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Theory and Application of Motion Compensation
for LFM-CW SAR

Evan C. Zaugg, Student Member, IEEE, and David G. Long, Fellow, IEEE

Abstract—Small low-cost high-resolution synthetic aperture
radar (SAR) systems are made possible by using a linear
frequency-modulated continuous-wave (LFM-CW) signal. SAR
processing assumes that the sensor is moving in a straight line at a
constant speed, but in actuality, an unmanned aerial vehicle (UAV)
or airplane will often significantly deviate from this ideal. This
nonideal motion can seriously degrade the SAR image quality. In
a continuous-wave system, this motion happens during the radar
pulse, which means that existing motion compensation techniques
that approximate the position as constant over a pulse are limited
for LFM-CW SAR. Small aircraft and UAVs are particularly
susceptible to atmospheric turbulence, making the need for motion
compensation even greater for SARs operating on these platforms.
In this paper, the LFM-CW SAR signal model is presented, and
processing algorithms are discussed. The effects of nonideal mo-
tion on the SAR signal are derived, and new methods for motion
correction are developed, which correct for motion during the
pulse. These new motion correction algorithms are verified with
simulated data and with actual data collected using the Brigham
Young University μSAR system.

Index Terms—Motion compensation, synthetic aperture
radar (SAR).

I. INTRODUCTION

V ERY SMALL low-cost synthetic aperture radar (SAR)
systems have recently been demonstrated as an alternative

to the expensive and complex traditional systems [1]–[7]. The
use of a frequency-modulated continuous-wave (FMCW) signal
facilitates system miniaturization and low-power operation,
which make it possible to fly these systems on small unmanned
aerial vehicles (UAVs). The ease of operation and low operating
costs make it possible to conduct extensive SAR studies without
a large investment.
Recently, new processing methods have been developed to

address issues specific to FMCW SAR [8]. The range-Doppler
algorithm (RDA) [9] and the frequency (or chirp) scaling
algorithm (FSA or CSA) [10] can be modified to compensate
for the constant forward motion during the FMCW chirp. Non-
linearities in the chirp can also be corrected [11], and squint-
mode data can be processed [12]. In this paper, the problems
caused by nonideal motion of a linear frequency-modulated
continuous-wave (LFM-CW) SAR system are addressed, and
new compensation algorithms are developed.
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Stripmap SAR processing assumes that the platform is mov-
ing in a straight line, at a constant speed, and with a consistent
geometry with the target area. During data collection, whether
in a manned aircraft or a UAV, there are deviations from
this ideal as the platform changes its attitude and speed or is
subjected to turbulence in the atmosphere. These displacements
introduce variations in the phase history, the signal’s time of
flight to a target, and the sample spacing, all of which degrade
the image quality. If the motion of the platform is known, then
corrections can be made to the SAR data for more ideal image
processing. Small aircraft and UAVs are more susceptible to at-
mospheric turbulence; thus, the need for motion compensation
on these platforms is greater.
Motion compensation algorithms for traditional pulsed SAR

have extensively been studied [13], [14], but the underlying
differences with an LFM-CW signal make it a challenge to
extend existing motion compensation methods to LFM-CW
sensors. In pulsed SAR, the platform is assumed to be stationary
during each pulse, and the motion takes place between pulses.
With LFM-CW SAR, the signal is constantly being transmitted
and received; thus, the motion takes place during the chirp.
This paper presents the development of new motion compen-

sation algorithms that are suitable for use with both the RDA
and the FSA (or CSA), which account for the motion during
the chirp. The proposed algorithms also correct the range shift
introduced by translational motion of magnitude greater than
a single range bin without interpolation. First, in Section II,
the theoretical underpinnings of LFM-CW SAR are developed,
and processing methods are described. Section III shows the
effects of nonideal motion. In Section IV, theoretical correction
algorithms are developed and made practical by simplifying
assumptions.
Section V presents simulation results in which a SAR system

images a few point targets with nonideal motion. The known
deviations are used to compensate for the effects of nonideal
motion in the simulated data. A quantitative analysis of the
simulation results is performed, which compares the proposed
motion compensation algorithm to the traditional method. The
new motion compensation scheme is applicable to a number of
FMCW SAR systems, which are summarized in Section VI.
The developed algorithm is applied to actual data from the
Brigham Young University (BYU) μSAR data, and the results
are presented. Motion data are provided by an inertial naviga-
tion system (INS) and GPS. The flight path data are interpolated
between samples to provide position data for each sample of
SAR data. The motion data are used to determine the necessary
corrections that are introduced into the SAR data, effectively
straightening the flight path.

