Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2004-10-21

Disk Based Model Checking

Tonglaga Bao
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Computer Sciences Commons

BYU ScholarsArchive Citation

Bao, Tonglaga, "Disk Based Model Checking" (2004). Theses and Dissertations. 191.
https://scholarsarchive.byu.edu/etd/191

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/191?utm_source=scholarsarchive.byu.edu%2Fetd%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

DISK BASED MODEL CHECKING

by

Tonglaga Bao

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
Brigham Young University
August 2004

Copyright (©) 2004 Tonglaga Bao
All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Tonglaga Bao

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Mike Jones, Chair

Date Eric Mercer

Date Scott Woodfield

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Tonglaga Bao
in its final form and have found that (1) its format, citations, and bibliographical style
are consistent and acceptable and fulfill university and department style requirements;
(2) its illustrative materials including figures, tables, and charts are in place; and
(3) the final manuscript is satisfactory to the graduate committee and is ready for
submission to the university library.

Date Mike Jones
Chair, Graduate Committee

Accepted for the Department

David W. Embley
Graduate Coordinator

Accepted for the College

G. Rex Bryce, Associate Dean
College of Physical and Mathematical Sciences

ABSTRACT

DISK BASED MODEL CHECKING

Tonglaga Bao
Department of Computer Science

Master of Science

Disk based model checking does not receive much attention in the model check-
ing field becasue of its costly time overhead. In this thesis, we present a new disk
based algorithm that can get close to or faster verification speed than a RAM based
algorithm that has enough memory to complete its verification. This algorithm also
outperforms Stern and Dill’s original disk based algorithm. The algorithm partitions
the state space to several files, and swaps files into and out of memory during verifica-
tion. Compared with the RAM only algorithm, the new algoritm reduces hash table
insertion time by reducing the cost and growth of the hash load. Compared with
Stern’s disk based algorithm, the new disk based algorithm significantly reduces disk
vs memory comparsion but increases disk read/write time. The size of the model the

new algorithm can verify is bound to the available disk size instead of the available

RAM size.

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Mike Jones for funding my education and
patiently guiding me throughout my research. I would like to thank Dr Eric Mercer
and Dr Scott Woodfield for their time and efforts put on my thesis. I thank all
members of the Verification and Validation lab for generously offering me suggestions
and help.

I also would like to thank my parents for their love, support and encouragement

throughout my education.

TABLE OF CONTENTS

Section Page

1 Introduction

1.1 Background
1.2 Thesis Statement 6

2 Related Work

2.1 Stern and Dill’s Disk Based Algorithm 9
2.2 Transition Locality 10
2.3 Parallel Model Checking Algorithm, Hash Function and Hash Table . . . 11
3 The Algorithﬂ 13
3.1 Description e 13
3.2 Analysis e 16
3.2.1 Comparison with RAM Based Algorithm 16
3.2.2 Comparison with Stern and Dill’s Disk Based Algorithm 19
4 Experimental Results 23
4.1 Using the Original Hash Function 24
4.2 Using SPIN’s Hash Function 27
‘4.3 Big Models‘ 29
5 Conclusions and Future Worﬁ 31
5.1 Conclusion e 31
5.2 Future WorlJ 32

vii

LIST OF TABLES

Table Page
2.1 Performance Numbers for Stern and Dill’s Disk Based Algorithm in Seconds 10
4.1 RAM Based Murphi, All Times in Seconds, Memory in MB 25
4.2 Stern’s Disk Based Murphi, All Times in Seconds, Memory in MB 25
4.3 New Disk Based Murphi, All Times in Seconds, Memory in MB‘ 25
4.4 RAM Based Murphi, All Times in Seconds, All Memory in MB 27
4.5 Stern’s Disk Based Murphi, All Times in Seconds, All Memory in MB . . 27
4.6 New Disk Based Murphi, All Times in Seconds, All Memory in MB‘ CL. 27
4.7 All Times in Seconds, All Memory in MB‘ 30

viii

LIST OF FIGURES

Figure Page
1.1 RAM Based Murphi o s 3
1.2 Explicit State Enumeration Using RAM| 4
1.3 Disk Based Murphi 6
1.4 Explicit State Enumeration Using Magnetic Disks‘ 7
1.5 Parallel Disk Based Murphi‘ 8
‘2.1 RAM Based Murphi 9
‘3.1 Parallel Disk Based Al;zorithm‘ 14
4.1 Speedup of New Algorithm over RAM Algorithm 25
4.2 Speedup of New Algorithm over Stern’s Algorithm/ 26
4.3 Slowdown of New Algorithm over RAM Algorithm 28
4.4 Speedup of New Algorithm over Stern’s Algorithm 28

X

Chapter 1

Introduction

Given a transition system and a property, model checking is a technique that deter-
mines if the transition system satisfies the given property. It has been used success-
fully in industrial distributed communication protocols and circuit designs to verify
their correctness or find bugs. Model checking has some advantages compared to
traditional verification approaches like simulation and testing.

Simulation and testing are popular ways to find bugs. However, no matter how
many simulations are made, there is always a possibility that some of the cases will
be missed. This might cause some bugs to go undiscovered. Thus, not finding an
error can not guarantee the correctness of the model.

Since model checking deals with finite state machines, it is possible to do exhaus-
tive search to ensure the correctness of the model. Furthermore, it is automatic, and
it is able to produce a counterexample to show the source of the error. Model checking
is being used by companies like Intel, IBM, AMD and HP.

