
Brigham Young University
BYU ScholarsArchive

All Faculty Publications

2009-03-01

A Dynamic Attribute-Based Data Filtering and
Recovery Scheme for Web Information Processing
Amit Ahuja

Yiu-Kai D. Ng
ng@cs.byu.edu

Follow this and additional works at: http://scholarsarchive.byu.edu/facpub
Part of the Computer Sciences Commons

Original Publication Citation
Amit Ahuja and Yiu-Kai Ng. "A Dynamic Attribute-Based Data Filtering and Recovery Scheme for
Web Information Processing." Journal of Knowledge and Information Systems (KAIS), Volume 18,
Number 3, pp. 263-291, Springer, March 29.

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty
Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu.

BYU ScholarsArchive Citation
Ahuja, Amit and Ng, Yiu-Kai D., "A Dynamic Attribute-Based Data Filtering and Recovery Scheme for Web Information Processing"
(2009). All Faculty Publications. Paper 142.
http://scholarsarchive.byu.edu/facpub/142

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsarchive.byu.edu/facpub/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu

 1

 A Dynamic Attribute-Based Data Filtering and
Recovery Scheme for Web Information Processing

Amit Ahuja
Yiu-Kai Ng

Computer Science Department
Brigham Young University

Provo, Utah 84602
ng@cs.byu.edu, amit ahuja83@yahoo.com

Abstract

Web data being transmitted over a network channel on the Internet with exces-
sive amount of data causes data processing problems, which include
selectively choosing useful information to be retained for various data
applications. In this paper, we present an approach for filtering
less-informative attribute data from a source Website. A scheme for filtering
attributes, instead of tuples (records), from a Website becomes imperative,
since filtering a complete tuple would lead to filtering some informative, as
well as less-informative, attribute data in the tuple. Since filtered data at the
source Website may be of interest to the user at the destination Website, we
design a data recovery approach that maintains the minimal amount of
information for data recovery purpose while imposing minimal overhead for
data recovery at the source Website. Our data filtering and recovery approach
(i) handles a wide range of Web data in different application domains (such as
weather, stock exchanges, Internet traffic, etc.), (ii) is dynamic in nature, since
each filtering scheme adjusts the amount of data to be filtered as needed, and
(iii) is adaptive, which is appealing in an ever-changing Internet environment.

1 Introduction

In recent years we have seen tremendous change in the way data are transferred over the

Internet. As the huge amount of Web data flows through the Internet, it may be difficult to

(i) process all the incoming data for an application program, (ii) compute sophisticated

functions on large pieces of inputs at the rate it is presented, and (iii) store temporarily or

archive data from multiple Websites. To handle these problems, there arises a need to filter

out some of these data so that the data can be processed, or stored with ease. This is the

need that motivates our data filtering work.

 2

 We notice that some of the Web data sources with structured data are in the tabular

format, i.e., with tuples and columns, in which columns are attributes. This approach

yields a static schema. In these structured data, the involved attributes and their

corresponding data types do not change, but they could have a high dynamic data rate. We

also notice that some data values of an attribute from a source Website S vary more often

than the values of other attributes in S, whereas others may remain nearly constant. Many

applications process this type of data in which all tuples are important, with some attribute

values being more “informative” than others. For example, among the desert weather data,

temperatures vary tremendously between day and night times, whereas precipitation may

be constant over weeks. However, among the weather data of coastal areas, temperatures

vary slightly over days, whereas precipitation might change rapidly within the same day.

These scenarios demand a new approach towards handling Web data with static schema by

filtering less-informative attribute data in tuples, instead of the entire tuples, since a

complete tuple may contain informative, as well as less-informative, data. In this paper, we

propose an attribute-based data filtering approach on Web data with static schema which

caters to this need, i.e., to detect and shed less-informative data and retain

more-informative data. In addition, due to the presence of a wide range of Web data, such

as weather, financial, medical, and traffic information, it is essential that any Web data

filtering approach be adaptive so that it can handle the diversity of Web data. Our data

filtering approach is unique, since it (i) chooses only the less-informative attributes from a

source Website to be filtered, (ii) updates the load shedding scheme in real-time according

to the data patterns in which rankings among attributes of a data source for choosing

less-informative attributes achieve a high degree of accuracy, and (iii) is adaptive, which

means it is applicable to any kinds of Web data.

 Besides determining the data filtering scheme of a source Website, we also propose

a data recovery method on filtered data by maintaining minimal amount of information

about the data filtered at the source Website with low storage overhead. This information is

used at a later time when filtered Web data are to be recovered. This occurs when the (user

of the) destination Website needs some attribute data that have been filtered at the source

 3

Website. To measure the high accuracy of our data recovery approach, we have conducted

experiments on different Websites and compared the actual data with the recovered data.

In addition, we have also conducted experiments on various components of our data

filtering approach to verify its accuracy.

 We proceed to present our results as follows. In Section 2, we discuss related

works in Web data filtering. In Section 3, we introduce our data filtering approach, along

with the proposed data recovery method. In Section 4, we include the experimental results

on our data filtering and recovery approach to measure the merits of the overall design. In

Section 5, we give a concluding remark.

2 Related Work

Many efforts have been made in the past to reduce less-informative data in structured and

semi-structured data sources. In SimSearcher [TL03], a preprocessing unit extracts all

common data patterns in a database. According to the user interest based on the user

feedback, the data regions with data patterns having low user interest are pruned out as

less-important database areas. SimSearcher, however, relies on user feedback and lacks

automated nature.

 Unlike SimSearcher, BirdsAnts [THA03] does not rely on any user feedback and is

designed to provide complex protein mass structured data packed into an easily

human-understandable form. Using a small amount of data, detailed information is

provided to the user, while the information content is packed as the amount of data

increases. The data packing is achieved by representing many cells of similar protein

values by a single cell. Since the discovery of similar cells is achieved using clustering

calculations, the discovery process of BirdsAnts is computationally expensive.

In [WVMA07], the authors propose a data filtering method applied to time series,

i.e., a data stream, which monitors the time series for a predefined pattern. The method

merges similar patterns together, which has the same effect as filtering redundant data as in

our data filtering approach. The similarity between patterns is computed by using the

Euclidean distance between two patterns. The authors also introduce a hierarchical

 4

wedge-based comparison approach, which merges large number of patterns into a small set

of wedges (with similar patterns being merged together) and then compares the set of

wedges against the subsequence in subsequent data stream. Based on this design, the

authors claim that monitoring of stream data at higher bandwidths becomes easier.

In [VKH07], the authors develop the Pairwise Attribute Noise Detection Algorithm

for detecting and filtering attribute noise, i.e., noisy attribute data, by learning the

relationships between the given attribute data or features. They examine pairs of attribute

data sequentially and the deviations of the second attribute from its mean, given the

discretized value of the first attribute. The deviation of the second attribute from its mean

represents a departure from expected behavior. If this behavior occurs often or is severe

enough compared with the remainder of the dataset, these specific instances are treated as

noisy.

In [CK07], a solution to the data summarization problem of transaction processing

with high compaction gain and low information loss is introduced. The summary of a given

set of transactions is obtained by clustering the transaction data using any standard

clustering algorithm, and each cluster is replaced by a representation which is its individual

summary. Predefined weights are used to calculate the distance between two data

transactions in the clustering algorithm, and this determines the number of clusters.

Although their approach works well with data that are repeated frequently in transactions,

it performs poorly when the data have outliers and less frequent patterns, since the outlying

transactions are forced to belong to some cluster and the presence of even a single outlying

transaction degrades the accuracy of the summary of the cluster.

Unlike our data filtering approach, none of the authors in [CK07, WVMA07,

VKH07] consider filtering less-informative attribute data, the usefulness of which has

already been explained.

 Another instance of identifying the most-informative attributes in a database is

found in the database alignment problem, which is the problem of aligning related

databases together. In [PPH05], the authors handle the database alignment problem by

using data-driven alignment. The key to their approach is to identify the most-informative

 5

data elements and then match data sources that contain these informative elements. To

identify the most-informative data elements, the authors use an information-theoretic

model; that is data elements that contain words related to the data source are considered

less-informative, whereas columns that contain words unrelated to the data source are

considered more-informative. For example, the words San Francisco are more related to a

data source containing San Francisco traffic information than the words Los Angeles, and

thus San Francisco is less informative than Los Angeles.

 In [FRPG01], the authors propose a tool called DELPHI for local similarity

searching in biological sequence databases. DELPHI first preprocesses a database by

extracting all common biological patterns. When a user searches this database, the

database searching unit uses the common patterns as filters to prune out less-important

database areas, leading to higher searching speed. Since DELPHI makes use of patterns in

the biological database data to identify database regions, Delphi is not scalable for any

databases such that there are no patterns in their data.

 [BK05], who identify the pattern of change for a Web page, analyze many

occurrences of a Web page p (after repeated processing) to define if, when, and where p has

changed. [BK05] identify the parts of p that frequently change and how the changes on the

same Web page are related to one another. This helps in breaking down a Web page into

change zones and creates change relations. The change zones on any structured data on a

Web page can also be identified, and the data within the change zones is considered to be

more informative. Since [BK05] need intensive training for every Web page to identify the

change zones, the approach in [BK05] lacks the dynamic nature.

 RELIEF [KR92] uses a straightforward filter-based approach to determine the set

of informative attributes in a database. Each attribute in a set is assigned a weight. If this

weight is greater than a threshold, then the attribute is considered relevant to the

application domain of the database; otherwise, it is dropped. Each weight is assigned

according to the relevance of a random sample of its instances to the predefined application

domain. Since RELIEF requires significant user assisted training to form the set of

informative attributes, it is not automated.