0196-2892/$25.00 © 2008 IEEE
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Fig. 1. (Top) Frequency change of a symmetric LFM-CW signal over time,
together with the signal returns from two separate targets. (Bottom) Frequencies
of the dechirped signal, with the times of flight τ1 and τ2, due to the range
determining the dechirped frequency. The relative sizes of τ1, τ2, and Tp are
exaggerated for illustrative purposes.

II. LFM-CW SAR SIGNAL PROCESSING

In a symmetric LFM-CW chirp, the frequency of the signal
increases from a starting frequency ω0 and spans the bandwidth
BW , at the chirp rate kr = BW · 2 · PRF. The frequency then
ramps back down, as shown in Fig. 1. This up–down cycle is
repeated at the pulse repetition frequency (PRF), giving a pulse
repetition interval of Tp. The transmitted up-chirp signal can be
expressed in the time domain as

st(t, η) = ej(φ+ω0t+πkrt2) (1)

where t is the fast time, η is the slow time, and φ is the initial
phase. The down-chirp signal can be expressed similarly to the
up-chirp signal, but with ω0 + BW as the starting frequency
and −kr as the chirp rate.
The received signal from a target at range R(t, η) =√
R2

0 + v2(t + η)2, with time delay τ = 2R(t, η)/c, is

sr(t, η) = ej(φ+ω0(t−τ)+πkr(t−τ)2) (2)

where R0 is the range of closest approach of the target.
The transmit signal is mixed with the received signal and

low-pass filtered in hardware, which is mathematically equiv-
alent to multiplying (1) by the complex conjugate of (2). This
results in the dechirped signal

sdc(t, η) = ej(ω0τ+2πkrtτ−πkrτ2). (3)

These raw data are then processed to create a SAR image.
Options for data processing include the RDA and the FSA

(or CSA), as shown in Fig. 2. For RDA processing, this signal
is range compressed with a fast Fourier transform (FFT) in the
range direction and then taken to the range-Doppler domain
with an FFT in the azimuth direction. Using standard interpola-
tion methods, range cell migration (RCM) can be compensated,

but this is computationally costly. The Doppler shift introduced
by the continuous forward motion of the platform can also be
removed [9]. Azimuth compression is performed by multiply-
ing by the azimuth-matched filter, i.e.,

Haz(fη, R0) = ej
4πR0

λ D(fη,v) (4)

where D(fη, v) =
√

1 − λ2f2
η /4v2 is the range migration fac-

tor, v is the platform along-track velocity, and λ is the wave-
length of the center transmit frequency.
Alternatively, the FSA (or CSA) [15] can also be modified

to work with the dechirped data [16]. With the FSA, RCM can
be compensated without interpolation. This advantage makes
the FSA the preferred method for LFM-CW SAR processing.
Fig. 3 compares the RDA (without RCM correction) and the
FSA in processing data from the BYU μSAR.
FSA processing involves a series of Fourier transforms and

phase multiplies. If a known nonlinearity exists in the FMCW
chirp, it can be compensated by modifying the functions as in
[10]. To start the FSA processing, an FFT is performed in the
azimuth direction on the signal from (3). The resulting signal in
the dechirped Doppler domain is

S(t, fη) = e−j
4πR0D(fη,v)

λ e
−j

4πkrR0t

cD(fη,v) ej2πfηte−jπkrt2 . (5)

The frequency scaling function is applied with an additional
term that removes the Doppler shift [10], i.e.,

H1(t, fη) = e−j(2πfηt+πkrt2(1−D(fη,v))). (6)

A range FFT is performed, and the second function is applied,
which corrects the residual video phase. Thus

H2(fr, fη) = e(−jπf2
r )/(krD(fη,v)). (7)

An inverse FFT in the range direction is performed, followed
by a function that performs inverse frequency scaling, i.e.,

H3(t, fη) = e−jπkrt2[D(fη,v)2−D(fη,v)]. (8)

Here, the secondary range correction and bulk range shift phase
function can be used, as in [16].
We again take the range FFT and apply the final filter that

performs azimuth compression (4). An azimuth inverse FFT
results in the final focused image.

