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ABSTRACT

AN ECOLOGICAL DISPLAY FOR ROBOT TELEOPERATION

Robert W. Ricks

Department of Computer Science

Master of Science

This thesis presents an interface for effectively teleoperating robots that combines an eco-

logical display of range and video information with quickening based on dead-reckoning

prediction. This display is built by viewing range and video information from a virtual

camera trailing the robot. This is rendered in 3-D by using standard hardware acceler-

ation and 3-D graphics software. Our studies demonstrate that this interface improves

performance for most people, including those that do not have much previous experience

with robotics. These studies involved 32 test subjects in a simulated environment and 8

in the real world. Subjects were required to drive the robot through several mazes while

remembering a sequence of items. People took less time using the ecological interface

and experienced fewer collisions, with a much lower workload as measured by joystick

entropy. People preferred the interface over a standard interface with side-by-side range

and video information and no prediction. Participants tended to rate the interface as more

learn-able and more intuitive; participants also felt more confident in the robot’s expected

behavior.
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Chapter 1

Introduction

There are many times when robots could be used to do work that would be impractical

or unsafe for a human. Examples of this include nuclear waste disposal, interplanetary

exploration, and military or search and rescue operations. Teleoperation, literally operating

at a distance [44], is the operation of these vehicles or systems from a remote location.

This operation can be difficult for a variety of reasons, most of which stem from either

(a) the lack of ordinary visual and vestibular1 cues that help us navigate and locate things

or (b) delay. These factors contribute to a loss of situation awareness, which we define

as perception of the environment and how a user’s actions affect the user and what will

happen in the near future [13].

The first factor that impedes situation awareness in teleoperation is the lack of the or-

dinary visual cues used in navigation. Human vision has an effective field-of-vision of

approximately 200 degrees [1]. We use peripheral vision to better sense where we are in

our environment and how we are moving in it. Studies have shown that restricting a hu-

man’s field of view significantly reduces one’s ability to navigate in the real world [1, 23].

Other senses are used as well. For instance, we also use gravity to feel which direction is

1Vestibular cues relate to a human’s sense of equilibrium and balance from the vestibule of the inner ear.

1
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up. When guiding a robot through a cluttered environment with a lot of obstacles to climb

over or around, limited field of vision, lack of proprioception, and absence of vestibular

cues severely hamper the ability of a human operator to stay oriented in the remote world.

Another hindrance to obtaining proper situation awareness in teleoperation is the delay

inherent in a remote link to the robot. Because of communication delays, limited band-

width, and sensor update times, the human may not see the results of commands sent to

the robot for some time. This can be exacerbated by physical distance between the hu-

man and the robot or by communication delays inherent in a communication medium such

as the Internet. These problems manifest themselves in reduced ability to maintain self-

orientation and by misjudging distances to objects.

Additionally, delay can cause instability in the control loop [8], causing the human to

overcorrect for errors [55, Chapter 10]. Delay can also dramatically increase the cognitive

load on human operators because they have to remember the commands they gave the robot

since the last update and extrapolate a new robot position and orientation. This requires

the human to mentally connect the new images and sensor data with the last ones. Often

users resort to a move-and-wait strategy in order to keep track of where they are and to

avoid overcorrection [12].

One common method for dealing with the delay problem is the use of prediction [42].

For example, airplanes use a “tunnel-in-the-sky” to help them stay on their flight plan [35].

This is especially useful on certain vehicles, such as commercial aircraft and big ships [53],

because they have higher-order control and significant inertia. For teleoperators with

longer communication delay and lower-order control, drawing lines in the last image to

represent the new position is usually more helpful. For example, the Mars rover could use

this scheme to draw lines representing where the rover has moved and what direction it is

now facing [32].
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Another type of predictive display, known as a quickened display, has also been used

for navigation [55]. The difference between quickening and prediction is that prediction

shows the current state of the system and a prediction of what will be happening in the

future. Quickened displays, by contrast, only show the predicted future state or error with-

out any representation of what the current state of the system is. The most notable use of

a quickened display is in the flight director of many modern commercial airlines, which

tells the pilot where to head to stay on the flight plan. The reasoning behind leaving out

the current state of the system is that “current error contains no information that is useful

for correction” [55, Pg. 409]. It is better to correct for things that we predict will turn into

errors than to wait for those problems to occur because this way we can keep the errors

from compounding and we can keep out of bad situations.

The most common method for dealing with the narrow field-of-view of most video im-

ages is to have range sensors give approximate positions of objects in the the area around

the robot. This is typically in a separate display, which the user must integrate with the

video for localization purposes [46]. This requires users to divide attention between multi-

ple displays, which increases cognitive load and takes time to learn. Color-coding images

to show depth information [49] has also been tried.

We approach the problem of teleoperation from another perspective. Instead of focus-

ing on adding sensors or otherwise giving the user more information, we would like to

improve the way information is presented. Most interfaces focus on displaying “what is

there.” We focus on displaying the information in a manner that may not look exactly like

the remote environment, but which affords the same information to the operator.

This thesis will improve the current state-of-the-art in teleoperation by creating an eco-

logical display that helps users visualize affordances in the environment using a camera,

laser range sensor and sonar a sonar range sensor. Our interface is based on a first-person

perspective of the scene, like what one would see from a camera. However, to improve the
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visual field-of-view, we pull a virtual camera back from the robot to a fixed position above

and behind the robot. Obstacles detected by range sensors are displayed as barrels and the

most recent camera image from the robot is displayed in front of the robot. This allows

the operator to see the robot and its immediate surroundings as well as what the robot is

seeing.

This thesis is organized into three main sections. First, we will discuss previous work

and the terms we will use to describe our interface. Second, we will discuss what we have

done to create the interface, what makes it novel and why we believe it works better than

other interfaces. Finally, we will show how we have validated the interface through user

studies and discuss our conclusions, limitations and ideas for future work on the interface.



Chapter 2

Previous Work

2.1 Robot Autonomy

Many methods have been developed to make robots easier to teleoperate. Supervisory con-

trol, which involves a human operator supervising somewhat intelligent robots, is one such

method. Sheridan [44] is the seminal reference on supervisory control. Many others have

worked on supervisory control, safeguarded control [26, 18] and adjustable autonomy [20].

These methods work by adding intelligence to the robot so that the human needs only to

give high-level commands such as “go straight” or “turn at the next intersection.” The

robot uses the high-level commands and sensor data from the environment to steer around

obstacles and accomplish objectives given by the operator.

One limitation of these approaches is that final control of the robot is taken away from

the human. This limits the robot to the behaviors and intelligence that have been hard-

coded into it. There are situations where the operator may know more about the situation

than the robot’s algorithm does. An example of this would be broken glass or other hazards

that may not be detected by the robot’s sensors, but which could prove disastrous to the

robot. Clearly these situations could be addressed in future algorithms, but developing

5
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algorithms can get more difficult with added sensors and situations [22]. A related issue

is that adding intelligence to the robot makes it harder to model the robot and study the

effects of the interface on its performance. Due to these limitations we are limiting our

research to simple robots without autonomous behaviors.

2.2 Enhanced Displays

Some effort has also gone into improving the visual experience afforded human operators.

One method is to use a panospheric camera, which gives a distorted view of the entire

region around the robot [50], but can be dewarped to look more natural. This has many

advantages, including giving the human the ability to visually find and track landmarks. To

use such a camera, a high-bandwidth communication channel that allows frequent image

updates is usually necessary for users to maintain continuity between images. Addition-

ally, demonstrations of the panospheric camera have been limited to high-level navigation

in the middle of the desert, so some intelligence or other control scheme may be still be

required for cluttered environments. An alternative to panospheric cameras is to use multi-

ple cameras, which has been done by David Woods1 and Stephen Hughes et al. [25]. This

may help operators better understand what is all around the robot, but it still requires fast

communications to overcome delay. We are restricting attention to robots with a single

forward-looking camera.

Other methods which have been used to improve teleoperation include multisensor

and adjustable autonomy interfaces [15]. Multisensor [49], or sensor fusion [33] displays,

present information from multiple sensors in a single, integrated view [16]. Adjustable

autonomy [20] systems2 are another way to approach the shortcomings of teleoperation yet

1Personal communication with David Woods, a Professor at Ohio State University who studies human
factors in technology [56, 57], in May 2004.

2Multimodal interfaces have referred to both (a) interfaces that present information through multiple



2.3. PREDICTIVE METHODS 7

retain its benefits. The basic idea is to choose the autonomy mode based on the situation at

hand; it may be beneficial to control the robot with direct teleoperation at times and have

the robot fully autonomous at other times [6]. Other control schemes have been introduced

to give a robot basic teleoperation instructions and receive feedback from the robot [15],

but these tend to focus more on using other devices to give instructions to the robot rather

than focusing on making it easier to control the robot, perceive the remote environment or

improve situational awareness. Examples of these control modes include gestures, web-

based controls and buttons on a PDA.

An example of an adjustable autonomy-based interface is VEVI which was used for

volcano exploration [17] with the Dante II robot. This robot could be controlled by moving

each leg individually or giving it a path to follow. The Dante II mission also made use of a

virtual reality environment that indicated crucial parameters such as the pressure on each

leg and the height of the ground around it. VEVI has also been used to control indoor

robots, and an underwater vehicle [23].