The application of model checking is restricted because of the state space explosion
problem. State space explosion occurs in systems built from many components that
interact with each other or in systems with data structures that can have many

different values. The state space grows exponentially in these cases. There has been

much research done to address the state space explosion problem. This research has

significantly increased the size of the state space that can be verified.

There are typically two ways to reduce state space explosion. One is to compress
the size of state space. Examples include symmetry reduction, symbolic representa-
tion of the state space, bit state hashing (supertrace), hash compaction, partial order
reduction etc. The other way is to increase the storage size of state space by utilizing
disk and distributed resources. This thesis presents an algorithm that uses a disk

instead of RAM to store the state space.

Disk is much cheaper than RAM memory. This makes it tempting to store the
state space on disk instead of in main memory. However, as we expect, the time
penalty is a new bottleneck for disk based model checking. The cost of storing and
recovering states from disk is so costly that one must carefully design the algorithm to
make this approach practical. The algorithm presented in this paper uses an idea from
parallel model checking to efficiently use the disk. We implemented our algorithm
within the Murphi model checker. Experimental results show its verification speed
is close to or faster than the murphi RAM based algorithm. It also outperforms
the Stern and Dill’s disk based algorithm. Note that the size of the model the new
algorithm can verify is bound by the disk size instead of being bound by the RAM

size.

The remainder of this chapter introduces background information about model
checking, which is needed to understand this thesis work. It also presents a brief
introduction of the new algorithm and the thesis statement. Chapter 2 analyzes
related work that has been done in the disk based model checking field. Chapter 3
gives the pseudo code of the new algorithm and analyzes its performance. Chapter 4
presents the experimental results of the new algorithm. Chapter 5 gives conclusions

and enumerates several questions and possible future work.

Memory

Hash

table

Figure 1.1: RAM Based Murphi

1.1 Background

Model checking is a method for formally verifying finite-state concurrent systems.
Model checking goes through the following processes. First of all, the system is
translated into a model that can be accepted by the model checker. Then, the desired
property is expressed through temporal logic. Finally, the model checker traverses
the state space of the model to see if the model satisfies the given property.

State space exploration is the heart of the verification process. State space explo-
ration can be performed using two different methods: explicit and symbolic. Explicit
state model checking stores actual states while symbolic model checking stores sets
of states symbolically. Explicit state model checking is examined in this thesis.

In explicit state model checking, the model checker enumerates all the reachable
states from the start states. Either breadth first or depth first search is used in the
state enumeration process. Figure 1.1 illustrates the RAM based explicit state model
checking architecture. The outer box represents the RAM. The algorithm uses one
queue/stack and one hash table to store the state space. The queue/stack stores
unexplored states. The hash table stores explored states and eliminates duplicate
states. There are two problems that occur in this algorithm as the number of explored
states grows: first, memory becomes full due to state explosion; second, hash insertion
slows down due to collisions. Figure 1.2 shows the algorithm.

There are several approaches to reduce state space explosion. Partial order reduc-

tion, symmetry reduction, hash compaction and bit state hashing (supertrace) are

3

1 wvar // global variables

2 M: hash table; // main memory table
3 Q: FIFO queues; // state queue

4 Search() // main routine

5 begin

6 M :=0; Q := 0; // initialization

7 for each startstate sy do // startstate generation
8 Insert(so);

9 end

10 while @ # 0 do

11 s := dequeue(Q);

12 for all s’ € successors(s) do

13 Insert(s’);

14 end

15 end

16 end

17 Insert(s: state) // insert state s in main memory table
18 begin

19 if s ¢ M then begin

20 insert s in M;

21 insert s in Q;

22 end

23 end

Figure 1.2: Explicit State Enumeration Using RAM

used to manage the size of the state space. Partial order reduction constructs a re-
duced state space according to the commutativity of concurrently executed transitions
[1]. Symmetry reduction reduces the size of the state space by exploiting permuataion
groups that preserve both the state labeling and the transition relations [2]. Hash
compaction and bit state hashing (supertrace) compress the size of each state at the
expense of a certain probability that some states of the system are omitted during
verification [3][4].

Distributed model checking and disk based model checking enlarge storage space.
Distributed model checking utilizes distributed resources, like a network of worksta-
tions, to increase the amount of available RAM. Disk based model checking uses a
disk instead of main memory to store the state space [5].

Stern and Dill proposed an algorithm that uses a disk instead of main memory
to store the state space. Figure 1.3 illustrates their disk based architecture. There
is one queue, one memory hash table and one file on disk. It stores the unexplored
states in the queue and explored states in memory. The difference is that at every
level of the breadth-first search tree, it stores the new states in memory to disk and
clears the memory hash table. As a result, all explored states are eventually stored
to the disk. However, before storing the states to disk, the algorithm compares every
state on disk with the states in memory to identify duplicate states. This is a very
time consuming process. Fugure 1.4 shows the algorithm. A detailed analysis of this
algorithm is presented in Chapter 2.