III. NONIDEAL MOTION ERRORS

The SAR processing algorithms described in Section II as-
sume that the platform moves at a constant speed in a straight
line. This is not the case in any actual data collection, as the
platform experiences a variety of deviations from the ideal path.
These deviations introduce errors in the collected data, which
degrade the SAR image.
Translational motion causes platform displacement from the

nominal ideal path. This results in the target scene changing
in range during data collection. This range shift also causes
inconsistencies in the target phase history. A target at range R

Authorized licensed use limited to: Brigham Young University. Downloaded on February 2, 2009 at 11:57 from IEEE Xplore.  Restrictions apply.
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Fig. 2. Block diagram showing LFM-CW SAR processing using (left) the FSA and (right) RDA, including the proposed two-step motion compensation.

Fig. 3. Taken from a larger image, i.e., a 286 m × 360 m area of North Logan, UT. Imaged with the BYU μSAR operating at 5.62 GHz with a bandwidth of
80 MHz. The data were processed with the RDA and FSA. The horizontal axis is a slant range with the aircraft moving upward at image left. (a) Data processed
with the RDA, without RCM correction. The entire collection was processed in 30.4 s. (b) Data processed with the FSA. The entire collection was processed in
84.3 s. (c) Aerial photograph for comparison purposes. It is clear that the focusing is better with the FSA and is worth the extraprocessing load.

is measured at range R + ΔR, resulting in a frequency shift in
the dechirped data. The dechirped signal in (3) then becomes

sΔdc(t, η) = ej(ω0(τ+Δτ)+2πkrt(τ+Δτ)−πkr(τ+Δτ)2) (9)

where Δτ = 2ΔR/c. Targets that lie within the beamwidth
that have a nonzero Doppler frequency experience a different
change in range that is dependent on the azimuth position. This

is illustrated in Fig. 4, where the range to target A differently
changes with motion than the range to target B.
Variations in along-track ground speed result in nonuniform

spacing of the radar pulses on the ground. This nonuniform
sampling of the Doppler spectrum results in erroneous calcu-
lations of the Doppler phase history.
Changes in pitch, roll, and yaw introduce errors of different

kinds. The pitch displaces the antenna footprint on the ground,

Authorized licensed use limited to: Brigham Young University. Downloaded on February 2, 2009 at 11:57 from IEEE Xplore.  Restrictions apply.
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Fig. 4. SAR platform deviates from its nominal path, i.e., point PN , resulting in a change in range to point A from R to R + ΔR. Point B is nominally at a
range R, but the deviation to point PA changes the range to RB , which is different from R + ΔR.

the roll changes the antenna gain pattern over the target area,
and the yaw introduces a squint. Pitch and yaw shift the Doppler
centroid, with the shift being range dependent in the yaw
case. If the Doppler spectrum is shifted so that a portion lies
outside the Doppler bandwidth, then aliasing occurs. Azimuth
compression produces ghost images at the azimuth locations
where the Doppler frequency is aliased to zero.

IV. MOTION COMPENSATION

Previously developed methods of motion compensation are
limited for correcting the nonideal motion of an LFM-CW
SAR system. Methods like those of [17] apply bulk motion
compensation to the raw data and a secondary correction to
the range-compressed data. This works as an approximation for
motion correction but relies on assuming that the platform is
stationary during a pulse. In range compressing the data, we
lose the ability to differentiate the motion over the chirp, which
is problematic for LFM-CW SAR.
For an LFM-CWSAR signal, motion corrections can directly

be applied to the raw dechirped data (9) or Doppler-dependent
corrections are applied to the azimuth FFT of the raw data,
in the dechirped Doppler domain. Because each data point
contains information from every range, and the corrections are
range and azimuth dependent, any corrections applied in the
dechirped Doppler domain are only valid for a single range and
a single azimuth value. However, with approximations, these
restrictions can be relaxed.

