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Abstract 

Web data being transmitted over a network channel on the Internet with exces-
sive amount of data causes data processing problems, which include 
selectively choosing useful information to be retained for various data 
applications. In this paper, we present an approach for filtering 
less-informative attribute data from a source Website. A scheme for filtering 
attributes, instead of tuples (records), from a Website becomes imperative, 
since filtering a complete tuple would lead to filtering some informative, as 
well as less-informative, attribute data in the tuple. Since filtered data at the 
source Website may be of interest to the user at the destination Website, we 
design a data recovery approach that maintains the minimal amount of 
information for data recovery purpose while imposing minimal overhead for 
data recovery at the source Website. Our data filtering and recovery approach 
(i) handles a wide range of Web data in different application domains (such as 
weather, stock exchanges, Internet traffic, etc.), (ii) is dynamic in nature, since 
each filtering scheme adjusts the amount of data to be filtered as needed, and 
(iii) is adaptive, which is appealing in an ever-changing Internet environment. 

1 Introduction 

In recent years we have seen tremendous change in the way data are transferred over the 

Internet. As the huge amount of Web data flows through the Internet,  it may be difficult to 

(i) process all the incoming data for an application program, (ii) compute sophisticated 

functions on large pieces of inputs at the rate it is presented, and (iii) store temporarily or 

archive data from multiple Websites. To handle these problems, there arises a need to filter 

out some of these data so that the data can be processed, or stored with ease. This is the 

need that motivates our data filtering work.  
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 We notice that some of the Web data sources with structured data are in the tabular 

format, i.e., with tuples and columns, in which columns are attributes.  This approach 

yields a static schema. In these structured data, the involved attributes and their 

corresponding data types do not change, but they could have a high dynamic data rate. We 

also notice that some data values of an attribute from a source Website S vary more often 

than the values of other attributes in S, whereas others may remain nearly constant. Many 

applications process this type of data in which all tuples are important, with some attribute 

values being more “informative” than others. For example, among the desert weather data, 

temperatures vary tremendously between day and night times, whereas precipitation may 

be constant over weeks. However, among the weather data of coastal areas, temperatures 

vary slightly over days, whereas precipitation might change rapidly within the same day. 

These scenarios demand a new approach towards handling Web data with static schema by 

filtering less-informative attribute data in tuples, instead of the entire tuples, since a 

complete tuple may contain informative, as well as less-informative, data. In this paper, we 

propose an attribute-based data filtering approach on Web data with static schema which 

caters to this need, i.e., to detect and shed less-informative data and retain 

more-informative data. In addition, due to the presence of a wide range of Web data, such 

as weather, financial, medical, and traffic information, it is essential that any Web data 

filtering approach be adaptive so that it can handle the diversity of Web data. Our data 

filtering approach is unique, since it (i) chooses only the less-informative attributes from a 

source Website to be filtered, (ii) updates the load shedding scheme in real-time according 

to the data patterns in which rankings among attributes of a data source for choosing 

less-informative attributes achieve a high degree of accuracy, and (iii) is adaptive, which 

means it is applicable to any kinds of Web data.  

 Besides determining the data filtering scheme of a source Website, we also propose 

a data recovery method on filtered data by maintaining minimal amount of information 

about the data filtered at the source Website with low storage overhead. This information is 

used at a later time when filtered Web data are to be recovered.  This occurs when the (user 

of the) destination Website needs some attribute data that have been filtered at the source 
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Website. To measure the high accuracy of our data recovery approach, we have conducted 

experiments on different Websites and compared the actual data with the recovered data.  

In addition, we have also conducted experiments on various components of our data 

filtering approach to verify its accuracy. 

 We proceed to present our results as follows.  In Section 2, we discuss related 

works in Web data filtering.  In Section 3, we introduce our data filtering approach, along 

with the proposed data recovery method.  In Section 4, we include the experimental results 

on our data filtering and recovery approach to measure the merits of the overall design. In 

Section 5, we give a concluding remark. 
 

2  Related Work 

Many efforts have been made in the past to reduce less-informative data in structured and 

semi-structured data sources. In SimSearcher [TL03], a preprocessing unit extracts all 

common data patterns in a database. According to the user interest based on the user 

feedback, the data regions with data patterns having low user interest are pruned out as 

less-important database areas. SimSearcher, however, relies on user feedback and lacks 

automated nature.  

 Unlike SimSearcher, BirdsAnts [THA03] does not rely on any user feedback and is 

designed to provide complex protein mass structured data packed into an easily 

human-understandable form. Using a small amount of data, detailed information is 

provided to the user, while the information content is packed as the amount of data 

increases. The data packing is achieved by representing many cells of similar protein 

values by a single cell. Since the discovery of similar cells is achieved using clustering 

calculations, the discovery process of BirdsAnts is computationally expensive.  

In [WVMA07], the authors propose a data filtering method applied to time series, 

i.e., a data stream, which monitors the time series for a predefined pattern. The method 

merges similar patterns together, which has the same effect as filtering redundant data as in 

our data filtering approach. The similarity between patterns is computed by using the 

Euclidean distance between two patterns. The authors also introduce a hierarchical 
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wedge-based comparison approach, which merges large number of patterns into a small set 

of wedges (with similar patterns being merged together) and then compares the set of 

wedges against the subsequence in subsequent data stream. Based on this design, the 

authors claim that monitoring of stream data at higher bandwidths becomes easier. 

In [VKH07], the authors develop the Pairwise Attribute Noise Detection Algorithm 

for detecting and filtering attribute noise, i.e., noisy attribute data, by learning the 

relationships between the given attribute data or features. They examine pairs of attribute 

data sequentially and the deviations of the second attribute from its mean, given the 

discretized value of the first attribute. The deviation of the second attribute from its mean 

represents a departure from expected behavior. If this behavior occurs often or is severe 

enough compared with the remainder of the dataset, these specific instances are treated as 

noisy. 

In [CK07], a solution to the data summarization problem of transaction processing 

with high compaction gain and low information loss is introduced. The summary of a given 

set of transactions is obtained by clustering the transaction data using any standard 

clustering algorithm, and each cluster is replaced by a representation which is its individual 

summary. Predefined weights are used to calculate the distance between two data 

transactions in the clustering algorithm, and this determines the number of clusters. 

Although their approach works well with data that are repeated frequently in transactions, 

it performs poorly when the data have outliers and less frequent patterns, since the outlying 

transactions are forced to belong to some cluster and the presence of even a single outlying 

transaction degrades the accuracy of the summary of the cluster.  

Unlike our data filtering approach, none of the authors in [CK07, WVMA07, 

VKH07] consider filtering less-informative attribute data, the usefulness of which has 

already been explained. 

 Another instance of identifying the most-informative attributes in a database is 

found in the database alignment problem, which is the problem of aligning related 

databases together. In [PPH05], the authors handle the database alignment problem by 

using data-driven alignment. The key to their approach is to identify the most-informative 
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data elements and then match data sources that contain these informative elements. To 

identify the most-informative data elements, the authors use an information-theoretic 

model; that is data elements that contain words related to the data source are considered 

less-informative, whereas columns that contain words unrelated to the data source are 

considered more-informative. For example, the words San Francisco are more related to a 

data source containing San Francisco traffic information than the words Los Angeles, and 

thus San Francisco is less informative than Los Angeles.  

 In [FRPG01], the authors propose a tool called DELPHI for local similarity 

searching in biological sequence databases. DELPHI first preprocesses a database by 

extracting all common biological patterns. When a user searches this database, the 

database searching unit uses the common patterns as filters to prune out less-important 

database areas, leading to higher searching speed. Since DELPHI makes use of patterns in 

the biological database data to identify database regions, Delphi is not scalable for any 

databases such that there are no patterns in their data. 

