
Devils Hole is the collapsed top of a stretch
fault leading to a flooded cave system. Carr
(1988) and Riggs et al. (1994) discuss the geo-
logical development of Devils Hole. The water
surface, which is about 15 m below the imme-
diate land surface, is the hydrologic head of
the regional Ash Meadows groundwater flow
system. In many ways Devils Hole is quite
similar to the spring ecosystem of Montezuma
Well, Arizona (Boucher et al. 1984, Blinn et al.
1994). Over the last 25 yr, Devils Hole aquatic
ecosystem has been studied primarily as it
relates to the Devils Hole pupfish (Cyprin-
odon diabolis Wales), which is federally listed
as endangered, while other facets of the eco-
system have received limited attention. The
National Park Service and the United States
Fish and Wildlife Service are now supporting
broader studies of the Devils Hole aquatic
ecosystem. A logical first step is to summarize
what is known about the algal community,
hence this paper. Then more in-depth work
can build upon this base.

DESCRIPTION OF DEVILS HOLE

Devils Hole, part of the Great Basin Desert,
lies in a disjunct portion of Death Valley Nation-
al Park in southwestern Nevada (36°25′31″N,
116°17′28″E; 2400 ft elevation). The surface
configuration of Devils Hole is that of an elon-
gate rectangle with the long axis oriented
northeast-southwest (Fig. 1). At the water’s

surface its dimensions are approximately 22.0
× 3.5 m (Gustafson and Deacon 1998). Dis-
tance to the water, its vertical walls, and orien-
tation of the walls restrict direct insolation to
0–4 h per day (United States Fish and Wildlife
Service 1980), depending on the season. The
south end of the near-surface water overlies a
shallow shelf. This “upper shelf ” (Fig. 2) is
actually a large breakdown boulder wedged
between walls of the fault. The shelf is usually
at least partially covered with gravel and cob-
ble, especially along its west side where it
meets the west wall of the fault. Dimensions
of the upper shelf are approximately 3.0 × 6.3
m, with water depth ranging from 0.0 m at the
south end to 0.8 m at the north end. Along the
west, north, and east sides of Devils Hole, walls
are essentially vertical and extend down to
approximately 9 m below the water’s surface.
The walls have a microtopography of grooves
and pits which greatly increases their surface
area and facilitates algal colonization (Burk-
holder 1996). Below the upper shelf is the
“lower shelf ” (Fig. 2) that slopes downward
into the cave. Water depths over this shelf are
5.0−9.0 m (Gustafson and Deacon 1998). From
the north end of the lower shelf, the cave sys-
tem drops to unknown depths; the deepest
recorded penetration (using SCUBA, 15 August
1991) was to 133 m without reaching the bot-
tom. In the explored portion of the cave sys-
tem are several branches of the cave that allow
deeply circulating groundwater (Fig. 3). One 
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branch extends above the water level to
ground surface (Devils Hole No. 2), but at a
distance that precludes light reaching the
water. There is no conclusive evidence that
water ever flowed out of Devils Hole. There is
visual evidence that, in prehistoric times, the
water level possibly was at least 1 m below the
current level (Hoffman unpublished data).

Physicochemical characteristics of the water
in Devils Hole are remarkably stable because
the water source has been a huge regional
aquifer for thousands of years (Winograd et al.
1997). The physicochemistry has been reported
by many authors (Walker and Eakin 1963,
Brown and Feldmeth 1971, Bateman et al.
1974, Garside and Schilling 1979, Deacon and
Baugh 1985, Hershler and Sada 1987, Gustaf-
son and Deacon 1998). Following is a sum-
mary of their measurements: temperature =
32−33°C; pH = 7.1−7.5; dissolved oxygen =
2.0−8.1 mg L–1; total dissolved solids = 410−
870 mg L–1; conductivity = 820 µS cm–1; SiO2
= 21−23.5 mg L–1; NO3 = below detection to 

0.5 mg L–1; P = below detection to 0.024 mg
L–1; Ca = 46−51 mg L–1; HCO3 = 300−311
mg L–1. Deep waters are uniform annually
and dielly, while shallow waters over the
upper shelf have greater variability (Gustafson
and Deacon 1998). This variation is due to the
high surface area-to-volume ratio, which favors
gas and heat flux, and to the greater photosyn-
thesis that occurs on the upper shelf. Variabil-
ity is greater at the south end (shallowest water)
and along the west wall (greatest insolation) of
the shelf. The principal source of chemical
constituents of Devils Hole water is probably
largely from parent rock through which ground-
water courses. However, external sources of
chemicals, particularly inorganic and organic
nutrients, include inputs from rainwater run-
off and owl pellet deposits (Deacon and Baugh 
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Fig. 1. Looking into Devils Hole, Nevada. Northeast is
to the top of the photo.

