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ABSTRACT

ARCHITECTURES FOR SYMBOL TIMING SYNCHRONIZATION IN MIMO

COMMUNICATIONS

Kejing Liu

Department of Electrical and Computer Engineering

Master of Science

Maximum likelihood symbol timing estimation for communication over a fre-

quency non-selective MIMO fading channel is developed. The cases of known data

(data-aided estimation) and unknown data (non-data-aided estimation) together with

known channel and unknown channel are considered. The analysis shows that the

log-likelihood functions and their approximations can be interpreted as SISO log-

likelihood functions operating on each of the receive antennas. Previously published

symbol timing estimators are shown to be special cases of the more general framework

presented. Architectures based on both block processing and sequential processing

using a discrete-time phase-locked loop are summarized. Performance examples over

a MIMO channel based on measured data and on a simple stochastic MIMO channel

model are given. These examples show that the mean-squared error performance of

these techniques is not strongly dependent on the MIMO channel and is able to reach

the Cramér-Rao bound when sufficient complexity is applied.
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Chapter 1

INTRODUCTION

1.1 Introduction

The use of multiple transmit and receive antennas over multiple-input multiple-

output (MIMO) multipath fading channels has received considerable attention due

to its promise of increased channel capacity. In these systems, different data streams

are transmitted in parallel over multiple transmit antennas to exploit the potential

increases in capacity offered by the presence of multipath propagation. Space-time

coding is used to impose structure on the transmitted data streams [1, 2, 3, 4, 5, 6],

and that structure is used by the receiver to recover the data from the received signals.

The signal processing and channel estimation functions described in these papers work

on the matched filter outputs at each of the receive antennas. An implicit assumption

is that symbol timing synchronization has already been achieved.

Underlying the space-time codes is a modulation format that is used to convey

the information from the multiple transmit antennas to the multiple receive antennas.

Most of the coding schemes envision the same modulation format operating on all the

transmit antennas. The symbol-timing problem for MIMO systems using space-time

coding was discussed briefly in [7]. This development assumes orthogonal training

sequences and exploits the orthogonality to simplify an approximate Maximum Like-

lihood error signal. A simple search algorithm is used to find the optimum sampling

instant in an oversampled data stream.

This thesis develops four maximum likelihood symbol timing estimators as-

suming linear modulation with a common pulse shape and frequency non-selective
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fading. Maximum likelihood estimation is a way to estimate the unknown parameter

by using the probability density function. No assumption regarding orthogonality

is required. The frequency non-selective fading assumption means there is no time

dispersion over the channel, so the optimum matched filter sampling time is the same

across the entire receive antenna array. The first maximum likelihood symbol timing

estimator discussed is for a data-aided and known channel system, the second one is

for a data-aided and unknown channel system, the third one is for a non-data-aided

and known channel system, and the last one is for a non-data-aided and unknown

channel system. For these four different conditional maximum likelihood symbol tim-

ing estimators, the known channel system or data is used to estimate the unknown

data or unknown channel system. Then the known or estimated channel system and

data are used to estimate the unknown symbol timing delay. After the maximum

likelihood symbol timing delay estimator is derived, two implementations of it are

discussed. The first is the closed-loop estimator suggested by an iterative (or recur-

sive) solution to the maximum likelihood timing estimate equation. This closed-loop

estimator takes the form of the familiar phase-locked loop for symbol timing control.

The second implementation is an open-loop process that is appropriate for “block

processing.” A Q-stage polyphase filterbank is used to produce, in parallel, error

signals for Q different delays. The delay corresponding to the smallest error signal is

used to recover the data for subsequent processing. The signal processing and channel

estimation functions described in this thesis work on the matched filter outputs of

the receive antennas.

This thesis derives the Cramer-Rao bound for the maximum likelihood symbol

timing estimator and compares the mean square error of the timing estimator to the

Cramer-Rao Bound.

2



1.2 Preliminaries

1.2.1 Notation

NT = the number of transmit antennas.

NR = the number of receive antennas.

Ts = symbol time (reciprocal of the symbol rate).

si(t) = the signal transmitted from antenna i for i = 1, 2, . . . , NT .

rm(t) = the signal received on antenna m for m = 1, 2, . . . , NR.

hm,i = the complex channel gain between transmit antenna i and

receive antenna m.

T0 = the observation interval (in seconds) during which the esti-

mate is to be made. The observation interval may also be

expressed as T0 = L0Ts.

L0 = the length of the data sequence measured in symbols.

ai(k) = the k-th data symbol transmitted from antenna i for i =

1, 2, . . . , NT . Note that the interval 0 ≤ t ≤ L0Ts contains

contributions from symbols ai(−Lp), . . . , ai(L0 + Lp − 1).

Thus the range of values for the symbol index k are

−Lp,−Lp + 1, . . . , L0 + lp − 1.

p(t) = a unit energy pulse shape used to transmit the data symbols

on the waveform channel. The pulse shape has support on

the interval −LpTs ≤ t ≤ LpTs.

1.2.2 System Model

This thesis considers an NT × NR MIMO system consisting of NT transmit

antennas and NR receive antennas as illustrated in Figure 1.1. The NT ×NR MIMO

system is characterized by the channel matrix H. For the case of a frequency non-

selective MIMO multipath channel, H is an NR × NT matrix consisting of complex

valued channel gains hm,i for i = 1, 2, . . . , NT and m = 1, 2, . . . , NR. Often, the

channel gains are modeled as normalized complex Gaussian random variables [1, 5, 6,

7]. Since the channel gains do not impose any time dispersion on the received signal,
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Figure 1.1: A NT ×NR MIMO system.

the symbol timing delay is the same across all the receive antennas. This feature will

be exploited to derive a timing estimator that jointly uses outputs from all the receive

antennas to estimate the common timing offset.

A different data stream is transmitted from each of the transmit antennas. As-

suming a common pulse shape across all NT transmit antennas, the complex baseband

equivalent signal transmitted from antenna m during the interval 0 ≤ t ≤ (L0Ts) is

si(t) =

L0+Lp−1∑

k=−Lp

ai(k)p (t− kTs) . (1.1)

The temporal relationship (indexed by k) and spatial relationship (indexed by i)

between the data symbols ai(k) is determined by the space-time code used for data

transmission.

The NT signals are transmitted in parallel over the frequency non-selective

MIMO channel characterized by a set of complex channel gains hm,i which represents

the attenuation and phase shift between transmit antenna i and receive antenna m.

Since the channel is assumed to be frequency non-selective, there is no appreciable

temporal dispersion in the received waveforms so the symbol timing delay τ can be

4



assumed to be the same across all receive antennas. The signal received on antenna

m (for m = 1, 2, . . . , NR) is

rm(t) =

NT∑
i=1

hm,isi(t− τ) + wm(t), (1.2)

where τ is the unknown symbol timing delay to be estimated and wm(t) the thermal

noise contributed by the m-th receive antenna in the array. The thermal noise is

modeled as a zero mean, complex-valued Gaussian random process whose real and

imaginary parts have power spectral density N0/2 Watts/Hz. The set of NR received

waveforms can be represented by the vector

r(t) =
[
r1(t) r2(t) · · · rNR

(t)
]T

, (1.3)

which can be expressed as

r(t) = Hs(t− τ) + w(t) (1.4)

where

H =




h1,1 h1,2 · · · h1,NT

h2,1 h2,2 · · · h2,NT

...
...

. . .
...

hNR,1 hNR,2 · · · hNR,NT




, (1.5)

s(t− τ) =




s1(t− τ)

s2(t− τ)
...

sNT
(t− τ)




, (1.6)

and

w(t) =




w1(t)

w2(t)
...

wNR
(t)




. (1.7)
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It is convenient to collect the NT data sequences into the matrix

A =




a1(−Lp) · · · a1(L0 + Lp − 1)

a2(−Lp) · · · a2(L0 + Lp − 1)
...

. . .
...

aNT
(−Lp) · · · aNT

(L0 + Lp − 1)




. (1.8)

Then

s(t− τ) = AP(t; τ), (1.9)

where

P(t; τ) =




p(t− (−Lp)Ts − τ)

p(t− (−Lp + 1)Ts − τ)
...

p(t− (L0 + Lp − 1)Ts − τ)




. (1.10)

The set of NR received waveforms can be expressed as

r(t) = HAP(t− τ) + w(t). (1.11)

1.3 Maximum Likelihood Estimation

The maximum likelihood estimation method is used to find the timing esti-

mator. Maximum likelihood estimation is a probabilistic estimation method which

chooses for the estimate, the value of that maximizes the likelihood function.