 6

 In [AD91], the authors propose a tool, called FOCUS, which identifies a subset of a

database features (attributes) that are sufficient to reconstruct a hypothesis that has been

found to be true for the original database. FOCUS, which tries to find the subset of features,

called MIN-FEATURES, that is sufficient to reconstruct the hypothesis using a training

data set, is designed to perform exhaustive search to determine the MIN-FEATURES.

Thus, MIN-FEATURES is the least number of features with which a consistent hypothesis

can be constructed. Due to the involvement of exhaustive search, FOCUS has a high

complexity, making it computationally very expensive.

 In [BM03, SB02], the authors propose solutions to identify approximately

duplicate records in databases by using character-based and vector-based textual similarity

measures among records to determine if two records are duplicates. However, the systems

incorporate domain specific knowledge to determine similar records, and require intensive

training. [ME97], on the other hand, handle the problem of approximate duplicate detec-

tion by detecting clusters of similar records. A pair of records is considered to be in the

same cluster if the minimum-edit distance to transform one record into the other record is

less than the threshold value. Unlike [BM03, SB02, ME97], [HS95] uses a sliding window

of fixed size to compare nearby records in a sorted database. Records that are found to be

similar can either be merged or eliminated.

 In [ACG02], the authors propose an algorithm for detecting duplicate tuples in hier-

archical databases. Two tuples are considered to be duplicates if the respective pair of

tuples in each relation of the hierarchy are duplicates. [ACG02] employ a straightforward

duplicate detection algorithm to independently determine sets of duplicate tuples at each

level of the hierarchy and then determine duplicate entries over the entire hierarchy. Never-

theless, the proposed method is designed for hierarchical databases, making it inapplicable

to non-hierarchical databases.

 The authors in [CGM05] propose a solution to detect and eliminate multiple

distinct records representing the same real-world entity. To detect duplicated records, the

authors suggest that entries that correspond to the same real-world object but have different

representation in the database tend to (1) have small distances from each other, referred to

 7

as compact set property, and to (2) have only a small number of other neighbors within a

small distance, referred to as sparse neighborhood property. These two properties

differentiate the duplicate elimination approach adopted in [CGM05] from standard

clustering approaches. Like most of the duplicate detection approaches, [CGM05] also

uses a distance-based approach to determine which records are close, which makes it prone

to false positives in the presence of unrelated words that are lexically close.

 In [BWL06], the authors introduce a framework for deleting duplicate data records

from RFID (Radio Frequency Identification) data streams. RFID data streams are

commonly used for tracking and monitoring physical objects in library checkin/checkout,

highway tolls, etc., which lead to the creation of duplicate records. [BWL06] suggest

retaining only the first (or the earliest) record within a sliding window and eliminating all

new records, which are treated as duplicates. Although this approach eliminates all

duplicates within a sliding window, it fails to eliminate duplicates that fall in different

sliding windows, which increases the number of false positives.

 WordNet [RSM94], which is a knowledge base with semantic knowledge, can be

applied for information filtering. WordNet presents a semantic similarity measure that can

be used for comparing two strings. The information in WordNet is organized around

groupings, called synsets, and each synset consists of a list of synonymous words. Even

though WordNet is widely used, its performance can deteriorate when the words are

relatively rare, due to the scarcity of data.

 In [BG04], the authors handle the problem of record linkage, which is the problem

of determining if two records refer to the same entity, by considering the contents of both

referencing and referenced tuples in order to make an accurate linkage decision. The ap-

proach can improve accuracy; however, in order to correctly identify all duplicates, it may

need to make multiple passes over the data, making it computationally expensive.

Even though SimSearcher, [BK05], RELIEF, and WordNet are different systems

with different design goals, they all require significant user assistance and training and thus

lack the automated nature. Although not requiring significant user assistance, BirdsAnts,

FOCUS, and [BG04] perform exhaustive searches and clustering, making them computa-

 8

tionally expensive. While [PPH05], [BM03], and [SB02] rely on domain specific

knowledge, DELPHI and [ACG02] lack scalability to non-biological and non-hierarchical

databases. Comparatively, the data filtering approach presented in this paper is dynamic

and automated, and does not impose high computational cost. Our data filtering approach

is scalable and is not domain dependent. In addition, neither existing works treats

duplicate/similar attributes as less-informative attributes, nor do they propose recovery

design for filtered data, which is a significant component of the proposed work in this

paper.

3 Our Data Filtering and Recovery Approach

In this section, we first present our data filtering strategy, which filters continuous data of

less-informative attributes within the information provided by (i.e., flowed from) a

particular source Website. We consider data segments, each of which can be viewed as the

newly created data set of the continuous data at a source Website to be processed. The

momentarily captured data are used for Web data processing.

With each incoming data segment of a source Website S, our data filtering

approach first identifies the less-informative attributes, i.e., attributes whose data vary less

when compared to the data of other attributes, in S. The major functions of our data

filtering method include (i) creating the data filtering scheme of S1, which enlists data to be

filtered from S, and (ii) maintaining the information of filtered data of S, which are used

during the data recovery process.

In the subsequent sections, we present the overall design of our data filtering and

recovery model. Our data filtering approach preprocesses all data values from a Website S

using moving averages to smoothen data values. Hereafter, preprocessed data are used to

compute/reevaluate the data filtering scheme of S, which comprises the designated

attributes of S and their data to be filtered. The data filtering scheme of S is then fed to the

data recovery model, which determines the minimal amount of filtered data at the source

Website for recovery purpose when the destination Website needs some attribute data that

1
A data filtering scheme comprises of the attributes and their corresponding data to be filtered.

 9

have been filtered at the source Website. During the recovery process, the source Website

forwards the filtered data, or their best “approximated” values, to the destination Website

to complete the recovery process.

3.1 Exponential moving average

Before the data filtering scheme can be determined from the data of a source Website S, we

first compute the Exponential Moving Average (EMA) [SSS00] of the data of each attribute

in the current data segment DS of S, which smoothens the variations of data in DS, the core

of the preprocessing step.

 Though the abrupt change in values of a particular attribute A in the current data

segment S does not really represent the data pattern of A on a regular, consistent basis, it

may cause other informative attributes being treated as less-informative (false positives)

and the real less-informative attributes as informative (false negatives). In order to (i)

smoothen the attribute data, (ii) suppress any short and sudden change in data, and (iii)

reduce the false positives and false negatives, EMA is used as a preprocessing step for

determining less-, as well as more-informative attributes in S, since EMAs attempt to tone

down the fluctuations to a smoothened trend so that distortions are reduced to a minimum.

 Because the most recent value in a list of values L is the newest value of L, it is used

along with other older values in L to calculate its EMA, and the older values in L are the

values which have already been used to calculate its previous EMAs. The EMA of a

particular data value, an, in L is defined as

 EMA(an) = (an − EMA(an−1)) × Multiplier + EMA(an−1) (1)

where EMA(an) (n ≥ 1) is the EMA for the most recent value an in L = a1, ..., an, and

Multiplier is the weight used in computing the EMA of the most recent value an. We

calibrate the value of the multiplier to 0.18 as shown in Figure 1, where the preprocessed

data with multiplier set to 0.15 are very close to the original data, and thus the preprocessed

data would not have been smoothened, whereas the preprocessed data with multiplier set to

0.2 and 0.25 are not close to the original data, creating a chance of losing the variation

 10

characteristics of the original data. The preprocessed data with multiplier set to 0.18 are not

too close to the original data, and after they are smoothened, they are still close enough to

retain the variation characteristics of the original data. Since EMA has the ability to stay

closer to the actual data value, it is an obvious choice for our preprocessing step to smooth

the data in a data segment. The EMA approach is called exponential because of the use of

the exponential moving averages, which considers the exponential allocation, rather than

equal allocation, of weights to the past values to smoothen the current value.

55

65

75

85

95

105

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Position of the tuple in the current data segment

Te
m

pe
ra

tu
re

Original Temperature Preprocessed Temperature (0.25) Preprocessed Temperature (0.2)
Preprocessed Temperature (0.18) Preprocessed Temperature (0.15)

(a) Preprocessing the Temperature data of http://weather.yahoo.com

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Position of the tuple in the current sliding w indow

La
st

 S
al

e

Original Last Sale Preprocessed Last Sale (0.25) Preprocessed Last Sale (0.2) Preprocessed Last Sale (0.18) Preprocessed Last Sale (0.15)

(b) Preprocessing the Last Sale data of http://quotes.nasdag.com/quot=nasdaq100

Figure 1: Preprocessing data in a weather and a stock exchange from their corresponding
Websites with data downloaded on September 13, 2005 with different multiplier values

 11

3.2 Data filtering scheme generation and reevaluation

There are two major design issues in data filtering scheme generation: (i) how much data

should be filtered, and (ii) which attributes should be filtered from a source Website.

3.2.1 Amount of data to be filtered

The amount of data to be filtered can be simply fed by the user or computed automatically.

We present one such automated process for computing the amount of data to be filtered

among numerous other choices.

According to various studies in computer networks, it is well-known that the

capacity of a channel depends on the noise and bandwidth of the channel. Based on the

Shannon theorem [Sha49], if data are transmitted at a rate R higher than the channel

capacity C, then data transmission errors and collisions occur exponentially, and no useful

information can be transmitted beyond C. To overcome these problems, R should be lower

than C. Thus, when R > C, attributes are filtered from the corresponding data source being

transmitted over the network (i.e., through the Internet), starting with filtering the

less-informative attributes in our data filtering approach. Depending on the sizes of the

different attributes, one or more less-informative attributes will be filtered so that R falls

below or is equal to C. Hence the rate at which data has to be filtered is

r = R − C. (2)

Example 1. Consider a channel with capacity C of 140 Kbps and an attempt to transmit

Web data with seven attributes at a transmission rate R of 184 Kbps. Assume that the sizes

of the attributes, starting from the least-informative attribute, are 16, 32, 32, 8, 64, 16, and

16 Kbps, respectively. Since R > C, the transmission would produce errors. To attain

error-free transmission, the amount of attribute data should be filtered using Equation 2 is

44 = (184 – 140) Kbps. To meet the required amount of attribute data to be filtered, the two

less-informative attributes with sizes 16 Kbps and 32 Kbps, i.e., 48 Kbps, are filtered. �

3.2.2 Attribute filtering using standard deviation

Having determined the amount of attribute data r (r ≥ 1) to be filtered from a data segment

 12

DS of a data source S, we must decide which attributes should be filtered from DS.