Fig. 2. Longitudinal cross section of the upper 10 m of
Devils Hole viewed from the east. The horizontal line is
the current water level. US = upper shelf; LS = lower
shelf (redrawn with permission from Gustafson and Dea-
con 1998).

Fig. 3. Longitudinal cross section of the upper 60 m of
Devils Hole, viewed from the east, showing conduits that
allow for deeply circulating groundwater. The horizontal
line is the current water level (redrawn with permission
from Gustafson and Deacon 1998).



1985) as well as from wind- and insect-trans-
ported material, dead animals (owls, mice,
bees, and ants), and bat guano.

The single paper on the algae of Death Val-
ley (Durrell 1962) does not include any sam-
ples from Devils Hole.

The indigenous fauna of Devils Hole is rela-
tively limited, although little examined. Animals
reported from Devils Hole include a pupfish
(Cyprinodon diabolis Wales), riffle beetle (Stenel-
mis calida Chandler), amphipod (Hyalella azteca
[Saussure]), snail (Tryonia variegata Hershler
and Sada), planarian (Dugesia sp.), and uniden-
tified copepods, ostracods, and protozoans.
Recent collections have disclosed other previ-
ously unidentified animals including 3 insects,
oligochaete worms, gastrotrichs, nematodes,
and ciliated protozoans. These additional ani-
mals are important because many are from
groups known to feed on microalgae (Bott
1996).

METHODS AND MATERIALS

Ten algal collections were made over a
period of 14 yr (1984−1998). Mat-forming fila-
mentous macroalgae were collected by SCUBA
divers, whereas benthic algae were collected
by scraping from rock surfaces and by incubat-
ing microscope slides in the water. Sets of 10
slides each were left for 6 months on the
upper and lower shelves and suspended on
the west wall. In addition to field collections,
algae were identified from gut contents of the
riffle beetle. Two water samples were col-
lected for phytoplankton analysis, 1 from 3 m
deep in the deep-water area, and the other
from the water overlying the center of the
upper shelf. Each was collected in a 2.2-L
Beta Plus horizontal bottle. The sample was
divided into 250-mL bottles and preserved in
Lugol’s solution.

Identifications were made to the lowest
level possible. Some genera were not taken
further due to the lack of appropriate keys or
to the need for culturing to make identifica-
tions. In the results section we use the term
terminal identifications for whatever identifi-
cation level is the lowest possible with avail-
able keys. Most often this can be considered
synonymous with species. However, with a
few algae, forms and varieties could be identi-
fied. We acknowledge that there will eventu-
ally be more terminal identifications in the

future due, in part, to better identification aids
and, in part, to more intensive surveys.

In 1986 we collected two 2.2-L water sam-
ples to be tested for algal growth potential
(Table 3). One was collected at the water’s sur-
face and the 2nd at 30.5 m using SCUBA gear.
Both samples were filtered through a 0.2-µm
pore-size filter and kept chilled in the dark.
Each sample was tested using the following
solutions: original sample (= control); sample
plus 0.05 mg L–1 phosphorus; sample plus 1.0
mg L–1 nitrogen; sample plus 0.05 mg L–1

phosphorus and 1.0 mg L–1 nitrogen. The test
was conducted using the alga Selenastrum sp.,
a species not found in Devils Hole but a com-
mon test organism.

RESULTS AND DISCUSSION

Algae represent a diverse component of the
biota in Devils Hole, although algal diversity
is low compared with other aquatic ecosys-
tems. Studies spanning more than 14 yr have
identified 44 genera and 77 terminal identifi-
cations in the system (Table 1). In contrast,
Kidd and Wade (1963) and Czarnecki and
Blinn (1979) reported over 123 algal taxa,
some of which are endemic, in the near ther-
mally constant spring system of Montezuma
Well, Arizona. Perhaps the low diversity in
Devils Hole results from limited substrates
and from the limited solar insolation that
reaches submerged substrates in the system.