A. Theoretical Treatment

In general, motion data are collected at a much slower
rate than SAR data. For LFM-CW SAR, motion data must
be interpolated so that every sample of SAR data has corre-
sponding position information (as opposed to only each pulse
having position data). Each data point also needs to have a
corresponding location on the ideal path to which the error is
corrected. For a target at range R, ΔR is calculated from the

difference between the distance to the ideal track and the actual
track. The flat-terrain geometry of Fig. 4 is assumed. If more
precise knowledge of the terrain is available, then the model
can be adjusted [18], [19]. Knowing the coordinates of target
A, the actual flight path (point PA), and the nominal flight path
(point PN ), the distances R and R + ΔR can be calculated
from the geometry. Again, Δτ = 2ΔR/c, but Δτ is updated
for every data sample. The motion errors are corrected using
our correction filter

HMC(t,Δτ) = e−j(ω0Δτ+2πkrtΔτ−πkr(2τΔτ−Δτ2)). (10)

When applied to the data (in the raw dechirped time domain
or the dechirped Doppler domain), this shifts the range of the
target and adjusts the phase.
There are targets in the beamwidth at the same range but

different azimuth positions that experience a different range
shift due to translational motion. For a given azimuth position,
as shown in Fig. 4, target B is at a position where it has the
Doppler frequency fη. The angle to target B is

θ(fη) = sin−1

(
fηλ

2v

)
. (11)

Working through some particularly unpleasant geometry (see
Appendix B), the angle on the ground (as defined in Fig. 4),
i.e., ϑ(θ(fη), Rg, G,HA), is found. From ϑ, we find the ground
range, i.e.,

Bg(fη) = − cos(ϑ)G ±
√

cos2(ϑ)G2 + R2
g − G2 (12)

and the actual range to target B, i.e.,

RB(fη) =
√

H2
A + B2

g . (13)

We then find ΔR = R − RB(fη) and Δτ = 2ΔR(fη)/c and
apply (10) in the dechirped Doppler domain. This correction is
valid for a single range and a single azimuth position.

Authorized licensed use limited to: Brigham Young University. Downloaded on February 2, 2009 at 11:57 from IEEE Xplore.  Restrictions apply.



2994 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 10, OCTOBER 2008

Exactly correcting the motion errors in this way is com-
putationally taxing. For every pixel of the final image, the
correction is applied in the dechirped Doppler domain for
the given range and azimuth position. The data are processed
through range compression, and a single data point is kept. A
composite range-compressed image is created from these indi-
vidual points, and the final image is formed through azimuth
compression. Fortunately, there are approximations that can be
made to reduce the computational load while still maintaining
the advantages of this method.

B. Simplifying Approximations

If the beamwidth is narrow, then the errors due to motion
can be assumed to be constant for a given range across the
Doppler bandwidth. This is called center-beam approximation
[20] and is used in many motion compensation algorithms.
The errors induced by this approximation are detailed in [21].
A number of methods have been proposed as alternatives to
this approximation, as discussed in [22]. When using this
approximation, we apply the correction filter (10) to the raw
data. The correction is valid for only a single range; thus, a
composite range-compressed image is created and then azimuth
compressed to form the final image.
Further simplification is possible by splitting the correction

into two steps. The first step applies the correction for a refer-
ence range Rref . ΔRref is calculated as before with Δτref =
2ΔRref/c and τref = 2Rref/c. Then, the correction is

HMC1(t,Δτref) = exp (−j (ω0Δτref + 2πkrtΔτref

−πkr(2τrefΔτref − Δτ2
ref)

))
. (14)

The second step applies differential correction after range
compression. For this step, position information is averaged
over each pulse. This is due to the fact that when LFM-CW data
are range compressed, each range bin is formed from data that
span the entire pulse. This second-order correction is calculated
for each range bin R0 with a calculatedΔR0,Δτ0 = 2ΔR0/c,
and τ0 = 2R0/c. It is simply HMC(t,Δτ0)/HMC(t,Δτref) or