 [BK05], who identify the pattern of change for a Web page, analyze many 

occurrences of a Web page p (after repeated processing) to define if, when, and where p has 

changed. [BK05] identify the parts of p that frequently change and how the changes on the 

same Web page are related to one another. This helps in breaking down a Web page into 

change zones and creates change relations.  The change zones on any structured data on a 

Web page can also be identified, and the data within the change zones is considered to be 

more informative. Since [BK05] need intensive training for every Web page to identify the 

change zones, the approach in [BK05] lacks the dynamic nature.  

 RELIEF [KR92] uses a straightforward filter-based approach to determine the set 

of informative attributes in a database. Each attribute in a set is assigned a weight. If this 

weight is greater than a threshold, then the attribute is considered relevant to the 

application domain of the database; otherwise, it is dropped. Each weight is assigned 

according to the relevance of a random sample of its instances to the predefined application 

domain. Since RELIEF requires significant user assisted training to form the set of 

informative attributes, it is not automated.  
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 In [AD91], the authors propose a tool, called FOCUS, which identifies a subset of a 

database features (attributes) that are sufficient to reconstruct a hypothesis that has been 

found to be true for the original database. FOCUS, which tries to find the subset of features, 

called MIN-FEATURES, that is sufficient to reconstruct the hypothesis using a training 

data set, is designed to perform exhaustive search to determine the MIN-FEATURES. 

Thus, MIN-FEATURES is the least number of features with which a consistent hypothesis 

can be constructed. Due to the involvement of exhaustive search, FOCUS has a high 

complexity, making it computationally very expensive.  

 In [BM03, SB02], the authors propose solutions to identify approximately 

duplicate records in databases by using character-based and vector-based textual similarity 

measures among records to determine if two records are duplicates. However, the systems 

incorporate domain specific knowledge to determine similar records, and require intensive 

training. [ME97], on the other hand, handle the problem of approximate duplicate detec-

tion by detecting clusters of similar records. A pair of records is considered to be in the 

same cluster if the minimum-edit distance to transform one record into the other record is 

less than the threshold value. Unlike [BM03, SB02, ME97], [HS95] uses a sliding window 

of fixed size to compare nearby records in a sorted database. Records that are found to be 

similar can either be merged or eliminated.  

 In [ACG02], the authors propose an algorithm for detecting duplicate tuples in hier-

archical databases. Two tuples are considered to be duplicates if the respective pair of 

tuples in each relation of the hierarchy are duplicates. [ACG02] employ a straightforward 

duplicate detection algorithm to independently determine sets of duplicate tuples at each 

level of the hierarchy and then determine duplicate entries over the entire hierarchy. Never-

theless, the proposed method is designed for hierarchical databases, making it inapplicable 

to non-hierarchical databases.  

 The authors in [CGM05] propose a solution to detect and eliminate multiple 

distinct records representing the same real-world entity. To detect duplicated records, the 

authors suggest that entries that correspond to the same real-world object but have different 

representation in the database tend to (1) have small distances from each other, referred to 
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as compact set property, and to (2) have only a small number of other neighbors within a 

small distance, referred to as sparse neighborhood property. These two properties 

differentiate the duplicate elimination approach adopted in [CGM05] from standard 

clustering approaches. Like most of the duplicate detection approaches, [CGM05] also 

uses a distance-based approach to determine which records are close, which makes it prone 

to false positives in the presence of unrelated words that are lexically close.  

 In [BWL06], the authors introduce a framework for deleting duplicate data records 

from RFID (Radio Frequency Identification) data streams. RFID data streams are 

commonly used for tracking and monitoring physical objects in library checkin/checkout, 

highway tolls, etc., which lead to the creation of duplicate records. [BWL06] suggest 

retaining only the first (or the earliest) record within a sliding window and eliminating all 

new records, which are treated as duplicates. Although this approach eliminates all 

duplicates within a sliding window, it fails to eliminate duplicates that fall in different 

sliding windows, which increases the number of false positives.  

 WordNet [RSM94], which is a knowledge base with semantic knowledge, can be 

applied for information filtering. WordNet presents a semantic similarity measure that can 

be used for comparing two strings. The information in WordNet is organized around 

groupings, called synsets, and each synset consists of a list of synonymous words. Even 

though WordNet is widely used, its performance can deteriorate when the words are 

relatively rare, due to the scarcity of data.  

 In [BG04], the authors handle the problem of record linkage, which is the problem 

of determining if two records refer to the same entity, by considering the contents of both 

referencing and referenced tuples in order to make an accurate linkage decision. The ap-

proach can improve accuracy; however, in order to correctly identify all duplicates, it may 

need to make multiple passes over the data, making it computationally expensive.  

Even though SimSearcher, [BK05], RELIEF, and WordNet are different systems 

with different design goals, they all require significant user assistance and training and thus 

lack the automated nature. Although not requiring significant user assistance, BirdsAnts, 

FOCUS, and [BG04] perform exhaustive searches and clustering, making them computa-
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tionally expensive. While [PPH05], [BM03], and [SB02] rely on domain specific 

knowledge, DELPHI and [ACG02] lack scalability to non-biological and non-hierarchical 

databases. Comparatively, the data filtering approach presented in this paper is dynamic 

and automated, and does not impose high computational cost. Our data filtering approach 

is scalable and is not domain dependent. In addition, neither existing works treats 

duplicate/similar attributes as less-informative attributes, nor do they propose recovery 

design for filtered data, which is a significant component of the proposed work in this 

paper. 
 

3 Our Data Filtering and Recovery Approach 

In this section, we first present our data filtering strategy, which filters continuous data of 

less-informative attributes within the information provided by (i.e., flowed from) a 

particular source Website. We consider data segments, each of which can be viewed as the 

newly created data set of the continuous data at a source Website to be processed. The 

momentarily captured data are used for Web data processing.  

With each incoming data segment of a source Website S, our data filtering 

approach first identifies the less-informative attributes, i.e., attributes whose data vary less 

when compared to the data of other attributes, in S. The major functions of our data 

filtering method include (i) creating the data filtering scheme of S1, which enlists data to be 

filtered from S, and (ii) maintaining the information of filtered data of S, which are used 

during the data recovery process. 

In the subsequent sections, we present the overall design of our data filtering and 

recovery model. Our data filtering approach preprocesses all data values from a Website S 

using moving averages to smoothen data values. Hereafter, preprocessed data are used to 

compute/reevaluate the data filtering scheme of S, which comprises the designated 

attributes of S and their data to be filtered. The data filtering scheme of S is then fed to the 

data recovery model, which determines the minimal amount of filtered data at the source 

Website for recovery purpose when the destination Website needs some attribute data that 

                                                 
1
A data filtering scheme comprises of the attributes and their corresponding data to be filtered. 
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have been filtered at the source Website. During the recovery process, the source Website 

forwards the filtered data, or their best “approximated” values, to the destination Website 

to complete the recovery process. 
 
 
3.1 Exponential moving average 

Before the data filtering scheme can be determined from the data of a source Website S, we 

first compute the Exponential Moving Average (EMA) [SSS00] of the data of each attribute 

in the current data segment DS of S, which smoothens the variations of data in DS, the core 

of the preprocessing step. 

 Though the abrupt change in values of a particular attribute A in the current data 

segment S does not really represent the data pattern of A on a regular, consistent basis, it 

may cause other informative attributes being treated as less-informative (false positives) 

and the real less-informative attributes as informative (false negatives). In order to (i) 

smoothen the attribute data, (ii) suppress any short and sudden change in data, and (iii) 

reduce the false positives and false negatives, EMA is used as a preprocessing step for 

determining less-, as well as more-informative attributes in S, since EMAs attempt to tone 

down the fluctuations to a smoothened trend so that distortions are reduced to a minimum.  