Our new disk based algorithm significantly reduces the disk vs memory compar-
sion. Figure 1.5 illustrates the architecture for the proposed new algorithm. It has
a memory hash table, an array of queues in memory, an array of disk queues and
an array of disk files. The algorithm swaps a disk file into and out of the memory
hash table so that a fast hash function is used to eliminate duplicate states. The

new algorithm reduces hash collison penalties associated with the RAM based algo-

TN
]

Memory
Hash
table Disk file
Memory
Disk

Figure 1.3: Disk Based Murphi

rithm. Two hash functions partition the state space. The first hash function decides
which partition the current state belongs to. The second hash function decides which
hash entry the current state is hashed into. Using two cooperating hash functions to
partition the state space helps reduce the performance penalty associated with the
hash load. Detailed analysis of this algorithm and pseudo code of it can be found in
Chapter 3.
1.2 Thesis Statement

The new disk based algorithm with two cooperating hash functions and multiple
hash tables gets close to or faster verification speed than the traditional RAM based
algorithm with one hash function and one hash table due to a decreased hash load
in the disk based algorithm. The new disk based algorithm improves running time
over the original Stern and Dill’s disk based algorithm by reducing the costly disk
and memory table synchronization process. The size of the model this new algoirthm

can verify is bound to disk size rather than RAM size.

o o D © 00~ W=

15
16
17
18
19
20

21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40

var // global variables
M: hash table; // main memory table
D: file; // disk table
Q: FIFO queues; // state queue
Search() // main routine
begin
M :=0; D:=0; Q :=0; // initialization
for each startstate sy do // startstate generation
Insert(so);
end
do //search loop
while Q # 0 do
s := dequeue(Q);
for all s’ € successors(s) do
Insert(s');
end
end
CheckTable();
while Q # 0;
end
Insert(s: state) // insert state s in main memory table
begin
if s ¢ M then begin
insert s in M;
if full(M) then
CheckTable();
end
end
CheckTable() // do old/new check for main memory table

begin
for all s € D do // remove old states from main memory table
if s € M then
M =M - {s};
end
for all s € M do //handle remaining (new) states
insert s in Q;
append s to D;
M := M - {s};
end
end

Figure 1.4: Explicit State Enumeration Using Magnetic Disks

7

TN

Memory| [aqueuel Disk filel | —41
Hash
table Disk file2 I_qz_l
[a3 |
Memory Disk file3
Disk

Figure 1.5: Parallel Disk Based Murphi

Chapter 2

Related Work

There have been two algorithms implemented for disk based model checking. The
first by Stern and Dill [6], and the other by Penna, Intrigilla, Tronci and Zili [7]. The
following sections analyze these two papers in depth. This section also presents the

hash functions and hash tables used by the new algorithm.

2.1 Stern and Dill’s Disk Based Algorithm

Stern and Dill’s disk based algorithm works as follows: Do a breadth first search
of the state space while storing the generated states in memory. After each level of
the breadth first search, move the states in memory to disk. If memory becomes full
before one level of the breadth first search is completed, move the states in memory
to disk and continue the breadth first search. Figure 2.1 shows data structure of this

algorithm.

Memory
Hash
table

Figure 2.1: RAM Based Murphi

Function atomix mcslockl dpl2 newcache6 newlist6

File Read 6.54 51.93 3.15 25.07 23.91
File Write 0.81 5.00 0.50 4.77 2.43
Check Table 568.18 1841.39 134.06 123.97 316.98

Total Time 1235.70 4726.04 373.19 2619.89 1392.53

Table 2.1: Performance Numbers for Stern and Dill’s Disk Based Algo-
rithm in Seconds

To move states from memory to disk, a comparison between the states currently
on the disk with the states in memory is done to delete previously visited states from
memory. The algorithm avoids costly random access to disk by sequentially reading
all the states from disk and comparing each of them with the states in memory. Every
disk write access appends the newly generated states at the end of file.

We have implemented the Stern and Dill’s algorithm in Murphi, which is a model
checker developed at Stanford University. Table 2.1 illustrates the experimental re-
sults on several problems. The File Read row contains total time spent reading to
disk, the File Write row gives total time spent writing to disk, the Check Table row
shows the time spent comparing states on disk with states in memory and the Total
Time row reports total wall clock time elapsed. Table 2.1 shows that File Read/Write
overhead is small but the Check Table time is big compared with the total verificaion
time. In fact, Disk read/write operations only account for 1% of the total running
time whereas the check table operation accounts for 30% of the total running time.
2.2 Transition Locality

The Penna et al develops an algorithm based on transititon locality. Most systems
have transition locality, which means a transition made from one state often leads
to another state that was recently explored or leads to a new state. This algorithm
takes advantage of transition locality to decrease disk access time.

The algorithm does the following: Partition the disk file into several blocks, and

select some blocks from disk to use in the comparison with states in memory instead

10

of using whole disk file. The blocks nearer to the tail, where recently found states
are stored, of the file have higher probability of being selected because of transition
locality. Due to the breadth first search, the states written at the tail of the file
are recently visited states and have a higher probability of being in the memory.
The drawback of this algorithm is that it is unable to delete some visited states in
memory because it does not check the entire file to identify every visited state; Thus,
the algorithm repeatedly explores old states and generates duplicate states.

To mitigate reexpanding states, the algorithm occasionally selects new blocks from
disk. It uses a small portion of the blocks that are not selected to do the comparison;
and it keeps a statistic that tracks the percentage of the deleted states from selected
or nonselected blocks. It adjusts the block selection according to the statistics and
the duration of the run time.

The authors claim that time reduction in this algorithm is due to savings in the
file I/O. However, file I/O is too small to account for their savings. We claim the time
reduction is due to the reduction in the disk table size that needs to be compared
against the memory hash table. The comparison cost between the disk table and the
memory hash table is described in more detail later.

The main contribution of the Penna et al algorithm is the speed up obtained by
only comparing a portion of the states on disk with the states in memory. However,
even with high transtion locality, it is still costly to only take part of the disk space
into consideration. A single duplicate state missed in the disk check can cause the
algorithm to produce many more states than necessary. Fixing the problem is another
time consuming process since the algorithm does not know exactly which disk block
to select in order to get rid of the duplicate states.