HMC2(τ0,Δτ0)=exp
(
j
(−ω0Δτ0 + 2πkrτ0Δτ0 − πkrΔτ2

0

+ ω0Δτref − 2πkrτrefΔτref + πkrΔτ2
ref

))
. (15)

This is similar to the traditional motion compensation model
but with a couple of advantages. The motion during the pulse is
still considered in applying the initial correction, thus making it
suitable for LFM-CW SAR. In addition, the range shift caused
by translational motion is corrected without interpolation. Fig. 5
shows the simulated point targets focused by correcting the
nonideal motion using this method.
The errors introduced by this two-step approximate method

are much less than the errors from the traditional method. We
denote the phase error caused by approximations in the motion
correction function as

φE =
4πΔRe

λ
(16)

where ΔRe is the error in the calculation of the required cor-
rection due to translational motion. For the proposed correction,

TABLE I
SIMULATION PARAMETERS

TABLE II
THEORETICAL VALUES

there is no error caused by the motion during the chirp, whereas
for traditional motion compensation, the first-order correction
has the error

ΔRe1 = ΔRref(t) − ΔR′
ref (17)

where ΔRref(t) is the time-varying translational motion cor-
rection that takes into account the motion during the chirp, and
ΔR′

ref is constant for each pulse. For a SAR with the param-
eters listed in Tables I and II, with a velocity of 25 m/s and
translational motion of 0.5 m over 10 m of along-track distance,
the maximum phase error is calculated to be 0.4598 rad.
For the second-order motion compensation, the error is the

same for both the proposed motion compensation scheme and
the traditional method. It is calculated as

ΔRe2 = (ΔRref(t) − ΔR0(t)) − (ΔR′
ref − ΔR′

0) (18)

where ΔR′
ref and ΔR′

0 are constant over the chirp. As an
example, using the same 0.5-m translational error with a plat-
form height of 100 m, a reference range of 141.4 m, and a
target range of 111.8 m, the maximum second-order phase
error is calculated to be 0.0238 rad, which is the total error
of the proposed method. Thus, it is shown that the proposed
method has a phase error that is an order of magnitude less than
traditional motion compensation.

V. MOTION COMPENSATION OF SIMULATED DATA

Fig. 5 and Table III show the results of an analysis of
simulated LFM-CW SAR data. An array of point targets is
used for the qualitative analysis, and a single point target is
used for the quantitative analysis. The proposed motion com-
pensation algorithm is compared to traditional motion compen-
sation in the presence of severe translation motion and to an
ideal collection made with ideal motion. The proposed motion
compensation results are very near the ideal and much better
than those of the traditional method. Of note are the measured
improvements in range resolution (51%) and azimuth resolution
(15%). The theoretical azimuth resolution is not reached, even
with ideal motion, because of the defocusing due to the change
in wavelength over the chirp.

VI. FMCW SAR SYSTEMS

The proposed motion compensation scheme is suitable for
a number of recently developed FMCW SAR systems. The

Authorized licensed use limited to: Brigham Young University. Downloaded on February 2, 2009 at 11:57 from IEEE Xplore.  Restrictions apply.
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Fig. 5. Simulated LFM-CW SAR data of an array of point targets and a single point target. The first column shows the motion errors, whereas the second column
shows an ideal collection without any motion errors. The third column shows motion correction using the traditional compensation method, whereas the fourth
column shows the proposed motion compensation method. The power is normalized to the peak of the ideal collection. In this example, the nonideal motion is
sinusoidal. The principal component of the translational motion while the target is in the main beamwidth is moving toward the target. This results in the corrected
targets appearing “squinted.”

BYU μSARs are small, student-built, low-power, LFM-CW
SAR systems [1]. They weigh less than 2 kg, including antennas
and cabling, and consume 18 W of power. The μSAR systems
operate at C- or L-band with bandwidths of 80–160 MHz. Units
have successfully been flown in manned aircraft and on UAVs.
Imaged areas include the arctic and areas in Utah and Idaho.