Standard deviation can be used as a measure to determine a ranking of attributes, which

applies to each data segment of S and the ranking is recomputed for each data segment.

 Standard deviation (SD for short) is a measure of the spread of a list of data values

(a data segment DS in our case) from the mean value. A large SD indicates that the

corresponding data points in DS are far from the mean, whereas a small SD indicates that

they are clustered closely around the mean. We conjecture that data values that are more

closely bound, i.e., have less variation, are “less-informative,” whereas values that are less

closely bound, i.e., have more variation, are “more-informative.” Since SD is a measure of

how closely bound data values in a list are, we apply SD to the data values of each attribute

A in DS to calculate how closely the data values of A are. The attributes in DS with the

lower SD are treated as less-informative attributes and are ranked higher, which are

candidates to be filtered. If the domains of different attributes cover significantly different

ranges of data values, the SD is applied to the attribute values that have been normalized;

e.g., values in each DS are normalized by using the highest value of their corresponding

attribute in DS, so that the SDs of all the attributes in DS become compatible.

3.2.3 Reevaluation of a data filtering scheme

It is required that the data filtering scheme of a source Website S be regularly reevaluated

because the SDs of different attributes in subsequent data segments of S may change,

causing the ranking among the attributes to change. A non-adaptive data filtering scheme

reevaluation algorithm reevaluates the data filtering scheme at regular intervals. One major

problem with using a non-adaptive reevaluation algorithm is that if the time interval is too

short, the source Website would be reevaluating the data filtering scheme too often, which

imposes the burden on the source Website in terms of computational time required for

reevaluation. However, if the time interval is too large, the source Website would not

reevaluate the data filtering scheme often enough, creating the risk of an obsolete data

filtering scheme being used for a long time. The proposed reevaluation algorithm in this

paper, i.e., Algorithm 1, resolves the time-interval problem, since Algorithm 1 is adaptive,

 13

which starts out with a very small reevaluation time interval, referred as the original time

interval. For the first time, Algorithm 1 reevaluates an existing data filtering scheme after

waiting for the original time interval, and then checks if the reevaluated (i.e., the newly

generated) data filtering scheme of the current data segment with smoothened data (due to

EMA preprocessing) is different (in terms of attributes to be filtered) from the previous data

filtering scheme (computed by using the previous data segment with smoothened data). If

the attributes to be filtered are the same, the time interval is doubled so that the reevaluation

is invoked after a longer time interval. If the attributes to be filtered are different, then (i)

the time interval is reset to the original time interval, since a change in the data filtering

scheme has just been detected and we anticipate changes in the data filtering scheme in

near future, and (ii) the data filtering scheme is also updated to be the modified data

filtering scheme with new attribute(s) and data to be filtered. The time interval grows in its

usual manner every time the anticipated change in the attributes to be filtered is proved

incorrect. In addition, every time the data filtering scheme is updated, a copy of the data

filtering scheme is sent to the destination Website. This practice informs the destination

site about what attributes, if any, are being filtered.

Algorithm 1. Data filtering scheme reevaluation

Input: (i) The set of tuples S in the current data segment, on which data filtering

has to be performed, and (ii) the current data filtering scheme C

Output: The (updated) data filtering scheme
1. Initialize time T:= current clock time; ∆t:= t:= 1 sec
2. Loop
 If current clock time = T + ∆t, then recompute the data filtering scheme using S

(i) If the recomputed data filtering scheme RS = C, then

∆t := 2 × ∆t

Else (a) ∆t := t

 (b) C:= RS

(ii) T := current clock time

 End Loop

 14

 Our adaptive data filtering scheme reevaluation algorithm enjoys a major

advantage over its non-adaptive counterpart, since the adaptive version notices the change

more accurately. Consider a data source in which attribute A is the less-informative

attribute during the first thirty seconds of every minute and attribute B is the

less-informative attribute during the last thirty seconds of every minute. Assume that one

attribute needs to be filtered, and a non-adaptive data filtering scheme reevaluation

algorithm E is invoked every minute, starting five seconds past each minute. Since A is the

less-informative attribute during the first thirty seconds of every minute, every time E is

invoked, A is found to be the less-informative attribute and is filtered, and the data filtering

scheme never changes. In such a scenario, E would fail to notice the change in the data

filtering scheme. However, if Algorithm 1 is used instead, every time Algorithm 1 is

invoked within the first thirty seconds of the current clock minute, it finds A as the

less-informative attribute, and it would double the current value of ∆t. Eventually ∆t would

reach a value such that the current clock time +∆t would fall within the last thirty seconds

of the current clock minute, resulting in B being detected as the less-informative attribute.

Thus our adaptive data filtering scheme reevaluation approach provides a more accurate

mechanism in detecting a change in a data filtering scheme.

3.3 Data segment size

Since the data filtering scheme is generated from the current data segment, there is a need

to identify the start and end of a data segment, which determines the data segment size.

Different segments of a data source Website S, which convey up-to-the-moment

information, determine the segment identifier (SID, for short), which is defined as either a

single attribute or a combination of attributes of S. The SID of S also serves as the unique

identifier in the recovery matrix of our data recovery approach where recovery information

of S are recorded and extracted. The SID values of S should follow a fixed-length repetitive

cycle of data in S, which consists of tuples from S such that the order of appearances of

various SID values in the tuples falls in the same cycle, and the number of tuples in each

fixed-length repetitive cycle of S is called the data segment length of S. The data segment

 15

length of S is treated as the size of each tuple-based data segment of S for data filtering and

data recovery purpose. Since the SID of S must be transmitted to the destination Website

and cannot be filtered as it is used for data recovery, the SID should be minimal, i.e., with

the fewest possible attributes that individually come with a segment length of

non-repetitive values in each data segment of S. In this section, we discuss a method in

determining the SID of S and thus the segment length of S.

The SID of S is detected during the training phase of S, which is carried out before

our data filtering system actually starts filtering data and retaining recovery information

from S. During the training phase of S, we analyze and evaluate all the data values for each

attribute in the training set of S. Each attribute in S individually follows a repetitive pattern

of their values from the set of replicated attributes (RepAs, for short) of S, and whenever a

replicated attribute is detected, its segment length is also recorded. The replicated attributes

in RepAs are partitioned into sets S1, S2, ..., Sn (n ≥ 1) such that each Si (1 ≤ i ≤ n) contains all

the attributes with the same segment length. Furthermore, all the attributes in each Si have a

one-to-one relationship with each other. We define a one-to-one relationship set, which is a

set E, such that the value of each attribute in E can uniquely identify the values of all the

other attributes in E; i.e., each attribute in E has a one-to-one relationship with every other

attribute in E. Thus the one-to-one relationship is simply the functional dependency

constraint in the RDBMS; i.e., A → B if and only if t1[A] = t2[A] ⇒ t1[B] = t2[B] for each t1,

t2 ∈ r, where r is the data segment in our data filtering approach that is currently being

processed. Since the replicated attributes in each Si have a one-to-one relationship with all

the other attributes in Si, only one attribute from each Si is needed to form (a part of) the

SID of S, and the segment length of each chosen attribute is used to compute the fixed

segment length of S.

 The replicated attributes in each one-to-one relationship set Si may have different

bit length; i.e., the numbers of bits occupied by the domain values of different attributes in

Si can be different. We choose (one of) the attribute(s) with the least bit length from each

one of S1, S2, ..., Sn, which guarantees that the chosen attributes to form the SID of S have

the minimum bit length among all the other possible combinations of replicated attributes,

 16

and thus the SID is minimal in size. The amount of computation required to identify the

SID of S is one time and does not impose a lot of burden on the source data Website. Once

identified, the destination Website can use the SID to determine the SID value of a filtered

tuple to be recovered.

 In finding RepAs of S, we compare every tuple, starting from the 2nd tuple, in the

training data set of S with the 1st tuple in the training data set, till we have found the first

repeated value of an attribute. The first repeated value of an attribute indicates a potential

repetition data segment of the attribute values. Assume that there are p (p ≥ 1) distinct

tuples in the training set, and p is sufficiently large, i.e., there are sufficient training data to

identify all the replicated attributes in S. Further assume that the first match in the

comparisons to find the repetition data segment of the values of any attribute A is found in

the jth (1 < j ≤ p) tuple and the 1st tuple. This discovery will be followed by the comparison

on the values of A in the j+1th tuple and the 2nd tuple to determine whether the two tuples

have the same value on A. If the values of A are the same, the comparison is followed by yet

another comparison between the attribute values of A in the j+2nd tuple and the 3rd tuple,

and so on till all the tuples in the training set are covered. If any one of these comparisons

fails, then A is not replicated. For every attribute A in S, a total of p comparisons for A

would have to be carried out. Assuming that there are q (q ≥ 1) attributes in S, discovering

the RepAs of S would require O(p× q) computations to find all the replicated attributes of S.