 Because the most recent value in a list of values L is the newest value of L, it is used 

along with other older values in L to calculate its EMA, and the older values in L are the 

values which have already been used to calculate its previous EMAs. The EMA of a 

particular data value, an, in L is defined as  

                    EMA(an) = (an − EMA(an−1)) × Multiplier + EMA(an−1)                              (1) 

where EMA(an) (n ≥ 1) is the EMA for the most recent value an in L = a1, ..., an, and 

Multiplier is the weight used in computing the EMA of the most recent value an. We 

calibrate the value of the multiplier to 0.18 as shown in Figure 1, where the preprocessed 

data with multiplier set to 0.15 are very close to the original data, and thus the preprocessed 

data would not have been smoothened, whereas the preprocessed data with multiplier set to 

0.2 and 0.25 are not close to the original data, creating a chance of losing the variation 
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characteristics of the original data. The preprocessed data with multiplier set to 0.18 are not 

too close to the original data, and after they are smoothened, they are still close enough to 

retain the variation characteristics of the original data. Since EMA has the ability to stay 

closer to the actual data value, it is an obvious choice for our preprocessing step to smooth 

the data in a data segment. The EMA approach is called exponential because of the use of 

the exponential moving averages, which considers the exponential allocation, rather than 

equal allocation, of weights to the past values to smoothen the current value. 
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3.2 Data filtering scheme generation and reevaluation 

There are two major design issues in data filtering scheme generation: (i) how much data 

should be filtered, and (ii) which attributes should be filtered from a source Website.  

3.2.1 Amount of data to be filtered  

The amount of data to be filtered can be simply fed by the user or computed automatically. 

We present one such automated process for computing the amount of data to be filtered 

among numerous other choices. 

According to various studies in computer networks, it is well-known that the 

capacity of a channel depends on the noise and bandwidth of the channel. Based on the 

Shannon theorem [Sha49], if data are transmitted at a rate R higher than the channel 

capacity C, then data transmission errors and collisions occur exponentially, and no useful 

information can be transmitted beyond C. To overcome these problems, R should be lower 

than C. Thus, when R > C, attributes are filtered from the corresponding data source being 

transmitted over the network (i.e., through the Internet), starting with filtering the 

less-informative attributes in our data filtering approach. Depending on the sizes of the 

different attributes, one or more less-informative attributes will be filtered so that R falls 

below or is equal to C. Hence the rate at which data has to be filtered is  

r = R − C.                                                      (2)  

Example 1.  Consider a channel with capacity C of 140 Kbps and an attempt to transmit 

Web data with seven attributes at a transmission rate R of 184 Kbps. Assume that the sizes 

of the attributes, starting from the least-informative attribute, are 16, 32, 32, 8, 64, 16, and 

16 Kbps, respectively. Since R > C, the transmission would produce errors. To attain 

error-free transmission, the amount of attribute data should be filtered using Equation 2 is 

44 = (184 – 140) Kbps. To meet the required amount of attribute data to be filtered, the two 

less-informative attributes with sizes 16 Kbps and 32 Kbps, i.e., 48 Kbps, are filtered.  � 
 

3.2.2 Attribute filtering using standard deviation 

Having determined the amount of attribute data r (r ≥ 1) to be filtered from a data segment 



 12

DS of a data source S, we must decide which attributes should be filtered from DS. 

Standard deviation can be used as a measure to determine a ranking of attributes, which 

applies to each data segment of S and the ranking is recomputed for each data segment.  

 Standard deviation (SD for short) is a measure of the spread of a list of data values 

(a data segment DS in our case) from the mean value. A large SD indicates that the 

corresponding data points in DS are far from the mean, whereas a small SD indicates that 

they are clustered closely around the mean. We conjecture that data values that are more 

closely bound, i.e., have less variation, are “less-informative,” whereas values that are less 

closely bound, i.e., have more variation, are “more-informative.” Since SD is a measure of 

how closely bound data values in a list are, we apply SD to the data values of each attribute 

A in DS to calculate how closely the data values of A are. The attributes in DS with the 

lower SD are treated as less-informative attributes and are ranked higher, which are 

candidates to be filtered. If the domains of different attributes cover significantly different 

ranges of data values, the SD is applied to the attribute values that have been normalized; 

e.g., values in each DS are normalized by using the highest value of their corresponding 

attribute in DS, so that the SDs of all the attributes in DS become compatible. 
 

3.2.3 Reevaluation of a data filtering scheme 

It is required that the data filtering scheme of a source Website S be regularly reevaluated 

because the SDs of different attributes in subsequent data segments of S may change, 

causing the ranking among the attributes to change. A non-adaptive data filtering scheme 

reevaluation algorithm reevaluates the data filtering scheme at regular intervals. One major 

problem with using a non-adaptive reevaluation algorithm is that if the time interval is too 

short, the source Website would be reevaluating the data filtering scheme too often, which 

imposes the burden on the source Website in terms of computational time required for 

reevaluation. However, if the time interval is too large, the source Website would not 

reevaluate the data filtering scheme often enough, creating the risk of an obsolete data 

filtering scheme being used for a long time. The proposed reevaluation algorithm in this 

paper, i.e., Algorithm 1, resolves the time-interval problem, since Algorithm 1 is adaptive, 
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which starts out with a very small reevaluation time interval, referred as the original time 

interval. For the first time, Algorithm 1 reevaluates an existing data filtering scheme after 

waiting for the original time interval, and then checks if the reevaluated (i.e., the newly 

generated) data filtering scheme of the current data segment with smoothened data (due to 

EMA preprocessing) is different (in terms of attributes to be filtered) from the previous data 

filtering scheme (computed by using the previous data segment with smoothened data). If 

the attributes to be filtered are the same, the time interval is doubled so that the reevaluation 

is invoked after a longer time interval. If the attributes to be filtered are different, then (i) 

the time interval is reset to the original time interval, since a change in the data filtering 

scheme has just been detected and we anticipate changes in the data filtering scheme in 

near future, and (ii) the data filtering scheme is also updated to be the modified data 

filtering scheme with new attribute(s) and data to be filtered. The time interval grows in its 

usual manner every time the anticipated change in the attributes to be filtered is proved 

incorrect. In addition, every time the data filtering scheme is updated, a copy of the data 

filtering scheme is sent to the destination Website. This practice informs the destination 

site about what attributes, if any, are being filtered. 
 

Algorithm 1. Data filtering scheme reevaluation  

Input: (i) The set of tuples S in the current data segment, on which data filtering 

has to be performed, and (ii) the current data filtering scheme C 

Output: The (updated) data filtering scheme  
1. Initialize time T:= current clock time; ∆t:= t:= 1 sec  
2. Loop  
     If current clock time = T + ∆t, then recompute the data filtering scheme using S 

(i) If the recomputed data filtering scheme RS = C, then  

∆t := 2 × ∆t 

Else (a) ∆t := t 

        (b)  C:= RS 

(ii) T := current clock time 

 End Loop 
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 Our adaptive data filtering scheme reevaluation algorithm enjoys a major 

advantage over its non-adaptive counterpart, since the adaptive version notices the change 

more accurately. Consider a data source in which attribute A is the less-informative 

attribute during the first thirty seconds of every minute and attribute B is the 

less-informative attribute during the last thirty seconds of every minute. Assume that one 

attribute needs to be filtered, and a non-adaptive data filtering scheme reevaluation 

algorithm E is invoked every minute, starting five seconds past each minute. Since A is the 

less-informative attribute during the first thirty seconds of every minute, every time E is 

invoked, A is found to be the less-informative attribute and is filtered, and the data filtering 

scheme never changes. In such a scenario, E would fail to notice the change in the data 

filtering scheme. However, if Algorithm 1 is used instead, every time Algorithm 1 is 

invoked within the first thirty seconds of the current clock minute, it finds A as the 

less-informative attribute, and it would double the current value of ∆t. Eventually ∆t would 

reach a value such that the current clock time +∆t would fall within the last thirty seconds 

of the current clock minute, resulting in B being detected as the less-informative attribute. 

