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  The development of QMRA for recreational waters often involves assessing the inputs 
from multiple sources, including human sewage, agricultural sources and wild animals.  The 
concentrations of microorganisms in faeces from individual animals are highly variable leading to a 
broad spectrum of risk.  When modelling the load of faecal microbes from a group of animals, based 
on data from individuals, the group distribution must be correctly accounted for.  A further 
complication to QMRA is that pathogen concentrations in faeces have a high proportion of non-
detects making them difficult to model using standard mathematical distributions.  Moreover, when 
only limited concentration data are available, determining the appropriate mathematical distribution is 
difficult.  These issues are explored in this study using the scenarios of  and  
depositions into a stream from wild ducks.  Using Monte Carlo methods, different models to describe 
the load of microorganisms deposited by ducks into a stream were compared.  In addition, parametric 
and non-parametric methods were used to generate microbial concentrations in an individual ducks’ 
faeces.  Our study demonstrated that calculating the load of faecal microorganisms from groups of 
animals for QMRA requires models that accurately reflect the loads of the whole group.  Non-
parametric methods can be used for pathogen concentrations that do not appear to fit a standard 
mathematical distribution or when determining the appropriate distribution is difficult. 
 

  QMRA; modelling; Monte Carlo; ducks; non-point pollution. 
 

 
Faecal microbial contamination of surface waters is of growing concern around the world (Boehm et 
al., 2009; Monaghan et al., 2008; Oliver et al., 2010; Till et al., 2008).  This concern is driven by the 
desire to manage the health risk associated with contaminated water (Boehm et al., 2009; Soller et 
al., 2006).  Quantitative microbial risk analysis (QMRA) has proven a useful technique for quantifying 
water quality risks (Soller et al., 2010).  The QMRA approach has the advantage of being applicable 
to both the risk assessment associated with a single source of contamination (McBride et al., 2013) 
and for comparing risks from a range of different sources (Soller et al., 2010).  This is important for 
managing recreational water quality which is a catchment scale issue that is usually impacted on by a 
number of point and non-point sources of pollution (Ferguson et al., 2007).   
 
In most catchments a source of non-point contamination to streams is direct inputs from animals such 
as water fowl, wild or farmed animals (Davis-Colley et al., 2004; Whither et al., 2005; Zhu et al., 
2011).  Therefore, estimating the numbers of microorganisms shed by animals is an important step for 
calculating the impact of animal faecal deposition on water quality.  The accuracy of these 
calculations is important for predicting the effect of different sources of microorganisms in QMRA.  
When calculating the load of microorganisms discharged from point source discharges, such as 
sewage, the total load is typically calculated by multiplying the microbe concentration in the sewage 
by the volume of sewage produced (Soller et al., 2003; Ferguson et al., 2007).  Similarly, the load 
produced by groups of animals has been calculated by multiplying the microbe concentration in the 
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faeces by the weight of faeces produced and the number of animals (Zhu et al., 2001; McBride and 
Chapra, 2011; Muirhead et al., 2011).  However, we are concerned about using microbial 
concentration data from individual animals to characterise the loads generated by groups of animals, 
particularly as the size of the group increases.  To address this issue we compare the results 
generated by the equation used in various published models (Zhu et al., 2001; McBride and Chapra, 
2011; Muirhead et al., 2011) with an alternative equation based on statistical theory. 
 
A separate complication in QMRA arises from the scarcity of data and/or high proportion of ‘non-
detects’ in the faecal concentration datasets (Atwill et al., 2012;  Hutchison et al., 2004;  Moriarty et 
al., 2011).  These pathogen datasets are typically strongly right-skewed and expert judgment is 
required in selecting the appropriate mathematical distribution to model the data.  This judgement call 
is further complicated as “traditional ‘goodness-of-fit’ tests have difficulty rejecting any right-skewed 
skewed distribution” (McBride et al., 2013).  To address the issues of having to select a distribution, 
we propose an alternative, non-parametric approach of sampling with replacement from the measured 
values.  The multiple iterations within the Monte Carlo simulation will provide a smoothing effect on 
the measured data.  Furthermore, using only measured values constrains the simulations to “real” 
values without the potential influence of extreme values generated by an unconstrained right-skewed 
distribution. 
 