The likelihood function is based on the probability of the observed samples

given the parameter to be estimated. For complete data, the likelihood function is

the joint probability density function of the data. As stated in [9],

The likelihood function l(θ) of the random variables X1, X2, ...., Xn is the

joint probabilty density function fX1,X2,....,Xn(x1, x2, ...., xn; θ) considered

as a function of the unknown parameter θ. In particular, if X1, X2, ...., Xn

are independent observations on a random variable X with pdf fX(x; θ),

then the likelihood function becomes

lθ =
n∏

i=1

fX(xi; θ) (1.12)
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since the Xi are i.i.d. random variable with pdf fX(x, θ). If, for a given

outcome x = (x1, x2, ...., xn), θ̂(x1, x2, ...., xn) is the value of θ that maxi-

mizes l(θ), then θ̂(x1, x2, ...., xn) is the maximum likelihood estimator for

θ.

For the exponential family of probability density functions, it is simpler to use the

natural log of the likelihood function, which is called the log-likelihood function. The

log-likelihood function is ΛX(θ) = log
∏n

i=1 fX(xi; θ). After the log-likelihood function

as a function of the unknown parameter θ is found, it is differentiated with respect

to the unknown parameter to find its maximum likelihood estimator.

As introduced before, the thermal noise at the received antennas, wm(t),

are modeled as Gaussian i.i.d. random variables. We can write wm(t) = rm(t) −
∑NT

i=1 hm,isi(t− τ), where τ is the unknown symbol timing delay. This thesis denotes

the estimator for the symbol timing delay as τ̂ , and the received signal for a given

symbol timing delay estimator is r̂m(t) =
∑NT

i=1 hm,isi(t− τ̂) + wm(t). Actually rm(t)

is the realization of r̂m(t) when τ̂ = τ . When τ̂ varies, the value of r̂m(t) varies

also. The maximum likelihood estimator τML is the value of τ̂ which minimizes the

difference between r̂m(t) and rm(t).

After the maximum likelihood estimator for symbol timing delay is found, τML,

its accuracy should be tested. In this thesis, one method used to test the accuracy

of the maximum likelihood estimator is the mean square error. Maximum likelihood

estimator is asymptotically unbiased and efficient. The Cramer Rao bound is the

lower limit to the variance of unbiased estimator. The mean square error is the

expected value of the square of the error of the estimator, which is a common way to

measure the performance of the symbol timing delay estimator. By definition, ′′An

estimator Θ̂ is called a mean-square error (MSE) estimator if

E[(Θ̂− θ)2] ≤ E[(Θ̂′ − θ)2], (1.13)

where Θ̂′ is any other estimator [9].′′ The MSE for the symbol timing delay estimator

is calculated at different signal to noise ratio (SNR) values and used to see how noise

affects the performance of the timing delay estimator.
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1.4 Cramer Rao Bound

The conditional Cramer Rao bound (CCRB) and the modified Cramer Rao

bound (MCRB) can be used to find the efficiency of different estimators. The Cramer

Rao bound is the minimum bound for the unbiased estimator. By looking at how

close the mean square error is to the Cramer Rao bound, the efficiency of the symbol

timing delay estimator can be seen.

The estimate of the symbol timing delay depends on the observations of the

received signal. Different observations will change the value of the estimate. In

other words, the estimate of the symbol timing delay will be distributed around the

true value of the unknown symbol timing delay. The Cramer Rao bound finds the

minimum variance of the error between the estimated and the true symbol timing

delays.

The Cramer Rao bound is a fundamental limit for the variance of any esti-

mator. The Cramer Rao bound is based on the Fisher information matrix, which is

defined as

J = E

{(
∂

∂θ
ln fθ(x)

)2
}

, (1.14)

where fθ(x) is the probability density function of the observed data x given the

unknown parameter θ. The parameter estimator is bounded as follows:

E[(Θ̂− θ)2] ≥ J−1. (1.15)

Equation (1.15) states that the mean square error is always bigger than the Cramer

Rao bound, so the Cramer Rao bound is a good way to check the efficiency of the

estimator. When the mean square error is closer to the Cramer Rao bound, the

estimate of the symbol timing delay is more efficient. Two different Cramer Rao

bounds are derived in this thesis: the conditional Cramer Rao bound and the Modified

Cramer Rao bound.
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Chapter 2

BLOCK PROCESSING

2.1 Maximum Likelihood Timing Estimators

2.1.1 Maximum Likelihood Timing Estimator for Data-aided and Known

Channel System

The Maximum Likelihood (ML) estimate of the symbol timing delay τ is the

value of τ that maximizes the conditional probability density function p (r | τ,H,A)

based on an observation of r(t) over an interval of T0 = LTs seconds. The solution

to this problem is well known for the single-input, single output (SISO) case [10] and

the analysis in this thesis follows the standard procedure. The conditional probability

density function of the m-th element in the vector r(t) is

p (rm | τ,H,A) = C exp



−

1

N0

∫

T0

∣∣∣∣∣rm(t)−
NT∑
i=1

hm,isi(t− τ)

∣∣∣∣∣

2

dt



 . (2.1)

Expanding the integral and noting that
∫

T0
|rm(t)|2 dt does not depend on τ , the

conditional density function of rm(t) can be expressed as

p (rm | τ,H,A)

= C exp





2

N0

∫

T0

Re{rm(t)

NT∑
i=1

h∗m,is
∗
i (t− τ)}dt− 1

N0

∫

T0

∣∣∣∣∣
NT∑
i=1

hm,isi(t− τ)

∣∣∣∣∣

2

dt





(2.2)

where the terms that do not depend on τ have been absorbed into the constant C.

Assuming spatially white additive noise, the joint probability density function of r(t)
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is the product of the density functions of the rm(t) so that

p (r | τ,H,A) =CNR exp

{
2

N0

∫

T0

NR∑
m=1

Re{rm(t)

NT∑
i=1

h∗m,is
∗
i (t− τ)}dt

− 1

N0

∫

T0

NR∑
m=1

∣∣∣∣∣
NT∑
i=1

hm,isi(t− τ)

∣∣∣∣∣

2

dt



 .

(2.3)

The log-likelihood function is the logarithm of the conditional probability density

function and can be expressed as

Λ (τ ;H,A) = NR ln C +
2

N0

∫

T0

NR∑
m=1

Re{rm(t)

NT∑
i=1

hm,isi(t− τ)}dt

− 1

N0

∫

T0

NR∑
m=1

∣∣∣∣∣
NT∑
i=1

hm,isi(t− τ)

∣∣∣∣∣

2

dt.

(2.4)

When this is expanded, it becomes

Λ (τ ;H,A)

= NR ln C +
2

N0

∫

T0

NR∑
m=1

Re{rm(t)

NT∑
i=1

h∗m,is
∗
i (t− τ)}dt

− 1

N0

∫

T0

NR∑
m=1

NT∑
i=1

hm,isi(t− τ)

NT∑

i′=1

h∗m,i′s
′∗
i (t− τ)dt

= NR ln C +
2

N0

NR∑
m=1

Re





NT∑
i=1

h∗mi

L0+Lp−1∑

k=−Lp

ai(k)∗
∫

T0

rm(t)p′(t− kTs − τ)dt





− 1

N0

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)

NT∑

i′=1

h∗mi′

L0+Lp−1∑

k′=−Lp

ai′(k
′)∗

×
∫

T0

p(t− kTs − τ)p(t− k′Ts − τ)dt.

(2.5)

The matched filter output matrix X(τ) is formed by placing the matched filter outputs

from each receive antenna into rows:

X(τ) =




x1(−LpTs + τ) . · · · x1((L0 + Lp − 1)Ts + τ)

x2(−LpTs + τ) · · · x2((L0 + Lp − 1)Ts + τ)
... · · · ...

xNR
(−LpTs + τ) · · · xNR

((L0 + Lp − 1)Ts + τ)




, (2.6)
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where

xm (kTs + τ) =

∫

T0

rm(t)p (t− kTs − τ) dt. (2.7)

Using the matrix definitions (1.5), (1.8), (1.10) and (2.6), the compact matrix form

for (2.5) is given by

Λ (τ ;H,A) = − 2

N0

Re
{
trace

{
HAXH(τ)

}}
+

1

N0

trace
{
HAR(τ)AHHH}

, (2.8)

where

R(τ) =

∫

T0

P(t; τ)PH(t; τ)dt. (2.9)

Then the maximum likelihood estimator for the symbol timing delay is expressed as

τML = argmax
τ

{Λ(τ ;H,A)}

= argmax
τ

{
− 2

N0

Re
{
trace

{
HAXH(τ)

}}
+

1

N0

trace
{
HAR(τ)AHHH}}

.