The BYU μSAR is flown with an MMQ-G INS/GPS unit from
Systron Donner Inertial, which measures the motion of the
aircraft. SAR and motion data are collected together and stored
onboard or downlinked to a ground station. As discussed, the
motion data are interpolated and matched with the actual SAR
data. The results are shown in Fig. 6, where the data collected

Authorized licensed use limited to: Brigham Young University. Downloaded on February 2, 2009 at 11:57 from IEEE Xplore.  Restrictions apply.
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TABLE III
MEASURED SIMULATION VALUES

from a UAV show that the motion corrections improve the
focusing of an array of corner reflector targets. A more detailed
description of the μSAR system is found in Appendix A. A
number of other small FMCW SARs are described in the
following.
The MISAR [2] developed by EADS was designed to fly

on small UAVs having a weight of less than 4 kg and power
consumption under 100 W. The system operates at Ka-band
(35 GHz) and produces images with 0.5 m × 0.5 m resolution.
SAR and motion data (from an onboard INS) are transmitted to
the ground via a 5-MHz analog video link. The nonideal motion
is compensated using the INS data and autofocusing.
The Delft University of Technology has developed a demon-

strator system [3] with a center frequency of 10 GHz and a
variable bandwidth of 130–520 MHz. Algorithms have been
developed that compensate for nonlinearities in the chirp [11]
and the continuous forward motion during the chirp [23]. An
INS unit is used to measure the aircraft motion.
The MINISARA [4] from the Universidad Politécnica de

Madrid is a portable SAR system with a center frequency of
34 GHz and a bandwidth of 2 GHz. The system is small (24 ×
16 × 9 cm) and lightweight (2.5 kg). The motion compensation
relies on autofocus algorithms.
The ImSAR NanoSAR [5] is a 1-lb SAR that is specifically

built for use on small UAVs.
The DRIVE from ONERA [6] has a central frequency of

35 GHz and a bandwidth of about 800 MHz. The goal is to
develop a 3-D SAR imaging system, and studies include com-
pensating for the motion of the wings that carry the antennas.
The FGANARTINO [7] is a 3-D imaging radar similar to the

ONERA project that operates at Ka-band. A custom INS was
developed for the project and is used for motion compensation
and UAV control.

VII. CONCLUSION

In this paper, the effects of nonideal motion on an LFM-CW
SAR signal have been explored, and corrective algorithms have
been developed. Motion compensation has successfully been
applied to simulated and real SAR data by taking into account
the motion during the pulse and correcting the motion-induced
range shift without interpolation. The small size of LFM-
CW SAR, like the BYU μSAR, makes it possible for LFM-

CW SAR to operate from a small aircraft or UAV, which is
particularly susceptible to the effects of atmospheric turbulence.
With motion measurements, the negative effects of nonideal
motion can be corrected, extending the utility of small LFM-
CW SAR.

APPENDIX A
BYU μSAR SYSTEM DESCRIPTION

The BYU μSAR meets the low power and cost requirements
for flight on a UAV by employing an LFM-CW signal that max-
imizes the pulse length, allowing LFM-CW SAR to maintain
a high signal-to-noise ratio while transmitting with less peak
power than pulsed SAR [24]. While continuously transmitting,
the frequency of the transmit signal repeatedly increases and
decreases at the PRF.
The μSAR dechirps the received signal by mixing it with

the transmitted signal. This simplifies the sampling hardware
by lowering the required sampling frequency, although a higher
dynamic range is needed.
A simplified block diagram of the μSAR design is shown in

Fig. 7. The BYU μSAR system is designed to minimize size and
weight using a stack of custom microstrip circuit boards with-
out any enclosure. The system measures 3 in × 3.4 in × 4 in
and weighs less than 2 kg, including antennas and cabling.
Component costs of a few thousand dollars are kept low by
using off-the-shelf components as much as possible (Fig. 8).
The UAV supplies the μSAR with either +18 Vdc or