Yet another way to enhance teleoperation is to use VR to create a sense of presence. For

example, Nguyen et al. [39] use a virtual reality interface for robot control. They used 3D

terrain models from stereo images to display a terrain map of the surrounding landscape.

VR-based interfaces can use a virtual environment to display information about robots in

an intuitive way. For example, a virtual terrain map could be shown beneath a virtual robot

or colors in the virtual model of the robot could indicate stress levels on the robot’s legs.

2.3 Predictive Methods

Prediction has been used to give the operator an idea of where the robot will move based

on current and previous operator input [26, 32]. Prediction usually involves drawing lines

sensory channels [21] and (b) interfaces that allow multiple interaction schemes [15].
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in the previous image to show a new position and heading. Studies by Mica Endsley at SA

Technologies have shown that predictive displays can increase performance and situation

awareness in the Air Traffic Control domain [14].

Distributed simulations, such as NPSNET [29, 4] and computer games, make use of

prediction to present a visually appealing environment. The technique they use, referred to

as dead-reckoning, allows client computers to simulate a client’s view of the world locally

in the absence of “true” information from the server [5]. This is done either through extrap-

olating only from user input [27], local simulation or information sent from the server [48].

Network traffic can thus be decreased while giving users a smoother experience. While this

does not give the user a completely accurate picture of what is actually happening, they

give a “reasonable approximation of a shared reality” [48]. Another benefit is that users are

able to see results of their actions immediately, even though they will not affect the “real”

world for some small amount of time. Users have found this system to be far superior in

terms of susceptibility to latency and intuitive feel of the virtual environment. The virtual

world should be more accurate at the current time than simply displaying the last “true”

positions from the server.

Computer simulations such as video games have also worked to eliminate jerkiness

associated with receiving only periodic updates from a simulation server or other partici-

pants. Computer games have had similar prediction techniques [5, 27] for some time and

the gaming industry has been pushing the limitations of Internet technology and real-time

3D [48]. Some of these ideas have also been used on simulations of spacecraft dock-

ing [12], and in augmented reality displays [47] for virtual presence. It appears that very

little research in prediction has been applied to simple land robots with ordinary hardware

and displays.
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2.4 Teleoperation and Telepresence

Many of the terms used to define robotic interfaces are defined in different ways by differ-

ent people. For example, we defineteleoperationto be control of a robot or actuator in a

real environment, which may be at some distance from the operator, through some sort of

communications medium. This means that one can teleoperate a wheeled vehicle, a robotic

arm, or a human-like robot with arms and legs. This definition is much less restrictive than

what some people refer to as teleoperation which is having a remote mechanism mimic

the actions of the human operator. Similarly, teleoperation can be based partially on how

similar the individual’s virtual body is in appearance or functionality to the individual’s

own body [52]. While this latter approach may contribute to one’s sense of physically

being in a remote location, we believe it is far more important that the connection between

an individual’s actions and the effects of those actions be simple and intuitive [52]. Since

many of the terms we use have been defined so differently by different people, we will use

definitions that tend to be generally applicable to computers and robotics.

We definetelepresenceas the sense of being in an environment in which one is not

physically present. Note that this environment does not necessarily have to be at the re-

mote site or even an actual physical location. This is less restrictive than Sheridan’s defini-

tion [44] because one does not have to feel present at the remote site. This makes our def-

inition of telepresence more similar to Steuer’s definition [45] which allows telepresence

to refer to a “real” environment or a “non-existent virtual world”. For more information

about the various definitions of telepresence, see [30, 31]. Telepresence is important be-

cause many believe that increased telepresence will increase performance on various tasks.

Schloerb takes the opposite approach and defines objective telepresence as the probability

of successfully completing a specified task [41]. Other methods of determing presence

usually involve questionnaires, which can be misleading [52].
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2.5 Virtual Reality

Virtual environmentsimmerse the user in a synthetic environment [2] which is composed

completely of artificial or computer-generated elements. Our interface uses elements of

virtual environments to allow them to view information from a 3-D virtual perspective

Other ways to refer to virtual environments are virtual reality (VR), artificial reality, and

virtual worlds. Virtual reality is often seen as being more restrictive than virtual envi-

ronments. Some argue that virtual reality must involve immersive 3D graphics and data

gloves. Others give much broader definitions of virtual reality [45] which include things

ranging from telephone calls to video games. Our interface could be categorized as a

virtual reality display in this sense because it creates a virtual world that affords the same

behaviors as the real world. However, since virtual reality and virtual environments usually

refer to interfaces that control simulated entities that have no direct real-world counterparts,

we do not classify our display as a virtual reality interface.

We are not using a strictly virtual environment, so this makes it amixed realityinter-

face [34]. There are two generally accepted sides of mixed reality: augmented reality and

augmented virtuality. The difference is that an augmented reality (AR) display presents im-

ages which are primarily composed of real environments, but which have been enhanced

or augmented by computers [11]. Additionally, augmented reality usually refers to either

specific technologies or computer-generated images registered in 3-D with a real scene [2].

Since our interface does not fit the latter half of the definition, we would classify it as an

augmented virtuality display. Augmented virtuality refers to virtual environments which

have been enhanced or augmented by inclusion of real world images or sensations [11].
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2.6 Ecological Definitions

The real problem with all of these definitions is that they focus on the accuracy with

which an environment is presented instead of focusing on communicating effective en-

vironmental cues. Our approach is based more on J. J. Gibson’secologicalapproach to

realism [19, 30, 59]. In the ecological approach there is no need to distinguish between

real and virtual worlds because valid perception is that which makes possible success-

ful action in the environment [19]. Similarly, in this ontology, “presence is tantamount

to successfully supported action in the environment” [59]. While this sounds similar to

Schloerb’s definition of telepresence [41], successfully supported action is achieved when

actions are perceived as lawful or commensurate with the response we would expect in the

real world [59] whether or not this action satisfies objective performance criteria.

One approach to applying the ecological approach to interface design is known as

Ecological Interface Design(EID). This methodology has been used to make complex

processes such as thermal-hydraulics [54], network management [7], medicine [43] and

nuclear reactors [58] easier to use. The goals of this approach are to exploit operators’

perception and action capabilities while supporting problem solving activities. The basis

of EID is to represent the work domain as anabstraction hierarchy[40]. This would

include layers such as purpose, function and physical form. For example, the purpose of

a nuclear power plant is to safely generate power. Its function involves fuel, water, steam,

turbines, etc. to fulfill its purposes. The physical components that perform these functions

make up the physical form.

Each level of abstraction provides more detail about the makeup of the individual

system, yet information can be provided at each level of the abstraction. So, for exam-

ple, an operator could get information about how much electricity the plant is generated,

the temperature of cooling water, or whether particular components are working properly.
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Domain-specific information is integrated into this hierarchy to help operators understand

the relationships between system variables. Additionally, “information needed to cope

with events which are unfamiliar to operators and which have not been anticipated by de-

signers” [54] must be identified and included. For complex domains, where an abstraction

hierarchy is probably necessary, EID is very useful.

Another ecological approach to interface design is to buildecological displays,- which

simply focus on communicating effective environmental cues. This kind of ecological

display has been used to help aircraft taxi safely and effectively [24]. Examples of envi-

ronmental cues used to help aircraft taxi are markers to identify taxiway centerlines and

edges. This can be enhanced with global awareness in the form of map displays and traffic

information. These types of displays allow users to navigate effectively when some of the

normal environmental cues may be missing, for example during low-visibility conditions

or when doing teleoperation. Additionally, enhancing normal ecological cues with global

information gives the operator higher situational awareness to improve performance in

good conditions. Our interface certainly qualifies as an ecological display since it focuses

on communicating effective environmental cues instead of depicting what can currently be

observed through various sensors.



Chapter 3

Innovations

Our interface consists of an ecological display that helps users teleoperate a robot. Tele-

operation is difficult because of delay and the lack of normal ecological cues, such as

perspective. Our interface helps people combat these problems by (a) using 3-D symbols

to represent known obstacles, in 3-D along with a representation of the robot, (b) including

camera information, and (c) quickening the position of obstacles and image data through

the use of simple prediction. This ecological approach integrates many of the ideas people

have used in teleoperation into one display.

Our interface uses augmented virtuality to help users feel telepresence even if the vir-

tual environment is not exactly like the remote environment where the robot is located. The

first element we have added to our interface is 3-D representation of where obstacles are

in relation to the robot by placing virtual barrels in a 3-D display. This is combined with a

simple 3-D representation of the robot so it is easy to tell how big the robot is in relation

to gaps between the obstacles visible in the display. Obviously the robot will rarely be

situated in a room full of barrels, but the relationship between the barrels representing ob-

jects and the robot facilitate successful action because people are used to this sort of spatial

navigation. Another way in which successful action is supported by the interface is that it

13



14

allows the user to interact with the environment in real-time by use of prediction. The only

element of the display that is made up of real-world elements is the camera image sent

from the robot. This information is included because it helps users match up the virtual

elements of the display with corresponding elements of the remote environment such as

walls and doors.