(2.10)

Note that when L0, the length of the data sequence, is large enough to make

∫

T0

P(t; τ)PH(t; τ)dt ≈ I, (2.11)

the last term in the argument of (2.10) may be omitted so that the Maximum Like-

lihood timing estimate may be expressed as

τML = arg max
{
Re

{
trace

{
HAXH(τ)

}}}
. (2.12)

The maximum likelihood estimator of the symbol timing delay can also be

found without using the previous approximation. Computing the derivative of (2.8)

with respect to τ and setting it equal to zero produces the following necessary condi-

tion for (2.10):

∂

∂τ
Λ (τML;H,A) = 0. (2.13)
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The partial derivative of the log-likelihood function with respect to τ is

∂

∂τ
Λ (τ ;H,A) = − 2

N0

Re





NR∑
m=1

NT∑
i=1

h∗m,i

L0+Lp−1∑

k=−Lp

ai(k)∗xm(t− kT − τ)





+
1

N0

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)

NT∑

i′=1

h∗mi′

L0+Lp−1∑

k′=−Lp

ai′(k
′)∗

×
∫

T0

p′(t− kTs − τ)p(t− k′Ts − τ)dt

+
1

N0

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)

NT∑

i′=1

h∗mi′

L0+Lp−1∑

k′=−Lp

ai′(k
′)∗

×
∫

T0

p(t− kTs − τ)p′(t− k′Ts − τ)dt,

(2.14)

where

x′m(kT + τ) =
∂

∂τ
xm(kTs + τ). (2.15)

Equation (2.15) can be expressed as

x′m (kTs + τ) =

∫

T0

rm(t)p′ (t− kTs − τ) dt (2.16)

where p′(t) is the time derivative of the common pulse shape p(t). Using the matrix

definitions (1.5), (1.8), (2.6) and (1.10) together with

X′(τ) =




x′1(−LpTs + τ) . · · · x′1((L0 + Lp − 1)Ts + τ)

x′2(−LpTs + τ) · · · x′2((L0 + Lp − 1)Ts + τ)
... · · · ...

x′NR
(−LpTs + τ) · · · x′NR

((L0 + Lp − 1)Ts + τ)




, (2.17)

P′(τ) =




p′(t− Ts − τ)

p′(t− 2Ts − τ)
...

p′(t− LTs − τ)




, (2.18)
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equation (2.14) can be expressed in the compact form

∂

∂τ
Λ (τ ;H,A) =− 2

N0

Re
{
trace

{
HAX′H(τ)

}}

+
2

N0

Re

{
trace

{
HA

(∫

T0

P′(t; τ)PH(t; τ)dt

)
AHHH

}}

=− 2

N0

Re
{
trace

{
HAX′H(τ)

}}

+
2

N0

Re
{
trace

{
HAR′(τ)AHHH}}

,

(2.19)

where

R′(τ) =

∫

T0

P′(t; τ)PH(t; τ)dt. (2.20)

The maximum likelihood estimator of the symbol timing delay is the value of τ that

make equation (2.19) equal to zero,

− 2

N0

Re
{
trace

{
HAX′H(τML)

}}
+

2

N0

Re
{
trace

{
HAR′(τML)AHHH}}

= 0.

(2.21)

2.1.2 Maximum Likelihood Timing Estimator for Data-aided and Un-

known Channel System

For the data-aided and unknown channel system, the maximum likelihood

estimator of the channel matrix H is derived and substituted into the log-likelihood

equation to get the maximum likelihood estimator for the symbol timing delay τ .

The log-likelihood function was derived from the conditional probability den-

sity function in section 2.1.1 to be

Λ(τ ;H,A) = − 1

N0

∫

T0





NR∑
m=1

∣∣∣∣∣rm(t)−
NT∑
i=1

hmisi(t, τ)

∣∣∣∣∣

2


 dt. (2.22)

Using the matrix forms (1.5), (1.8), (2.6) and (2.9), the matrix form of (2.22) is

Λ (τ ;H,A) = − 2

N0

Re
{
trace

{
HAXH(τ)

}}
+

1

N0

trace
{
HAR(τ)AHHH}

. (2.23)

By taking the partial derivative of (2.23) with respect to the channel matrix H, the

maximum likelihood estimator of the channel gain is found. The maximum likelihood
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estimator of the channel gain is

HML = X(τ)AH[AAH]−1. (2.24)

The log-likelihood function used to find the maximum likelihood estimator of the

timing delay τ is

Λ (τ ;HML,A) = − 2

N0

Re
{
trace

{
HMLAXH(τ)

}}
+

1

N0

trace
{
HMLAR(τ)AHHH

ML

}
.

(2.25)

Replacing the unknown channel matrix with the maximum likelihood estimator for

the channel matrix, the log-likelihood function becomes

Λ(τ ;HML,A) =− 2

N0

Re
{
trace

{
X(τ)AH(AAH)−1AXH(τ)

}}

+
1

N0

trace
{
X(τ)AH(AAH)−1AR(τ)AH(AAH)−1AXH(τ)

}
.

(2.26)

The maximum likelihood estimator for the symbol timing delay is

τML = argmax
τ

{Λ(τ ;HML,A)}

= argmax
τ

{
− 2

N0

Re
{
trace

{
X(τ)AH(AAH)−1AXH(τ)

}}

+
1

N0

trace{X(τ)AH(AAH)−1AR(τ)AH(AAH)−1AXH(τ)}
}

.

(2.27)

When L0 is large enough, R(τ) =
∫

T0
P(t; τ)PH(t; τ)dt ≈ I. If the NT training

sequences represented by A are orthogonal, then AAH = I. The matrix B is defined

as B = AHA, the outer product of the data sequences. Using the approximation for

R(τ), the log likelihood function may be expressed in the form

Λ(τ ;HML,A) = − 1

N0

Re
{
trace

{
X(τ)AHAXH(τ)

}}

= − 1

N0

Re
{
trace

{
X(τ)BXH(τ)

}}
,

(2.28)

and the maximum likelihood estimator of the symbol timing delay becomes

τML = argmax
τ

{Λ(τ ;HML,A)}

= argmax
τ

{
− 1

N0

Re
{
trace

{
X(τ)BXH(τ)

}}}
.

(2.29)
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The maximum likelihood estimator of the symbol timing delay can also be

found without using the previous approximation. Computing the derivative of (2.23)

with respect to τ and setting it equal to zero produces the necessary condition for

(2.29):

∂

∂τ
Λ (τ ;H,A) = − 2

N0

Re
{
trace

{
HAX′H(τ)

}}
+

2

N0

trace
{
HAR′(τ)AHHH}

,

(2.30)

where X′(τ) is defined in (2.17) and R′(τ) is defined in (2.20). Substituting HML

into equation (2.30) produces ,

∂

∂τ
Λ (τ ;HML,A) =− 2

N0

Re
{
trace

{
HMLAX′H(τ)

}}

+
2

N0

trace
{
HMLAR′(τ)AHHH

ML

}
.

(2.31)

Substituting the maximum likelihood estimator of H into equation (2.31) produces

∂

∂τ
Λ(τ ;HML,A) =− 2

N0

Re
{
trace

{
X′(τ)AH(AAH)−1AXH(τ)

}}

+
2

N0

trace
{
X(τ)AH(AAH)−1AR′(τ)AH(AAH)−1AXH(τ)

}
.

(2.32)

The data-aided unknown channel maximum likelihood estimator of the symbol timing

delay is the value of τ which forces (2.32) to zero,

0 = − 2

N0

Re
{
trace

{
X′(τML)AH(AAH)−1AXH(τML)

}}

+
2

N0

trace
{
X(τML)AH(AAH)−1AR′(τML)AH(AAH)−1AXH(τML)

}
.

(2.33)

2.1.3 Maximum Likelihood Timing Estimator for Non-data-aided and

Known Channel System

For the non-data-aided and known channel system, first the maximum likeli-

hood estimator for the data matrix A is derived. Then the unknown data matrix is

replaced with the maximum likelihood estimator of the unknown data matrix, AML,

in the log-likelihood equation to get the maximum likelihood estimator of the symbol

timing delay τ .
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The log-likelihood function was derived from the conditional probability den-

sity function in section 2.1.1 to be

Λ(τ ;H,A) = − 1

N0

∫

T0





NR∑
m=1

∣∣∣∣∣rm(t)−
NT∑
i=1

hmisi(t, τ)

∣∣∣∣∣

2


 dt. (2.34)

Using the matrix forms (1.5), (1.8), (2.6) and (2.9), the matrix form of (2.34) is

Λ (τ ;H,A) = − 2

N0

Re
{
trace

{
HAXH(τ)

}}
+

1

N0

trace
{
HAR(τ)AHHH}

. (2.35)

By taking the partial derivative of (2.35) with respect to the data matrix A, the

maximum likelihood estimator of the data matrix is found:

AML = (HHH)−1HHX(τ). (2.36)

The log-likelihood function for the non-data-aided and known channel system is

Λ (τ ;H,AML) = − 2

N0

Re
{
trace

{
HAMLX

H(τ)
}}

+
1

N0

trace
{
HAMLR(τ)AH

MLH
H}

.