2.3 Parallel Model Checking Algorithm, Hash Function and Hash Table

The new algorithm is a sequential version of the parallel model checking algo-

rithm in [8][9][10]. The parallel algorithm keeps a queue and a hash table on every

11

workstation participating in the state exploration. For every newly generated state,
a partition function calculates which workstation the state belongs to and sends the
state to the workstation’s queue using network communication. In contrast, the pro-
posed algorithm keeps all the queues in main memory and keeps their corresponding
hash tables on disk as files.

There are two hash functions used in state exploration. The first hash function de-
cides which partition the current state belongs to. The second hash function decides
which hash entry the current state belongs to. Hash functions used in our experi-
ments include the original Murphi hash function and the SPIN’s s-hash-jenkins hash
function.

Murphi originally used an open hash table, which produces a lot of collisions. A
chained hash table gives better results for RAM based, Dill’s disk based and new disk
based algorithms. All the experiments done in this thesis is based on chained hash

table.

12

Chapter 3

The Algorithm

The analysis of Stern and Dill’s disk based algorithm in Chapter 2 indicates disk
I/O takes around 1% of total verification time, while comparing states in disk and
memory takes more than 30% of the total verification time in most of the models.
Compared with Stern and Dill’s disk based algorithm, the new disk based algorithm
reduces disk vs memory comparsion but increases disk I/O time. Compared with the
RAM only algorithm, the new algoritm reduces hash table insertion time by reducing
the cost and growth of hash load. This chapter presents the pseudo code for and an
explanation of the new algorithm. It compares the new algorithm with the traditional

RAM based and Stern and Dill’s disk based algorithms.

3.1 Description

The new algorithm uses a memory hash table, an array of queues in memory, an
array of disk queues and an array of disk files. The algorithm swaps disk files into
and out of memory so that a hash function can eliminate duplicate states.

The new algorithm works as follows: Apply a hash function to the start states
to partition them into queues. Generate successors for states in the queue with the
largest number of states. Keep all the states corresponding to this queue in a hash

table in memory. Put other generated states into the other appropriate queues. Con-

13

— =
e R o N O N

O W W WWWWOWWWWwNNNNNDDNDDNDNDNNDNF R =
O© 00O Uk WNHFHE O OO U kR WNhRFE O OO -O Otk WN

Search()
for every startstate sy do
i := Partition(so);
insert sy into ¢;";
if Full(¢/*) then
store ¢™ in q¢;
" = 0;
end
end
i := mazieq (| + ¢f]);
Select(7);

Select(i: int)
while : > 0
do
while ¢/" # () do
load DJi] into M;
s = dequeue(q™);

if s is not in M then

insert s in M;
Explore (i, s);
end
end

if ¢¢ # 0 then load ¢ to ¢™;

while ¢ # 0;
store Dl[i].
i = mazie, (g™ + ¢2));

if |¢" + ¢¢| =0 then i = —1;

end

Explore(i: int, s: state)

for all s’ € successors(s) do

i':= Partition(s');

if i’ =4 and s’ is not in M then insert s’ in ¢; else insert s in ¢}’

if Full(¢/?) then
store g} in qf,;
" = 0;
end
end

Figure 3.1: Parallel Disk Based Algorithm

// end of do-while loop

14

tinue generating states until either memory is full or the queue is empty. Then move
the states in memory to disk in a manner similar to the Stern and Dill’s algorithm;
finally, choose the queue with the largest number of states again, load the correspond-
ing disk file into memory and repeat the process.

Figure 3.1 contains the pseudocode of the new algorithm. There is a partition
function that maps every state to a unique memory queue. There are the same number
of disk files and memory queues. Memory queues store unexplored and explored
states, disk queues store unexplored and explored states when the memory queues
are full, and disk files store explored states.

The Search function generates start states and stores the start states in their
corresponding queues. If a memory queue becomes full, then that queue is written
to disk (lines 1-9). ¢™ is the queue in memory belonging to partition i and ¢¢ is the
queue in disk belonging to partition 7. The function then selects the queue, 7 , with
the most states as the active queue and calls the Select funtion (lines 10-11).

The Select function loads the disk file that corresponds to the active queue into
memory (line 17). It dequeues states from the active queue to generate every successor
of the states in the queue (line 18). The Select function then stores the dequeued
states into the memory hash table if they are not present in the current table in
memory (lines 19-20). This allows expanded states to be stored in the hash table
in memory. When the active queue becomes empty, the corresponding disk queue is
loaded into memory (lines 24). After both the memory queue and the disk queue are
empty, the table of expanded states are stored back to disk (lines 26). The algorithm
then chooses the next longest queue, loads the corresponding table and continues the
exploration (lines 27). If all the queues are empty, the algorithm terminates (line 28).

The Explore funtion checks to see if the successors of the states in the active
queue belong to the current queue (lines 32-33). If they do, and they are not present

in the current table in memory, then the function adds the states into the current

15

active queue. If they do not belong to the current queue, then it stores them to
their corresponding queues (line 34). This allows duplicate and expanded states to
be stored in the work queue. If any of the queues are full, then it stores them to the
corresponding disk queue (lines 35-37).
3.2 Analysis

An ideal model checking algorithm completes verification using the smallest amount
of memory and time possible. This section compares the new algorithm with the
RAM based algorithm and Stern and Dill’s disk based algorithm in terms of total
verification time and total memory needed to complete the verification.
3.2.1 Comparison with RAM Based Algorithm

The verification time is composed of different elements depending on which veri-

fication algorithm is used. For RAM based algorithm
RamTotalTime = RamliInsertionTime + ConstantTime

RamlInsertionTime is the time spent on inserting newly generated states into memory.
ConstantTime is the time spent on the constant part of verificaiton such as finding
the enabled transitions, generating next states, and doing symmetry reduction etc.