In this paper we validate a method to calculate the daily load of faecal microbes from different sized 
groups of animals using Monte Carlo simulations.  Two different mathematical equations to calculate 
daily loads are compared along with two different methods (parametric and non-parametric) for 
sampling the concentrations of microbes in the faeces.  The differences between these simulated 
distributions are explainable following standard statistical theory.  The analysis is conducted using the 
daily loading of  and  deposited into a stream from ducks, but will be applicable 
to any combination of faecal microbe and animal source. 
 
 

 
The daily loads of microorganisms deposited into a stream by a group of ducks ( : #  day-1) 
were calculated in Monte Carlo simulations using 2 different equations.  Equation (1) is referred to as 
the ‘multiplication’ equation (McBride and Chapra, 2011; Muirhead et al., 2011; Zhu et al., 2011) and 
Equation (2) as the ‘sum’ equation (based on the statistical theory in the appendix). 
 

     (1) 

    (2) 
 
where  is the proportion of a duck’s faeces deposited directly in the stream,  is the concentration of 
microbes in a duck’s faeces (# g-1 wet weight),  is the weight of faeces produced by a duck (g wet 
weight day-1) and is the number of ducks in the group.   
 
For the simulations, the and  values were sampled parametrically (i.e. from assumed distributions) 
and the  values were sampled in two ways, either parametrically from a fitted distribution or non-
parametrically from the observed sample of concentrations.  For the multiplicative equation (1), a 
single value of each parameter was sampled and their product was multiplied by , the number of 
ducks. For the sum equation (2),  samples of each parameter were taken from their distributions and 
their product summed. So the multiplicative equation takes a single duck at random and multiplies its 
load by , while the sum equation adds the loads of  ducks selected at random. 
 
The proportion of faeces deposited in the stream ( ) was modelled as a triangular distribution with a 
minimum, most likely and maximum proportion of 0.1, 0.35 and 0.6, respectively (Muirhead et al., 
2011).  The weight of faeces produced by a duck per day ( ) was also modelled as a triangular 
distribution with a minimum, most likely and maximum weights of 100, 336 and 400, respectively 
(Muirhead et al., 2011). 
 
The concentrations of microbes in the faeces ( ) were sampled using 2 different approaches (a 
parametric and non-parametric method) for both  and .  The concentrations were 

Page 1528



based on the data from 80 samples of duck faeces (Moriarty et al., 2011).   was detected in all 
duck faecal samples and the concentrations were log-normally distributed with a log10-mean of 5.5 g-1 
and a standard deviation of 1.5 (Figure 1).  The  concentrations were highly skewed 
due to a high proportion (70 %) of samples falling below the detection limits of 4 g-1 (Figure 1).  We 
fitted an exponential distribution for the  concentrations (Close et al., 2008) with  = 
0.017 (Figure 1).  For the parametric method, faecal microbe concentrations were sampled from their 
respective distributions for  and .  The non-parametric method was conducted by 
sampling, with replacement, from the 80 observed concentrations in the duck faeces (note, 
observations less than the detection limit were inputted as zero).  
 
 

 
Histograms of the  and  concentrations measured in the duck faeces 

(bars) and the parametric distributions used in the Monte Carlo simulations (lines).  Note that the 
 graph uses a log scale on the X-axis as the data is assumed log normally distributed.

  
The Monte Carlo simulations were run with 100,000 iterations using the software R (R Core Team, 
2013).  For each microbe, Monte Carlo simulations were run as a 2x2 matrix using equations (1) and 
(2) with both parametric and non-parametric methods for sampling of the microbe concentrations in 
faeces ( ).  The simulations were repeated with the number of ducks in each group ( ) set at 1, 10, 
100, and 1000.  Note that the sum equation (2) employed a subroutine of  iterations per iteration 
step to calculate the daily load of faecal microbes.   
 