Figure 3.1: Barrels show what is to the sides of the robot.

One ecological cue that teleoperation interfaces often lack is the sense of knowing what

is directly to the sides of the robot. Related to that is scale ambiguity: knowing how big

the robot is in relation to the objects detected by the various sensors. For example, robots

operating in the World Trade Center complex after September 11, 2001 were hindered by

operators’ lack of perceptual cues as to whether the robot would fit between obstacles [57].

This is somewhat mediated in our display by the bird’s-eye perspective a little above and

behind the robot seen in Figure3.1. This perspective is possible because the sonars and

lasers are integrated into the display in 3-D as barrels allowing the operator to see the robot

in its environment, or at least what the sensors say.

Another ecological cue that is often missing from teleoperation interfaces is the sense

of immediacyin the interface due to delay between actions and their effects on the world
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Figure 3.2: The display shows where the robot will be in the ecological display. The
current control input will make the robot move forward and turn left. The left image shows
what this would look like from the top. The right image shows what this would look like
in a quickened perspective display.

around them. Delay between action and perception has been found to have a profound

effect on performance [59]. We allow a closer coupling between action and perception

by quickening information received from the robot. This prediction is achieved by using

simple dead-reckoning using the position of the robot at the last sensor update and the

control inputs sent from the interface to the robot(Figure3.2). Since control inputs should

have a deterministic and predictable effect on a teleoperated robot, modeling this predicted

movement is a feasible and effective way of increasing ecological presence in the interface.

3.1 Driving in 3-D Barrel World

Teleoperation interfaces often severely limit the visual information to the operator. This

has been described as looking at the world through a ‘soda straw’ [57]. Because of this,

streaming video is often not enough for navigation [10]. According to Wickens, for navi-

gation tasks such as driving, egocentric displays are usually best [55]. This is why we use

the perspective illustrated in Figures3.1 and3.3 instead of a top-down view like the one

shown on the left of Figure3.2. Many car racing or driving simulators for computers (e.g.,

computer games) utilize a fixed perspective a little above and behind the car. This allows

the operator to view objects and obstacles to the side of their car as well as in the front.
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This kind of perspective is even better for navigating through objects [55].

Our interface uses a display that uses a fixed perspective behind the robot, as shown in

Figure3.3. We built the display to use DirectX hardware acceleration to render a repre-

sentation of the robot and obstacles in real-time. The obstacles we are displaying represent

distances and angles detected by the robot’s range-finding sensors. Both the robot and the

obstacles are drawn by texture-mapping a metal texture onto a 16-sided barrel. These are

presented in three dimensions with the robot at the front of the display and other objects

projecting out in front of it as shown in Figure3.3.

Figure 3.3: The interface draws 3-D barrels to represent obstacles in the world.

There are a number of ways that the display gives the operator information over the

channels they are accustomed to using. The texture mapping and 3-D perspective give

the operator range cues to determine how far away obstacles are. The size of the barrel

representing the robot in comparison to spaces between range barrels help operators see

if they can fit through gaps. Because the center of each range barrel is determined by the

distance returned by a range device, there may be a little more room between the robot

and obstacles than it would appear in the display. This allows for a little bit of a buffer or

safety margin built into the display. These kind of visual cues are directly perceived by the

operator because they are similar to cues that humans rely on to navigate [55].
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In order to differentiate between the types of information presented in the display,

we use colors to show which barrel is the robot, which barrels come from information

provided by the laser range-finder and which barrels come from SONAR information. The

barrel representing the robot is colored red because that is one of the primary colors on our

Pioneer2-DXe mobile robot. All the barrels were designed to be approximately the size

of the actual robot which gives the robot a little bit of cushion around each reading and

makes the readings appear substantial. The barrels representing SONAR information are

blue because that blends in with the black background which is supposed to communicate

that they are less accurate. The barrels representing laser range-finder information are

green because they are more accurate.

Unfortunately this color scale may not be intuitive to everybody and some people may

have trouble differentiating between the red and green barrels. Because the robot stays in

a fixed location in the display, however, it is not too hard for people to tell it apart from the

laser barrels. Additionally, the difference between laser information and sonar information

is usually not critical. Ultimately, the addition of color coding helps experienced users

better understand the state of the world at a glance while still being accessible to novices.

Obstacles may be detected by multiple sensors, in which case barrels from both sensors

show that information. The barrels are somewhat transparent which allows the operator to

see through inaccurate sensor readings and readings close together reinforce the idea that

there is a substantial obstacle at a particular point. Since range measurements are not

exact, even if SONAR and laser detected the same object, there is a good chance that the

two readings would differ by a small amount. This makes the readings show up as two

separate barrels, one in front of the other, instead of combining colors. Since the barrels

are approximately the size of the robot, barrels from the laser may overlap with each other.

While we could account for this and space out the barrels, having the barrels overlap makes

the display look less like a bunch of discrete barrels and allows users to naturally identify
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continuous surfaces and object sizes. There are some things, like glass, that SONAR picks

up better than lasers. Other things are more readily identifiable by the laser range-finder,

such as walls. Since the sensors complement each other to some degree, it is beneficial to

display both sets of barrels.

In addition to the barrels, the most recently received image from the robot’s camera

is displayed in front of the robot. This is texture-mapped onto a rectangle, the bottom of

which is approximately at the vanishing point of the barrels in the display. This allows

the operator to navigate in the barrel world while looking at a projection of the camera

image in front of the robot in the barrel world. We will present how quickening affects

the image in Section3.4, but first we describe how joystick activity is translated into robot

movement.

3.2 Joystick Control

Ten times per second the interface sends a joystick movement command to the robot. This

command includes a forward velocity, angular velocity and a timestamp. The mapping

between joystick positions and movement commands is illustrated in Figure3.4. In addi-

tion to being sent to the robot, the command is stored in a queue in the interface program.

Because of bandwidth constraints, the robot may send back image and range data at a rate

that differs from the rate of control inputs it receives due to robot processing power or

bandwidth. Information packets from the robot include the timestamp from the last joy-

stick command received by the robot. The command queue and time-stamped messages

are used to manage how the display predicts the robot’s current perspective. In order to

predict where the robot will move since the information was last received from it, we no

longer need nodes in the command queue that were processed by the robot before the lat-

est update from the robot. Timestamps from the robot are used to manage the command
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queue; commands issued earlier than the last one the robot sent can be pruned. These un-

necessary nodes are thus removed from the command queue when new information makes

them obsolete.

Figure 3.4: Joystick mappings used to translate joystick positions into forward and angular
velocity. The black circles represent the base of the joystick and the gray line and squares
represent the position of the joystick relative to the base. A representation of a correspond-
ing forward velocity and angular velocity is shown beneath each joystick position.

3.3 Prediction used for Quickening

Because of delay inherent in communications, there is a short and possibly variable pe-

riod of time between when a command is sent to a robot and when the effects of those

commands are seen by the user. This delay is made up of three parts as shown in Fig-

ure 3.5. First, it takes some amount of time for commands to travel from the user to the

robot due to communications delay. Second, the robot must act on this command and then

send back new sensor information. Third, communications delay will once again slow the

receipt of this new information. In order to effectively teleoperate a robot in the presence

of even relatively short delays, the user must be able to either predict how past commands
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will affect the current and future state of the robot, or employ a move-and-wait strategy to

compensate for it [12].

Figure 3.5: Simple representation of teleoperation delay.

3.3.1 Timing

A better way of handling delay than the simplistic model of Figure3.5is to send commands

at a rate independent of the uplink channel rather than forcing users to wait for the results

of their actions to send new commands. This could be a fixed rate or a variable rate, but

we focus on a fixed rate model for simplicity. Figure3.6 shows the modified downlink

channel. Now several commands are sent and the robot simply processes the last one it has

received. In the figure the interface is currently at timet0, the current time. One time step

ago it sent a command with a velocity,Vx and angular velocityω to the robot. Along with

this command it sent a timestamp for timet− 1 timesteps which we will callt1. There are

a total of three commands in the downlink channel which have not been received yet by

the robot. The times these commands were sent weret− 1 timesteps,t− 2 timesteps and

t − 3 timesteps so they are shown with timestampst1, t2 andt3 in the figure, respectively.

The robot is operating on the commandt4, which was sent 4 timesteps ago.

There may also be sensor information which has been sent by the robot but not yet re-

ceived by the interface. If the robot were to send sensor information at the current time,t0,

it would include the timestampt4. This allows the interface to know what command is cur-

rently active on the robot. In Figure3.7 the last sensor information in the comms channel
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Figure 3.6: A better representation of the downlink portion of the command queue.

was sent at about 2 timesteps ago. The robot was acting on commandt6 at that time. The

last sensor information received by the interface included the timestampt8, as indicated

by thet8 in the Interface box. In this example the robot sends fewer sensor updates on the

uplink than it receives commands on the downlink; the boxes with timestampst5 andt7 do

not have any sensor data included with demonstrating that no new sensor information was

sent by the robot when those commands were active.