Three different algal groups were found in
Devils Hole: Cyanobacteria (blue-green algae),
Bacillariophyta (diatoms), and Chlorophyta
(green algae). Diatoms constituted the most
diverse algal group, with 54 terminal identifi-
cations in 18 genera. Mattson et al. (1995)
found a similar dominance of diatoms over
cyanobacteria and green algae in karst, spring-
fed streams in north central Florida. Green
algae were represented by the fewest species.
Most algal species were present in low num-
bers. Only 12 species were considered domi-
nant on any particular sample date (Table 2).
This observation suggests that animal grazing
may control algal diversity. Physicochemical
conditions may restrict occurrence of other
taxa. Of the recorded dominants, Lyngbya lim-
netica Lemm. was always dominant and Spir-
ogyra sp. was dominant in spring. Most algal
species were microscopic and benthic. While
this physiognomy is associated with habitats
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having abundant physical scouring (Peterson 
1996), scouring occurs only rarely in Devils
Hole. A small group of species was found to
be planktonic, but the majority of these were
also represented in the benthos. The phyto-
plankton of Montezuma Well was also pre-
dominantly derived from taxa that inhabit sub-
strates (Boucher et al. 1984).

All these algal groups, and many genera
and species, found in Devils Hole have been
collected in other Great Basin waters and soils
(Durrell 1962, Shields and Drouet 1962,
Johansen et al. 1981, Ashley et al. 1985). Soils
near Devils Hole may serve as a source of
periodic algal introductions into Devils Hole.

In Devils Hole algae seem to be the main
source of organic carbon (presence and influ-
ence of bacteria has not been examined).
While this is typical of desert streams (Lam-
berti 1996), it is not typical of nearby spring
pools which have abundant macrophytes.

Cyanobacteria

Cyanobacteria comprised the 2nd most
diverse algal group in Devils Hole, repre-
sented by 20 genera and 24 terminal identifi-
cations. No species were planktonic that were
not also present in the benthic community.
The lower species diversity of cyanobacteria
compared with diatoms is somewhat surprising
given the ambient temperature of 32−33°C.
DeNicola (1996) cites several examples of
cyanobacteria replacing diatoms at elevated
temperatures even below 30°C. It may be that
overall algal diversity is not evenly spread
throughout the photic zone. Also, the circum-
neutral pH may restrict occurrence of some
cyanobacteria.

There is probably only 1 dominant mat-
forming filamentous macroalga present. The
taxon identified as Plectonema sp. (Minckley
and Deacon 1975) is undoubtedly Lyngbya sp.
The 2 genera are very similar morphologically
and difficult to separate. Lyngbya sp. occurs
sporadically on the upper shelf, but a dense
carpet of this taxon occurs on the lower shelf.
In Devils Hole there are 2 species of Lyngbya,
L. limnetica Lemm., and L. maiuscula (Dillw.)
Harvey. There is little chance of confusing the
2 species since L. limnetica has quite narrow
cells (1–2 µm) compared to L. maiuscula (20–40
µm). Only scant evidence exists that Lyngbya
sp. is used for food by either the riffle beetle

or the pupfish (Minckley and Deacon 1975).
Dense mats of Lyngbya sp. on the lower shelf
cover much of the substrate. Baugh and Dea-
con (1983) estimated substrate coverage to be
about 80%. This large biomass may be impor-
tant in locking up available nutrients and
releasing them more evenly across time.

Cyanobacteria have been found only rarely
in the diet of pupfish and more commonly in
the diet of the riffle beetle. These algae may
be ingested incidental to feeding on other
organisms (Minckley and Deacon 1975). In
our April samples of riffle beetles, a large per-
centage had ingested “unidentified cyanobac-
terial filaments.” These were probably Oscilla-
toria sp., but they may have been ingested
incidentally because the food-collecting struc-
tures of riffle beetles scrape up benthic algae
of a particular size rather than being taxon
selective. Even so, the main food of the riffle
beetles was a diatom (see below).

The importance of cyanobacteria in Devils
Hole is in stark contrast to their absence in the
plankton of Montezuma Well (Boucher et al.
1984); Kidd and Wade (1963) reported 11
cyanobacteria at Montezuma Well, with no
mention of relative abundance. Perhaps the
difference is associated with relatively higher
pH in Devils Hole (7.1−7.5) compared to
Montezuma Well (6.5).