Thus our adaptive data filtering scheme reevaluation approach provides a more accurate 

mechanism in detecting a change in a data filtering scheme. 

 

3.3 Data segment size 

Since the data filtering scheme is generated from the current data segment, there is a need 

to identify the start and end of a data segment, which determines the data segment size. 

Different segments of a data source Website S, which convey up-to-the-moment 

information, determine the segment identifier (SID, for short), which is defined as either a 

single attribute or a combination of attributes of S. The SID of S also serves as the unique 

identifier in the recovery matrix of our data recovery approach where recovery information 

of S are recorded and extracted. The SID values of S should follow a fixed-length repetitive 

cycle of data in S, which consists of tuples from S such that the order of appearances of 

various SID values in the tuples falls in the same cycle, and the number of tuples in each 

fixed-length repetitive cycle of S is called the data segment length of S. The data segment 
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length of S is treated as the size of each tuple-based data segment of S for data filtering and 

data recovery purpose. Since the SID of S must be transmitted to the destination Website 

and cannot be filtered as it is used for data recovery, the SID should be minimal, i.e., with 

the fewest possible attributes that individually come with a segment length of 

non-repetitive values in each data segment of S. In this section, we discuss a method in 

determining the SID of S and thus the segment length of S.  

The SID of S is detected during the training phase of S, which is carried out before 

our data filtering system actually starts filtering data and retaining recovery information 

from S. During the training phase of S, we analyze and evaluate all the data values for each 

attribute in the training set of S. Each attribute in S individually follows a repetitive pattern 

of their values from the set of replicated attributes (RepAs, for short) of S, and whenever a 

replicated attribute is detected, its segment length is also recorded. The replicated attributes 

in RepAs are partitioned into sets S1, S2, ..., Sn (n ≥ 1) such that each Si (1 ≤ i ≤ n) contains all 

the attributes with the same segment length. Furthermore, all the attributes in each Si have a 

one-to-one relationship with each other. We define a one-to-one relationship set, which is a 

set E, such that the value of each attribute in E can uniquely identify the values of all the 

other attributes in E; i.e., each attribute in E has a one-to-one relationship with every other 

attribute in E. Thus the one-to-one relationship is simply the functional dependency 

constraint in the RDBMS; i.e., A → B if and only if t1[A] = t2[A] ⇒ t1[B] = t2[B] for each t1, 

t2 ∈ r, where r is the data segment in our data filtering approach that is currently being 

processed. Since the replicated attributes in each Si have a one-to-one relationship with all 

the other attributes in Si, only one attribute from each Si is needed to form (a part of) the 

SID of S, and the segment length of each chosen attribute is used to compute the fixed 

segment length of S.  

 The replicated attributes in each one-to-one relationship set Si may have different 

bit length; i.e., the numbers of bits occupied by the domain values of different attributes in 

Si can be different. We choose (one of) the attribute(s) with the least bit length from each 

one of S1, S2, ..., Sn, which guarantees that the chosen attributes to form the SID of S have 

the minimum bit length among all the other possible combinations of replicated attributes, 
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and thus the SID is minimal in size. The amount of computation required to identify the 

SID of S is one time and does not impose a lot of burden on the source data Website. Once 

identified, the destination Website can use the SID to determine the SID value of a filtered 

tuple to be recovered.  

 In finding RepAs of S, we compare every tuple, starting from the 2nd tuple, in the 

training data set of S with the 1st tuple in the training data set, till we have found the first 

repeated value of an attribute. The first repeated value of an attribute indicates a potential 

repetition data segment of the attribute values. Assume that there are p (p ≥ 1) distinct 

tuples in the training set, and p is sufficiently large, i.e., there are sufficient training data to 

identify all the replicated attributes in S. Further assume that the first match in the 

comparisons to find the repetition data segment of the values of any attribute A is found in 

the jth (1 < j ≤ p) tuple and the 1st tuple. This discovery will be followed by the comparison 

on the values of A in the j+1th tuple and the 2nd tuple to determine whether the two tuples 

have the same value on A. If the values of A are the same, the comparison is followed by yet 

another comparison between the attribute values of A in the j+2nd tuple and the 3rd tuple, 

and so on till all the tuples in the training set are covered. If any one of these comparisons 

fails, then A is not replicated. For every attribute A in S, a total of p comparisons for A 

would have to be carried out. Assuming that there are q (q ≥ 1) attributes in S, discovering 

the RepAs of S would require O(p× q) computations to find all the replicated attributes of S.  

Example 2. Suppose a data Website S has attributes A1, A2, A3, and A4, and suppose RepAs 

= {A1, A2, A3} such that Seglen(A1) = 3, Seglen(A2) = 3, and Seglen(A3) = 4.  Partitioning the 

attributes in RepAs into sets, with each set containing attributes of the same segment length, 

yields sets S1 = {A1, A2} and S2  = {A3}. Assume that the bit lengths for attributes A1, A2, and 

A3 are 4, 8, and 2 bytes, respectively. Thus, the SID of S is Min(S1) ∪ Min(S2) = Min({A1, 

A2}) ∪ Min({A3}) = {A1} ∪ {A3} = {A1, A3}, and the segment length of S is 

SegmentLength(S) = Seglen(A1) × Seglen(A3) = 3 × 4 = 12. � 

The accuracy of our SID discovery method relies on the correctness of training set 

data. If the attribute values in a training set data have errors, causing the loss of repetitions 
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of attribute values, then the SID of the corresponding data of the source Website may not 

be detected correctly. These errors are sometimes referred to as bit-errors, because the bit(s) 

in a byte of a data value is (are) changed from a ‘0’ to ‘1’, or vice versa. One widely used 

method to detect and correct these errors is the Hamming Code [Ham50], an error 

correcting code, which is a widely accepted error detection technique in computer 

networks; and it can be adopted by our SID discovery method to ensure that each training 

data set is error free. 

 
3.4 Recovering filtered data 

As discussed earlier, when needed, less-informative attributes are filtered at the source 

Website. It is possible that an end user at the destination Website is interested in some of 

the attribute data filtered at the source Website. We present a synopsis recovery approach 

to recover data at the destination Website.  

 The basic idea behind our synopsis recovery approach is to store the minimal 

amount of information on the filtered data in a matrix at the source Website before attribute 

data are filtered. Since storing all the filtered values would require a significant amount of 

memory/disk space and computational power at the source Website, one of the design 

goals of the proposed synopsis recovery method is to minimize the storage and 

computational power requirements.  

 As mentioned before, we use the SID of a tuple for the recovery of the tuple. Our 

data recovery process involves two major modules. The first module, Module 1, maintains 

a synopsis matrix of the filtered data at the corresponding source Website S, whereas the 

second module, Module 2, is the real recovery process when the destination Website 

requests some filtered data from S, which requires S to extract (approximated) filtered data 

values in its synopsis matrix in response. Here, we first introduce the concept of error 

threshold value, which is the acceptable error rate in data recovery that dictates the amount 

of filtered data to be stored in a synopsis matrix and can be determined by the channel 

capacity or other constraints. (Note that we do not consider the processing capacities of the 

source Website and the destination Website in determining the error threshold value, since 
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we assume that the two sites have high computational power.)  