(2.37)

Replacing the unknown data matrix with the maximum likelihood estimator of the

data matrix, the log-likelihood function becomes

Λ (τ ;H,AML) = − 2

N0

Re
{
trace

{
H(HHH)−1HHX(τ)XH(τ)

}}

+
1

N0

trace
{
H(HHH)−1HHX(τ)R(τ)X(τ)HH(HHH)−1HH}

.
(2.38)

The maximum likelihood estimator of the symbol timing delay τ is

τML = argmax
τ

{Λ(τ ;H,AML)}

= argmax
τ

{
− 2

N0

Re
{
trace

{
H(HHH)−1HHX(τ)XH(τ)

}}

+
1

N0

trace
{
H(HHH)−1HHX(τ)R(τ)X(τ)HH(HHH)−1HH}}

.

(2.39)

Computing the derivative of (2.38) with respect to τ and setting it equal to

zero produces the necessary condition for (2.39).

∂

∂τ
Λ (τ ;H,A) = − 2

N0

Re
{
trace

{
HAX′H(τ)

}}
+

2

N0

trace
{
HAR′(τ)AHHH}

,

(2.40)

16



where X′(τ) is defined in (2.17) and R′(τ) is defined in (2.20). Substituting AML

into equation (2.40) produces ,

∂

∂τ
Λ (τ ;H,AML) =− 2

N0

Re
{
trace

{
HAMLX

′H(τ)
}}

+
2

N0

trace
{
HAMLR

′(τ)AH
MLH

H}
.

(2.41)

Substituting the maximum likelihood estimator of A into equation (2.41) produces:

∂

∂τ
Λ (τ ;H,AML) = − 2

N0

Re
{
trace

{
H(HHH)−1HHX(τ)X′H(τ)

}}

+
2

N0

trace
{
H(HHH)−1HHX(τ)R′(τ)X(τ)HH(HHH)−1HH}

.

(2.42)

The non-data-aided and known channel-gain maximum likelihood estimator of the

symbol timing delay is the value of τ which forces equation (2.42) to zero,

0 = − 2

N0

Re
{
trace

{
H(HHH)−1HHX(τ)X′H(τ)

}}

+
2

N0

trace
{
H(HHH)−1HHX(τ)R′(τ)X(τ)HH(HHH)−1HH}

.
(2.43)

2.1.4 Maximum Likelihood Timing Estimator for Non-data-aided and

Unknown Channel System

For the non-data-aided and unknown channel system, timing estimation is

more complex than in the other three cases. Without knowledge of the data trans-

mitted, the channel of the MIMO system is hard to estimate.

One way to estimate the symbol timing delay for the non-data-aided and

unknown channel system is introduced in [13]. Instead of using the training sequence

to estimate the channel matrix, the channel matrix and the data matrix are combined

into one variable. For the system model defined as

r(t) = HAP(t; τ) + w(t), (2.44)

HA can be treated as a new matrix Z. Then the system model can be expressed as

r(t) = ZP(t; τ) + w(t). (2.45)

The data matrix and the channel matrix are unknown, so the new matrix Z is also

unknown. Changing two unknown matrices into one unknown matrix makes the
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timing delay estimate easier to calculate because the channel and data matrices no

longer have to be estimated separately.

The log-likelihood function is

Λ (τ ;H,A) = − 2

N0

Re
{
trace

{
HAXH(τ)

}}
+

1

N0

trace
{
HAR(τ)AHHH}

. (2.46)

Then the log-likelihood function using Z is expressed as

Λ (τ ;Z) = − 2

N0

Re
{
trace

{
ZXH(τ)

}}
+

1

N0

trace
{
ZR(τ)ZH

}
. (2.47)

First, the maximum likelihood estimator of the unknown matrix Z is obtained by

taking the derivative of (2.47) with respect to Z,

∂

∂Z
Λ(τ ;Z) = − 2

N0

Re {X∗(τ)}+
2

N0

R∗(τ)Z∗. (2.48)

Then (2.48) is set equal to zero:

−X(τ) + ZR(τ) = 0. (2.49)

The maximum likelihood estimator for Z is the value of Z that makes equation(2.49)

true:

ZML = X(τ) (R(τ))−1 . (2.50)

Next the maximum likelihood estimator of Z is substituted into the log-likelihood

function. The resulting log-likelihood function is

Λ (τ ;ZML) =
1

N0

Re
{
trace

{
X(τ)R(τ)−1XH(τ)

}}
. (2.51)

Then the maximum likelihood estimator for the symbol timing delay is

τML = argmax
τ

Λ(τ ;Z)

= argmax
τ

{
1

N0

Re
{
trace

{
X(τ)R(τ)−1XH(τ)

}}} (2.52)

When L0 is large enough to make R(τ) = I, the estimator (2.52) reduces to

τML = argmax
τ

{
1

N0

Re
{
trace

{
X(τ)XH(τ)

}}}
. (2.53)
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The maximum likelihood estimator for the symbol timing delay can also be

found without the previous approximation. Computing the derivative of (2.51) with

respect to τ and setting it equal to zero produces the necessary condition for (2.52):

∂

∂τ
Λ (τ ;ZML) = − 2

N0

Re
{
trace

{
ZMLX

′H(τ)
}}

+
2

N0

trace
{
ZMLR

′(τ)ZHML

}
.

(2.54)

The non-data-aided and unknown channel-gain maximum likelihood estimator of the

symbol timing delay is the value of τ which forces equation (2.54) to zero:

0 = − 2

N0

Re
{
trace

{
ZX′H(τML)

}}
+

2

N0

trace
{
ZR′(τML)ZH

}
. (2.55)

2.2 Cramer Rao Bound for the Symbol Timing Estimator

The Cramer Rao bound is the lower bound of the mean-square error of the

estimator. The mean square error of the estimator is an important way to measure the

accuracy of the estimation. By comparing the mean square error and the Cramer Rao

bound, the efficiency of the estimator is measured. The efficiency of the estimator is

a measure of how close the mean square error is to the minimum possible. This thesis

uses two different Cramer Rao bounds to do this comparison. One is the Modified

Cramer Rao bound, and the other is the Conditional Cramer Rao bound.

The Cramer Rao bound is based on the Fisher Information Matrix, which is

defined as

J = E

{(
∂

∂θ
ln fθ(x)

)2
}

= E

{(
∂

∂θ
Λ(x; θ)

)2
}

.

(2.56)

In equation (2.56), fθ(x) is the probability density function of the observed data

x given the unknown parameter θ, and Λ(x; θ) is the log-likelihood function of the

observed data x given unknown parameter θ. The mean square error of the parameter

estimator is bounded as follows:

E[(Θ̂− θ)2] ≥ J−1. (2.57)
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2.2.1 Modified Cramer Rao Bound

The real application of this for synchronization problems is difficult. There

may be more than one unknown parameter in the log-likelihood function. If this is the

case, the log-likelihood function given the wanted unknown parameter can be found

by averaging out the unwanted parameters from the log-likelihood function Λ(x; θ, u).

Λ(x; θ) =

∫ ∞

−∞
Λ(x; θ, u)p(u)du (2.58)

The integration in (2.58) can’t be performed analytically, because the expectation in

(2.56) has insuperable obstacles. As introduced in [10], one method used to overcome

these obstacles is called the Modified Cramer Rao Bound (MCRB). The received

signal at the mth antenna is

rm(t) =

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p(t− kTs − τ) + wm(t). (2.59)

The variance of the error of the symbol timing delay estimator is higher than the

Cramer Rao bound. This can be denoted as

E
{|τ − τML|2

} ≥ 1

E
{| ∂

∂τ
Λ(τ)|2} . (2.60)

The Modified Cramer Rao Bound (MCRB) is given as

E
{|τ − τML|2

} ≥ N0

E
{∫ L0Ts

0
| ∂
∂τ

∑NR

m=1

∑NT

i=1 hmi

∑L0+Lp−1
k=−Lp

ai(k)p(t− kTs − τ)|2dt
} .

(2.61)

In order to simplify the denominator of equation (2.61), the partial derivative

is calculated and the magnitude squared term is expanded. The partial derivative of
∑NR

m=1 sm(t, τ) with respect to τ is

∂

∂τ





NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p(t− kTs − τ)





= −
NR∑

m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p′(t− kTs − τ),

(2.62)
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where p′(t − kTs − τ) = − ∂
∂τ

p(t − kTs − τ). The magnitude squared term can be

written as
∣∣∣∣∣∣

∂

∂τ

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p(t− kTs − τ)

∣∣∣∣∣∣

2

=





NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p′(t− kTs − τ)





×




NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p′(t− kTs − τ)





∗

.