+12 Vdc. The power subsystem uses standard dc/dc converters
to supply the various voltages needed in the system. Power
consumption during operation is nominally 18 W, with slightly
more required for initial start-up. The μSAR is designed for
“turn-on and forget” operation. Once powered up, the system
continuously collects data for up to an hour. The data are stored
onboard for postflight analysis.
The core of the system is a 100-MHz STALO. From this

single source, the frequencies for operating the system are de-
rived, including the sample clock and the radar chirp. The LFM-
CW transmit chirp is digitally created using a direct digital
synthesizer (DDS), which is controlled by a programmable IC
microcontroller. Switches control the PRF settings, allowing
it to be varied (128–2886 Hz) for flying at different heights
and speeds. The programmable DDS also generates the sample
clock coherent with the LFM signal.
The μSAR signal is transmitted with a power of 28 dBmW

at a center frequency of 5.56 or 1.72 GHz and a bandwidth of
80–160MHz. The range resolution of an LFM chirp is inversely
proportional to the bandwidth of the chirp; thus, the μSAR has
a range resolution of 1.875 m at 80 MHz and 0.9375 m at
160 MHz.
At C-band, two identical custom microstrip antennas, each

consisting of a 2 × 8 patch array, are used in a bistatic con-
figuration. The antennas are constructed from coplanar printed
circuit boards sandwiched together, a symmetric feed structure
on the back of one board and the patch array on the front of
another, with pins feeding the signal through the boards. The
antennas are approximately 4 in × 12 in and have an azimuth
3-dB beamwidth of 8.8◦ and an elevation 3-dB beamwidth of
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Fig. 6. Area of the airport at Logan, UT, imaged with a 160-MHz bandwidth C-band μSAR flown on a UAV and processed with the FSA, with corner reflector
targets arrayed in a field. From left to right: The translational motion errors calculated from the INSmotion data, the processed image without motion compensation,
the image after applying the proposed compensation scheme, the arrangement of targets in the image, and a photograph taken near the trailer. The limitations of
the INS motion sensor are noticeable in the inconsistency of the measured translational displacement, which results in the defocusing of a few of the targets in the
compensated image.

Fig. 7. Simplified BYU μSAR block diagram.

Fig. 8. Photograph of a complete BYU μSAR system ready for flight on a
small UAV.

50◦. The azimuth resolution is approximately equal to half the
antenna length (0.15 m) in azimuth. Multilook averaging is used
for creating images with the azimuth resolution equal to the
range resolution. The L-band system uses antennas consisting
of a 2 × 4 array of fat dipoles.
The return signal is amplified and mixed with the transmit

signal. This dechirped signal is filtered and then sampled with

a 16-bit analog-to-digital converter at 328.947 kHz. A custom
field-programmable gate array board was designed to sample
the signal and store the data on a pair of 1-GB Compact
Flash disks. The data are continuously collected at a rate of
0.63 MB/s and either stored onboard or transmitted to a ground
station.
Data processing for the BYU μSAR [25] follows the proce-

dures outlined in the main body of this paper.
The Systron Donner Inertial MMQ-G INS/GPS unit is used

with the BYU μSAR because of its small size (9.4 in3) and
weight (< 0.5 lb). It provides position and attitude solutions at
a rate of 10 Hz. The solution messages are transmitted to the
μSAR using RS-232 and stored with the SAR data.

APPENDIX B
NONZERO DOPPLER GEOMETRY CALCULATIONS

As defined in Fig. 4, the range R + ΔR and the angle θ are
derived from the SAR data, and the height HA and the range
R are found from the motion data. We define a right triangle
on the ground with hypotenuse Bg and sides Bg · cos(ϑ) and
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Bg · sin(ϑ). We take the angle φ to be between the lines Rg

and G. From this, we get the following equalities:

sin(φ)=
Bg · sin(ϑ)

Rg
(19)

cos(φ)=
G + Bg · cos(ϑ)

Rg
(20)

arcsin
(

Bg · sin(ϑ)
Rg

)
= arccos

(
G + Bg · cos(ϑ)

Rg

)
. (21)

This gives us two unknowns, namely, Bg and ϑ. Then, we
introduce another equation, i.e.,

tan(θ) =
Bg · sin(ϑ)√

(Bg · cos(ϑ))2 + H2
A

. (22)

Equations (21) and (22) are simultaneously solved for ϑ
and Bg . The closed-form solution can easily be found using
a symbolic solver. Unfortunately, the resulting equation is too
large to be printed here. However, tedious the solution may be,
given the input values, a computer has no difficulty in producing
the correct result.
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