Figure 3.7: The uplink portion of the command queue.

In order to help the user make informed decisions, the robot’s new position should be

predicted from all the commands whose full effect have not been seen in the interface. As

a reasonable approximation, we assume that commands are executed on the robot for the

amount of time between when the command was sent from the joystick process and the

time the next one was sent and that no command issued before the timestamp received in

the latest sensor update will affect the robot. Prediction is accomplished by extrapolating

where the robot will be after executing the commands currently in the command queue of

the interface. The most recently issued command is handled a little differently than the

others. Prediction based on the most recently issued command uses the amount of time
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since the command was sent to the robot instead of the amount of time we predict it will

be processed on the robot. This allows the predicted position to move linearly instead of

jumping to a new position every time we send a new command to the robot.

Figure 3.8: Commands sent to the robot that still need to be used for prediction.

Figure3.8 shows a representation of how the full command queue works. The last

command sent to the robot was (v1, ω1). This command and the two previous ones have

not yet reached the robot. The robot is executing the last command it has received (v4, ω4).

The last time the robot sent sensor information to the user the robot was executing (v6,

ω6). The interface is displaying sensor information the robot sent when it was executing

the command sent at timestampt8. This means that no sensor update was sent while the

commands at timestept5 or t7 were executed. Quickening uses the control inputs given at

timest8 throught1, which correspond to the last eight timesteps, to predict where the robot

will be. The prediction method used to translate the control inputs in the command queue

to the future position of the robot is discussed below.

3.3.2 Movement

The first step in predicting where the robot will be is deciding where it currently is. Since

we are only visualizing the objects detected by the robot’s sensors in its last update, we

basically generate a visual local occupancy grid with the range data. Local occupancy grids
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have often been used in mapping and localization [51]. We use only the latest sensor scans

to build the occupancy grid; no attempt has been made to integrate past information, maps,

or moving object detection [3] into the display. This means that we only need a local

representation of robot movement in the prediction algorithm. For this reason, we only

need to calculate change in x position, y position and heading for our predictions. This is

especially easy if we define the pose of the robot when it sent new sensor information as

the origin, and its heading as zero (Figure3.9). Figure3.10shows the position of the robot

at (0, 0) heading directly out thex-axis (0◦).

Figure 3.9: Initial position and heading in robot-centered coordinates.

Figure 3.10: Ideal Prediction is based on traveling around a circle.

Since movement commands sent to the robot consist of a desired translational velocity

and a desired angular velocity, dead-reckoning predictions are fairly easy. We start out
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with the robot at the origin of its local environment with respect to where the latest sensor

information was obtained from the robot. The robots we are using use translational velocity

(Vx) and angular velocity (ω). From this, the change in x position,∆x, change in y position,

∆y and change in heading,∆θ, can be calculated. When given a non-zero angular velocity,

the robot will follow a circular course. If this course were followed for long enough, the

robot would make a complete circle. The radius of this circle is proportional to the forward

velocity,Vx, and inversely proportional to the angular velocity,ω. If the radius of the circle

is fairly small, we can use the starting position on this circle and the ending position on the

circle (see Figure3.10) to calculate change in robot position:

r = Vx/ω

∆θ = ω ∆t (3.1)

∆x = r[sin(θ0 + ∆θ)− sin(θ0)]

∆y = r[cos(θ0 + ∆θ)− cos(θ0)].

Since commands in the command queue could have different desired velocity and an-

gular velocity, each node in the command queue could use a different size circle, (see

Figure3.11). This is acceptable because we can simply append an arc from one circle size

onto the arc generated from the last command node. Using this method, we iteratively

update∆θ, ∆x and∆y, using the previous values forθ0, x0 andy0. Each prediction stage

uses the velocity, angular velocity and the amount of time the command was active forVx,

ω and∆t. The new values of∆x, ∆y and∆θ are generated from that command, and this

is repeated for the next command. Since the ecological display can be updated much faster

than sensor updates are received, we smooth the trajectory on the current command input

by using the amount of time the command has been active for∆t. The display currently

renders the ecological representation approximately 60 times per second.
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Figure 3.11: AsVx andω change the robot follows arcs from circles of various sizes.

If the robot is not turning very quickly,ω will be very small, which can lead to sig-

nificant floating point error. A simpler formula for dead reckoning is thus used when|ω|

is small (less thanπ/30); these formulas were adapted from simple straight-line formu-

las [28]. Using these formulas, we first calculate the displacement of the robot,s, and the

amount the robot has turned,∆θ. The other measures are related to the sine and cosine of

the amount the robot has turned. The straight line approximation is as follows:

s = Vx ∆t

∆θ = ω ∆t (3.2)

∆x = s cos[θ0 + (∆θ/2)]

∆y = s sin[θ0 + (∆θ/2)].

Assuming the robot is traveling on a circular path, the angle between the initial heading

and the line between where the robot was initially and its final position should be half the

change in heading of the robot, assuming it has turned less than360◦. For example, if the

robot has turned90◦ it has gone1/4 of the way around the circle. If the original position

was at the origin, facing0◦, the new position would be along the ray45◦ from the origin

(see Figures3.10, 3.12). So, depending on the forward velocity, the new position would be
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at (1, 1) or (π, π), etc. Of course, there would be significant error in the fact that the robot

has taken a curved path, instead of a straight path for the distance it has traveled. This error

goes to zero as the change in heading goes to zero, however, which is why we use these

formulas only when|ω| is small.

Figure 3.12: The robot moves forward and turns left about 70◦.

3.4 Quickening Barrel World

Once we have extrapolated a new robot position, quickening the display is relatively easy.

Since we are using somewhat of an egocentric display, as the robot moves we see the world

move around the robot instead of the robot moving in the world. The display is designed

to represent what the world will look like when all the commands sent to the robot have

been followed. This includes moving the objects in the world as well as the last image

from the robot in a way that depicts what the robot would see from the predicted location.

In between the times when joystick commands are sent to the robot, there is a smooth

transition that eliminates some of the “jerkiness” in the display caused by infrequent sensor

updates.

Figure3.13shows what happens in the display when the interface predicts a new po-

sition for the robot. On the left is what the display would look like if the robot stayed
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Figure 3.13: Perspective representations of the world from the two positions in Figure3.12.

stationary like the robot on the left side of Figure3.12. The darker barrel toward the bot-

tom of the display represents the robot and the lighter barrels represent range information

shown in perspective. In the right of Figure3.12we see that the robot is moving forward

and turning about 45◦. The right side of Figure3.13shows what this looks like in a per-

spective display. We now see a wall in front of the robot because it has moved closer to and

turned toward the left wall. We can also see part of the first opening on the left to the right

of the perspective display. In the perspective display of Figure3.13 it is much easier to

see where the robot is headed and which way to turn the robot than the exocentric display

shown in Figure3.12.

Figure 3.14: Comparison between the camera image sliding (left), rotating 1/4 as much as
a flat image plane (middle) and a flat image plane (right). The left image looks like the
robot slid to the right. The right image looks distorted because the image plane is viewed
from too steep of an angle. The middle image represents a compromise between the two.

The camera image represents a section of the world depicted in the virtual environ-

ment. As the robot moves, the camera image also needs to move to show what area that
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camera image represents. Unlike obstacles generated from range sensors, we do not know

the distance to the objects in the camera image nor do we know what objects are closer

than other objects. As a rough heuristic, we estimate that the camera image is an image

plane approximately 500 centimeters from the robot1. As the robot moves in the virtual

environment, this image plane gets closer or farther and may move to a new position in the

display due to translation and rotation. In order to keep the robot from running through

the image plane, the plane moves asymptotically closer to the robot, but never so close or

so far that the camera image cannot be seen. As we will demonstrate when we report the

experimental results, this approximation produces a satisfactory user experience. When

the robot turns a fair amount, such as greater than 30◦or 45◦, the image may no longer be

visible because we may now be looking at the image plane from an oblique angle. This

can warp the image so it is much taller than it is wide because we are looking at it from

the side. In order to keep the image from being distorted and because we have no external

knowledge that we are looking at a flat plane, we rotate the image plane 3/4 of the way

back to normal (see Figure3.14). This amounts to a compromise between viewing the

image as a plane and viewing it as the inside of a cylinder. We validate the usefulness of

this compromise as part of the entire display in the user studies but note that future work

should consider user sensitivity to the rotation.

This quickened display enables the user to interact with the world as if he or she were

controlling the robot in real-time despite the delay, as long as the predictions are reason-

ably accurate. This should mitigate much of the need for the move-and-wait strategy, a

commonly used method for dealing with delays, making the robot more controllable. The

ecological display and prediction together should improve users’ situational awareness,

decrease mental load and improve their performance.

1This is a heuristic which has been tuned to display a good sized image and move intuitively. Future work
could improve this by correlating laser distances with the heuristic value.
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Validation in Simulation

In order to validate that the display does in fact increase performance, we did a series

of studies in simulation. We also ran tests using a conventional interface as a baseline.