Bacillariophyta

Bacillariophyta (diatoms) was the most
diverse algal group in Devils Hole, with 18
genera and 54 terminal identifications (Table
1). Thirteen genera were monospecific in
occurrence. Nitzschia sp. and Achnanthes sp.
were the taxonomically dominant genera, with
11 and 10 species, respectively. These diatom
genera were also the dominant algae in the
collapsed travertine springmound of Monte-
zuma Well (Czarkecki 1979, Blinn et al. 1994)
and in springs and spring-fed streams in
Florida (Whitford 1956, Mattson et al. 1995).
Denticula elegans Kütz, numerically dominant
in Devils Hole, is a known Great Basin ther-
mophil found in water and soil (Ashley et al.
1985). Burkholder (1996) reports that Dentic-
ula sp. is endosymbiotic with Synechococcus
sp. in nitrogen-poor lakes. Perhaps a similar
relationship allows D. elegans to dominate in
Devils Hole. Diatom dominance at 32−33°C is
surprising as they are usually replaced by
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TABLE 1. Algal species identified from Devils Hole, Nevada, Death Valley National Park.

Taxa Benthos Phytoplankton Diets

CYANOBACTERIA (cyanobacteria)
(20 genera, 24 terminal identifications)
Anabaena sp. X X
Anacystis gelatinosa (Henn.) Lemm. X
Aphanocapsa sp. X
Calothrix thermalis (Schwae) Hansg. X
Chaemosiphon sp. X
Chroococcus turgidus (Kütz) Nag. X
Chroococcus sp. X
Gloeocapsa sp. X X
Heterohormogonium schizodichotmum X

Copeland
Lyngbya maiuscula (Dillw.) Harvey X
Lyngbya limnetica Lemm. X X
Lyngbya sp. X Xb

Microcoleus vaginatus (Vauch.) Gomont X
Microcystis sp. X
*Myxosarcina amethystine Copeland X
*Oscillatoria amphibia Ag. X
Oscillatoria amphigranulata van Goor X
Oscillatoria princeps Vauch. X
Oscillatoria sp. X
Phormidium purpurascens (Kütz.) Gom. X
Plectonema sp. X Xa

Rhaphidiopsis sp. X
Scytonema sp. X
*Synechococcus lividus Copeland X
*Synechococcus minervae Copeland X
Synechococcus sp. X X
Synechocystis sp. X X
*Thalpophila imperialis Copeland X
Unidentified cyanobacterial filaments Xb

BACILLARIOPHYTA (diatoms)
(18 genera, 54 terminal identifications)
Achnanthes affinis Grun. X
*Achnanthes exigua Grun. X X
Achnanthes exigua Grun. var. heterovalva X

Krasske
*Achnanthes gibberula Grun. X
*Achnanthes grimmer Krasske X
Achnanthes hungarica (Grun.) Grun. X
*Achnanthes lanceolata (Bréb.) Grun. X
Achnanthes linearis (W. Sm.) Grun. X
Achnanthes minutissima Kütz X
Achnanthes submarina Hust. X
Achnanthes suchlandtii Hust. X
Achnanthes sp. 1 X
Achnanthes sp. 2 X
Anomoeoneis serians (Bréb.) Cl.

var. brachysira (Bréb.) Cl. X
Brachysira aponina Kutz. X
Caloneis ventricosa Ehr. X
Caloneis sp. X
Cocconeis sp. Xb

Coscinodiscus sp. X
Cymbella angustata (W. Sm.) Cl. X
Cymbella cesatii (Rabh.) Grun. X X
Cymbella delicatula Kütz X
Cymbella fonticola Hust. X
Cymbella microcephala Grun. X
*Cymbella minuta Hilse X



cyanobacteria above 20°C (DeNicola 1996).
Perhaps most diatom diversity is on the upper
shelf where temperatures are less stable
(Gustafson and Deacon 1998), thereby main-
taining thermal refugia.

The majority of diatoms were members of
the benthos, many of which are indicative of
circumneutral waters with notably high car-

bonates and waters with elevated tempera-
tures (Patrick and Reimer 1966, 1975). Some
have also been found to be epiphytic on Lyng-
bya limnetica. Only 4 taxa were found in the
phytoplankton that were not in the benthic
community.

Both the pupfish (Wales 1930, Minckley
and Deacon 1975) and riffle beetle depend
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TABLE 1. Continued.