 Along with the error threshold value, the criticality of the application domain of the 

source data is also considered, since the error threshold value varies from one application 

domain to another. For example, a patient information monitoring system would require 

more accuracy in recovered data than a weather information monitoring system. The 

synopsis matrix stores a value to be filtered only when the value has been changed more 

than the error threshold value from what its last stored value was. Recovery data values are 

stored in a 3-dimensional synopsis matrix, with one dimension corresponding to each 

component: (i) the value of the unique identifier of a current tuple t, i.e., SID(t), (ii) 

attribute A, i.e., t[A], to be filtered, and (iii) the timestamp for SID(t). A timestamp is 

recorded in the synopsis matrix whenever a filtered data value is recorded, which could be 

used to extract filtered data values from the synopsis matrix at a later point in time, which is 

used in Module 2.  

 Algorithm 2 is the synopsis recovery algorithm for Module 1. Every data value 

before being filtered is compared with the most recent value of the same attribute stored in 

the matrix. If the change, i.e., the difference between the most recent value mv stored in the 

matrix and the value to be filtered, sv, is more than the error threshold value E, then sv is 

stored in the matrix; otherwise, sv is not stored, i.e., sv is stored in the synopsis recovery 

matrix only when (|mv − sv| / sv) × 100 > E.  

Algorithm 2.  Synopsis Recovery Algorithm 
 

Input: (i) The set of tuples S in the current data segment from where attribute data are 

to be filtered, (ii) attribute A to be filtered, where the value of A in tuple t is 

denoted by t[A], (iii) SID(t), (iv) the error threshold value E, and (v) the synopsis 

matrix, Synopsis 

Output: The (updated) synopsis matrix, Synopsis 

For each tuple t ∈ S 

(a) mv := Synopsis[SID][A][Timestamp(SID)] 

(b) sv := t[A] 

    /* The change in the value to be filtered from the most recent value stored in the matrix 
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 is greater than the error threshold */ 

(c) If (|mv − sv | / sv) × 100 > E, then /* Increase the timestamp and store the value to be  

 filtered in the synopsis matrix */ 

(i) If Timestamp(SID) = null, then 

        Timestamp(SID) := 0 

    Else Timestamp(SID) := Timestamp(SID) + 1 

        (ii) Synopsis[SID][A][Timestamp(SID)] := t[A] 

 The correctness of our filtered data recovery approach is verified by experiments 

that show the accuracy in recovering filtered data using the synopsis recovery approach to 

store recovery data in the synopsis matrix. Preliminary experiments showed that high 

recovery accuracy can be achieved at the cost of storing a very low percentage of the data 

filtered as recovery data. We performed preliminary experiments on randomly chosen 

weather and stock exchange source Websites to verify the gain of using the synopsis 

recovery approach to maintain recovery data. Table 1 shows that, using our synopsis 

recovery approach, we store much less filtered data, 1.11% - 19.44% (4.88% -51.11%, 

respectively), of the original data with 90% - 99% data recovery accuracy for a weather 

Website (stock exchange Website, respectively) in the synopsis recovery matrix as 

recovery data.  
 

 Weather Information Stock Exchange Information 
90% 95% 98% 99% 90% 95% 98% 99% 

Percentage of 
filtered data to 
be stored in the 
synopsis matrix 
as recovery data 
for different data 
segments 

2 2 4 19 4 17 35 47 
1 3 5 21 6 21 50 56 
0 2 6 18 5 18 41 51 
2 2 5 16 4 17 38 48 
1 4 4 22 7 19 56 62 
1 1 7 23 3 15 32 42 
0 2 3 17 6 21 52 56 
1 3 2 19 4 17 37 46 
2 4 5 20 5 18 43 52 

Average% 1.11 2.55 4.55 19.44 4.88 18.11 42.66 51.11 

Table 1: Different data recovery accuracy ratios over nine experiments for the source 
Web-site: (i) weather (www.yahoo.com/weather) retrieved on September 11, 2005 and (ii) 
stock exchange (http://quotes.nasdaq.com/quote.dll?page=nasdaq100) retrieved on 
September 13, 2005 with filtered data that were stored in the synopsis matrix  
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3.4.1 Error threshold value 

Our data recovery method applied to a source Website S must satisfy two criteria in order 

to perform well: (i) the amount of data in S to be stored in its synopsis matrix should be low, 

since we do not have infinite disk space for storage, and (ii) the error in recovered data, i.e., 

the recovery error rate, of S should be low. Considering the two tasks closely, these two 

measures are inversely proportional to each other. When we attempt to decrease the 

amount of synopsis data to be stored, the recovery error rate increases and thus suffers, 

whereas when we attempt to improve the recovery error rate by decreasing it, the amount 

of synopsis data to be stored would increase proportionally. The optimal performance can 

be achieved by maintaining a balance between these two trade-offs, which vary from one 

particular data application domain, i.e., data processed at a source Website, to another. For 

example, in critical data application domains (such as medical information), a recovery 

error rate of 10% may be too high (i.e., inadequate). On the other hand, in a less critical 

data application domain (such as weather), a balance with higher recovery error rate at the 

benefit of less amount of data to be stored in the synopsis matrix is acceptable. Here, we 

introduce (i) the fixed point for a Web data source, (ii) the various categories that define the 

criticality of the data source, and (iii) the category recovery error rate. The minimum of (i) 

the fixed point for a data source S and (ii) the category recovery error rate of the 

corresponding category with certain degree of criticality to where S belongs determines the 

error threshold value of S. 

3.4.2  The fixed point 

We first consider the size of the synopsis data of a Web data source S. Based on our 

observation, as the recovery error rate of S increases from 0% to 100%, the amount of 

synopsis data of S decreases to a point P, beyond which any further increase in the recovery 

error rate does not affect the amount of synopsis data; i.e., the amount of synopsis data 

remains constant beyond P, which is referred as the fixed point of S, and is computed for S 

only once. The existence of such a fixed point for S can be justified by virtue of the fact that 

the variation in the values of a less-informative attribute A in S (to be filtered) is finite, 
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which is further strengthened by the fact that since A is a less-informative attribute, it is 

(one of) the least varying among the other attributes of S; i.e., the variation between the 

values of A would be between 0% and x%, where x% is the percentage difference between 

the minimum and the maximum value of A in a data segment of S. The amount of data to be 

stored in the synopsis matrix ceases to decrease as the recovery error rate is greater than or 

equal to x%. We determine the fixed point for a data segment by plotting a graph using the 

training data of S, which captures the amount of synopsis data at each recovery error rate of 

S, increasing from 0% to 100%.  

Figure 2 shows the average amount of data to be stored in the synopsis matrix at 

different recovery error rates using 10 experiments on each of the three different data 

application domains: weather, stock exchange, and Internet traffic, with data downloaded 

from these different Web data sources over a 2-hour period on October 25, 2005, which 

were split into 10 sets to conduct the 10 experiments on each of the Web data sources. The 

results from the 10 experiments were then averaged. The averages yield the potential 

recovery error rates (i.e., fixed points) of 9.5%, 9.2%, and 20%, for weather, stock 

exchange, and Internet traffic, respectively. The graphs in Figure 2 show that the amount of 

data to be stored in each of the synopsis matrices becomes constant beyond the fixed point, 

as anticipated. 

3.4.3 Category recovery error rate 

Although the fixed point approach can be adopted to determine the error threshold value of 

a Web data source S automatically, it lacks the ability to incorporate the criticality of data 

in S. Here, we propose an automated category recovery error rate detection mechanism on 

S based on the attributes of S, which together with the fixed point approach determine the 

error threshold value of S. The detection process is done only once, i.e., prior to processing 

any data from S. 