For the new algorithm

NewTotalTime = NewlnsertionTime + ConstantTime +

NewlIOTime + OtherOverheads

NewlInsertionTime is the time spent on inserting states into memory. ConstantTime
is the time spent on constant part of the verification. NewIOTime is the time spent
reading the states from disk to memory and writing the states from memory to disk.
OtherOverheads includes the time overhead related to computing each state’s corre-
sponding partition and the time overhead related to storing duplicate states in the

queues.

16

NewlnsertionTime is typically faster than RAMInsertionTime. For the RAM
based algorithm, all the states generated will be kept in memory. Many collisions are
possible as the hash table fulles, especially when the hash function does not give a
good distribution.

For new algorithm, the number and cost of collisions are allevivated by two means:
first, the state space is partitioned into several files which reduces the hash load
because more space is available. secondly, two cooperating hash functions are used
to separate the states that belong to same chain of the chained hash table. The first
hash function decides which partition the current state belongs to and the second
hash function decides which hash entry in the current partition the state hashes to.
The first hash fucntion seperates states that belong to the same hash table entry
when a second hash function is used.

NewIOTime needs to be considered for the new algorithm. Swapping occurs when
the current queue is empty. In general, reading and writing to disk occurs more fre-
quently in the beginning of the verification and at the end of the verification - when
there are fewer states stored in each queue. Frequent swapping in the beginning of
verification can be ignored since the file sizes are small in the beginning and read-
ing/writing takes only small amount of time. Swapping is less frequent in the middle
of verificaiton since there are many states in each queue, and new states are quickly
generated and added into the queues. Thus the main time consuming part of disk i/o
overhead is at the end of the verification.

Suppose the state size for some transition system is S bytes, there are P parti-
tions on the disk and assume partition p will be swapped I, times during the whole
verification. Assume there are Q¥ states in partition p on the ith swap, then the total

number of states read from disk is

P I

Q = > >

p=11i=1

17

Assume the read transfer rate is R bytes/second and the write transfer rate is W
btyes/second, then the disk file read overhead is @ * S/R seconds and the disk file

write overhead is @ * S/W seconds. Thus,

NewIOTime = QS(% + %)

The OtherOverheads include two kinds of overheads incured by the use of new
algorithm. The first is computation time overhead, which occurs because the partition
needs to be calculated for every newly generated state. This overhead depends on the
total number of states that are explored. Suppose 7' states are generated and every
computation takes ¢ seconds, then the computation overhead is 7T * c.

The second is the overhead related to store duplicate states in the queues. For the
RAM based algorithm, newly generated states are checked against the hash table to
make sure that they have not been explored before and then inserted into the queue.
For the new algorithm, duplicate states may be stored in the queues because only
one hash table is active at any given time. This overhead depends on total number
of enabled transitions that lead to duplicate states. Suppose total number of enabled

transitions that lead to duplciate states is e, and storing a state in a queue takes ¢

seconds, then this overhead will be eq seconds. Thus
OtherOverhead = T xc+ eq

There is also some overhead for writing and reading states to and from disk queues.

However, since each queue is only read or written once, this overhead is negligible.

Thus,

NewTotallTime = NewlnsertionTime + Constantlime +

Q*xS/R+Q*xS/W+T=+c+eq
The new algorithm persforms better than RAM based algorithm when
RamlInsertionTime — NewlInsertionTime > NewlOTime + OtherOuverhead

18

For a given model, S, R, W, T c, e, q are all constant and depend on the machine being
used. As a result,), RamInsertionTime and NewlInsertionTime are variables
that decides which algorithm performs better. This equation can be satisfied when
the difference between RamInsertionTime and NewlInsertionTime is big and @ is
small. These values depend on how the partition functions reduce hash insertion time
and distribute states to different partitions.

The new disk based algorithm can get several orders of magnitude in memory
savings with a similar verification speed as the RAM based algorithm. In the optimal

case, the largest model that can be verified by the disk based algorithm has size
NumO f Partition * MemoryHashSize

Usually, part of the disk is used to store the disk queues, so not all the disk space can
be dedicated to store state files.
3.2.2 Comparison with Stern and Dill’s Disk Based Algorithm

The new disk based algorithm can get a speed up compared with Stern and Dill’s

algorithm. Stern’s agorithm needs

DiskTotalTime = DiskInsertionTime + ConstantTime +

DiskIOTime + DiskComparsionTime

ConstantTime is constant time spent on verification. This number is used before in
the new and RAM algorithm. DiskInsertionTime is the time spent on inserting newly
generated states into memory. This value is similar to NewInsertionTime but smaller
than RamlInsertionTime. Collisions are reduced in this case since the verification
resumes with an empty hash table every time after every disk read/write occurs.
DiskIOTime is the disk i/o time spent in Stern’s algorithm and DiskComparisonTime
is the time spent on comparing states in disk with states in memory to get rid of
the duplicate states. DiskIOTime and DiskComparisonTime require more detailed

analysis.