Taxa Benthos Phytoplankton Diets

Cymbella minuta f. latens (Krasske) Reim. X
Cymbella norvegica Grun. X
Cymbella sp. Xb

*Denticula elegans Kütz X X Xb

Eunotia arcus Ehr. X
*Eunotia pectinalis (Dillw.) Rabh. X
Eunotia praeruptia Ehr. X
Eunotia sp. Xb

Fragilaria arcus (Ehr.) Cl. X
Fragialria vaucheriae (Kütz) Peterson X
Fragilaria sp. X Xb

Gomphonema angustatum (Kütz) Rabh. X
Gomphonema intricatum Kütz X
Gomphonema sp. X
Mastogloia smithi Thw. var. lacustris Grun. X
Navicula frustulum Hust X
*Navicula minima Grun. X
Navicula parva (Menegh.) Cl.-Euler X X
Navicula tripunctata (O. F. Müll.) Bory X
Navicula sp. Xb

Nitzschia amphibia Grun. X
Nitzschia denticula Grun. X
Nitzschia dissipata (Kütz) Grun. X
Nitzschia fonticola Grun. X
*Nitzschia frustulum (Kütz) Grun. X
Nitzschia hantzschiana Rabh. X
Nitzschia kutzingiana Hilse X
Nitzschia pales (Kütz) W. Sm. X
Nitzschia paleacea Grun. X
Nitzschia romana Grun. X
Nitzschia vitrea Norman X
Nitzschia sp. X Xb

Pinnularia sp. X
Stephanodiscus astraea (Ehr.) Grun.

minutula (Kütz) Grun. X
Synedra rumpens Kütz X
Tabellaria flocculosa (Roth) Kütz X
Unidentified diatoms Xa

CHLOROPHYTA (green algae)
(6 genera, 6 terminal identifications)
Chlorococcum sp. X
Elakatothrix viridis Wille X
Gloeocystis sp. X
*Oedogonium sp. X Xb

Protococcus sp. X
Spirogyra sp. X Xb

*Previously reported from warm springs
aPupfish diet (Minckley and Deacon 1975)
bRiffle beetle diet



heavily upon diatoms as a food throughout the
year. The riffle beetle consumed predomi-
nantly Denticula elegans and only a few other
taxa (Table 1). It is likely that the snails also
depend heavily on diatoms as a food.

Chlorophyta

Green algae are relatively minor contribu-
tors to algal diversity in Devils Hole. This
observation might have been expected since
green algae are more sensitive to high temper-
atures than cyanobacteria (Brues 1929) and
require more light. However, DeNicola (1996)
suggests that Chlorophyta may dominate at
temperatures of 15−30°C. In Devils Hole only
6 genera and 6 terminal identifications of
Chlorophyta were found. Four species were
benthic and 2 were planktonic.

Two filamentous green algae occur in Dev-
ils Hole, Spirogyra sp. and Oedogonium sp.

The latter is found only sporadically and is
present in the riffle beetle diet. Spirogyra sp.
is seasonally common, mainly on the upper
shelf. This alga has been found in gut contents
of both the riffle beetle and pupfish (Minckley
and Deacon 1975), but at low levels. Spirogyra
sp. may be incidentally ingested by the pup-
fish while it catches invertebrate prey (Minck-
ley and Deacon 1975). Beds of Spirogyra sp.
are, however, important in their influence on
the physical environment of the upper shelf.
Spirogyra sp. beds can become dense in
spring and summer. James (1969) gives an
annual chronology of the build-up of the beds,
and Gustafson and Deacon (1998) illustrate
some monthly and annual differences in per-
cent coverage. Spirogyra sp. beds can occupy
much of the water column over the upper
shelf and cover much of the gravel-cobble
substrate. In doing so the beds cover substrate 
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TABLE 2. Dominant algal taxa in Devils Hole, Nevada, on selected dates.

Taxon Microhabitat Date

CYANOBACTERIA

Chroococcus turgidus (Kütz) Nag. Benthos April 1998
Lyngbya limnetica Lemm. Benthos All sample dates
Oscillatoria princeps Vauch. Benthos April 1998 
Synechocystis sp. Phytoplankton June 1984

BACILLARIOPHYTA

Cymbella norvegica Grun. Phytoplankton November 1986
Denticula elegans Kütz. Benthos December 1983

April 1998
Navicula minima Grun. Benthos November 1986
Nitzschia amphibia Grun. Benthos April 1998

CHLOROPHYTA

Gloeocystis sp. Benthos June 1984
Protococcus sp. Benthos June 1984
Spirogyra sp. Benthos Every spring

Table 3. Algal growth potential for water from Devils Hole, Nevada, using the test alga Selenastrum sp.