(See Figure4.1 for screenshots of the two interfaces.) The standard interface shows the

latest laser, sonar, and camera information from the robot, along with some buttons and a

map that were unused for these tests. This interface was chosen as a standard because it

is similar to most current teleoperation interfaces and because the ecological display was

designed to work with this interface already. This allowed the exact same control code

to operate the robot regardless of which display the user was looking at. The ecological

display shows the laser and sonar information as barrels and the camera data in front of

the robot. The amount of delay between when subjects gave the robot a control and when

the results of that action could be perceived was set to be approximately one second. This

required the operator to figure out what the robot would be doing but did not require them

to adopt a “wait and see” approach.

In our experiments, each test subject did eight tests, each of which took approximately

four minutes. Tests consisted of using both the standard display and the ecological display

on a simulated robot. Each test consisted of guiding the robot through one of the four mazes

29
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Figure 4.1: The two interfaces we compared in our study. On the left is the standard
interface, the ecological interface is on the right.

in Figure4.2. The display that the test subject used first and the order of the mazes was

chosen randomly, but with the constraint that approximately the same number of people

would be in each group.

Figure 4.2: These are the maps we used to validate the interface in simulation. The map
in the upper left was used for training. The map in the lower right was used both with and
without the memory task.

Each subject was given as much time as they needed to “feel comfortable” with each

interface. We measured this time to get an idea if the ecological display would be easier

to learn than the standard interface. The robot was then placed in the start position of the
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first maze. The subject had to guide the robot through the maze following a pre-planned

path to the end. In these simulated world experiments, the path was given to the operator

as a series of red dots in the camera images and verbal instructions about what to do when

they reached the next dot.

In addition to completing the mazes with the robot, a memory task was devised to try

and determine the amount of working memory required to use each interface effectively.

Other researchers have found that ecological displays often require less working mem-

ory [36]. The memory task worked as follows. Before each maze subjects were given a list

of 5 images or words to memorize. The test subject had at most one minute to memorize

these before the program would continue. After completing the maze, which was designed

to take about 4 minutes, subjects were required to select the objects they had memorized

from a list of 16 similar objects. They were then required to put the five objects in the same

order they were originally given. Memory tasks alternated between image tasks and word

tasks in order to keep from confusing people with what they had just seen.

Several measurements were taken to evaluate performance. For each test, we measured

the amount of time needed to complete the maze, the number of times the robot collided

with obstacles, average speed, performance on memory tasks, and joystick steering en-

tropy [37, 9]. A Questionnaire, given in AppendixA, was given to each test subject after

using each interface. This questionnaire was designed to measure task workload, how

difficult the display was to learn, and the level of confidence they had in each interface.

Scores on the questionnaire range from low to high, or easy to hard, similar to the scoring

criteria used in NASA TLX [38]. After completing all the tests, the subjects completed an-

other questionnaire, given in AppendixB, which asked them which display they preferred,

which they did better on and which was more intuitive. In order to determine if results

were biased by the amount of experience people had with robots, we also asked them how

much experience they had with robotics.
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4.1 Simulation Studies Summary

We had 32 people (8 women and 24 men) complete the test suite in the simulated worlds.

Half of these (4 women and 12 men) used the standard interface first and the other half

used the ecological interface first. Our results show that the average person did much

better with the ecological display. We found that people averaged 14% less time with the

ecological display and twice as many people crashed into walls with the standard display

as the ecological display. Additionally, entropy was 31% lower with ecological display

and subjects preferred it 4 to 1.

4.2 Objective Results

People did remarkably better using the ecological display than they did with the standard

interface. Two of the most notable difference were the number of people that crashed

using each interface and joystick entropy. There were over 7 times more collisions using

the standard interface than the ecological interface which amounts to less than 12% of

the total collisions. Additionally, more people were able to complete the worlds without

crashing at all using the ecological interface. We also found that people were able to

complete the worlds much faster (an average of 14% faster) and that their average velocity

increased approximately 9%.

Figure4.2shows the number of test subjects that crashed in at least one world through

those who crashed in every world for each interface. Although 34% of the participants

crashed in at least one world, more than half of those crashed in only one world. In fact,

the number of people that crashed using the ecological interface in at least one world

seems to decrease exponentially when we look at the number that crashed in another world

as well. On the other hand, about 69% of the test subjects crashed in at least one world



4.2. OBJECTIVE RESULTS 33

using the standard interface. Additionally this number decreased much slower percentage-

wise than it did for the ecological interface. Twice as many people crashed in every world

using the standard display as the number of people that crashed in half the worlds using

the ecological display.

Figure 4.3: The number of people that crashed in at least 1, 2, 3, or all the worlds. This
represents a cumulative distribution on the number of worlds people crashed in.

The average behavioral entropy of every single person was lower when using the eco-

logical interface. This is a very good result because high entropy corresponds to higher

workload or less efficient control. Since the entropy is much higher using the standard dis-

play, we conclude that the amount of human workload and effort required to plan actions

was higher using this display. Overall, behavioral entropy decreased 31% when using the

ecological display. Figure4.4shows 99% confidence intervals for each world on both in-

terfaces. This strongly supports our claim that the ecological display is easier to use than

standard displays.

Entropy was calculated by averaging the angle of the joystick every 150ms. A second-

order Taylor series expansion was used to predict what the angle would be. The error was
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Figure 4.4: Entropy comparison between ecological and standard display for each world.

then put into bins according to how far the error deviated from zero. The size of the bins

was adjusted so that the center three bins had 90% of the data. The entropy is related

to the distribution of the data in the bins; the more evenly distributed across the bins the

higher the entropy because that means it is harder to predict what people are doing with the

joystick. This is a standard method of determining behavioral entropy and was proposed

by Nakayama et al. [37].

Unfortunately, the results for the memory task were inconclusive. We had hoped that

the memory task would also show that workload was lower using the ecological display,

but the memory task was too easy and thus did not get us enough good data to show

anything. The results for the memory task are shown in Table4.1 with the results for the

other metrics.
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Display Time Collisions Speed Memory task Entropy

Ecological 212.37 s 30 45.26 cm/s 98.04 0.358
Standard 248.56 s 237 41.41 cm/s 98.53 0.519

Improvement 36.19 s 6.47/subject 3.85 cm/s -0.49 45%
p values 8.60 · 10−6 2.24 · 10−4 2.31 · 10−5 0.493 3.75 · 10−15

Table 4.1: Objective Test Results - Simulation

4.3 Subjective Results

In addition to the objective metrics we used to validate the interface, we also obtained sev-

eral subjective measurements to help us validate the usefulness of the ecological interface.

These measurements include the time it took for subjects to feel comfortable using the in-

terface and a questionnaire that dealt with which interface they preferred, which was more

learnable, etc. All of these metrics consistently rate the ecological interface higher than

the standard interface we were comparing it against. Some of the statistical results that we

obtained are shown in Table4.2.

One subjective measure that we were able to measure somewhat objectively is the

amount of time it took for someone to feel comfortable using the interface. This mea-

surement is hard to really quantify because there are so many variables that can affect it

besides the interfaces themselves. For example, the scripts for describing the interfaces

were different because the interfaces themselves were different. Another random variable

is how each individual interprets when they “feel comfortable” with the interface and how

long they feel like training on each one. There were also a couple of situations where

technical difficulties or other factors may have influenced the amount of time somebody

took to complete training. For example, there were times when two subjects were located

in the same room and came at the same time. In these circumstances one of them had to

start first and the other subject heard about an interface before they actually began the tests.

Additionally, such subjects may have been motivated by peer pressure or other factors to
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finish training when the other person had finished hearing about an interface. Lastly, some

people began figuring out the interface while it was still being introduced while others

waited until the entire introduction had been read.

Display Training Workload/Effort Learnability Preference Confidence
Ecological 191.82 s 2.97 2.59 78.13% 8.28
Standard 240.61 s 5.47 4.75 18.75% 6.81

Improvement 48.79 s 54% 55% 4x 22%
p values 5.22 · 10−2 1.93 · 10−7 3.09 · 10−5 2.02 · 10−4 5.46 · 10−5

Table 4.2: Subjective Results - Simulation

Despite the fact that feeling comfortable using the interface is somewhat hard to mea-

sure, our results show an advantage in the time needed to learn the ecological interface

over the standard interface. Due to the high variance, we are unable to show statistical

significance with the raw data, but the fact that people averaged 49 seconds, or 20% less

time, using the ecological display is hard to dismiss. Additionally, people averaged about

85 seconds longer on the first interface they saw independent of the interface being stud-

ied. To compensate for this factor we could take off 30 seconds or 10% of the time they

took to learn the first interface and attribute it to learning the test instead of the interface.

Either change would show there is a statistically significant (p < 0.05) difference between

the time it took to learn each interface.. In other words, when the time taken to learn the

interface is separated from other factors, it becomes readily apparent that the ecological

display is easier to learn.

Another subjective measure of learnability was a question that asked how easy it was

to learn each interface. Figure4.5shows a comparison of how difficult it was to learn each

interface. The average learnability score on the questionnaire for the ecological interface

was a 2.59 which is very close to the “easy” side of the scale. The average score for the

standard interface was a 4.75 which is a little below the middle of the scale. This backs up
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the assertion that the ecological interface is easier to learn. These numbers indicate that,

on average, people perceive the ecological display to be about twice as easy to learn as the

standard interface.