(2.63)

When equation (2.63) is expanded, it becomes:

∣∣∣∣∣∣
∂

∂τ

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p(t− kTs − τ)

∣∣∣∣∣∣

2

=

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)

NR∑

m′=1

NT∑

i′=1

h∗m′i′

×
L0+Lp−1∑

k′=−Lp

ai′(k
′)∗p′(t− kTs − τ)p′(t− k′Ts − τ).

(2.64)

The argument of the expectation in the denominator of equation (2.61) can now be

written as

∫ L0Ts

0

∣∣∣∣∣∣
∂

∂τ

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p(t− kTs − τ)

∣∣∣∣∣∣

2

dt

=

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)

NR∑

m̂=1

NT∑

i′=1

h∗m′i′

×
L0+Lp−1∑

k′=−Lp

ai′(k
′)∗

∫ L0Ts

0

p′(t− kTs − τ)p′(t− k′Ts − τ)dt.

(2.65)
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The denominator of equation (2.61) is the expectation of equation (2.65), which is

E





∫ L0Ts

0

∣∣∣∣∣∣

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p(t− kTs − τ)

∣∣∣∣∣∣

2

dt





=

∫ L0Ts

0

E





∣∣∣∣∣∣

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p(t− kTs − τ)

∣∣∣∣∣∣

2
 dt

=

∫ L0Ts

0

E





NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)

NR∑

m′=1

NT∑

i′=1

h∗m′i′

×
L0+Lp−1∑

k′=−Lp

ai′(k
′)∗p′(t− kTs − τ)p′(t− k′Ts − τ)



 dt.

(2.66)

According to the definition of the Modified Cramer Rao bound, the expec-

tation should first be calculated over the undesired unknown parameters and then

calculated over the estimator. In this derivation, it is assumed that the data is the

undesired unknown parameter, and the symbol timing delay, τ , is the estimator. The

expectation with respect to the data {ai(j)} can be expressed as

Ea





∣∣∣∣∣∣

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p(t− kTs − τ)

∣∣∣∣∣∣

2


=

NR∑
m=1

NR∑

m′=1

Ea

{
NT∑
i=1

hmi

NT∑

i′=1

h∗m′i′

×
L0+Lp−1∑

k=−Lp

L0+Lp−1∑

k′=−Lp

ai(k)ai′(k
′)∗p′(t− kTs − τ)p′(t− k′Ts − τ)



 .

(2.67)

The data {aij} is assumed to be an independent random variable with

E {ai(j)ai′(j
′)∗} =





a2 if i = i′,j = j′

0 otherwise

, (2.68)
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so equation (2.67) can be written as

Ea





∣∣∣∣∣∣

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p(t− kTs − τ)

∣∣∣∣∣∣

2
 (2.69)

=

NR∑
m=1

NR∑

m′

NT∑
i=1

hmih
∗
m′i

L0+Lp−1∑

k=−Lp

a2p
′(t− kTs − τ)2 (2.70)

=

NR∑
m=1

NR∑

m′

NT∑
i=1

hmih
∗
m′ia2

L0+Lp−1∑

k=−Lp

p′(t− kTs − τ)2. (2.71)

This is not a good assumption for an space time coding system, but it is used to

produce a tractible result.

As described in [10], the Poisson sum formula is

L0+Lp−1∑

k=−Lp

p′(t− kTs − τ)2 =
1

Ts

L0+Lp−1∑

k=−Lp

P2(
k

Ts

) exp{j2πk(t− τ)

Ts

}, (2.72)

where P2(f) is the Fourier transform of
∫∞
−∞ p′(t)2,

P2(f) =

∫ ∞

−∞
P (v)P (f − v)dv (2.73)

and P (v) is the Fourier transform of p′(t). Using the Poisson formula, the denominator

of equation (2.61) becomes

∫ L0Ts

0

Ea,τ





∣∣∣∣∣∣

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p(t− kTs − τ)

∣∣∣∣∣∣

2
 dt (2.74)

=

NR∑
m=1

NR∑

m′

NT∑
i=1

hmih
∗
m′ia2P2(0)L0. (2.75)

The average signal energy per symbol is given by

Es =
a2

2

∫ ∞

−∞
|G(f)|2 df. (2.76)

Using the fact that P (v) is the Fourier transform of p′(t), equation (2.73) evaluated

at zero is

P2(0) =

∫ ∞

−∞

{
∂

∂t
p(t)

}2

dt (2.77)

= 4π2

∫ ∞

−∞
f 2|G(f)|2df, (2.78)
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where G(f) is the Fourier transform of p(t). The dimensional parameter ξ can be

defined as:

ξ = T 2
s

∫∞
−∞ f 2|G(f)|2df∫∞
−∞ |G(f)|2df . (2.79)

Then the denominator of equation (2.61) becomes:

∫ L0Ts

0

Ea,τ





∣∣∣∣∣∣

NR∑
m=1

NT∑
i=1

hmi

L0+Lp−1∑

k=−Lp

ai(k)p(t− kTs − τ)

∣∣∣∣∣∣

2
 dt (2.80)

=

NR∑
m=1

NR∑

m′=1

NT∑
i=1

hmih
∗
m′i

2Es∫∞
−∞ |G(f)|2 df

4π2

∫ ∞

−∞
f 2|G(f)|2dfL0 (2.81)

=

NR∑
m=1

NR∑

m′=1

NT∑
i=1

hmih
∗
m′i

8π2EsL0

T 2
s

ξ. (2.82)

If p(t) is a root-raised-cosine function, then the value of ξ is given by

ξ =
1

12
+ α2(

1

4
− 2

π2
) (2.83)

[10]. Finally, the Modified Cramer Rao bound for the symbol timing delay estimator

is

MCRB =
N0

∫ L0Ts

0
Ea,τ

{∣∣∣∑NR

m=1

∑NT

i=1 hmi

∑L0+Lp−1
k=−Lp

ai(k)p(t− kTs − τ)
∣∣∣
2
}

dt

(2.84)

=
T 2

s∑NR

m=1

∑NR

m′=1

∑NT

i=1 hmih∗m′i
8π2EsL0

N0
ξ
. (2.85)

2.2.2 Conditional Cramer Rao Bound

As introduced in [13], the conditional Cramer Rao bound is derived from the

conditional maximum likelihood estimator. Instead of averaging out the undesired

parameters, they are written as a function of the desired parameter and the signal.

This is called conditional maximum likelihood estimation, and the corresponding

Cramer Rao Bound is called the conditional Cramer Rao bound. The conditional

maximum likelihood estimator for the symbol timing delay has been derived in this

thesis. The conditional Cramer Rao bound will be derived for the known data and
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known channel system and for the unknown data and unknown channel system, and

it will be used to measure the mean square error efficiency in the simulations.

The log-likelihood function used to find the conditional maximum likelihood

estimator for the known data and known channel system is

Λ (τ,H,A)

= C − 1

N0

NR∑
m=1

∫ T0

0

(
rm (t)−

NT∑
i=1

hm,isi (t− τ)

) (
r∗m (t)−

NT∑
i=1

h∗m,is
∗
i (t− τ)

)
dt.

(2.86)

In equation (2.86), the signal transmitted from antenna i is

si (t) =

L0+Lp−1∑

k=−Lp

ai (k) p (t− kTs) , (2.87)

and the signal received at antenna m is

rm (t) =

NT∑
i=1

hm,isi (t− τ) + wm

=

NT∑
i=1

L0+Lp−1∑

k=−Lp

hm,iai (k) p (t− kTs − τ) + wm

=

L0+Lp−1∑

k=−Lp

αm(k)p (t− kTs − τ) + wm

(2.88)

where

αm(k) =

NT∑
i=1

hm,iai(k). (2.89)

The Cramer Rao bound is

E
{|τ − τML|2

} ≥ 1

E
{| ∂

∂τ
Λ(τ)|2} , (2.90)

which can also be expressed as

E
{|τ − τML|2

} ≥ − 1

E
{

∂2

∂τ2 Λ(τ)
} . (2.91)
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To use this definition of the Cramer Rao bound, the second derivative of the log-

likelihood function with respect to τ must be found. The first derivative is

∂

∂τ
Λ (τ,H,A) = − 1

N0

NR∑
m=1

∫ T0

0


rm (t)−

L0+Lp−1∑

k=−Lp

αm(k)p (t− kTs − τ)




×



L0+Lp−1∑

k=−Lp

αm(k)∗p′ (t− kTs − τ)


 dt

− 1

N0

NR∑
m=1

∫ T0

0




L0+Lp−1∑

k=−Lp

αm(k)p′ (t− kTs − τ)




×

r∗m (t)−

L0+Lp−1∑

k=−Lp

αm(k)∗p (t− kTs − τ)


 dt

= − 2

N0

Re





NR∑
m=1

∫ T0

0


rm (t)−

L0+Lp−1∑

k=−Lp

αm(k)p (t− kTs − τ)




×



L0+Lp−1∑

k=−Lp

αm(k)∗p′ (t− kTs − τ)


 dt



 ,

(2.92)

and the second derivative is

∂2

∂τ 2
Λ (τ,H,A) =

2

N0

Re





NR∑
m=1

∫ T0

0


rm (t)−

L0+Lp−1∑

k=−Lp

αm(k)p (t− kTs − τ)




×



L0+Lp−1∑

k=−Lp

αm(k)∗p′ (t− kTs − τ)


 dt





− 2

N0

Re





NR∑
m=1

∫ T0

0




L0+Lp−1∑

k=−Lp

αm(k)p′ (t− kTs − τ)




×



L0+Lp−1∑

k=−Lp

αm(k)∗p′ (t− kTs − τ)


 dt



 .