 

 
 

 
When there was only one duck in the group, Z=1, the four different models produced essentially the 
same distribution of  loads per day (Figure 2).  There was little difference between the 
parametric and non-parametric sampling methods as  was increased (Figure 2).  This observation is 
due to the good fit of the raw data to the log-normal distribution (Figure 1).  When the multiplication 
equation was employed the spread remained constant on the log10 scale as group size, Z, increased 
(Figure 2), meaning on the linear scale the data spread is increasing (Table 1).  Furthermore, for a 
given Z, the median on the log10 scale is lower using the multiplication equation (Figure 2).   For both 
the sum and multiplication equations, the mean simulated daily load increases by approximately 10 
fold as Z increases by a factor of 10 (Table 1).  Using the sum equation the variance also increases  
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  Modelled distributions of the daily load of (A)  and (B)  deposited in a 

stream by groups of ducks using the 4 different calculation methods.  The notations M and S refer to 
the use of the multiplication and sum equations, respectively.  The use of the parametric and non-

parametric methods for sampling of the microbe concentrations ( ) in the duck faeces are denoted by 
P and Np, respectively.  The number refers to the number of animals in each group ( ).  The 

horizontal line in the box represents the median value, the boxes span the interquartile ranges, the 
whiskers span the 10th to 90th percentiles and the dots represent the 5th and 95th percentiles.  Note 
that to avoid problems with  counts of zero on a log scale, a value of 1 was added to 

all  loads before analysis and graphing. 
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by approximately 10 fold as Z increases by a factor of 10 (Table 1).   However, using the multiplication 
equation, the variance increases by a greater amount: approximately 100 fold as Z increases by a 
factor of 10.   These finding are to be expected given the underlying statistical theory outlined in the 
appendix. 
 
 

  Mean and variance of the simulated daily load of  produced by groups of ducks using 
the 4 different calculation methods.  The parametric and non-parametric methods are denoted by P 

and Np, respectively.

 
 

1.3×1010 9.3×109 9.1×109 9.1×109 7.5 7.5 7.5 7.5 
1.1×1011 9.5×1010 1.1×1011 9.2×1010 8.5 8.5 10.0 10.1 
9.2×1011 9.4×1011 1.2×1012 9.2×1011 9.5 9.5 11.6 11.8 
9.1×1012 9.3×1012 1.2×1013 9.2×1012 10.5 10.5 12.9 13.0 

 
 

1.2×1024 4.7×1021 7.3×1022 4.5×1021 2.28 2.40 2.29 2.39 
2.1×1025 4.8×1023 7.7×1024 4.5×1022 2.28 2.40 0.65 0.75 
6.0×1026 4.7×1025 9.9×1025 4.6×1023 2.29 2.40 0.25 0.16 
6.7×1028 4.7×1027 1.9×1027 4.6×1024 2.28 2.39 0.10 0.01 

 
 

 
Analogous differences between the sum and multiplication methods were observed in the simulated 

 loads (Figure 2, Table 2).    However, unlike the  simulations there were 
noticeable differences between the parametric and non-parametric sampling methods (Figure 2) due 
to both the sparsity of observed data and the discrepancies between the observed data and 
theoretical distribution (Figure 1).   These differences were greater under the multiplicative equation 
than the sum equation.  The use of the non-parametric method of sampling the concentration of 

 in the faeces resulted in a number of daily loads of zero due to selecting a sample 
where  was not detected (Figure 2).  Using the multiplication equation, this faecal 
concentration of zero would then be applied to all ducks in the group, which is not sensible.   For 
groups of ducks the multiplication equation produced higher 95th percentile values for the 

 loads than the sum equation (Figure 2).  This observation for the  
loads is in contrast to that observed for the  loads and is due to the highly skewed distribution of 
the  concentrations (Figure 1).   
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  Mean and variance of the simulated daily load of  produced by groups of 

ducks using the 4 different calculation methods.  The parametric and non-parametric sampling 
methods are denoted by P and Np, respectively.  Due to the presence of 0 loads, 1 was added before 

transforming to the log10 scale.