 The attributes of S are analyzed and automatically matched with the attributes of a 

data application domain in each of the predefined categories, which include the Extremely 

Critical, Very Critical, Moderately Critical, Low Critical, and Not Critical categories. 
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Each of these categories is assigned a number of data application domains, such as the 

medical information data and emergency response data in the Extremely Critical category, 

and each category is associated with different predefined lists of attributes commonly 

found in the data of the same nature that best defines the corresponding application domain. 

We have predefined some of the commonly used data application domains in each category, 

e.g., medical information, stock exchange, Internet traffic, weather, and population in the 

Extremely Critical, Very Critical, Moderately Critical, Low Critical, and Not Critical cate-

gories, respectively. If the attribute names in a (new) Web data source S do not “match” 

any predefined list of attributes of any one of the data application domains in any prede-

fined category, then S is assigned to the category others, which has a category recovery 

error rate of “infinite.”  
 

                 (a) Weather               (b) Stock exchange                (c) Internet traffic  
 
Figure 2: Average amount of 10 different data sets to be stored in the synopsis matrix at 
different recovery error rates for different data sources, weather (http://weather.yahoo.com), 
stock exchange (http://quotes.nasdaq.com/quote.dll?page=nasdaq100), and Internet traffic 
(http://www.Internet traffi-creport.com) , extracted on October 25, 2005  

 In matching the list L of attributes for a new Web data source with a predefined list 

of attributes P, we adopt the Fuzzy set IR model in [GN06] to compute the degree of 

similarity between L and P using the distance matrix [GN06], in which row and column 

headings are words appearing in commonly used dictionaries. The distance matrix captures 

the degrees of similarity (i.e., correlation factors) among different words, which was 

generated using a set of 880,000 Wikipedia (http://wikipedia.org/) documents to compute 

the frequency of co-occurrence and relative distance of each pair of words in each 

Wikipedia document. Furthermore, we adopt the EQ function2, which is defined below, to 

                                                 
2 The two threshold values in EQ are adjusted empirically for the purpose of computing the equality between 
any two lists of attribute names, and are presented in detail in Section 4. 
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decide if any two lists of attributes should be treated as the same using the correlation 

factors in the Sim function among the attributes, i.e., words, in the distance matrix.  
  

   1       if MIN(Sim(Si, Sj), Sim(Sj, Si)) ≥ Permission Threshold  ∧ 

EQ(Si, Sj) =                        |Sim(Si, Sj) - Sim(Sj, Si)| ≤ Variation Threshold                            (3)  
                           0      otherwise   

where Si and Sj (i, j ≥ 1) are lists of attributes, and Sim(Si, Sj) is the degree of similarity  

between the attributes in Si and the attributes in Sj.  

 After detecting the category C that contains a list of attributes that should be treated 

as (semantically) equal to the list of attributes in a new Web data source S, S is then 

assigned to C. We conducted 10 different experiments on randomly chosen Web data 

sources of stock exchange, weather, and Internet traffic application domains, which 

demonstrate the accuracy of the Fuzzy set IR model approach in assigning various Web 

data sources to categories, and the results showed 90% accuracy. (The 10% inaccuracy was 

due to the false positives and false negatives in matching the [semantically the same] 

attributes between two lists of attributes.)  

 Note that the list of attributes in a Web data source is quite “narrow,” which means 

that two Web data sources belonging to the same application domain often contain almost 

(semantically) the same set of attribute names. For example, almost all data sources in the 

weather application domain contain the (semantically the same) attributes location, 

temperature, humidity, precipitation, sunrise, sunset, and wind, whereas precipitation and 

rain have very high correlation factor and are treated as the same. 

 Predefined with each of the first five categories is a category recovery error rate, 

and the 6th category, i.e., “others,” has the category recovery error rate of infinite as 

mentioned earlier. Each category recovery error rate of the first five categories is computed 

empirically during the design of our data filtering approach, using the average fixed points 

of various Web data sources in each category. The empirically determined category 

recovery error rates of the first five categories are 1.67%, 4.7%, 4.81%, 13.5%, and 20.33% 

for the Extremely Critical, Very Critical, Moderately Critical, Low Critical,  and Not 

Critical categories, respectively (see detailed discussion on the error rates in Section 4). 
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Given (i) the fixed point of the new Web data source S that has been automatically detected 

and (ii) the category recovery error rate of S, our data recovery approach assigns the error 

threshold value of S as the lower of the two, since the fixed point and the category recovery 

error rate are the maximum acceptable error rates in the recovered data for S. (Thus, if S 

belongs to the others category, then the fixed point value of S is used as the error threshold 

value of S.) Note that the fixed point value of S is often different from the category 

recovery error rate of S because the former is computed for each new data source, whereas 

the latter is the average of the fixed point values for a number of data application domains 

(including the one for S) belonging to that category.  
 

Example 3.  Consider the categories for the data sources as shown in Figures 2(a), 2(b), 

and 2(c), which are Low Critical, Very Critical, and Moderately Critical, respectively, with 

category recovery error rates 13.5%, 4.7%, and 4.81%, respectively. Comparing the 

category recovery error rates with the fixed point values, i.e., 9.5%, 9.2%, and 20%, 

respectively for the Web data sources shown in Figures 2(a), 2(b), and 2(c), respectively, 

the error threshold values for these Web data sources are 9.5%, 4.7%, and 4.81%, 

respectively, i.e., the lower of their respective fixed points and their corresponding 

category recovery error rates.  �  

4 Experimental Results 

Our data filtering and recovery design was implemented in Java and tested on a 

Windows/Linux PC with a 3.2 GHz processor, 3.25 GB RAM memory, and 150 GB of 

hard disk space with Linux shell scripts running test scripts. Experiments were conducted 

to verify the correctness of our data filtering and recovery approach in real time on the four 

major modules: the (i) SID detection, which also verified our approach on configuring the 

data segment size of a Web data source, in Section 4.1, (ii) error threshold value generation, 

for which we verified the accuracy in predicting the error threshold value of a Web data 

source, in Section 4.2, (iii) data filtering scheme (reevaluation) and ranking generation 

approach, which tested the accuracy of choosing the less-informative attributes in a Web 

data source to be filtered, in Section 4.3, and (iv) filtered data recovery, for which we 
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verified the accuracy of recovering filtered data, in Section 4.4.  In addition, we compare 

our data filtering and recovery approach with existing ones in Section 4.5 to show the 

merits of our work. Test and training data used in the experiments were extracted from 

various Web data sources of different application domains: weather, stock exchange, and 

Internet traffic, with the sizes of 15.6 GB, 21 GB, and 12 GB, respectively (as shown in 

Table 2).  

 

4.1 Experimental Results on SID Detection 

If the attribute(s) of a training Web data source S chosen automatically as the SID of S has 

(have) the same replicated values (in the same sequence) within each data segment of S, 

then the accuracy of our SID detection approach is confirmed. Note that the data segment 

size of S is also verified along with the detection of the SID of S, since the segment length 

of the detected SID of S yields the corresponding data segment size. In verifying the 

correctness of detecting SIDs, we used the first 10 MB of the data in Table 2 as the training 

data and the remaining ones as test data.  The experimental results are shown in Table 3.  

 Since each test data set was large in size, which made manual examination on the 

(correctly) detected SIDs infeasible, we verified that the detected SIDs are in fact the SIDs 

of the corresponding data sources using scripts; in addition, we manually examined a 

number of randomly selected SIDs that were detected automatically. Based on the results 

as presented in Table 3, we conclude that the SID detection approach is 100% accurate. 
 