19

For Stern and Dill’s algorithm, assume K; is the number of states on disk when
the file is read the ¢th time and assume that the disk file is read ¢ times during the
entire search process. The total number of states read from disk is K = YI_, K;.
Assume the read transfer rate is R bytes/second, and each state contains S bytes,
then the read overhead is K*S/R seconds. Assume the write transfer rate is W
btyes/second, and the total number of states written to disk is 7', then the write
overhead is T*S/W seconds. Assume the memory table is M bytes, then the average
comparisons each state makes is M/2S and the avarage overhead of comparision is
K*M/2S comparisons. Assume the time spent on each comparison of states in disk
with states in memory is C seconds, then the DiskIOTime is

KS TS
R w

and DiskComparisonTime is
CKM
28

As a result, the total time spent on Stern’s algorithm is

KS TS CKM
TotalTime = DiskInsertionTime + ConstantTime + N3 + A + 53

In most cases DiskInsertionTime was bigger than NewlInsertionTime and smaller
than RamInsertionTime. It is bigger than NewInsertionTime because the number and
cost of collisons grow for Stern and Dill’s disk based algorithm as the table in memory
becomes fuller. However, the DiskInsertionTime is still smaller than RamInsertion-
Time since the verification starts with an empty hash table after each file read/write

access. Thus, we only need to make sure that

to get a speed up. Which is

QR-K)S (Q@-1)S CKM
R W

The values of R, W,C, M, q depend on what machine is being used. For a given
model, S,T,c,e are constant. Only K and @) vary when different algorithms are
used. K and @) grow quickly as the size of model grows since K and) depend on
the total number of states. Thus, the dominating factors in this equation are () and
K. As the model grows bigger, K increases faster than @), since the growth of K
is reflected on one file, while the growth of () is amortized into several smaller files.
Thus, mathematical analysis predicts the new algorithm will acheive more speed up
as the model grows bigger. The memory saving factor gained by both algorithms is

similar.

21

22

Chapter 4

Experimental Results

This chapter presents the experimental results of running the RAM based, Stern
and Dill’s disk based and new disk based algorithms on several models using both
the original hash function of Murphi and SPIN’s s-hash-jenkins hash function. We
report the time spent on the most time consuming parts of each algorithm except the
constant time spent during generating states. The models are atomix, mcslockl, dp,

newcache6, newlist6 and dense.

We give results for two kinds of models: those that can be verified in less than
2GB of RAM and those that can not. We use smaller models to test all algorithms
and use bigger models to test Stern and Dill’s disk based algorithm and new disk
based algorithm since a unix process on a 32 bit machine only can addresses 2GB of
memory. For smaller models, we use two different hash functions to demonstrate the

importance of good hash performance.

Our implementation in Murphi uses a chained hash table. A double hash table,
as used in prior work in explicit state model checking [6][7] causes all 3 algorithms to
run more slowly and has the most significant impact on the orginial RAM and disk

algorithms.

23

4.1 Using the Original Hash Function

This section reports test results using Murphi’s original hash function. This hash
funciton is a global hash funtion. It gets the hash index by adding all the bits of a
state together.

Table 4.1 shows the result from RAM based Murphi, which has enough memory
to complete the verification. The Total States row shows the total number of states
generated for each model. The Memory Used row reports the memory allocated
for the hash table and memory queue. The Insert States row shows the time spent
on inserting states into memory. The Total Time row reports total time spent on
verification. The Insert States time occupies more than 30% of the total time in most
of these models.

Table 4.2 presents the result from Stern’s disk based algoirthm. The Memory Used
row presents the size of memory allocated for the memory hash table and memory
queue. The File Read row shows total time spent reading the file from disk. The File
Write row shows the total time spent writing the file to the disk. The Check Table
reports the time spent comparing states on disk with states in memory. The Insert
States row shows the time spent on inserting states into memory. The Check Table
time takes more than 30% of total time in most of the models.

Table 4.3 shows the result from new disk based algorithm. The Computation
Time row reports the computation time spent on calculating each state to gets its
corresponding parition number. The EnDequeue row reports time spent on enqueuing
and dequeuing states from queues. The other rows have same meaning as Table 4.2.
The constant time spent on generating states is not reported since it is same for all
three algorithms.

Figure 4.1 illustrates the speedup of the new algorithm over the RAM algorithm.
Atomix, mcslockl and dp12 get speedup. Newcache6 and newlist6 are slightly slower.

Comparing table 4.1 and 4.3, we can see the new algorithm gets time savings for all

24

Function atomix

mcslockl

dpl2 newcache6

newlist6

Total States | 2,966,400 12,782,802 13,811,712

Memory Used 157.00
Insert States 701.35
Total Time 1024.00

930.00
1837.22
4772.86

74.00 1000.00

388.31

432.55 2486.50

1,342,080 3,619,561
430.00

50.67 195.48
1246.98

Table 4.1: RAM Based Murphi, All Times in Seconds, Memory in MB

Function atomix mcslockl dpl2 newcache6 newlist6
Memory Used 80.00 320.00 32.00 200.00 82.00
File Read 6.54 51.93 3.15 25.07 23.91
File Write 0.81 5.00 0.50 4.77 2.43
Check Table 568.18 1841.39 134.06 123.97 316.98
Insert States 354.41 255.01 197.31 33.81 54.00
Total Time 1235.70 4726.04 373.19 2619.89 1392.53

Table 4.2: Stern’s Disk Based Murphi, All Times in Seconds, Memory in MB

Function atomix mcslockl dpl2 newcache6 newlist6
Memory Used 82.00 290.00 32.00 200.00 82.00
File Read 5.43 34.48 1.78 15.61 13.95
File Write 16.50 325.62 5.57 106.34 103.74
Insert States 293.33 617.15 243.12 37.75 97.52
Computation 14.29 98.02 6.93 47.06 27.01
EnDequeue 40.78 214.41 17.50 73.76 64.49
Total Time 662.34 3756.81 310.03 2714.44 1290.17