Example 2. Suppose a data Website S has attributes A1, A2, A3, and A4, and suppose RepAs

= {A1, A2, A3} such that Seglen(A1) = 3, Seglen(A2) = 3, and Seglen(A3) = 4. Partitioning the

attributes in RepAs into sets, with each set containing attributes of the same segment length,

yields sets S1 = {A1, A2} and S2 = {A3}. Assume that the bit lengths for attributes A1, A2, and

A3 are 4, 8, and 2 bytes, respectively. Thus, the SID of S is Min(S1) ∪ Min(S2) = Min({A1,

A2}) ∪ Min({A3}) = {A1} ∪ {A3} = {A1, A3}, and the segment length of S is

SegmentLength(S) = Seglen(A1) × Seglen(A3) = 3 × 4 = 12. �

The accuracy of our SID discovery method relies on the correctness of training set

data. If the attribute values in a training set data have errors, causing the loss of repetitions

 17

of attribute values, then the SID of the corresponding data of the source Website may not

be detected correctly. These errors are sometimes referred to as bit-errors, because the bit(s)

in a byte of a data value is (are) changed from a ‘0’ to ‘1’, or vice versa. One widely used

method to detect and correct these errors is the Hamming Code [Ham50], an error

correcting code, which is a widely accepted error detection technique in computer

networks; and it can be adopted by our SID discovery method to ensure that each training

data set is error free.

3.4 Recovering filtered data

As discussed earlier, when needed, less-informative attributes are filtered at the source

Website. It is possible that an end user at the destination Website is interested in some of

the attribute data filtered at the source Website. We present a synopsis recovery approach

to recover data at the destination Website.

 The basic idea behind our synopsis recovery approach is to store the minimal

amount of information on the filtered data in a matrix at the source Website before attribute

data are filtered. Since storing all the filtered values would require a significant amount of

memory/disk space and computational power at the source Website, one of the design

goals of the proposed synopsis recovery method is to minimize the storage and

computational power requirements.

 As mentioned before, we use the SID of a tuple for the recovery of the tuple. Our

data recovery process involves two major modules. The first module, Module 1, maintains

a synopsis matrix of the filtered data at the corresponding source Website S, whereas the

second module, Module 2, is the real recovery process when the destination Website

requests some filtered data from S, which requires S to extract (approximated) filtered data

values in its synopsis matrix in response. Here, we first introduce the concept of error

threshold value, which is the acceptable error rate in data recovery that dictates the amount

of filtered data to be stored in a synopsis matrix and can be determined by the channel

capacity or other constraints. (Note that we do not consider the processing capacities of the

source Website and the destination Website in determining the error threshold value, since

 18

we assume that the two sites have high computational power.)

 Along with the error threshold value, the criticality of the application domain of the

source data is also considered, since the error threshold value varies from one application

domain to another. For example, a patient information monitoring system would require

more accuracy in recovered data than a weather information monitoring system. The

synopsis matrix stores a value to be filtered only when the value has been changed more

than the error threshold value from what its last stored value was. Recovery data values are

stored in a 3-dimensional synopsis matrix, with one dimension corresponding to each

component: (i) the value of the unique identifier of a current tuple t, i.e., SID(t), (ii)

attribute A, i.e., t[A], to be filtered, and (iii) the timestamp for SID(t). A timestamp is

recorded in the synopsis matrix whenever a filtered data value is recorded, which could be

used to extract filtered data values from the synopsis matrix at a later point in time, which is

used in Module 2.

 Algorithm 2 is the synopsis recovery algorithm for Module 1. Every data value

before being filtered is compared with the most recent value of the same attribute stored in

the matrix. If the change, i.e., the difference between the most recent value mv stored in the

matrix and the value to be filtered, sv, is more than the error threshold value E, then sv is

stored in the matrix; otherwise, sv is not stored, i.e., sv is stored in the synopsis recovery

matrix only when (|mv − sv| / sv) × 100 > E.

Algorithm 2. Synopsis Recovery Algorithm

Input: (i) The set of tuples S in the current data segment from where attribute data are

to be filtered, (ii) attribute A to be filtered, where the value of A in tuple t is

denoted by t[A], (iii) SID(t), (iv) the error threshold value E, and (v) the synopsis

matrix, Synopsis

Output: The (updated) synopsis matrix, Synopsis

For each tuple t ∈ S

(a) mv := Synopsis[SID][A][Timestamp(SID)]

(b) sv := t[A]

 /* The change in the value to be filtered from the most recent value stored in the matrix

 19

 is greater than the error threshold */

(c) If (|mv − sv | / sv) × 100 > E, then /* Increase the timestamp and store the value to be

 filtered in the synopsis matrix */

(i) If Timestamp(SID) = null, then

 Timestamp(SID) := 0

 Else Timestamp(SID) := Timestamp(SID) + 1

 (ii) Synopsis[SID][A][Timestamp(SID)] := t[A]

 The correctness of our filtered data recovery approach is verified by experiments

that show the accuracy in recovering filtered data using the synopsis recovery approach to

store recovery data in the synopsis matrix. Preliminary experiments showed that high

recovery accuracy can be achieved at the cost of storing a very low percentage of the data

filtered as recovery data. We performed preliminary experiments on randomly chosen

weather and stock exchange source Websites to verify the gain of using the synopsis

recovery approach to maintain recovery data. Table 1 shows that, using our synopsis

recovery approach, we store much less filtered data, 1.11% - 19.44% (4.88% -51.11%,

respectively), of the original data with 90% - 99% data recovery accuracy for a weather

Website (stock exchange Website, respectively) in the synopsis recovery matrix as

recovery data.

 Weather Information Stock Exchange Information
90% 95% 98% 99% 90% 95% 98% 99%

Percentage of
filtered data to
be stored in the
synopsis matrix
as recovery data
for different data
segments

2 2 4 19 4 17 35 47
1 3 5 21 6 21 50 56
0 2 6 18 5 18 41 51
2 2 5 16 4 17 38 48
1 4 4 22 7 19 56 62
1 1 7 23 3 15 32 42
0 2 3 17 6 21 52 56
1 3 2 19 4 17 37 46
2 4 5 20 5 18 43 52

Average% 1.11 2.55 4.55 19.44 4.88 18.11 42.66 51.11

Table 1: Different data recovery accuracy ratios over nine experiments for the source
Web-site: (i) weather (www.yahoo.com/weather) retrieved on September 11, 2005 and (ii)
stock exchange (http://quotes.nasdaq.com/quote.dll?page=nasdaq100) retrieved on
September 13, 2005 with filtered data that were stored in the synopsis matrix

 20

3.4.1 Error threshold value

Our data recovery method applied to a source Website S must satisfy two criteria in order

to perform well: (i) the amount of data in S to be stored in its synopsis matrix should be low,

since we do not have infinite disk space for storage, and (ii) the error in recovered data, i.e.,

the recovery error rate, of S should be low. Considering the two tasks closely, these two

measures are inversely proportional to each other. When we attempt to decrease the

amount of synopsis data to be stored, the recovery error rate increases and thus suffers,

whereas when we attempt to improve the recovery error rate by decreasing it, the amount

of synopsis data to be stored would increase proportionally. The optimal performance can

be achieved by maintaining a balance between these two trade-offs, which vary from one

particular data application domain, i.e., data processed at a source Website, to another. For

example, in critical data application domains (such as medical information), a recovery

error rate of 10% may be too high (i.e., inadequate). On the other hand, in a less critical

data application domain (such as weather), a balance with higher recovery error rate at the

benefit of less amount of data to be stored in the synopsis matrix is acceptable. Here, we

introduce (i) the fixed point for a Web data source, (ii) the various categories that define the

criticality of the data source, and (iii) the category recovery error rate. The minimum of (i)

the fixed point for a data source S and (ii) the category recovery error rate of the

corresponding category with certain degree of criticality to where S belongs determines the

error threshold value of S.

3.4.2 The fixed point

We first consider the size of the synopsis data of a Web data source S. Based on our

observation, as the recovery error rate of S increases from 0% to 100%, the amount of

synopsis data of S decreases to a point P, beyond which any further increase in the recovery

error rate does not affect the amount of synopsis data; i.e., the amount of synopsis data

remains constant beyond P, which is referred as the fixed point of S, and is computed for S

only once. The existence of such a fixed point for S can be justified by virtue of the fact that

the variation in the values of a less-informative attribute A in S (to be filtered) is finite,

 21

which is further strengthened by the fact that since A is a less-informative attribute, it is

(one of) the least varying among the other attributes of S; i.e., the variation between the

values of A would be between 0% and x%, where x% is the percentage difference between

the minimum and the maximum value of A in a data segment of S. The amount of data to be

stored in the synopsis matrix ceases to decrease as the recovery error rate is greater than or

equal to x%. We determine the fixed point for a data segment by plotting a graph using the

training data of S, which captures the amount of synopsis data at each recovery error rate of

S, increasing from 0% to 100%.

Figure 2 shows the average amount of data to be stored in the synopsis matrix at

different recovery error rates using 10 experiments on each of the three different data

application domains: weather, stock exchange, and Internet traffic, with data downloaded

from these different Web data sources over a 2-hour period on October 25, 2005, which

were split into 10 sets to conduct the 10 experiments on each of the Web data sources. The

results from the 10 experiments were then averaged. The averages yield the potential

recovery error rates (i.e., fixed points) of 9.5%, 9.2%, and 20%, for weather, stock

exchange, and Internet traffic, respectively. The graphs in Figure 2 show that the amount of

data to be stored in each of the synopsis matrices becomes constant beyond the fixed point,

as anticipated.

3.4.3 Category recovery error rate

Although the fixed point approach can be adopted to determine the error threshold value of

a Web data source S automatically, it lacks the ability to incorporate the criticality of data

in S. Here, we propose an automated category recovery error rate detection mechanism on

S based on the attributes of S, which together with the fixed point approach determine the

error threshold value of S. The detection process is done only once, i.e., prior to processing

any data from S.

 The attributes of S are analyzed and automatically matched with the attributes of a

data application domain in each of the predefined categories, which include the Extremely

Critical, Very Critical, Moderately Critical, Low Critical, and Not Critical categories.