(2.93)

Now, because

E [rm (t)] =

L0+Lp−1∑

k=−Lp

αm(k)p (t− kTs − τ) , (2.94)
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the inverse of the Cramer Rao bound as defined in equation (2.91) is

− E

[
∂2

∂τ 2
Λ (τ,H,A)

]

=
2

N0

Re





NR∑
m=1

∫ T0

0




L0+Lp−1∑

k=−Lp

αm(k)p′ (t− kTs − τ)




×



L0+Lp−1∑

k=−Lp

αm(k)∗p′ (t− kTs − τ)


 dτ





=
2

N0

Re





NR∑
m=1

L0+Lp−1∑

k=−Lp

L0+Lp−1∑

k′=−Lp

αm(k)αm(k′)∗

×
∫ T0

0

p′ (t− k′Ts − τ) p′ (t− kTs − τ) dt

}

=
2

N0

Re
{
trace

(
αHDα

)}

=
2

N0

trace
(
AHHHDHA

)
,

(2.95)

where

Dij =

∫ T0

0

p′ (t− iTs − τ) p′ (t− jTs − τ) dt = Dji. (2.96)

Therefore the conditional Cramer Rao bound is given by

CCRB =
N0

2trace (AHHHDHA)
. (2.97)

For the unknown channel and unknown data system, αm(k) must be treated

as nuisance parameters and included in the Fisher information matrix J, which may

be organized as

J =


Jττ Jτα

Jατ Jαα


 (2.98)

where α = HA. Jττ is the scalar given by (2.95). The submatrix Jτα has entries

−E

{
∂2Λ (τ,H,A)

∂τ∂α∗m(k)

}
= − 1

N0

L0+Lp−1∑

k′=−Lp

αm(k′)
∫ T0

0

p′(t− k′Ts − τ)p(t− kTs − τ)dt

= − 1

N0

L0+Lp−1∑

k′=−Lp

αm(k′)R′(k′Ts + τ, kTs + τ)

(2.99)
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where R′(k′Ts + τ, kTs + τ) is an element of the matrix R′(τ) defined by equation

(2.20). The submatrix Jατ = JTτα. The submatrix Jαα has entries

−E

{
∂2Λ (τ,H,A)

∂αm(k)∂α∗m′(k′)

}
= δm,m′ × 1

N0

∫ T0

0

p(t− kTs − τ)p(t− k′Ts − τ)dt

= δm,m′ × 1

N0

R(kTs + τ, k′Ts + τ)

(2.100)

where R(kTs + τ, k′Ts + τ) is an element of the matrix R(τ) defined by equation

(2.9). The Cramer Rao bound is the upper left entry in the matrix J−1 which may

be expressed as

E
{
|τ − τML|2

}
≥ 1

Jττ − JταJ−1
ααJατ .

(2.101)

The element of J−1
αα corresponding to ∂Λ(τ,H,A)/∂αm(k)∂α∗m′(k′) can be expressed

as N0δm,m′R−1(k, k′) where R−1(k, k′) is the k-th row and k′-th column of R−1(τ).

The required matrix product may be expressed as

JταJ−1
ααJατ =

2

N0

Re

{
NR−1∑
m=0

∑

k′

∑

k

∑

l′

∑

l

αm(l)R′(kTs + τ, lTs + τ)

×α∗m(l′)R′(k′Ts + τ, l′Ts + τ)R−1(k, k′)





= trace
(
αHR′T (τ)R−1(τ)R′(τ)α

)

= trace
(
(HA)HR′T (τ)R−1(τ)R′(τ)(HA)

)
.

(2.102)

Thus, the conditional Cramer Rao bound for the unkown data and unknown channel

maximum likelihood symbol timing delay estimator may be expressed as

E
{
|τ − τML|2

}
≥ N0

2× trace
(
(HAH [D(τ)−R′T (τ)R−1(τ)R′(τ)]HA

) (2.103)

where D(τ) is given by (2.96) and R′(τ) by (2.20).

2.3 Simulations

2.3.1 A Block Processing Structure

The ML timing estimators (2.10), (2.29), and (2.52) and their corresponding

approximations (2.12), (2.28), and (2.53), respectively, require computation of the
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matched filter outputs xm(τ) at the output of each receive antenna as a function of

the unknown symbol timing delay τ . Since there is no closed-form expression for

τML in terms of the received signals, the estimation algorithm must “search” for the

symbol timing delay that maximizes the appropriate likelihood function. This search

may be either sequential or parallel. The sequential search is described in chapter 3.

A parallel search is the most appropriate search when using block processing.

Ideally, the parallel search computes the vectors xm(τ) for all possible values

of τ in parallel, computes the corresponding arguments in equations (2.10)-(2.12),

(2.29)-(2.28), or (2.52)-(2.53), and selects the value of τ with the maximum output.

In practice, τ is quantized to Q parts/symbol so that only Q vectors of matched-filter

outputs xm(0),xm(1/Q), . . . ,xm((Q − 1)/Q) are computed in parallel [15, 16, 17].

The corresponding Q values of the arguments of (2.10)-(2.12), (2.29)-(2.28), or (2.52)-

(2.53) are computed. This thesis calls these values Λ(0), Λ(1/Q), . . . , Λ((Q−1)/Q) for

brevity. Depending on the degree of accuracy required, the estimate can be formed

either by simply setting τML to the multiple of 1/Q corresponding to the largest

Λ(·) or by using the values of Λ(·) with an interpolator to approximate a symbol

timing delay with greater resolution. Usually, timing synchronization algorithms use

a polynomial-based interpolator [10, 17, 20, 21] to keep computational complexity

manageable. The value of Q and the degree of the interpolating polynomial give

the system designer a rich set of possibilities in the trade-off between computational

complexity and performance.

An efficient way to produce the Q vectors of matched filter outputs at each

antenna in a sampled-data receiver is to use a polyphase filterbank as described in

[22]. Assuming each subfilter is to operate at an equivalent sample rate of N sam-

ples/symbol, a prototype pulse shape filter is generated at Q > N samples/symbol.

This thesis defines

p

(
l′
Ts

Q

)
for − LpQ ≤ l′ ≤ LpQ (2.104)

to represent the samples of the pulse shape. The polyphase decomposition of p(l′Ts/Q)

consists of a set of Q subfilters, p0(lTs/N), p1(lTs/N), . . . , pQ−1(lTs/N) operating at

N samples/symbol. Each subfilter is obtained from p
(
l′ Ts

Q

)
by taking every Q/N -th
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sample and starting from a different sample. The q-th subfilter is

pq

(
l
Ts

N

)
= p

(
l
Ts

N
+

qTs

Q

)
for − LpN ≤ l ≤ LpN (2.105)

for q = 0, 1, . . . , Q − 1. Note that zeros should be appended to the end of each

filter as needed to make all filters the same length. The polyphase filterbank con-

sisting of Q matched filters h0(lTs/N), h1(lTs/N), . . . , hQ−1(lTs/N) operating at N

samples/symbol is formed by setting hq(lTs/N) equal to the time reversed version of

pq(lTs/N) for q = 0, 1, . . . , Q− 1.

A block diagram summarizing these ideas is illustrated in Figure 2.1. The

complex baseband output from each of the NR receive antennas is sampled at a rate

equivalent to N samples/symbol. These samples are processed by the polyphase

matched filter bank to produce Q parallel matched filter output data streams at

each of the receive antennas. These data streams are processed and combined as

required by equations (2.10)-(2.12), (2.29)-(2.28), or (2.52)-(2.53) for each value of

the quantized delay. These values are used to estimate the timing delay as described

above.