4.2 Experimental Results on Error Threshold Value Detection 

We show how to determine the permissible and variation threshold values of EQ in Section 

4.2.1 and verify the accuracy in detecting the (i) fixed point and (ii) category recovery error 

rate, which determine the error threshold value of a Web data source, in Section 4.2.2. Note 

that the accuracy of EQ affects the accuracy of the category recovery error rate. 
 
 

Data Source 

On Each Data Set 

Attributes of the Data Source 
Size 
(GB) 

Number 
of  
Tuples 

Sliding 
Window 
Size 

Number 
of 
Sliding 

Collected 
On 
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Windows 

             Weather Information                                      15.6 
http://weather.yahoo.com/ - Sets 1, 2, 3 Location, Temperature, Dew Point,  

Barometer, Wind, Humidity, Sun  
Rise, Visibility, Sun Set 

2 28036790 75 373823 1-Mar-06 

http://www.wunderground.com/  -  
Sets 1, 2, 3 

Location, Temperature, Dew Point,  
Humidity, Wind, Pressure, Precipitation 

1.2 37063068 500 74126 … 

http://www.weather.com - Sets 1, 2, 3 Location, UV Index, Wind, Humidity, 
 Pressure, Dew Point, Visibility 

2 32819280 250 131277 … 

Stock Exchange Information                              21 
http://quotes.nasdaq.com/quote.dll? 
page=nasdaq100 - Sets 1, 2, 3 

Symbol, Company Name, Last Sale,  
Net Change,  Share Volume,  Nasdaq  
100 Index, Percentage Change 

3 52516326 100 525163 … 

http://finance.indiamart.com 
/markets/bse/ - Sets 1, 2, 3 

Company Name, Last Price, Change,  
Percentage Change, Market Cap, Weight 

3 64860370 488 132910 … 

http://www.channelnewsasia.com 
/cna/finance/sg/stockmonitor.htm –  
Sets 1, 2, 3 

Stock, Buy, Sell, Last Done, Volume 1 33288126 1235 26953 29-Mar-06 

Internet Traffic Information                            12 
http://www.Internettrafficreport.com –  
Sets 1, 2, 3 

Router Name, Current Index,  
Response Time, Packet Loss,  Minimum  
Delay, Average Delay,  
Maximum Delay 

2 16332958 96 170134 1-Mar-06 

http://average.miq.net/index.html -  
Sets 1, 2, 3 

Router, Response Time, Packet Loss,  
Minimum Delay, Average Delay,  
Maximum Delay 

1 11689810 50 233796 … 

http://watt.nlanr.net/active/maps/ 
ampmap_active.php - Sets 1, 2, 3 Site Name, Min, Mean, Max, StdDev, Loss 

1 10866072 86 126349 … 

Table 2: Web data sources of test/training data collected on March 1, 2006 (except for 
http://www.channelnewsasia.com/cna/finance/sg/stockmonitor.htm, which was collected 
on March 29, 2006)  
 
Data Stream Source Training Data on Each Set Test Data on Each Set

 Size (MB) Detected CID Size (GB) Detected CID 
Weather Information                                                                         90                                                                       15.51 
http://weather.yahoo.com/ - Set 1, Set 2, Set 3 10 Location 1.99 Location 

http://www.wunderground.com/ - Set 1, Set 2, Set 3 … … 1.19 … 

http://www.weather.com - Set 1, Set 2, Set 3 … … 1.99 … 

Stock Exchange Information                                                              90                                                                        20.91 
http://quotes.nasdaq.com/quote.dll?page=nasdaq100 - Set 1, Set 2, 
Set 3 

10 
Company Name 2.99 Company Name 

http://finance.indiamart.com/markets/bse/ - Set 1, Set 2, Set 3 … … … … 

http://www.channelnewsasia.com/cna/ 
finance/sg/stockmonitor.htm - Set 1, Set 2, Set 3 

… 
Stock 0.99 Stock 

Internet Traffic Information                                                             90                                                                       11.91  
http://www.Internettrafficreport.com - Set 1, Set 2, Set 3 10 Router Name 1.99 Router Name 

http://average.miq.net/index.html - Set 1, Set 2, Set 3 … … 0.99 … 

http://watt.nlanr.net/active/maps/ampmap_active.php - Set 1, Set 2, 
Set 3 

… … … … 

                           Table 3: Training and test data results for CID detection 

4.2.1 Verification of the permissible and variation threshold values in EQ 

In defining the threshold values in the EQ function, we empirically adjust the permissible 

threshold value, which defines the minimum similarity between two lists of attributes S1 and 
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S2, i.e., MIN(Sim(S1, S2), Sim(S2, S1)), and the variation threshold value, which defines the 

maximum dissimilarity between S1 and S2, i.e., |Sim(S1, S2) − Sim(S2, S1)|. The threshold 

values, along with the similarity values among the attributes of S1 and S2, are used by the EQ 

function, which decides if S1 (i.e., a category C) should be assigned to a new data source S2, 

which in turn determines the category recovery error rate CR for S2, using the list of 

attributes S1 in C. The smaller of the CR and the fixed-point value of S2 yields the error 

threshold value of S2.  

 Using forty randomly chosen training Websites with the Internet traffic (8), 

weather (12), and stock exchange (10) application domains in mind, which were collected 

on April 8, 2006, along with other data sources in financial (3), network data loss (3), and 

chemical properties (4), we determined the permissible and variation threshold values of 

EQ. The last three application domains have attributes closely related to, but not the same 

as stock exchange, Internet traffic, and weather, respectively; and these were included in 

training our category assignment approach to demonstrate its accuracy in assigning 

categories that have closely related, but different, lists of attributes.  

 Suppose L1 is a set of lists of attributes such that each list belongs to one of the 

randomly selected data application domains listed above. Further assume that L2 is a set 

containing three predefined lists of attributes, one for each of the three application domains: 

weather, stock exchange, and Internet traffic. Each list in L1 was compared with each list in 

L2 to determine the permissible and variation threshold values that yield the least total 

number of false positives and false negatives in matching3. The false positives and false 

negatives were determined manually for each enumerated pair of lists of attributes, with 

one list from L1 and another one from L2, which is in turn automatically categorized as 

equal or different according to the EQ function. The total number of detected false 

positives and negatives according to various permissible (variation, respectively) threshold 

values are plotted in the graph as shown in Figure 3(a) (Figure 3(b), respectively), which 

indicates that the ideal permissible (variation, respectively) threshold value is 0.29 (0.65, 

respectively), when the least total number of false positives and negatives occur, instead of 
                                                 
3A false positive (false negative, respectively) occurs when two lists of attributes that are different but are 
termed as equal (are equal but are termed as different, respectively). 
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the “intersect” point, i.e., 0.28 (0.49, respectively), which has a greater number of false 

positives and negatives.  

               

   

 (a) Permissible threshold values            (b) Variation threshold values  

Figure 3: Determining the permissible and variation threshold values in the EQ function 
using (training) data in forty randomly chosen source data Websites  

 The list of predefined attributes for each of the three application domains, i.e., 

weather, stock exchange, and Internet traffic, was generated by including all the attributes 

that occur in more than 80% of Web data attributes belonged to the same application 

domain, as shown in Table 2. We verified the accuracy of the permissible and variation 

threshold values detected in Figures 3(a) and 3(b) using a new test set of forty randomly 

chosen data Websites and the three application domains that we have been considering in 

mind. Out of the forty randomly selected test Websites, 37 were correctly categorized with 

zero false positive and 3 false negatives, an accuracy rate of 92.5%, which justifies the 

accuracy of the EQ threshold values and the comprehensiveness of the lists of predefined 

attribute names for their corresponding application domains, which can easily be extended 

to other application domains. 