Figure 4.5: How much effort was required to use the robot, to learn how to use the interface,
and how much confidence people had in the robot using each interface.

People also thought the ecological interface took less effort to use and had more confi-

dence in the robot when using it as shown in Figure4.5. The ecological display rated about

half of the workload required for the standard interface. Additionally, people marked the

ecological interface almost twice as close to “high” confidence than the standard interface.

These results are consistent with the learnability measure (Figure4.5).

Most people preferred the ecological interface and felt they did better using it as shown

in Figure4.6. 78% of the test subjects preferred the ecological interface with only 19%

preferring the standard interface. There was one person who preferred both interfaces

equally. Related to this metric, 84% of the test subjects though that the ecological inter-

face was more intuitive while 9% thought the standard interface was more intuitive. 84%

thought they did better using the ecological interface while 9% felt they did equally well

on both. The fact that people overwhelmingly preferred the ecological interface, thought
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Figure 4.6: Percentage of test subjects who felt each interface was more intuitive, they
performed better using a particular interface and which they preferred.

it was more intuitive and felt they did better using it strongly suggests that our ecological

interface improves the current state of teleoperation.

4.4 Comments

In addition to the standard questions, space was left on the final questionnaire for com-

ments. Some of these comments illustrate what made the ecological interface easier to

use.

Some of the most informative comments come from those who preferred the standard

interface. One operator who preferred the standard interface commented that he thought

he could do better if the rate images were received was increased. This shows that this

individual was probably trying to drive the robot mostly with image information instead of

taking advantage of other sensors and features that could have helped. Another individual

liked the standard interface better because it had more “neat stuff” to look at like the map

display and the compass. This shows that some people preferred one display or the other
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for merely cosmetic reasons.

Another person commented that he liked the standard display because “it presented

a challenge” even though he preferred the ecological interface. This shows that the task

required may have been too easy for some people, although it was a challenge for others.

This may be due to the fact that some people had a really hard time learning the standard

interface. The same person further commented that he thought he could learn to use the

standard interface, but would prefer the ecological interface in “life-or-death” situations

until he had mastered the standard interface. One operator said the standard interface was

“more pleasant to use” but that the ecological interface would be preferable if “asked to

perform a task with more precision than driving around a maze.”

Some people did not like the ecological interface because it’s prediction sometimes

makes the display jump around a little. The main reason this happens is that errors in the

prediction are corrected in future updates which may cause the position to jump. Another

effect is that the jump makes it appear that the robot is traveling in a certain direction when

it is not. With a little training people could probably be taught to recognize this and correct

for it, but we were looking at the effects of the interfaces when very little training was

allowed. Another source of jumpiness is the camera image, which jumps to a new location

when a new image is received. While this can bother those new to the interface, we believe

it serves a useful purpose and would probably be harder to understand if it did not move to

match up with the obstacles.

Some of the test subjects seemed to feel the control interface was different because

they did not realize why there was some delay between actions they took and the effects

of those actions. For example, someone commented that the standard interface was harder

because “the steering is touchy.” Along those same lines, another person felt the standard

interface allowed more “decisive” moves and someone felt the biggest difference was “the

joystick sensitivity.” Another operator commented that the standard interface “had a delay
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in turning and moving that really annoyed me.” Even though the video comes across at

the same rate in both interfaces, one person felt the camera on the standard interface “was

choppy.”

Some people only had comments about the structure of the experiments. Some people

did not like the way path planning was implemented because it did not give instructions

quite like most people would give instructions. Others would have like to see waypoints in

the obstacle portion of the ecological display, but this would be impossible in many real-

world situations where people would have to find things the live video as well. Another

insightful comment was that “instead of having a synthesized computer voice, (we should)

get some sexy girl voice.”

Some people seemed to really appreciate the ecological interface. One person said “it

was nice to have laser and sonar translated and combined in to one graphical display - it did

all the translation work for me therefore diminishing my workload.” Another commented

that they were more sure “where the robot was more of the time.” Finally, one subject

commented that the perspective of the ecological interface made it easier to negotiate the

turns and “easier to plan a turn in advance.”

People with experience in video games often commented about similarities between the

ecological display and 3-D video games. One person said this made it “feel more accurate,

easier to control.”



Chapter 5

The Real World

To validate that our simulation results will carry over into real-world systems, we ran

similar experiments in the real world. We had 8 people (2 women and 6 men) complete

the test suite in the real world. None of these people had done the simulation studies. Half

of these (1 woman and 3 men) used the standard interface first and the other half used

the ecological interface first. We used space in the old UVSC building (B-77) to run our

experiments in the real world. A map of this space can be seen in AppendixC, although we

only had rooms S209, S210, S211, S212, S213, and S215 available for our tests. Because

we did not want to require back-tracking and to leave one room for training, we really

could only use rooms S213, S212 and S209 and the hallway S210A. In order to require

several turns and make a decent-sized course we added boxes to create a small obstacle

course through these three rooms for the tests.

There are a couple of factors that required the experiments be different in the real

world than they were in simulation. Due to limited space in the old UVSC building it

was necessary for the hallways to be closer together, which required a small change to the

joystick control mappings to allow tighter turning. The lasers and sonars on the real robot

are also a lot noisier than the sensor on the simulated robot. Additionally, a safeguarding
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Figure 5.1: Some pictures of the space we used for real-world experiments. The picture
on the left shows the robot halfway through the first room of the test environment. The
middle picture shows the second room, and the right picture shows the last room and the
hallway between the second and third rooms.

behavior was added to keep the robot from banging into walls and boxes (in order to keep

the robot working). We also only made two mazes, one for practice and one for the tests,

although we designed the test maze to be drivable forwards and back again. Instead of

having the computer guide people through waypoints, we had a person down in the other

building give simple instructions that subjects were able to hear in a synthesized voice and

large arrows to show the way. Finally, memory task items were located throughout the

mazes instead of being shown before each test, as discussed in more detail in Section5.4.

We found that we were unable to run as many experiments in the real world as we

were able to in simulation. Most of this was due to the fact that the changes mentioned

above made the maze more difficult than we anticipated. Another reason is that it takes a

little longer to set up between mazes in the real world than it does in simulation because

memory tasks have to be changed and the robot may need to be moved or turned. We

also sometimes ran into communications delay induced by wireless network conditions

and hardware that were much worse than those used in the simulated studies.
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5.1 Objective Results

Our results from our real-world experiments are similar, but more dramatic, than our sim-

ulation results. People averaged 105% longer to complete a maze with the standard in-

terface than the ecological interface. Additionally, people crashed1 thirteen times less and

their entropy was 29% lower with the ecological interface. We also found that memory

task performance was 12% better with the ecological interface. Complete results of the

objective measurements can be found in Table5.1.

Display Time Collisions Speed Memory task Entropy

Ecological 269.86 s 6 26.70 cm/s 95.86 0.393
Standard 553.11 s 83 13.53 cm/s 85.88 0.509

Improvement 283.25 s 9.63/subject 13.17 cm/s 9.98 29%
p values 4.53 · 10−3 5.51 · 10−3 7.84 · 10−4 4.15 · 10−2 3.58 · 10−2

Table 5.1: Objective Test Results - Real World

5.2 Subjective Results

The benefits of the ecological interface were also very apparent in the subjective measure-

ments. These are summarized in Table5.2. Note that all these results are statistically

significant. In fact, the difference between the two interfaces is much more striking in

the real world. People were felt it was about three times as easy to learn, took one third

the effort and were much more confident when using the interface. All eight test subjects

preferred the ecological interface in every way.

1Crashes are defined, in this context, as safeguarding slowing their progress 70% or more to avoid a
collision.
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Display Training Workload/Effort Learnability Preference Confidence

Ecological 170.85 s 2.75 2.25 100% 6.38
Standard 309.89 s 7.625 7.50 0% 3.25

Improvement 139.04 s 64% 70% 100% 46%
p values 4.83 · 10−2 6.30 · 10−4 8.39 · 10−5 - 1.12 · 10−2

Table 5.2: Subjective Results - Real World

5.3 Delay

Since socket communication in the real world experiments involved at least one wireless

ethernet link, packets sometimes took a lot longer to arrive than they did in simulation.

This can be especially troublesome when delays are sporadic and inconsistent because it is

hard to tell which command the robot is executing, how long each command has executed

and how old the latest information is. Fortunately some of this estimation is handled by the

ecological interface which simply predicts that each command is executed for the amount

of time before another command was sent.

delayt = (0.95) ∗ delayt−1 + (0.05) ∗ (tnow − trobot) (5.1)

Actual delay was estimated by a simple formula which gives a rough estimation of

the average delay, with recent delays counting more toward the average than older delays.

Each time a message is sent the average is updated by making the new average equal to

95% of what it was before and 5% of the difference between the timestamp of the message

being sent and the timestamp of the latest information received from the robot, this formula

is shown in Equation5.1. The average is also updated when new information is received

from the robot. Note that this calculation makes approximately 40% of the average delay
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come from information gathered within the last second2.