2.3.2 Simulation Results

As a simple example demonstrating the polyphase filter approach, consider

a 4 × 4 MIMO system where the common modulation format is QPSK using the

square-root raised cosine pulse shape with a roll-off factor of 50%. The square-root

raised cosine impulse response is defined to have a delay of 6 symbols. The sample

rate is N = 2 samples/symbol and the symbol timing delay is set to a percentage of

the symbol period. The block processing structure is used. The training sequence

length is defined as L0 = 32 symbols.

A polyphase filter bank is used to calculate the mean square error for different

values of τ . This is a different method than that used in [13], where a pulse matrix

is used in the MIMO system instead of using the matched filter outputs. Figure 2.2

shows a comparison of the log likelihood functions for these two methods. The curve

of the log likelihood function using matched filter outputs is the same as the curve
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Figure 2.1: A block diagram illustrated the block processing for timing estimation in
a sampled data MIMO receiver. A polyphase matched filter bank produces parallel
outputs corresponding quantized values of the unknown timing delay. The matched
filter outputs corresponding to each receive antenna are used to compute the argument
of the function to maximized. Only the approximate forms for the three log-likelihood
functions have been shown for simplicity.
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of log likelihood function using the pulse matrix. For a large training sequence, the

approximate maximum likelihood estimate for the known data and unknown channel

system in equation (2.29) can be used. The curve for the approximate log likelihood

function is also plotted in Figure 2.2. The curve of the approximation for the matched

filter outputs is very close to the other two curves. The maximum likelihood estimates

for all three curves would be very close because their maximum values are very close

together.

A non-random channel matrix H, which was measured in the Clyde building

of Brigham Young University,

H =



0.3385 −0.0200 + j0.1639 −0.0024− j0.1449 −0.3916 + j0.1087

0.0548 + j0.1172 0.1797 + j0.0034 0.1158− j0.1729 −0.0586 + j0.2624

−0.3275 + j0.2380 0.1234− j0.2448 0.0749− j0.0607 −0.0643 + j0.0024

0.1760 + j0.1558 −0.2824 + j0.2457 −0.1618 + j0.0622 −0.1320 + j0.1096




,

(2.106)

and a Gaussian i.i.d. channel matrix were used to find mean square error measure-

ments in simulations. By averaging the squared error of many maximum likelihood

estimates, the mean square errors were obtained as shown in Figure 2.3, Figure 2.4,

Figure 2.5 and Figure 2.6 for various values of Q. In order to measure the efficiency of

the maximum likelihood estimators, the conditional Cramer Rao bound was plotted

with the mean square errors.

Figure 2.3 and Figure 2.4 show the mean square error and conditional Cramer

Rao bound for the unknown channel and data-aided maximum likelihood estimator.

The simulations were run using both the BYU nonrandom channel and the Gaus-

sian i.i.d. channel matrices for various values of Q and different search procedures.

Figure 2.5 and Figure 2.6 show the mean square error and conditional Cramer Rao

bound for the unknown channel and non-data-aided maximum likelihood estimator

using the same two channel matrices. These simulations were run for various values

of Q and different search procedures.
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The performance of all the maximum likelihood estimators is able to reach

the Cramer Rao bound if Q is sufficiently high and interpolation is used. The fact

that performance improves when interpolation is used was observed in the simulation

results presented in [18, 19]. When the signal-to-noise ratio is high enough, estimation

errors due to quantization and interpolator approximations dominate the mean square

error performance. As a consequence, estimator performance exhibits an error floor.

For the nearest neighbor searches, no interpolation error is present and the error

floor can be approximated using the standard assumptions of uniformly distributed

quantization error to produce

MSEfloor ≈ 1

12
×

(
1

2Q

)2

. (2.107)

The use of interpolation reduces the error floor as shown. In all four cases, the use of

quadratic interpolation with Q = 32 produces performance that is very close to the

Cramer Rao bound. The effect of the approximation R(τ) = I results in a negligi-

ble performance degradation for the case considered. The performance degradation

increases as L0 decreases or the excess bandwidth decreases. For fixed L0, the per-

formance degradation for smaller values of the excess bandwidth is still small. The

estimator performance on both channels is very similar, although the performance

is slightly better for the BYU MIMO channel (2.106). One possible explanation for

the similarity is that the performance of the estimators is only weakly tied to the

statistical properties of the channel.

By comparing the data-aided mean square errors and the non-data-aided mean

square errors, it is evident that the mean square error for the data-aided timing esti-

mator versus the signal to noise ratio ranged from 3× 10−4 down to about 2× 10−7.

The mean square error for the non-data-aided timing estimator ranged from 3× 10−3

down to about 2× 10−6. Obviously, the mean square error for the data-aided timing

estimator is lower than the mean square error for the non-data-aided timing estima-

tor. Also, the mean square error for the data-aided timing estimator is closer to the

conditional Cramer Rao bound than the mean square error for the non-data-aided
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timing estimator. This shows that the efficiency of the data-aided maximum likleli-

hood timing estimator is better than that of the non-data-aided maximum likelihood

timing estimator. The error produced during estimation mostly comes from the noise.

The difference in the efficiencies of the mean square errors for the two maximum like-

lihood timing estimators is due to the difference between knowing the data or not.

For the data-aided maximum likelihood timing estimator, the known data is used to

estimate the unknown channel, but for the non-data-aided maximum likelihood tim-

ing estimator, both the data and the channel are unknown. This causes extra error

during the estimation.

Figure 2.7 and Figure 2.8 are plots of the mean square error versus the symbol

timing delay for a fixed signal to noise ratio. Figure 2.7 plots the mean square error for

the data-aided maximum likelihood timing estimator versus the symbol timing delay.

Figure 2.8 plots the mean square error for the non-data-aided maximum likelihood

timing estimator versus the symbol timing delay. In each figure, the mean square error

is plotted for a signal to noise ratio of 10 dB and 20 dB. By changing the symbol

timing delay from 0 to 0.9Ts, the mean square error does not change significantly.
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Figure 2.2: The compare of the maximum likelihood function of timing estimator
corresponding to using polyphase filterbank outputs and using pulse matrix in [13].
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Figure 2.3: Simulation results for symbol timing estimation on an NT = 4, NR = 4
MIMO channel using QPSK with a square-root raised-cosine pulse shape with 50%
excess bandwidth and Lp = 6. The channel matrix is given by (2.106). The true data-
aided ML estimator is given by (2.26) and the approximate data-aided ML estimator
is given by (2.28). Both nearest neighbor and quadratic interpolation searches were
used with matched filters operating at N = 2 samples/symbol, Q = 8, 16, 32 and
L0 = 32.
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Figure 2.4: Simulation results for symbol timing estimation under the same conditions
as those of Figure 2.3 except the channel matrix consists of independent, zero-mean
complex Gaussian random variables with unit variance.
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Figure 2.5: Simulation results for symbol timing estimation under the same conditions
as those of Figure 2.3 except the true non-data-aided ML estimator (2.52) and the
approximate non-data-aided ML estimator (2.53) are used.
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Figure 2.6: Simulation results for symbol timing estimation under the same conditions
as those of Figure 2.5 except the channel matrix consists of independent, zero-mean
complex Gaussian random variables with unit variance.
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Figure 2.7: The mean square error of data-aided timing estimator versus the symbol
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symbol timing delay.

41



42



Chapter 3

SEQUENTIAL PROCESSING

In a sequential search, it is usually more convenient to search for the value of τ

that forces the derivative of the log-likelihood function with respect to τ to zero. An

initial guess for τ is used to evaluate the derivative of the log likelihood function. If the

derivative of the log-likelihood function is not zero, then τ is adjusted in the direction

of the zero of the log-likelihood function. The sequential approach has the potential

advantage that it is able to track differences between the data clock and the sampling

(A/D) clock. Differences between these two time bases cause the interpolation interval

to “slide through the data samples” as described in [21, 22]. This is probably not

a problem in block processing if the data blocks are short enough that the symbol

timing delay estimate is valid for the entire block. Sequential processing allows the

observation interval to grow large, especially in the case of non-data-aided estimation.