 22

Each of these categories is assigned a number of data application domains, such as the

medical information data and emergency response data in the Extremely Critical category,

and each category is associated with different predefined lists of attributes commonly

found in the data of the same nature that best defines the corresponding application domain.

We have predefined some of the commonly used data application domains in each category,

e.g., medical information, stock exchange, Internet traffic, weather, and population in the

Extremely Critical, Very Critical, Moderately Critical, Low Critical, and Not Critical cate-

gories, respectively. If the attribute names in a (new) Web data source S do not “match”

any predefined list of attributes of any one of the data application domains in any prede-

fined category, then S is assigned to the category others, which has a category recovery

error rate of “infinite.”

 (a) Weather (b) Stock exchange (c) Internet traffic

Figure 2: Average amount of 10 different data sets to be stored in the synopsis matrix at
different recovery error rates for different data sources, weather (http://weather.yahoo.com),
stock exchange (http://quotes.nasdaq.com/quote.dll?page=nasdaq100), and Internet traffic
(http://www.Internet traffi-creport.com) , extracted on October 25, 2005

 In matching the list L of attributes for a new Web data source with a predefined list

of attributes P, we adopt the Fuzzy set IR model in [GN06] to compute the degree of

similarity between L and P using the distance matrix [GN06], in which row and column

headings are words appearing in commonly used dictionaries. The distance matrix captures

the degrees of similarity (i.e., correlation factors) among different words, which was

generated using a set of 880,000 Wikipedia (http://wikipedia.org/) documents to compute

the frequency of co-occurrence and relative distance of each pair of words in each

Wikipedia document. Furthermore, we adopt the EQ function2, which is defined below, to

2 The two threshold values in EQ are adjusted empirically for the purpose of computing the equality between
any two lists of attribute names, and are presented in detail in Section 4.

 23

decide if any two lists of attributes should be treated as the same using the correlation

factors in the Sim function among the attributes, i.e., words, in the distance matrix.

 1 if MIN(Sim(Si, Sj), Sim(Sj, Si)) ≥ Permission Threshold ∧

EQ(Si, Sj) = |Sim(Si, Sj) - Sim(Sj, Si)| ≤ Variation Threshold (3)
 0 otherwise

where Si and Sj (i, j ≥ 1) are lists of attributes, and Sim(Si, Sj) is the degree of similarity

between the attributes in Si and the attributes in Sj.

 After detecting the category C that contains a list of attributes that should be treated

as (semantically) equal to the list of attributes in a new Web data source S, S is then

assigned to C. We conducted 10 different experiments on randomly chosen Web data

sources of stock exchange, weather, and Internet traffic application domains, which

demonstrate the accuracy of the Fuzzy set IR model approach in assigning various Web

data sources to categories, and the results showed 90% accuracy. (The 10% inaccuracy was

due to the false positives and false negatives in matching the [semantically the same]

attributes between two lists of attributes.)

 Note that the list of attributes in a Web data source is quite “narrow,” which means

that two Web data sources belonging to the same application domain often contain almost

(semantically) the same set of attribute names. For example, almost all data sources in the

weather application domain contain the (semantically the same) attributes location,

temperature, humidity, precipitation, sunrise, sunset, and wind, whereas precipitation and

rain have very high correlation factor and are treated as the same.

 Predefined with each of the first five categories is a category recovery error rate,

and the 6th category, i.e., “others,” has the category recovery error rate of infinite as

mentioned earlier. Each category recovery error rate of the first five categories is computed

empirically during the design of our data filtering approach, using the average fixed points

of various Web data sources in each category. The empirically determined category

recovery error rates of the first five categories are 1.67%, 4.7%, 4.81%, 13.5%, and 20.33%

for the Extremely Critical, Very Critical, Moderately Critical, Low Critical, and Not

Critical categories, respectively (see detailed discussion on the error rates in Section 4).

 24

Given (i) the fixed point of the new Web data source S that has been automatically detected

and (ii) the category recovery error rate of S, our data recovery approach assigns the error

threshold value of S as the lower of the two, since the fixed point and the category recovery

error rate are the maximum acceptable error rates in the recovered data for S. (Thus, if S

belongs to the others category, then the fixed point value of S is used as the error threshold

value of S.) Note that the fixed point value of S is often different from the category

recovery error rate of S because the former is computed for each new data source, whereas

the latter is the average of the fixed point values for a number of data application domains

(including the one for S) belonging to that category.

Example 3. Consider the categories for the data sources as shown in Figures 2(a), 2(b),

and 2(c), which are Low Critical, Very Critical, and Moderately Critical, respectively, with

category recovery error rates 13.5%, 4.7%, and 4.81%, respectively. Comparing the

category recovery error rates with the fixed point values, i.e., 9.5%, 9.2%, and 20%,

respectively for the Web data sources shown in Figures 2(a), 2(b), and 2(c), respectively,

the error threshold values for these Web data sources are 9.5%, 4.7%, and 4.81%,

respectively, i.e., the lower of their respective fixed points and their corresponding

category recovery error rates. �

4 Experimental Results

Our data filtering and recovery design was implemented in Java and tested on a

Windows/Linux PC with a 3.2 GHz processor, 3.25 GB RAM memory, and 150 GB of

hard disk space with Linux shell scripts running test scripts. Experiments were conducted

to verify the correctness of our data filtering and recovery approach in real time on the four

major modules: the (i) SID detection, which also verified our approach on configuring the

data segment size of a Web data source, in Section 4.1, (ii) error threshold value generation,

for which we verified the accuracy in predicting the error threshold value of a Web data

source, in Section 4.2, (iii) data filtering scheme (reevaluation) and ranking generation

approach, which tested the accuracy of choosing the less-informative attributes in a Web

data source to be filtered, in Section 4.3, and (iv) filtered data recovery, for which we

 25

verified the accuracy of recovering filtered data, in Section 4.4. In addition, we compare

our data filtering and recovery approach with existing ones in Section 4.5 to show the

merits of our work. Test and training data used in the experiments were extracted from

various Web data sources of different application domains: weather, stock exchange, and

Internet traffic, with the sizes of 15.6 GB, 21 GB, and 12 GB, respectively (as shown in

Table 2).

4.1 Experimental Results on SID Detection

If the attribute(s) of a training Web data source S chosen automatically as the SID of S has

(have) the same replicated values (in the same sequence) within each data segment of S,

then the accuracy of our SID detection approach is confirmed. Note that the data segment

size of S is also verified along with the detection of the SID of S, since the segment length

of the detected SID of S yields the corresponding data segment size. In verifying the

correctness of detecting SIDs, we used the first 10 MB of the data in Table 2 as the training

data and the remaining ones as test data. The experimental results are shown in Table 3.

 Since each test data set was large in size, which made manual examination on the

(correctly) detected SIDs infeasible, we verified that the detected SIDs are in fact the SIDs

of the corresponding data sources using scripts; in addition, we manually examined a

number of randomly selected SIDs that were detected automatically. Based on the results

as presented in Table 3, we conclude that the SID detection approach is 100% accurate.

4.2 Experimental Results on Error Threshold Value Detection

We show how to determine the permissible and variation threshold values of EQ in Section

4.2.1 and verify the accuracy in detecting the (i) fixed point and (ii) category recovery error

rate, which determine the error threshold value of a Web data source, in Section 4.2.2. Note

that the accuracy of EQ affects the accuracy of the category recovery error rate.

Data Source

On Each Data Set

Attributes of the Data Source
Size
(GB)

Number
of
Tuples

Sliding
Window
Size

Number
of
Sliding

Collected
On

 26

Windows

 Weather Information 15.6
http://weather.yahoo.com/ - Sets 1, 2, 3 Location, Temperature, Dew Point,

Barometer, Wind, Humidity, Sun
Rise, Visibility, Sun Set

2 28036790 75 373823 1-Mar-06

http://www.wunderground.com/ -
Sets 1, 2, 3

Location, Temperature, Dew Point,
Humidity, Wind, Pressure, Precipitation

1.2 37063068 500 74126 …

http://www.weather.com - Sets 1, 2, 3 Location, UV Index, Wind, Humidity,
 Pressure, Dew Point, Visibility

2 32819280 250 131277 …

Stock Exchange Information 21
http://quotes.nasdaq.com/quote.dll?
page=nasdaq100 - Sets 1, 2, 3

Symbol, Company Name, Last Sale,
Net Change, Share Volume, Nasdaq
100 Index, Percentage Change

3 52516326 100 525163 …

http://finance.indiamart.com
/markets/bse/ - Sets 1, 2, 3

Company Name, Last Price, Change,
Percentage Change, Market Cap, Weight

3 64860370 488 132910 …

http://www.channelnewsasia.com
/cna/finance/sg/stockmonitor.htm –
Sets 1, 2, 3

Stock, Buy, Sell, Last Done, Volume 1 33288126 1235 26953 29-Mar-06

Internet Traffic Information 12
http://www.Internettrafficreport.com –
Sets 1, 2, 3

Router Name, Current Index,
Response Time, Packet Loss, Minimum
Delay, Average Delay,
Maximum Delay

2 16332958 96 170134 1-Mar-06

http://average.miq.net/index.html -
Sets 1, 2, 3

Router, Response Time, Packet Loss,
Minimum Delay, Average Delay,
Maximum Delay

1 11689810 50 233796 …

http://watt.nlanr.net/active/maps/
ampmap_active.php - Sets 1, 2, 3 Site Name, Min, Mean, Max, StdDev, Loss

1 10866072 86 126349 …

Table 2: Web data sources of test/training data collected on March 1, 2006 (except for
http://www.channelnewsasia.com/cna/finance/sg/stockmonitor.htm, which was collected
on March 29, 2006)