+0.05mg LP–1

Site Control +0.05 mg LP–1 +1.0 mg LN–1 +1.0 mg LN–1

Maximum specific growth rate - day–1

Surface water 0.77 1.22 0.70 0.90
30.5-m water 0.56 1.12 0.87 1.16

Maximum standing crop - cells mL–1

Surface water 1.54 × 104 3.48 × 104 1.39 × 104 3.80 × 104

30.5-m water 1.02 × 104 3.80 × 104 1.15 × 104 3.55 × 104

Dry weight - mg L–1

Surface water 0.31 1.04 0.28 1.01
30.5-m water 0.20 1.14 0.23 0.94



interstices and contribute to increased water
temperatures by reducing mixing of shelf water
with deeper water. Both conditions are detri-
mental to the survival of the larval pupfish
(Gustafson and Deacon 1998).

The 2 chlorophyte taxa found in the phyto-
plankton, Chlorococcum sp. and Gloeocystis sp.,
have not been found associated with substrates
in Devils Hole. Neither genus has been iden-
tified in dietary studies. The riffle beetle diet
occasionally did include a considerable amount
of unidentified algal cells, however, some of
which resembled Protococcus sp.

Algae and Water Chemistry

Results from algal growth potential experi-
ments indicate that phosphorus was the most
limiting nutrient in Devils Hole. Groundwater
typically is low in both nitrogen and phospho-
rus (van der Kamp 1995). Addition of phos-
phorus to Devils Hole water increased both
algal growth and maximum standing crop
(Table 3). Deacon and Baugh (1983) noted that
owl pellets dropped into the water increased
both O–PO4 and N–NO3 and suggested these
nutrients would stimulate algal growth.

Deacon and Baugh (1985) provide informa-
tion on the monthly and annual variability of
primary productivity on the inner and outer
portions of the upper shelf. They suggested
the variability is due to light intensity and
duration and the quantity of nutrients avail-
able. In the 1970s, when declining water lev-
els (due to excessive groundwater pumping)
began exposing the surface of the upper shelf,
artificial lighting was used to stimulate primary
productivity in Devils Hole (Osborn 1983, Dea-
con 1985).

Production of oxygen through photosynthe-
sis is important to the survival of pupfish eggs
and larvae (Deacon et al. 1995, Gustafson and
Deacon 1998). Particularly important is the diel
fluctuation in dissolved oxygen. Oxygen pro-
duction is mostly due to microscopic benthic
algae rather than the large, filamentous algae
or phytoplankton. Bubbles rapidly appear on
the encrusting benthic algae as soon as direct
sunlight strikes them.

Threats to the Devils Hole System

A drop in water level beyond the upper
shelf will likely impact the algal community by
reducing the surface suitable for diatom colo-

nization. This will have effects on both bio-
mass and diversity throughout the ecosystem.
On the west wall diatoms may be able to fol-
low dropping water levels down the wall. But
there is a limit to their movement because
direct insolation occurs only a few meters
down this wall due to the geometry of the
fault. Beyond that point diatoms may not sur-
vive in high densities. A positive effect of
dewatering the 1st shelf may be reducing the
negative influence of Spirogyra sp. upon larval
pupfish survival. However, this may never
become important because larval pupfish
depend so greatly upon substrate interstices to
avoid adult cannibalism (Gustafson and Dea-
con 1998).

Future Research

Desert springs often have stability in most
physicochemical characteristics, with only solar
input varying (Boucher et al. 1984). They seem
to offer a link between the artificiality of labo-
ratory environments and the more variable
natural environments. Such springs provide
invaluable settings that could be studied more.
Boucher et al. (1984) have also shown how
these springs are useful in comparing temper-
ate and tropical aquatic ecosystems.

The comparison of ecosystems in Devils
Hole and Montezuma Well should be fruitful.
They are alike in many ways, but they vary in
the amount of solar input due to the smaller
opening at Devils Hole. Additionally, the
Montezuma Well ecosystem can be compared
to that in Crystal Pool, a large spring near
Devils Hole with water coming from the same
aquifer, but which has marginal macrophyte
beds and a water outflow.
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