Delay = DesiredDelay − AverageDelay + SendDelay (5.2)

In order to keep the average delay around one second we delay messages from the

interface to the robot. The amount we want to delay outgoing messages is found using

the formula in Equation5.2. Send delayis the amount we have been delaying messages,

calculated with Equation5.1. If we have been delaying messages too long, then average

delay will increase, which causes messages to be delayed for less time. This creates a cycle

where messages are delayed for shorter periods of time for a while, then as the average

decreases messages get delayed a little longer until the average catches up. Since 60%

of the average comes from older information, delay figures tend to be fairly close to one

second as long as network conditions are good. In fact, when people were using the robot

in the practice room, the standard deviation for the delay was always less than1/30th of a

second. It is important to keep delay measurements consistent in order to make conditions

as similar as possible between subjects and between the real world and simulation.

The average delay was recorded every 150ms, which allowed us to compare network

conditions between subjects. As recorded in Table5.3, the standard deviation on the delay

measurement was always more than1/30th of a second because network conditions were

much worse in some parts of the course than they were in the training room. Table5.3

shows the average of these measurements along with the longest such measurement for

each test subject for the first test run of four test subjects. It is interesting to note that per-

formance was not closely correlated with delay, although it may have been a contributing

2This figure comes from the fact that each timestep 95% of the weight goes to the previous information.
Since this is updated about 10 times per second, information a second old or older should account for 0.95 to
the10th power. This means about 60% of the average comes from information over a second old and about
40% comes from information received in the last second.
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factor in some cases.

Sched Display Delay St Dev Max Time Entropy Mem Task Safeguarding

0 Ecological 1.01 0.071 1.57 233.31 0.399 91 0
Standard 1.02 0.136 2.47 893.11 0.620 91 19

1 Ecological 1.02 0.120 1.81 160.91 0.386 100 0
Standard 1.00 0.057 1.14 266.17 0.616 91 4

2 Ecological 1.04 0.240 3.14 190.89 0.422 100 0
Standard 1.01 0.093 2.23 480.53 0.262 91 8

3 Ecological 1.00 0.065 1.61 289.64 0.382 100 2
Standard 1.00 0.058 1.98 475.11 0.455 75 23

Table 5.3: Delay statistics for the first forward run on each interface for test subjects that
used the standard interface before the ecological interface. More complete delay statistics
are found in AppendixD.

One of the rooms in the real-world test environment had a much worse network con-

nection than the rest of the rooms. This room, S209 (see the map in AppendixC) was the

at one of the ends of the test course, the last room when going forwards and the first room

when going backwards. This caused problems as people tried to maneuver in this room

while fighting long and inconsistent delays. There were times when the connection in the

room got so bad it was virtually unusable. One time packets got behind about a minute

(see TableD.1 in AppendixD) and then improved when the robot left room S209.

People were usually able to deal with the delay better with the ecological interface.

Table5.3shows that people tended to see higher average delays with the standard interface

than with the ecological interface. While this may have contributed to the fact that they

tended to take longer using the standard interface, the two factors are actually dependent

on each other. Since people had a harder time dealing with delays using the standard

interface, they tended to spend longer in the areas where they were experiencing higher

delays. Staying longer in areas with worse network conditions caused their average delay

to increase and made it harder to control the robot with the standard interface which could

cause them to take even longer to get through the course. This vicious cycle is not nearly
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as bad with the ecological interface because it allowed people to better anticipate and deal

with varying network conditions.

5.4 Memory Tasks

In the real world mazes, test subjects were required to find five words or images that had

been placed toward the beginning of each maze. They were required to remember each

item and put it in the order it appeared in the world at the end of each test. This makes the

memory task more difficult because people have to find each memory item, and usually

they would need to stop in front of each to identify it later on. Instead of just measuring

workload as in the simulation experiments, the memory tasks also measure how well peo-

ple are able to maneuver the robot to see the memory item with the robot’s forward-facing

camera. These maneuvers also affected the other measurements such as time taken, en-

tropy, and velocity because people needed to take some time and effort to see the memory

items. This makes the memory task much more realistic in terms of what people might be

doing when operating a robot; people are more likely to be looking for things in the world

than simply remembering lists.

Memory task performance is calculated based on a few factors. First, up to 38 points

are awarded for correctly remembering each memory task item. Second, up to 42 points

are awarded for correctly placing these items with respect to each other. Finally, 4 points

are given to each of the five memory task items placed in the correct position. These 100

points are divided in such a way that they award people primarily for remembering what

items came before other items and secondarily for remembering the exact ordering of those

items. Both of these rely on being able to remember the objects in the first place.

Because recall contributes directly or indirectly to all three of the factors that make

up the score, test subjects receive more points for correctly remembering the first item,
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less for the second and so on. The amount they receive for remembering partial orderings

also decreases with the number they already have correct. This is simply one way to get

utility values for memory task performance so we can rank how well people did. Scores

range from 20 to 24 if the test subject remembered only one item, and someone that re-

membered four of the five items would score between 37 and 91 points. This is important

because much more of the score is based on remembering the sequence of items than re-

call, especially because most people remembered at least four of the five items regularly,

as evidenced by scores above 76 (the maximum when a test subject only remembers only

three items) in Table5.3. This utility-based measurement of memory task performance

performs pretty well for our purposes because it gives us a good idea of how well they

remember the ordering of the memory task items.

5.5 Comments

Some of the comments people made about the interfaces were very interesting. One test

subject, who experienced much longer delays when using the ecological interface due to

network conditions, said that the standard interface “had significantly more lag than the

[ecological] interface.” This is most likely due to the fact that the quickening employed by

the ecological interface allowed this operator to interact with the robot more readily than

the standard interface. The same person also commented that it was more difficult to work

with the range sensors separated from the image data in the standard interface than it was

to have them all together like they are in the ecological interface.

We also got comments that the standard interface was much harder and some people

incorrectly thought the joystick worked differently in the standard interface than it did

with the ecological interface. For example, one person said that “the robot did what I

wanted it to” when using the ecological interface whereas the standard interface was “very
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frustrating.” Several people commented that immediate feedback in the ecological interface

was helpful. One person mentioned it was easier to integrate information from the sonar,

lasers and camera in the ecological interface.

5.6 Correlation with Simulation Experiments

Since the experiments turned out to be quite different, it is difficult to correlate a lot of the

data we gathered in the real world with the data we gathered in simulation. These experi-

mental differences occur both in terms of memory task structure and the size, number, and

difficulty of the courses we used in the two situations. Table5.4shows a few of the results

which are the most comparable between the experiments. The subjective results tend to be

more comparable since the same scale was used in both experiments. Entropy is included

because the numbers are fairly similar, although we would expect entropy to be higher in

courses that are more difficult to navigate.

Display Entropy Effort Learnability Preference Confidence

Ecological Real World 0.393 2.75 2.25 100% 6.38
Ecological Simulation 0.358 2.97 2.59 78.13% 8.28
Standard Real World 0.509 7.625 7.50 0% 3.25
Standard Simulation 0.519 5.47 4.75 18.75% 6.81

Improvement Real World 29% 64% 70% - 46%
Improvement Simulation 45% 54% 55% 4x 22%

Table 5.4: Correlation - Real World and Simulation

There is not a lot of correlation between the results in Table5.4, although there are a

few interesting trends. Improvement tends to be more dramatic in the real world, although

this does not apply to entropy because the courses were more difficult in the real world.

Confidence in the robot’s actions was higher using both interfaces in simulation than either

in the real world; once again probably due to the added difficulty. Finally, people found

the ecological interface about as easy to use in the real world as in simulation, but thought
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the standard interface was much harder to use in the real world. This is interesting in light

of the fact that they had much less confidence in the real world. The data shows that while

the experiments are fundamentally different, they yield similar conclusions showing that

the ecological interface is dramatically better than the standard interface.



Chapter 6

Limitations and Future Work

In the future we expect many of the principles of our ecological interface to be applied

to many other systems, and we expect ecological principles to improve the state of the

art in these systems as well. The ecological interface could be improved by using better

prediction, especially prediction that takes into account likely actions by intelligence on

the robot or collisions with known obstacles. Image processing could also be used to

give users a better idea of where objects detected by the camera are located in relation

to obstacles detected by the range sensors. Ecological interfaces like the one we created

can be used for other methods of user control of robotics besides teleoperation, especially

if combined with better prediction methods mentioned above. Additional features could

be added to the ecological display, which would enhance telepresence such as the ability

to use a pan and tilt camera and readily determine the current direction of the camera in

relation to the pose of the robot. Another improvement would be to integrate map-building

and localization into the interface so that the user would be able to see obstacles detected

previously in addition to current sensor readings.

