tag base="loads_retired"/>

7 <inst_ret_nbog base="instr_retired">

8 ...

9 </e0normal>

10 <every_0.3B_2s>

11 <clk_cycles base="global_power_events">

12 <set> <running/> </set>

13 <ebs type="imprecise" interval="300000000" buffer="2000"

14 sample="N" max="500"/>

15 </clk_cycles>

16 ...

17 <every_0.3B_2s>

Figure A.2: This excerpt from the experiment section of spec1-3.txt shows the way

that ebs directives are used to halt the processor in experiment every 0.3B 2s and

not in experiment e0normal
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