Data Stream Source Training Data on Each Set Test Data on Each Set

 Size (MB) Detected CID Size (GB) Detected CID
Weather Information 90 15.51
http://weather.yahoo.com/ - Set 1, Set 2, Set 3 10 Location 1.99 Location

http://www.wunderground.com/ - Set 1, Set 2, Set 3 … … 1.19 …

http://www.weather.com - Set 1, Set 2, Set 3 … … 1.99 …

Stock Exchange Information 90 20.91
http://quotes.nasdaq.com/quote.dll?page=nasdaq100 - Set 1, Set 2,
Set 3

10
Company Name 2.99 Company Name

http://finance.indiamart.com/markets/bse/ - Set 1, Set 2, Set 3 … … … …

http://www.channelnewsasia.com/cna/
finance/sg/stockmonitor.htm - Set 1, Set 2, Set 3

…
Stock 0.99 Stock

Internet Traffic Information 90 11.91
http://www.Internettrafficreport.com - Set 1, Set 2, Set 3 10 Router Name 1.99 Router Name

http://average.miq.net/index.html - Set 1, Set 2, Set 3 … … 0.99 …

http://watt.nlanr.net/active/maps/ampmap_active.php - Set 1, Set 2,
Set 3

… … … …

 Table 3: Training and test data results for CID detection

4.2.1 Verification of the permissible and variation threshold values in EQ

In defining the threshold values in the EQ function, we empirically adjust the permissible

threshold value, which defines the minimum similarity between two lists of attributes S1 and

 27

S2, i.e., MIN(Sim(S1, S2), Sim(S2, S1)), and the variation threshold value, which defines the

maximum dissimilarity between S1 and S2, i.e., |Sim(S1, S2) − Sim(S2, S1)|. The threshold

values, along with the similarity values among the attributes of S1 and S2, are used by the EQ

function, which decides if S1 (i.e., a category C) should be assigned to a new data source S2,

which in turn determines the category recovery error rate CR for S2, using the list of

attributes S1 in C. The smaller of the CR and the fixed-point value of S2 yields the error

threshold value of S2.

 Using forty randomly chosen training Websites with the Internet traffic (8),

weather (12), and stock exchange (10) application domains in mind, which were collected

on April 8, 2006, along with other data sources in financial (3), network data loss (3), and

chemical properties (4), we determined the permissible and variation threshold values of

EQ. The last three application domains have attributes closely related to, but not the same

as stock exchange, Internet traffic, and weather, respectively; and these were included in

training our category assignment approach to demonstrate its accuracy in assigning

categories that have closely related, but different, lists of attributes.

 Suppose L1 is a set of lists of attributes such that each list belongs to one of the

randomly selected data application domains listed above. Further assume that L2 is a set

containing three predefined lists of attributes, one for each of the three application domains:

weather, stock exchange, and Internet traffic. Each list in L1 was compared with each list in

L2 to determine the permissible and variation threshold values that yield the least total

number of false positives and false negatives in matching3. The false positives and false

negatives were determined manually for each enumerated pair of lists of attributes, with

one list from L1 and another one from L2, which is in turn automatically categorized as

equal or different according to the EQ function. The total number of detected false

positives and negatives according to various permissible (variation, respectively) threshold

values are plotted in the graph as shown in Figure 3(a) (Figure 3(b), respectively), which

indicates that the ideal permissible (variation, respectively) threshold value is 0.29 (0.65,

respectively), when the least total number of false positives and negatives occur, instead of

3A false positive (false negative, respectively) occurs when two lists of attributes that are different but are
termed as equal (are equal but are termed as different, respectively).

 28

the “intersect” point, i.e., 0.28 (0.49, respectively), which has a greater number of false

positives and negatives.

 (a) Permissible threshold values (b) Variation threshold values

Figure 3: Determining the permissible and variation threshold values in the EQ function
using (training) data in forty randomly chosen source data Websites

 The list of predefined attributes for each of the three application domains, i.e.,

weather, stock exchange, and Internet traffic, was generated by including all the attributes

that occur in more than 80% of Web data attributes belonged to the same application

domain, as shown in Table 2. We verified the accuracy of the permissible and variation

threshold values detected in Figures 3(a) and 3(b) using a new test set of forty randomly

chosen data Websites and the three application domains that we have been considering in

mind. Out of the forty randomly selected test Websites, 37 were correctly categorized with

zero false positive and 3 false negatives, an accuracy rate of 92.5%, which justifies the

accuracy of the EQ threshold values and the comprehensiveness of the lists of predefined

attribute names for their corresponding application domains, which can easily be extended

to other application domains.

4.2.2 Verification of the error threshold value generation method

To verify our error threshold value generation approach partially using the EQ function for

Web data sources, we conducted experiments using (i) training data, which were used to

determine the fixed point values of the three different application domains considered in

Section 4.2.1, along with the new population application domain, which were collected on

May 12, 2006, and (ii) the randomly chosen consecutive data segments from test data,

which evaluated the accuracy of the fixed point values of the corresponding Web data

 29

sources generated by the training data. We observed that the fixed points determined by

using the training and test data set are close. The deviation, which shows the differences

between the fixed point values computed by using the training and randomly chosen test

data, calculated as |(FixedPointTestData - FixedPointTrainingData)| / FixedPointTestData,

ranges from 0% to 8.94%.

 Recall that the fixed point value of data source S achieves the balance between the

data recovery accuracy and the amount of recovery information to be stored in the synopsis

matrix of S. According to the low deviation, i.e., between 0% to 8.94%, with an average of

3.84%, we conclude that our fixed point value detection approach works adequately4.

4.3 Experimental Results on Data Filtering Scheme Generation

We justify the accuracy of our less-informative attribute detection approach in Section

4.3.1 and assert the correctness of our data filtering scheme generation and reevaluation

approach in Section 4.3.2.

4.3.1 Verifying the Accuracy of Detecting Less-Informative Attributes

To verify the accuracy of our approach to determining less-informative attributes in each

data segment, i.e., the ranking of attributes in each data segment, of a Web data source,

which determines the attributes to be filtered, we performed experiments on the test data of

various data sources using SDs (since the detection of less-informative attributes is always

computed in real-time using real source data) and verified that detected less-informative

attributes are indeed less varying than other attributes in a data source.

Figures 4(a), 4(b), and 4(c) show the SD (rankings) for different attributes of stock

exchange, weather, and Internet traffic test data sources, respectively, except the SID

attributes, i.e., “Company Name,” “Location,” and “Router Name” respectively, which

cannot be filtered for data recovery purpose. The attributes with the highest ranking (i.e.,

the lowest SD) are “Weight,” “Sun Set,” and “Minimum Delay,” respectively, which are

4 Details of this experiment are not included in this paper due to the page-limit constraint; however, the
details can be found in Section 4.2.1 of [AHU06].

 30

exactly the less-informative attributes of the corresponding data sources, i.e., matching the

ones examined manually. Such high accuracy is achieved because SD is mathematically

sound and is a widely accepted concept in statistics for detecting the variations in the

values of a data set.

 (a) Stock (b) Weather (c) Internet Traffic

Figure 4: Experimental results generated by using various Web data source test data, stock
exchange (http://finance.indiamart.com/markets/bse/), weather (http://weather.yahoo.com/), and
Internet traffic (http://www.Internettrafficreport.com) downloaded on March 1, 2006 for
detecting the less-informative attribute(s)

4.3.2 Verification of the Correctness of the Data Filtering Scheme Generation and
Reevaluation Approach

Our data filtering approach uses an adaptive data filtering scheme (which is reevaluated at

various time intervals) that defines the less-informative attribute(s) to be filtered, and the

data filtering scheme is generated in real-time on real source data, and not on training data.

The verification of the data filtering scheme involves verifying the correctness of the

reevaluation of the data filtering scheme in between the various time intervals. We

manually determined each less-informative attribute A for each randomly chosen data

segment of a Web data source (100 data segments for each application domain chosen from

the data shown in Table 2) and compare A to the automatically detected less-informative

attributes of various data segments of the same Web data source generated by our data

filtering approach. Each match is called a hit, whereas each mismatch is called a miss. We

observe that the misses occur when the ranking of the attributes in a data source changes in

between two consecutive reevaluations of the data filtering scheme, which is not reflected

 31

in (i.e., integrated into) the currently adopted data filtering scheme after the change has

occurred and before the data filtering scheme is reevaluated. This scenario occurs when the

time interval between two subsequent reevaluations of the data filtering scheme is

sometimes larger than the time interval between changes in the ranking of the attributes of

a data source. These misses could be minimized by decreasing the time interval between

two subsequent reevaluations of the data filtering scheme, which would in turn increase the

workload on the system. The decrease in the time interval can be achieved by replacing ‘2’

in Step 2(i) of Algorithm 1 with a value less than 2.

 According to Table 4, the data filtering scheme has an average accuracy, or average

number of hits, of 94.3%, whereas the average number of misses is 5.7%, a high accuracy.

 We have also conducted experiments to verify the ability of our data filtering

approach in determining the number of attributes (and their corresponding data items) to be

filtered at each of the different data (transmission) rates, i.e., 60, 90, and 120 Kbps, with

three different channel capacities, i.e., 72, 98, and 132 Kbps. According to Table 5, the

number of attributes to be filtered decreases as the channel capacity increases, and vice

versa, while the data rate remains constant. Also, we notice that no attributes are dropped

when the data rate is lower than the channel capacity, as expected.