The sequential search is usually implemented in the form of a discrete-time

phase locked loop. A discrete-time phase locked loop is a feedback system that uses

the derivative of the log-likelihood function as an error signal. The derivative log-

likelihood function for the case of known data and either a known or an unknown

channel is examined in Section 3.1, and the case of unknown data and unknown

channel is examined in Section 3.2. Timing adjustments in the discrete time PLL

were made using a piece-wise parabolic interpolator and a cubic interpolator. An

example of the performance of the discrete-time phase-locked loop is made for the

case of unknown data and unknown channel.
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3.1 Sequential Timing Estimation with Known Data and Known/Unknown

Channel

Computing the derivative of (2.5) with respect to τ and setting it equal to

zero produces the following necessary condition for the ML estimate:

0 =

NR∑
m=1


2

L0+Lp−1∑

k=−Lp

Re
{

α∗m(k)x′m(kTs + τML)
}

−
L0+Lp−1∑

k=−Lp

L0+Lp−1∑

k′=−Lp

αm(k)R′(kTs + τML, k′Ts + τML)α∗m′(k′)


 (3.1)

where αm(k) is the k-th element of the vector αm defined by (2.89). This form of

the estimator does not conveniently map to sequential processing. However, if L0 is

sufficiently long so that R(τ) =
∫

T0
P(t; τ)P(t; τ)Hdt = I, the second term on the

right-hand-side of (3.1) can be dropped and the estimator assumes a form that is

compatible with sequential processing:

0 =

NR∑
m=1

L0+Lp−1∑

k=−Lp

Re
{

α∗m(k)x′m(kTs + τML)
}

(3.2)

This simplified form permits an efficient implementation using a discrete-time phase-

locked loop as illustrated in Figure 3.1(a). The time derivative of the matched filter

outputs can be computed using a filter whose impulse response is the time deriva-

tive of the matched filter impulse response. In a continuous-time implementation, a

voltage controlled clock (VCC) is adjusted to trigger the sampling of the output of

the the continuous-time matched filter and derivative matched filter once per symbol

as shown. In a discrete-time implementation, asynchronous samples of the received

waveforms are processed by discrete-time matched filters and derivative matched fil-

ters operating at N samples/symbol. Timing adjustment is performed using interpo-

lators as described in [20, 21] or a polyphase filter bank for the matched filter and

derivative matched filters as described in [22].

For the case of the known data and unknown channel system, the matrix

form of the estimator (2.29) can be re-expressed using summations. Computing the
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derivative of the argument of the resulting expression and setting it to zero produces

0 =

NR∑
m=1

L0+Lp−1∑

k=−Lp

Re

{
NT∑
i=1

a∗i (k)x′m(kTs + τ)

}
(3.3)

=

NR∑
m=1

L0+Lp−1∑

k=−Lp

Re {β∗(k)x′m(kTs + τ)} (3.4)

where β(k) =
∑NT

i=1 ai(k) is the sum of all the transmitted data symbols at symbol

index k. A realization of a sequential search based on (3.4) is illustrated in Figure 3.1

(b).

3.2 Sequential Timing Estimation with Unknown Data and Unknown

Channel

The approximate timing estimate (2.53) can be recast in a serial form that

allows it to be easily incorporated into a phase-locked loop. Computing the derivative

with respect to τ of the right-hand side of (2.53) and setting it equal to zero produces

the necessary condition for the ML estimate:

0 =

NR∑
m=1

L0+Lp−1∑

k=−Lp

Re
{

x∗m(kTs + τML)x′m(kTs + τML)
}

. (3.5)

The use of (3.5) as an error signal in a phase-locked loop is illustrated in Figure 3.2.

An example of the performance of the discrete-time phase-locked loop is il-

lustrated in Figures 3.5, 3.6 and 3.7 for the same NT = 4, NR = 4 MIMO channel

from [24] used previously. Again, simulation of four separate QPSK signals using the

square-root raised-cosine pulse shape with 50% excess bandwidth and Lp = 6 was

used. A second order loop with loop bandwidth = 0.0025/Ts and damping factor

ζ = 1 was used with a linear interpolator and matched filters and derivative matched

filters operating at N = 4, 8, 16 samples/symbol. Loop control implemented using

a decrementing modulo-one counter as described in [20]. The timing error detector

gain was determined from the “S-Curve” plotted in Figure 3.4 for this channel and

signal sets. The timing error detector gain is the slope of the S-Curve at τe = 0 and is

0.05 the case of NT = 4 random QPSK data streams with unit bit energy. Figure 3.3
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Figure 3.1: Sequential processing architecture based on the phase-locked loop for
MIMO symbol timing synchronization. (a) PLL structure for the case of known
channel and known data; (b) PLL structure for the case of unknown channel and
known data.
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is a block diagram of sequential processing based on the discrete-time phased-locked

loop for symbol timing synchronization in a MIMO receiver. The fractional interpo-

lation interval µ is plotted on the top of Figure 3.5 as a function of time. The middle

plot of Figure 3.5 is a plot of the four symbol-spaced matched filter outputs after

multiplication by H−1 corresponding to the first 250 symbol times. The lower plot of

Figure 3.5 is a plot of the same corresponding to the last 250 symbol times. Observe

that the loop locks after about 525 symbols (approximately 1.3 divided by the loop

bandwidth as suggested in [23]) and that the effective signal-to-noise ratio on each

of the channels is not identical. This is due to the eigenvalue spread of the matrix

HHH.

Figure 3.6 and Figure 3.7 are plots of the timing error variance as a function of

signal-to-noise ratio using parabolic interpolator and cubic interpolator. The Cramer

Rao Bound (2.103) is also plotted for reference. Observe that the simulated mean-

squared error reaches a floor at approximately 2 × 10−5. It does not appear to be a

function of N or the order of the interpolator. This suggests the error floor is not due

to interpolator error, but rather self-noise in the phase-locked loop.
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Figure 3.5: Examples of the PLL-based symbol timing synchronizer for the 4 × 4
MIMO channel from [24] using QPSK on each channel. The second order PLL oper-
ates at N = 8 samples/symbol, has a loop bandwidth of 0.0025/Ts, and a damping
factor of ζ = 1, and uses a linear interpolator for timing adjustments. Four random
QPSK data streams were simulated. (a) Plot of the fractional interpolation interval
µ as a function of time. (b) Plot of the first 250 symbol-spaced matched filter outputs
after multiplication by H−1. (c) Plot of the last 250 symbol-spaced matched filter
outputs after multiplication by H−1
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Figure 3.6: Simulated mean-squared error performance for the PLL-based timing esti-
mator using the error signal (3.5). NT = 4 random QPSK symbols were transmitted
over the NT = 4, NR = 4 channel (2.106). The PLL is a second order loop with
equivalent noise bandwidth 0.25% of the symbol rate and operating at N = 4, 8, 16
samples/symbol. Timing adjustments in the discrete-time PLL were made using a
piece-wise parabolic interpolator.
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Figure 3.7: Simulated mean-squared error performance for the PLL-based timing esti-
mator using the error signal (3.5). NT = 4 random QPSK symbols were transmitted
over the NT = 4, NR = 4 channel (2.106). The PLL is a second order loop with
equivalent noise bandwidth 0.25% of the symbol rate and operating at N = 4, 8, 16
samples/symbol. Timing adjustments in the discrete-time PLL were made using a
cubic interpolator.
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Chapter 4

CONCLUSION

The maximum likelihood symbol timing delay estimators for a frequency non-

selective MIMO channel assuming linear modulation are derived. The non-frequency

selective fading assumption means the multipath delay spread is small, so the symbol

timing delay is the same across all receive channels. The maximum likelihood esti-

mator is similar in form to the maximum likelihood estimator for traditional SISO

channels, but it differs in that it bases its estimate on weighted data from all of the

transmit antennas.

Architectures based on both block processing and sequential processing are

demonstrated and used in simulations. The block processing architecture is based on

a Q-stage polyphase filterbank implementation of the derivative matched filter. A

discrete time phase-locked loop is used for the sequential processing architecture.

There are four estimators. One estimator is for the known channel and known

data system. The second estimator is for the unknown channel and known data

system. The third estimator is for the known channel and unknown data system.

The fourth estimator is for the unknown channel and unknown data system. When

the channel is known and the data is unknown, the estimation can be handled in one of

two ways: the conditional density (2.3) can be averaged over the assumed distribution

of the channel gains using the total probability theorem, or the channel gains can be

jointly estimated along with τ . Solving for the channel gains and back-substituting

into the likelihood function produces a likelihood function not explicitly dependent

on H. When both the channel and the data are unknown, the estimator can be

implemented by treating the unknown channel matrix and unknown data matrix as
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one unknown parameter, which can be jointly estimated along with τ . By calculating

the mean square error for the maximum likelihood estimators, their performance

can be measured. The performance of the data-aided estimator was better than the

performance of the non-data-aided estimator because the non-data-aided estimator

treats both the channel and data as unknown parameters, which produces extra error

during the estimation processes.

The approximate estimators published in [25] and [19] are special cases which

use the approximate log likelihood functions and pulse matrix implementation instead

of the matched filter outputs. The estimators based on block processing architectures

can achieve the Cramer Rao bound when the number of quantization levels Q is

sufficiently high and interpolation is used. The performance of both the data-aided

and non-data-aided estimators does not appear to be strongly dependent on the

channel characteristics. Sequential processing using a discrete-time phase-locked loop

was shown to achieve adequate performance.
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