Table 4.3: New Disk Based Murphi, All Times in Seconds, Memory in MB

1.8

1.6
1.4 1—

1.2 +—

0.8 1

speedup

0.6
0.4 1+

0.2

atomix

mcslocki

dpi2
models

:
newcache newlist6

Figure 4.1: Speedup of New Algorithm over RAM Algorithm

25

speedup
|
|

0.8 +— —

0.6 +— —

04— -

0.2 +— —

atomix mcslock1 dp12 newcache newlisté
models

Figure 4.2: Speedup of New Algorithm over Stern’s Algorithm

models in Insert States row. As described earlier by equation, the speedup obtained
by the new algorithm depends on whether the time saving gained by hash insertion is
bigger than the overhead introduced by the new algorithm. On average, the speedup
of the new algorithm is 1.22. The memory used by the RAM algorithm is slightly
bigger, like 10 - 20 MB, than the exact amount of memory it needs to complete the
verification to ease up collisions. The memory used for the new algorithm is 20% -

50% of the memory used for RAM algorithm.

Figure 4.2 illustrates the speedup of the new algorithm over Stern’s disk based
algorithm. The new algorithm gets a speed up for all models except newcache6.
As described earlier by equation, whether the new algorithm can get a speedup in
this case depends on whether the Check Table time is bigger than the overhead
introduced by the new algorithm. For example, in newcahce6, the file read/write
and computation time overhead of the new algorithm outran the Check Table time

overhead of Stern’s algorithm. Thus, the new algorithm does not get a speed up in

26

Function ‘ atomix mcslockl dpl4 newcache6 newlist6
Memory Used | 157.00 930.00 1900.00 1000.00 430.00
Insert States 32.41 142.93 248.16 74.63 52.53
Total Time 367.63 2831.28 717.40 2504.42 1092.25

Table 4.4: RAM Based Murphi, All Times in Seconds, All Memory in MB

Function atomix mcslockl dpl4 newcache6 newlist6
Memory Used 80.00 320.00 290.00 200.00 82.00
File Read 6.24 50.05 21.77 25.09 23.95
File Write 0.81 4.91 4.31 4.74 2.50
Check Table 60.95 841.86 459.44 188.62 290.67
Insert States 33.16 104.40 251.86 72.11 52.68
Total Time 423.27 3780.75 1109.74 2976.28 1397.59

Table 4.5: Stern’s Disk Based Murphi, All Times in Seconds, All Memory in MB

this model. On average, the speed up of the new algorithm is 1.27 over Stern and
Dill’s algorithm. The memory used for both algorithms is the same.
4.2 Using SPIN’s Hash Function

In this section, we report test results using a SPIN’s s-hash-jenkins hash function
to demonstrate the importance of good hash performance. Table 4.4 indicates the
results from the RAM algorithm. Table 4.5 indicates the results from Stern and Dill’s
algorithm. Table 4.6 indicates the results from the New algorithm.

Figure 4.3 shows the slowdown of the new algorithm over RAM based algorithm.

From Table 4.3 and 4.5, we can see that the new algorithm slows down compared with

Function atomix mcslockl dpl4 newcache6 newlist6
Memory Used 82.00 290.00 200.00 200.00 82.00
File Read 8.01 36.58 13.21 17.09 16.94
File Write 19.19 318.57 85.98 115.31 98.08
Insert States 28.01 94.19 193.95 61.45 41.57
Computation 15.15 99.98 169.13 32.75 28.80
EnDequeue 50.10 190.00 371.00 77.12 54.79
Total Time 393.45 3349.95 872.79 2739.50 1227.56

Table 4.6: New Disk Based Murphi, All Times in Seconds, All Memory in MB

27

0.94
0.92 1

0.9 A
0.88
0.86

2 0.84
0.82
038 -
0.78
0.76 - : :

atomix mcslockl dp12 newcache newlisté

eedup

S

models

Figure 4.3: Slowdown of New Algorithm over RAM Algorithm

1.3
1.25
1.2
g
3 115
1]
2 11
(7]
1.05
1
0.95 - :
N N N @ o
-
(@) N (\e
N &
models

Figure 4.4: Speedup of New Algorithm over Stern’s Algorithm

28

the RAM algorithm for all models. The SPIN’s s-hash-jenkins hash function reduces
hash collisions. Thus, the time savings gained by reducing hash insertion time is
less than the overhead in the new algorithm. For bigger models, we believe the hash
insertion time will increase in spite of the hash function, so that the new algorithm
will show better results. However, since the memory size that can be allocated is
restricted to 2GB for 32 bit machines, we are not able to do tests on bigger models.
The avarage slow down here is 1.12.

Figure 4.4 shows the speedup of the new algorithm over Stern and Dill’s algorithm.
The average speed up here is 1.12. The new hash function decreases the Check Table
time significanlty when compared with the results from the previous section, since
the new hash function gives a faster disk versus memory comparison speed. Again,
we believe the advantage of the new algorithm will be shown more obviously when
the model gets bigger. In the next section, we present results from two bigger models
which require more than 2GB of memory.

4.3 Big Models

Mathematical analysis in Chapter 3 predicts the new algorithm to have more
speed up over Stern’s algorithm when the size of model increases. In this section,
we report results from two models that require more than 2GB of main memory to
complete. We tested these two models on Stern’s and the new disk based algorithm
using SPIN’s s-hash-jenkins hash function.