Data Source
(Sets S1, S2, S3)

No. of Hits No. of Misses
S1 S2 S3 S1 S2 S3

Weather Information
http://weather.yahoo.com/ 94 94 93 6 6 7
http://www.wunderground.com/ 95 94 95 5 6 5
http://www.weather.com 96 96 96 4 4 4
Stock Exchange Information
http://quotes.nasdaq.com/quote.dll?page=nasdaq100 94 95 95 6 5 5
http://finance.indiamart.com/markets/bse/ 95 95 95 5 5 5
http://www.channelnewsasia.com/cna/¯nance/sg/
stockmonitor.htm 93 94 93 7 6 7
Internet Traffic Information
http://www.Internettrafficreport.com 94 95 95 6 5 5
http://average.miq.net/index.html 92 93 93 8 7 7
http://watt.nlanr.net/active/maps/ampmap 95 94 94 5 6 6
Average % 94.3 5.7

Table 4: Experimental results of testing our data filtering scheme generation and
reevaluation approach with an average number of hits of 94.3%and misses of 5.7%

 32

Data Source D C N C N C N
Weather Information
http://weather.yahoo.com/ - Set 1 60 72 0 98 0 132 0
 Set 2 90 … 2 … 0 … …
 Set 3 120 … 4 … 2 … …
http://www.wunderground.com/ - Set 1 60 … 0 … 0 … …
 Set 2 90 … 2 … 0 … …
 Set 3 120 … 3 … 2 … …
http://www.weather.com – Set 1 60 … 0 … 0 … …
 Set 2 90 … 2 … 0 … …
 Set 3 120 … 3 … 2 … …
Stock Exchange Information
http://quotes.nasdaq.com/
quote.dll?page=nasdaq100 - Set 1 60

…
0

…
0

… …

 Set 2 90 … 2 … 0 … …
 Set 3 120 … 3 … 2 … …
http://finance.indiamart.com/
markets/bse/ - Set 1 60

…
0

…
0

… …

 Set 2 90 … 2 … 0 … …
 Set 3 120 … 3 … 2 … …
http://www.channelnewsasia.com/cna/
Finance/sg/stockmonitor.htm - Set 1 60

…
0

…
0

… …

 Set 2 90 … 1 … 0 … …
 Set 3 120 … 2 … 1 … …
Internet Traffic Information
http://www.Internettraffi
creport.com - Set 1 60

…
0

…
0

… …

 Set 2 90 … 2 … 0 … …
 Set 3 120 … 3 … 2 … …
http://average.miq.net/index.html - Set 1 60 … 0 … 0 … …
 Set 2 90 … 2 … 0 … …
 Set 3 120 … 3 … 2 … …
http://watt.nlanr.net/active/maps/
ampmap_active.php - Set 1 60

…
0

…
0

… …

 Set 2 90 … 2 … 0 … …
 Set 3 120 … 3 … 2 … …

 (D)ata transmission Rate (Kbps); (C)hannel Capacity (Kbps); (N)umber of Attributes to be filtered

Table 5: Experimental results for showing the number of attributes to be filtered with
changes in data (transmission) rate and channel capacity

4.4 Experimental Results on Recovering Filtered Data

We have verified the correctness of our data recovery approach by (i) filtering data from

test data (since data recovery is carried out in real-time on source data), (ii) recovering the

filtered data values, and (iii) graphically comparing the recovered data values to the

original data values. The results of the experiments on data recovery on three different

 33

application domains using 2 GB, 3 GB, and 2 GB of data, respectively, which are portions

of the data in Table 2, are shown in Table 6, which lists attribute values that were not

recovered from the synopsis matrix of the three Web data sources. The data filtering

schemes for the three data sources are {Minimum Delay}, {Percentage Change}, and {Sun

Set}, respectively. Table 7, which includes error threshold values of various application

domains that are different from the ones shown in Example 3, summarizes the experiments

conducted on our data recovery approach.

Recall that when there is an attempt to recover a filtered value that was stored in the

corresponding synopsis recovery matrix, the recovered value has no error; otherwise, an

error occurs, which has the error rate value less than the error threshold value, since if this

is not the case, then the filtered data value would have been stored in the synopsis recovery

matrix. Hence, our data recovery approach would have low error value in the recovered

data if the corresponding error threshold value were low. We claim that our filtered data

recovery method achieves high accuracy in recovering filtered data, i.e., low error

percentage in the recovered data, which is in the range of 0.37% and 9.83% with an average

of 4.36%5 (as shown in Table 7), at low information storage cost, i.e., percentage of the

filtered data to be stored in the synopsis matrix, with an average of 2.2×10−4%, as shown in

Table 7. The processing times and memory usage for the synopsis matrix have been found

to be insignificant.

5 5Note that the error in recovered data is the complement of recovery accuracy.

 34

Internet Traffic Stock Information Weather Information
Original
Values

Recovered
Values

Original
Values

Recovered
Values

Original
Values

Recovered
Values

3.979 4.761 0.3 0.297 7.06 6.991

2.666 2.382 0.71 0.716 6.79 7.004

2.659 3.148 -0.04 -0.04 7.06 7.243

2.648 3 0.02 0.02 7.32 7.539

2.663 2.97 0.14 0.141 6.22 6.398

2.655 3.123 0.04 0.04 7.22 7.187

2.650 2.757 -0.1 -0.101 6.49 6.595

2.663 2.871 0.45 0.452 6.41 6.373

2.648 3.002 0.37 0.372 7.16 7.435

2.662 2.9 0.18 0.181 6.22 6.476

2.649 2.386 1.19 1.202 6.03 5.927

2.641 2.402 -0.06 -0.061 6.24 6.366

Table 6: Filtered data values that were not stored in the synopsis matrix for an Internet
traffic (http://www.Internettrafficreport.com), a stock exchange (http://quotes.nasdaq.
com/quote.dll?page=nasdaq100), and a weather (http://weather.yahoo.com/) data sources

Data Stream Source

Data
Size
(GB)

Error
Threshold
Value

Data
recovery
Accuracy
(%)

Error
%

% of Shed
data Stored

http://www.internettrafficreport.com 2 20 90.17 9.83 1.71×10-4
http://quotes.nasdaq.com/quote.dll?
page=nasdaq100 3 1.3 99.63 0.37 1.73×10-4
http://weather.yahoo.com/ 2 4.5 97.12 2.88 3.2×10-4
Average 2.3 8.6 95.64 4.36 2.2×10-4

Table 7: Summary of the experiments conducted on the filtered data recovery approach

4.5 Experimental Comparisons of Our Data Filtering and Recovery Approach

In this section, we provide experimental comparisons of our data filtering approach with

some of the closely related works. As discussed in Section 2, [BWL06] accomplishes

redundant data removal by retaining only the first (or the earliest) record within a sliding

window and eliminating all new records, which are treated as duplicates.

We compared the method proposed in [BWL06] with our data filtering approach

using the Internet traffic test data, which come with eight attributes. The amount of data to

be filtered was set at 25%, and thus the ‘Minimum Delay’ and ‘Average Delay’, which are

the two least informative attributes out of the eight, are filtered out using our data filtering

approach. For each original attribute value that was filtered, we computed an estimated

 35

value used for measuring the data loss. (Estimated value is the most recent non-filtered

value of the affected attribute with the same SID value.) Table 8 presents the data loss for

some of the filtered values, along with the cumulative data loss, which is 0.3% using our

data filtering approach. Furthermore, we applied the redundant data removal method

proposed in [BWL06] on the same test data described above. According to [BWL06], in

order to achieve a 25% data filtering, we should retain the first three records, i.e., tuples,

and filter every fourth tuple within a data segment. Since complete tuples were filtered out,

we measured the data loss for each eliminated attribute. Table 8 shows the data losses for

each attribute, six in total of the Internet traffic application domain, along with the

cumulative data loss, which is 38.75%, which is much higher than the cumulative data loss

using our data filtering approach.

The reason behind the difference in the data loss is that our data filtering approach

filters less-informative attributes, instead of complete tuples, which may include

informative, as well as, less-informative attributes, as filtered by [BWL06].

Our Data Filtering Approach
Minimum Delay Average Delay
Original Estimated Data Original Estimated Data
Value Value Loss (%) Value Value Loss (%)
3.97 3.98 0.35 3.97 3.98 0.34
2.66 2.67 0.51 2.66 2.67 0.51
2.65 2.66 0.47 2.65 2.66 0.47
2.64 2.65 0.26 2.64 2.65 0.26
2.67 2.67 0.06 2.66 2.66 0.06
2.67 2.66 0.36 2.68 2.66 0.36
: : : : : :
: : : : : :
 0.30 0.30
Cumulative Data Loss = 0.30%
[BWL06] Data Filtering Approach
Current Index Response Time Packet Loss
Original Estimated Data Original Estimated Data Original Estimated Data
Value Value Loss (%) Value Value Loss (%) Value Value Loss (%)
87.49 87.40 0.1 123.23 123.67 0.35 0.02 0.93 7311.39

88.53 88.56 0.05 110.59 110.21 0.35 0.66 0.78 17.33

88.88 88.15 0.83 111.87 111.96 0.08 0.90 0.46 48.78

0.65 0.07 89.04 0.84 0.6 27.94 100.9 100.95 0.05

87.59 87.44 0.17 125.31 125.85 0.43 0.52 0.87 66.13

88.77 88.11 0.75 111.71 111.32 0.36 0.82 0.94 14.08

 36

: : : : : : : : :

: : : : : : : : :

 7.74 17.14 206.68
Minimum Delay Average Delay Maximum Delay
Original Estimated Data Original Estimated Data Original Estimated Data
Value Value Loss (%) Value Value Loss (%) Value Value Loss (%)
2.64 2.67 0.92 2.64 2.67 0.91 2.65 2.68 0.92

2.66 2.66 0.11 2.66 2.66 0.11 2.67 2.67 0.11

2.67 2.66 0.44 2.67 2.66 0.44 2.68 2.66 0.49

5.31 5.31 0.03 5.31 5.31 0.03 5.33 5.33 0.03

2.66 2.66 0.34 2.66 2.66 0.34 2.67 2.68 0.34

2.67 2.67 0.11 2.66 2.67 0.11 2.67 2.68 0.12

: : : : : : : : :

 0.31 0.31 0.31
Cumulative Data Loss = 38.75%

Table 8: Comparisons of our data filtering approach and the data filtering approach
presented in [BWL06] using Set 1 of the Internet traffic test data in Table 2.