 
 

5.8×103 5.9×103 5.7×103 5.7×103 3.5 1.2 3.5 1.2 
5.8×104 5.8×104 5.7×104 5.8×104 4.5 1.4 4.7 4.4 
5.8×105 5.8×105 5.7×105 5.8×105 5.5 1.8 5.8 5.7 
5.8×106 5.7×106 5.7×106 5.8×106 6.5 2.0 6.8 6.8 

        

 
 

4.3×107 3.1×108 4.3×107 3.0×108 0.34 3.28 0.34 3.24 
4.3×109 3.1×1010 4.2×108 3.0×109 0.34 5.07 0.02 0.86 
4.2×1011 3.0×1012 4.3×109 3.0×1010 0.35 7.36 0.00 0.02 
4.3×1013 3.0×1014 4.2×1010 3.0×1011 0.34 9.96 0.00 0.00 

 

 
The typical approach to assigning numeric values for samples where no microbe was detected is to 
use a value of half the detection limit.  In many studies this applies to only a small proportion of the 
samples.  In this current study, 70% of the  samples were below the detection limits.  
Therefore, it was assumed that the measured values represented only the upper tail of the true 
concentration distribution.  Assigning a value of half the detection limit to 70% of the samples is likely 
to overestimate the true concentration for most of these samples. In QMRA we are typically most 
interested in the upper percentiles of the distributions, as these contribute to most of the risk (Soller et 
al., 2010).  In this analysis the  concentrations that were less than the detection limits 
were assigned a value of zero.  Replacing the zero’s, with a value of 2 (half the detection limit), only 
increased the mean concentration from 59 to 61  g-1 and did not affect the upper 
percentiles of the modelled distributions (data not shown). Analysis of alternative methods for 
accounting for sample results below detection limits may be a fruitful area for further study. 
 
This study highlights the fact that simulating the effect of a group of animals cannot be done by 
selected one at random and multiplying its effect by the number of animals; doing so leads to results 
with incorrectly high variances (  times too large) which leads to a distribution for the load that is 
mostly too low and is more highly skewed (see appendix). Note that the arithmetic mean of the 
distribution derived from the multiplicative model is that same as that from the sum model but all its 
percentiles are too low. Note also the extreme skew on the distributions of the load, with means being 
around the 95th percentiles of the distributions. This is of concern, for in QMRA we are typically most 
interested in the upper percentiles of the distributions, as these contribute to most of the risk (Soller et 
al., 2010).   
 
The parametric method depends on the validity of the assumed distribution.  The non-parametric 
approach offers a viable alternative to the parametric approach when the underlying distribution is 
unknown.  However, the non-parametric method relies on the availability of a representative dataset 
to resample from, one which is sufficiently large enough to represent the true distribution well.    
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The sum equation will generate the most accurate results when using Monte Carlo simulations to 
calculate the loads of faecal microbes from groups of animals.  If there is uncertainty of appropriate fit 
of a distribution to the raw data, then the non-parametric method can be used if the raw dataset is 
sufficiently robust.   
 
 

 
 
This work was funded by the Ministry for Business, Innovation and Employment (MBIE) contract 
C10x1006.  Thanks to Elaine Moriarty for kindly providing the raw data from her publication, Moriarty 
et al., (2011).  We are also grateful to Neil Cox and Jen Robson for their insightful comments on the 
draft manuscript and feedback from the 3 anonymous reviewers. 
 
 

Sum of n i.i.d. random variables
 
Let X1, X2 , . . . , Xn be a set of n independent and identically distributed (i.i.d.) random variables with 
expectation E[X ] =  and variance V[X ] = 2.   Their sum,  
 
                                                          
 
has expectation E[Sn] = n  and variance V[X ] = n 2 

Multiplying a random variable by a constant value 
 
Let Xi  be a random variable with expectation E[X ] =  and variance V[Xi] = 2, and let c denote a 
constant.  Then E[cX ] = c  and V[cX ]=c2 2 

 
Hence result 2 shows that if the constant value is the number of animals (i.e. c=n) then the variance is 
multiplied by n2 as opposed to n from result 1. 
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