Table 4.7 reports test results. The Models column shows the model that is used.
The States column presents the number of states that are generated. The Memory
column reports the size of memory needed for the hash table and the queue. The
RAM column presents the size of memory allocated for the hash table and the queue.
The Stern Time column shows the time spent on Stern and Dill algorithm. The New
Time shows the time spent on new algorithm. The Dense model gets a 1.92 speed up

and newlist6 gets a 1.12 speed up over the Stern and Dill’s algorithm.

29

Models | States Memory RAM Stern Alg New Alg

dense 134,217,728 2560.00 800.00 8708.44 4519.16
newlist6 80,109,363 9000.00 1300.00 54113.17 47593.36

Table 4.7: All Times in Seconds, All Memory in MB

30

Chapter 5

Conclusions and Future Work

This chapter gives conclusions from the above analysis and experimental results, and

presents limitations of the new algorithm and suggests possible future work.

5.1 Conclusion

This thesis presents a new disk based model checking algorithm that uses a com-
mon parallel model checking algorithm serially. It partitions the state space into
different files, then swaps each file into and out of memory to store the expanded
states. Compared with Stern and Dill’s disk based algorithm, the new disk based
algorithm reduces the disk versus memory comparsion but increases disk i/o time.
Compared with the RAM only algorithm, the new algoritm reduces hash table inser-
tion time by reducing the cost and growth of hash load. Experimental results show
the new algoirthm can get close to or faster verification speed than the RAM based
algorithm. It also outperforms Stern and Dill’s disk based algorithm by more than
10% in our benchmarks. This number increases as the size of the model increases.
The size of the model that can be verified by the new algorithm is bound to the avail-
able disk size instead of being bound to the available RAM size. This work provides
an effective reduction to the state space explosion problem with a low cost. It fully

utilizes a single computer’s resources to complete large model checking problems.
g g g

31

5.2 Future Work

This work does not address the following issues:

e The individual file size must not exceed the size of memory throughout the

verification. If the file size exceeds the memory size, the algorithm crashes.

e This algorithm can not eliminate duplicate states when it stores states in the

memory queue or disk queue. Duplicate states take extra disk space.

Exploring the relationship among the number of partitions, the memory queue size
allocated to each partiton, the disk file size, the characteristics of the model, and the
partitioning hash functions would be an interesting future work for this algorithm. In
this thesis, we choose random values for each of the above parameters. With careful
analysis, it is possible to find a formula that can find optimal values for the above
paramters that results in a faster verification speed.

Exploring the relationship between the two partitioning functions needs to be
examined more closely. Well coordinated partitioning functions are able to effectively
reduce the hash load of the memory hash table hence speed up the insertion time.
Incorporating hash compaction on this algorithm will further reduce the time spent
on file 1/0.

A shared memory multiprocessor architecture [11] can be applied to the new
algorithm to speed up computation time to calculate the corresponding partition of

each state and time overhead related to store duplicates states in queues.

32

LIST OF REFERENCES

1]

2]

3]

[4]

[5]

[6]

D. Peled, “Combining partial order reductions with on-the-fly model-checking,”
in Computer Aided Verification, Stanford, California, 1994, pp. 377-390.

C. N. Ip and D. L. Dill, “Better verification through symmetry,” in Computer
Hardware Description Languages and their Applications, Ottawa, Canada, 1993,
pp- 87-100.

U. Stern and D. L. Dill, “Improved probabilistic verification by hash com-

)

paction,” in Correct Hardware Design and Verification Methods, Stanford, Cali-

fornia, 1995, pp. 206-224.

W. Knottenbelt, M. Mestern, P. G. Harrison, and P. S. Kritzinger, “Probability,

i

parallelism and the state space exploration problem,” in Computer Performance

Evaluation: Modelling Techniques and Tools, Palma, Spain, 1998, pp. 165-179.

A. Bell, “Disk-based and distributed generation and analysis of large stochastic

models,” Schloss Dagstuhl, 2002.

U. Stern and D. L. Dill, “Using magnatic disk instead of main memory in the

J

murphi verifier,” in Computer Aided Verification, Vancouver, Canada, 1998, pp.

172-183.

33

[7]

8]

[9]

[10]

[11]

G. D. Penna, B. Intrigila, E. Tronci, and M. V. Zilli, “Exploiting transition
locality in the disk based murphi verifier,” in Formal Methods in Computer-

Aided Design, Portland, Oregon, 2002, pp. 202-219.

U. Stern and D. L. Dill, “Parallelizing the murphi verifier,” in Computer Aided
Verification, Haifa, Israel, 1997, pp. 256—267.

R. Kumar and E. Mercer, “Load balancing parallel explicit state model check-
ing,” in Parallel and Distributed Methods in Verification, London, U.K., 2004,

pp- 21-36.

G. Behrmann, “A performance study of distributed timed automata reachabil-
ity analysis,” in Parallel and Distributed Methods in Verification, Brno, Czech
Republic, 2002, pp. 7-23.

D. D. Deavours and W. H. Sanders, “An efficient disk-based tool for solving large

markov models,” Performance Fvaluation, vol. 33, no. 1, pp. 67-84, 1998.

34

	Disk Based Model Checking
	BYU ScholarsArchive Citation

	Introduction
	Background
	Thesis Statement

	Related Work
	Stern and Dill's Disk Based Algorithm
	Transition Locality
	Parallel Model Checking Algorithm, Hash Function and Hash Table

	The Algorithm
	Description
	Analysis
	Comparison with RAM Based Algorithm
	Comparison with Stern and Dill's Disk Based Algorithm

	Experimental Results
	Using the Original Hash Function
	Using SPIN's Hash Function
	Big Models

	Conclusions and Future Work
	Conclusion
	Future Work