 In [BDM04], the authors propose the usage of aggregate values to compensate for

data lost caused by load shedding on stream data. We compared the method proposed in

[BDM04] with our data recovery scheme using the Internet traffic and the Yahoo Weather

information test data in Table 2 for recovering the ‘Minimum Delay’ and ‘Sun Set’

attribute values, respectively. For each original attribute value that is recovered, we

compute the error in the recovered value using (i) our data recovery scheme and (ii) the

data recovery approach described in [BDM04]. Table 9 shows the error rates in the

recovered data, which is 4.54% using our approach, and 7.55% using the approach in

[BDM04]. The error rate in recovered attribute values using our approach is computed as

(V – R1)/V, and the error rate using the approach described in [BDM04] is computed as (V –

R2)/V, where V is the original attribute value before filtering, R1 is the recovered attribute

value using our filtered data recovery approach, and R2 is the recovered attribute value

using the approach described in [BDM04].

The reason behind the difference in the recovered data accuracy is that our data

recovery approach uses the intelligent synopsis based approach, which stores the actual or

nearly actual filtered value, whereas the approach employed in [BDM04] uses an aggregate

value to compensate for data lost by filtering.

 37

Web data source

Error percentage using our
data recovery approach

Error percentage using the data
recovery approach in [BDM04]

http://www.internettrafficreport.com 6.83 8.5
http://weather.yahoo.com/ 2.25 6.6
Average 4.54 7.55

Table 9: Comparisons of our data recovery approach and the data recovery approach
presented in [BDM06] using Internet traffic Set 1 and weather Set 1 test data as shown in
Table 2.

5 Conclusions

In this paper we have proposed a dynamic data filtering and recovery approach for solving

the excessive amount of data transmitted on the Internet. Our data filtering and recovery

approach (i) detects and filters less-informative attribute(s) from a source Website, which

reduces the information loss by retaining more-informative data from the source Website,

and (ii) includes a unique data recovery method with low storage overhead and high

accuracy in recovering filtered Web data.

 We have conducted experiments to verify (i) the correctness of our less-informative

attribute data filtering approach, with a 100% accuracy in choosing the less-informative

attributes of a source Website to be filtered, (ii) the correctness of our data filtering scheme

generation and reevaluation, with a 94.3% accuracy rate in generating and reevaluating a

data filtering scheme, and (iii) the accuracy of our data recovery approach, with 90.2%,

99.6%, and 97.1% success rates in recovering data in Internet traffic, stock exchange, and

weather Web data, respectively, with an average data recovery accuracy of 95.6%.

 Our data filtering approach (i) is dynamic in nature, since it is reevaluated in

real-time, and (ii) is applicable to any kind of Web data with a static schema. In addition,

the criticality of predefined category of data in a source Website S is computed

automatically in defining the error threshold value of S, which facilitates automatic

detection of the error threshold value of S. Furthermore, our data recovery approach is also

adaptive, since it stores filtered data in a synopsis matrix of S whenever the change in the

value to be filtered and the previous value stored in the synopsis matrix is greater than the

error threshold value.

 38

Although our data filtering and recovery approach is capable of handling numerical

attribute data while detecting the less-informative attributes with high accuracy, the SD

based approach for determining less-informative attributes and SIDs can be further

enhanced so that it can handle non-numerical data by converting them into their ASCII

equivalences. In addition, if the predefined lists of attributes for the various criticality

categories used to detect the criticality category to which the Web data belongs is

incomplete, this can affect our ability to detect the category recovery error rate accurately.

Use of adaptive predefined lists should solve this problem, where the predefined lists are

updated every time Web data are detected to belong to their category, by including similar

or new attributes contained in the Web data.

Acknowledgements

We are thankful to the referees for their constructive comments, based on which revisions

were made to further enhance the content, presentation, and quality of the paper.

References
[ACG02] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating Fuzzy Duplicates

in Data Warehouses. In Proceedings of the 28th International Conference on
Very Large Databases, pages 586–597, 2002.

[AD91] H. Almuallim and T. Dietterich. Learning with Many Irrelevant Features. In
Proceedings of the Ninth National Conference on Artificial Intelligence, pages
547–552, 1991.

[AHU06] A. Ahuja. A Dynamic Attribute-Based Load-Shedding and Data Recovery
Scheme for Data Stream Management Systems. Masters Thesis, Computer
Science Dept., Brigham Young University, 2006.

[BDM04] B. Babcock, M. Datar, and R. Motwani. Load Shedding for Aggregation
Queries over Data Streams. In Proceedings of the 20th International
Conference on Data Engineering (ICDE'04), pages 350-361, 2004.

[BG04] I. Bhattacharya and L. Getoor. Iterative Record Linkage for Cleaning and

 39

Integration. In Proceedings of the 9th ACM SIGMOD workshop on Research
Issues in Data Mining and Knowledge Discovery, pages 11–18, 2004.

[BK05] C. Bouras and A. Konidaris. Estimating and Eliminating Redundant Data
Transfers over the Web: A Fragment Based Approach. International Journal
of Communication Systems, 18(2):119–142, 2005.

[BM03] M. Bilenko and R.J. Mooney. Adaptive Duplicate Detection Using Learnable
String Similarity Measures. In Proceedings of the International Conference on
Knowledge Discover and Data Mining (KDD), pages 39–48, 2003.

[BWL06] Y. Bai, F. Wang, and P. Liu. Efficiently Filtering RFID Data Streams. In
Proceedings of the First International VLDB Workshop on Clean Databases
(CleanDB’06), 2006.

[CGM05] S. Chaudhuri, V. Ganti, and R. Motwani. Robust Identification of Fuzzy
Duplicates. In Proceedings of the 21st International Conference on Data
Engineering (ICDE’05), pages 865–876, 2005.

[CK07] V. Chandola and V. Kumar. Summarization – Compressing Data into an

Informative Representation. Knowledge and Information Systems: 12(3),
355-378, August 2007.

[FRPG01] A. Floratos, I. Rigoutsos, L. Parida, and Y. Gao. DELPHI: A Pattern-Based
Method for Detecting Sequence Similarity. IBM Journal of Research and De-
velopment, 45(3/4):455–474, May/July 2001.

[GN06] I. Garcia and Y.-K. Ng. Eliminating Redundant and Less-Informative RSS
News Articles Based on Word Similarity and a Fuzzy Equivalence Relation. In
Proceedings of the 18th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI-2006), pages 465–473, November 2006.

[Ham50] R.W. Hamming. Error Detecting and Error Correcting Codes. Bell System
Technical Journal, 29:147–160, 1950.

[HS95] M.A. Hernandez and S.J. Stolfo. The Merge/Purge Problem for Large
Databases. In Proceedings of the 1995 ACM SIGMOD International Confer-
ence on Management of Data, pages 127–138, 1995.

 40

 [KR92] K. Kira and L.A. Rendell. A Practical Approach to Feature Selection. In
Proceedings of the Ninth International Workshop on Machine Learning
(ML92), pages 249–256, 1992.

[ME97] A.E. Monge and C. Elkan. An Efficient Domain-Independent Algorithm for
Detecting Approximately Duplicate Database Records. In Proceedings of the
SIGMOD 1997 Workshop on Research Issues on Data Mining and Knowledge
Discovery, pages 23–29, 1997.

[PPH05] P. Pantel, A. Philpot, and E. Hovy. An Information Theoretic Model for
Database Alignment. In Proceedings of the 17th International Conference on
Scientific and Statistical Database Management, pages 14–23, 2005.

[RSM94] R. Richardson, A.F. Smeaton, and J. Murphy. Using WordNet as a Knowledge
 Base for Measuring Semantic Similarity between Words. In Proceedings of
 AICS conference, pages 179–192, 1994.

[SB02] S. Sarawagi and A. Bhamidipaty. Interactive Deduplication Using Active
Learning. In Proceedings of the 8th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), pages 269–278, 2002.

[Sha49] C.E. Shannon. The Mathematical Theory of Information. University of Illinois
 Press, 1949. (Reprinted 1998).

[SSS00] M.R. Spiegel, J.J. Schiller, and R.A. Srinivasan. Schaum’s Outline of
Probability and Statistics. McGraw-Hill, 2000.

[THA03] M. Tobita, K. Horiuchi, and K. Araki. BirdsAnts: Bringing Informative Rules
from a Database System, Aimed at Novel Targets Search. In Genome
Informatics 14, pages 286–287, 2003.

[TL03] T.-H. Tsai and S.-Y. Lee. Simsearcher: A Local Similarity Search Engine for
 Biological Sequence Databases. In Proceedings of the International Symposium
 on Multimedia Software Engineering (ISMSE’03), pages 305–312, 2003.

[VKH07] J.D. Van Hulse, T.M. Khoshgoftaar, and H. Huang. The Pairwise Attribute

Noise Detection Algorithm. Knowledge and Information Systems: 11(2),
171-190, February 2007.

 41

[WVMA07]L. Wei, E. Keogh, H. Van Herle, A. Mafra-Neto, and R.J. Abbott. Efficient
Query Filtering for Streaming Time Series with Applications to
Semisupervised Learning of Time Series Classifiers. Knowledge and
Information Systems: 11(3), 313-344, April 2007.

	Brigham Young University
	BYU ScholarsArchive
	2009-03-01

	A Dynamic Attribute-Based Data Filtering and Recovery Scheme for Web Information Processing
	Amit Ahuja
	Yiu-Kai D. Ng
	Original Publication Citation
	BYU ScholarsArchive Citation

	Microsoft Word - filter-revision-V3.doc