There are a number of ways that the prediction algorithms used in the ecological in-

terface described in this thesis could be improved. First and foremost, prediction of future
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robot positions should take into account either collisions with obstacles and/or actions

taken by intelligence on the robot itself. For example, if the robot hits a corner as it is

trying to turn, then the prediction may tell the user that the robot is around the corner in

the next hallway when in fact it is stuck on the corner. There should be some mechanism

for deciding that the robot is or will get stuck in the prediction algorithm in order to in-

form the user of this problem. Another improvement to the prediction algorithm would

be to integrate the robot’s current velocity into estimates of the robot’s future position and

velocity – i.e., include inertia effects and robot kinematics. Finally, more accurate infor-

mation about the amount of time a particular command will execute on the robot could be

obtained by passing an additional timestamp that includes the amount of time a command

has been running on the robot when it sends back state information. Another possibility

would be to send commands more frequently. These improvements to the prediction algo-

rithm, while not trivial, could improve operators’ sense of presence by giving them a better

idea of where the robot is and what it is doing.

Another way in which better prediction could be used to enhance the interface is to use

image processing. Currently the display simply moves and rotates the camera image to

represent the objects in the display. This is based on an image plane a fixed distance from

the robot. This could be improved by doing image processing to determine the distance

to parts of the image and warping it in a way that better represents what would we would

see from the position the robot has moved to. A more advanced approach would identify

actual objects in the image and move the objects separately so objects in the foreground

of the camera image would move more than objects in the background. Additional image

processing could also be used to combine information from past camera images into the

display in such a way that the user could get more complete visual information. Predicting

what objects in the image are doing could enable the part of the display from the camera

to be more meaningful and useful.
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In addition to teleoperation, ecological displays could be used to help improve human-

robot interaction with a variety of different control modes and autonomy levels. For exam-

ple, users might benefit from an interface for point-to-point control that had both a view

from behind the robot and a top-down view for path planning. Control modes that take

advantage of robot autonomy could also benefit from using an ecological display by im-

plementing some prediction of what the autonomy will do into the prediction algorithm.

Shared control schemes allow humans to give directions to a robot with a joystick, but the

robot decides if that is safe and modifies it if necessary to keep out of danger. This control

scheme would require prediction that takes into account what the robot will probably do

in the future to fully implement an ecological interface like the one discussed in the paper,

but would probably greatly benefit from it. One reason shared control would benefit is that

people would be able to see the world in the context of an ecological display so they could

see objects around them easily, yet the robot would help them avoid the obstacles.

One feature often found on robots that is often hard to figure out on robot interfaces is

a pan and tilt camera. This allows users to look at objects to the side of the robot without

moving the actual robot. Studies have shown that it is often hard for people to keep track

of which direction the camera is pointed when the robot is stopped [25]. This could be

alleviated by moving the camera in the scene to show what part of the world is currently

being shown in the camera image like our ecological interface does. Additionally, the

ecological interface would make it easier for people to drive the robot with the camera

pointed in another direction because the integrated lasers and sonars allow navigation even

when the camera is being used for other tasks. Pan and tilt cameras could also be used to

improve the ecological interface by panning to the side when the robot is about to make

a turn. This would allow the use to see down the hallway he is about to turn into before

the front of the robot comes around to see down the hallway. While pan and tilt cameras

have been used on robots for years, the union of this technology and ecological interfaces
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would complement each other and could make both much more effective.

Other features could be added to the ecological interface that would allow the user to

better understand the robot’s current state and anything they can do about it. It is often

important to get good information about the status of the robot’s batteries and communi-

cations. This could be displayed as text in a heads-up display, but people often don’t keep

track of those kind of things when they are under stress or new to the system. Another way

to display this information would be to color code the robot to give the user a quick idea

of the status of the robot’s state. An improvement would be to have the robot flash or put

a flashing light on the robot when a problem occurs or something falls below some critical

level.

There are often times when a robot revisits an area that has been visited or mapped out

before. By integrating mapping and/or localization this information could be integrated

into the interface which would allow better interaction with the environment. For example,

when the robot turns a corner it would be nice to know how big the new area is in advance,

especially when there are long delays. This could also be used in a top-down view for path

planning and other activities. As long as the robot was able to localize itself with reference

to previous information this could be very valuable.



Chapter 7

Conclusion

Teleoperation is difficult because of delay and lack of perceptual cues. Most research to

address this problem has focused on either adding sensors or intelligence to the robot.

This thesis has proposed an alternative approach that combines an ecological display with

prediction to help operators better understand what the robot is doing. Our experiments

demonstrated that people have a much easier time using the new interface to control robots

than they do with a standard interface. Additionally, most people preferred the new inter-

face and felt it is easier to use.

In order to validate that the ecological interface improves performance we performed

user studies to determine how well untrained users would be able to use the ecological

interface. These studies were performed both in simulation and in the real world. In

simulation, we found that people were able to complete the mazes 17% faster with 80%

fewer collisions and 70% of the workload (as measured by behavioral entropy). In the real

world, people completed the mazes in half the time with 90% fewer collisions and 71%

of the workload. Standard t-tests show that these results are all statistically significant at

p=0.05. Additionally, people preferred the ecological interface 8 to 0 in the real world and
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4 to 1 in simulation. These user studies show that the ecological interface improves the

effectiveness of teleoperation over a conventional display.
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Appendix A

Questions about each interface

We asked these questions to get an idea how easy it was to use each interface.

Question: How much effort was required to use the interface effectively? (circle one)

Low High

1 2 3 4 5 6 7 8 9 10

Question: How difficult was it to learn to use the interface effectively? (circle one)

Easy Hard

1 2 3 4 5 6 7 8 9 10

Question: How much confidence did you have in the robot’s actions?(circle one)

Low High

1 2 3 4 5 6 7 8 9 10
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Appendix B

Questions comparing the interfaces

These are the questions we asked to gather general information from test subjects and get

them to compare the two interfaces.
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Question: How much experience do you have with robotics?(circle one)

None Expert

1 2 3 4 5 6 7 8 9 10

Question: Which interface was more intuitive for you? (circle one)

First Neither was intuitive They worked equally well Second

Question: Which interface do you think you did better on? (circle one)

First Neither worked for me They worked equally well Second

Question: Which display did you prefer? (circle one)

First Neither was acceptable They worked equally well Second

Please use the remaining space for any additional comments you may have.



Appendix C

Space in B-77 for the real robot

This is a map of the space we were able to use in B-77, the old UVSC building. Rooms

S216, S214 store equipment and thus could not be used for our experiments. Rooms S210,

S211 and the closets were too small to use and undesirable because we did not want to

require backtracking.

Figure C.1: Map of the area we used in B-77 for the robot experiments.

The practice course consisted of a loop in room S215 and the test course ran from room

S213 through S212 to S209. In each room boxes followed the walls around each room,
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around one or two obstacle and through the doors. The hallways in the simulated maps

(Figure4.2) were about six feet wide, which is about twice as wide as ordinary doorways

(Figure C). This made it more difficult to use the standard interface in the real world,

especially compared to the ecological interface.



Appendix D

Additional information about delay

Following are more extensive tables on delay statistics than those found in Table5.3. In

addition to including all test subjects in TableD.2, a few of the more interesting statistics

are found in TableD.1. Of particular note are the statistics that show that test subjects 1

and 2 were much faster with the ecological interface even though they encountered higher

delays with the ecological display (see TableD.2). The individual that ran schedule 22

encountered delays up to nearly a minute using the ecological interface (see TableD.1),

yet was still able to complete the course relatively quickly when the network situation

improved.

Sched Course Display Delay St Dev Max Time Entropy Safeguards

1 No Mem Ecological 1.04 0.133 2.00 120.03 0.182 0
Standard 1.00 0.084 1.10 204.828 0.547 4

2 Backward Ecological 1.32 0.879 7.23 192.89 0.416 2
Standard 1.11 0.420 3.86 413.062 0.179 4

21 No Mem Ecological 1.24 1.028 8.20 179.95 0.392 1

21 Backward Standard 1.00 0.087 1.53 443.78 0.528 13

22 Backward Ecological 5.86 10.610 51.85 408.91 0.291 1

Table D.1: Delay statistics for runs besides the forward course where the delay was longer
using the ecological interface and other interesting cases.
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Sched Display Delay St Dev Max Time Entropy Mem Task Safeguards

0 Ecological 1.01 0.071 1.57 233.31 0.399 91 0
Standard 1.02 0.136 2.47 893.11 0.620 91 19

1 Ecological 1.02 0.120 1.81 160.91 0.386 100 0
Standard 1.00 0.057 1.14 266.17 0.616 91 4

2 Ecological 1.04 0.240 3.14 190.89 0.422 100 0
Standard 1.01 0.093 2.23 480.53 0.262 91 8

3 Ecological 1.00 0.065 1.61 289.64 0.382 100 2
Standard 1.00 0.058 1.98 475.11 0.455 75 23

20 Ecological 1.00 0.63 1.23 225.17 0.427 76 0
Standard 1.10 0.491 6.33 385.72 0.555 81 5

21 Ecological 1.00 0.039 1.24 272.72 0.407 100 2
Standard 1.01 0.079 1.90 403.30 0.577 81 4

22 Ecological 1.08 0.352 4.09 486.20 0.336 100 0
Standard 1.28 1.247 15.33 977.72 0.524 77 9

23 Ecological 1.00 0.056 1.19 300 0.386 100 2
Standard 1.01 0.074 1.76 543.234 0.281 100 11

Table D.2: Delay statistics for the first forward course in the real world.
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