4.2.2 Verification of the error threshold value generation method 

To verify our error threshold value generation approach partially using the EQ function for 

Web data sources, we conducted experiments using (i) training data, which were used to 

determine the fixed point values of the three different application domains considered in 

Section 4.2.1, along with the new population application domain, which were collected on 

May 12, 2006, and (ii) the randomly chosen consecutive data segments from test data, 

which evaluated the accuracy of the fixed point values of the corresponding Web data 
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sources generated by the training data. We observed that the fixed points determined by 

using the training and test data set are close. The deviation, which shows the differences 

between the fixed point values computed by using the training and randomly chosen test 

data, calculated as |(FixedPointTestData - FixedPointTrainingData)| / FixedPointTestData, 

ranges from 0% to 8.94%.  

 Recall that the fixed point value of data source S achieves the balance between the 

data recovery accuracy and the amount of recovery information to be stored in the synopsis 

matrix of S. According to the low deviation, i.e., between 0% to 8.94%, with an average of 

3.84%, we conclude that our fixed point value detection approach works adequately4. 
 
 

4.3 Experimental Results on Data Filtering Scheme Generation 

We justify the accuracy of our less-informative attribute detection approach in Section 

4.3.1 and assert the correctness of our data filtering scheme generation and reevaluation 

approach in Section 4.3.2.  

4.3.1 Verifying the Accuracy of Detecting Less-Informative Attributes 

To verify the accuracy of our approach to determining less-informative attributes in each 

data segment, i.e., the ranking of attributes in each data segment, of a Web data source, 

which determines the attributes to be filtered, we performed experiments on the test data of 

various data sources using SDs (since the detection of less-informative attributes is always 

computed in real-time using real source data) and verified that detected less-informative 

attributes are indeed less varying than other attributes in a data source.  

Figures 4(a), 4(b), and 4(c) show the SD (rankings) for different attributes of stock 

exchange, weather, and Internet traffic test data sources, respectively, except the SID 

attributes, i.e., “Company Name,” “Location,” and “Router Name” respectively, which 

cannot be filtered for data recovery purpose. The attributes with the highest ranking (i.e., 

the lowest SD) are “Weight,” “Sun Set,” and “Minimum Delay,” respectively, which are 
                                                 
4 Details of this experiment are not included in this paper due to the page-limit constraint; however, the 
details can be found in Section 4.2.1 of [AHU06]. 
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exactly the less-informative attributes of the corresponding data sources, i.e., matching the 

ones examined manually. Such high accuracy is achieved because SD is mathematically 

sound and is a widely accepted concept in statistics for detecting the variations in the 

values of a data set. 

 
                    (a) Stock                                             (b) Weather                                     (c) Internet Traffic 
  
 
Figure 4: Experimental results generated by using various Web data source test data, stock 
exchange (http://finance.indiamart.com/markets/bse/), weather (http://weather.yahoo.com/), and  
Internet traffic (http://www.Internettrafficreport.com) downloaded on March 1, 2006 for 
detecting the less-informative attribute(s)  
 

4.3.2 Verification of the Correctness of the Data Filtering Scheme Generation and 
Reevaluation Approach 

Our data filtering approach uses an adaptive data filtering scheme (which is reevaluated at 

various time intervals) that defines the less-informative attribute(s) to be filtered, and the 

data filtering scheme is generated in real-time on real source data, and not on training data. 

The verification of the data filtering scheme involves verifying the correctness of the 

reevaluation of the data filtering scheme in between the various time intervals. We 

manually determined each less-informative attribute A for each randomly chosen data 

segment of a Web data source (100 data segments for each application domain chosen from 

the data shown in Table 2) and compare A to the automatically detected less-informative 

attributes of various data segments of the same Web data source generated by our data 

filtering approach. Each match is called a hit, whereas each mismatch is called a miss. We 

observe that the misses occur when the ranking of the attributes in a data source changes in 

between two consecutive reevaluations of the data filtering scheme, which is not reflected 
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in (i.e., integrated into) the currently adopted data filtering scheme after the change has 

occurred and before the data filtering scheme is reevaluated. This scenario occurs when the 

time interval between two subsequent reevaluations of the data filtering scheme is 

sometimes larger than the time interval between changes in the ranking of the attributes of 

a data source. These misses could be minimized by decreasing the time interval between 

two subsequent reevaluations of the data filtering scheme, which would in turn increase the 

workload on the system. The decrease in the time interval can be achieved by replacing ‘2’ 

in Step 2(i) of Algorithm 1 with a value less than 2.  

 According to Table 4, the data filtering scheme has an average accuracy, or average 

number of hits, of 94.3%, whereas the average number of misses is 5.7%, a high accuracy. 

 We have also conducted experiments to verify the ability of our data filtering 

approach in determining the number of attributes (and their corresponding data items) to be 

filtered at each of the different data (transmission) rates, i.e., 60, 90, and 120 Kbps, with 

three different channel capacities, i.e., 72, 98, and 132 Kbps. According to Table 5, the 

number of attributes to be filtered decreases as the channel capacity increases, and vice 

versa, while the data rate remains constant. Also, we notice that no attributes are dropped 

when the data rate is lower than the channel capacity, as expected. 
 

Data Source 
(Sets S1, S2, S3) 

No. of Hits No. of Misses
S1 S2 S3 S1 S2 S3 

Weather Information 
http://weather.yahoo.com/ 94 94 93 6 6 7 
http://www.wunderground.com/ 95 94 95 5 6 5 
http://www.weather.com 96 96 96 4 4 4 
Stock Exchange Information 
http://quotes.nasdaq.com/quote.dll?page=nasdaq100 94 95 95 6 5 5 
http://finance.indiamart.com/markets/bse/ 95 95 95 5 5 5 
http://www.channelnewsasia.com/cna/¯nance/sg/ 
stockmonitor.htm 93 94 93 7 6 7 
Internet Traffic Information 
http://www.Internettrafficreport.com 94 95 95 6 5 5 
http://average.miq.net/index.html 92 93 93 8 7 7 
http://watt.nlanr.net/active/maps/ampmap 95 94 94 5 6 6 
Average % 94.3 5.7 

Table 4: Experimental results of testing our data filtering scheme generation and 
reevaluation approach with an average number of hits of 94.3%and misses of 5.7%  
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Data Source D C N C N C N 
Weather Information 
http://weather.yahoo.com/ - Set 1 60 72 0 98 0 132 0 
                                             Set 2 90 … 2 … 0 … … 
                                             Set 3 120 … 4 … 2 … … 
http://www.wunderground.com/ - Set 1 60 … 0 … 0 … … 
                                                      Set 2 90 … 2 … 0 … … 
                                                      Set 3 120 … 3 … 2 … … 
http://www.weather.com – Set 1 60 … 0 … 0 … … 
                                           Set 2 90 … 2 … 0 … … 
                                           Set 3 120 … 3 … 2 … … 
Stock  Exchange Information 
http://quotes.nasdaq.com/ 
quote.dll?page=nasdaq100 - Set 1 60 

… 
0 

… 
0 

… … 

                                              Set 2 90 … 2 … 0 … … 
                                              Set 3 120 … 3 … 2 … … 
http://finance.indiamart.com/ 
markets/bse/ - Set 1 60 

… 
0 

… 
0 

… … 

                       Set 2 90 … 2 … 0 … … 
                      Set 3 120 … 3 … 2 … … 
http://www.channelnewsasia.com/cna/ 
Finance/sg/stockmonitor.htm - Set 1 60 

… 
0 

… 
0 

… … 

                                                  Set 2 90 … 1 … 0 … … 
                                                  Set 3 120 … 2 … 1 … … 
Internet Traffic Information 
http://www.Internettraffi 
creport.com - Set 1 60 

… 
0 

… 
0 

… … 

                       Set 2 90 … 2 … 0 … … 
                       Set 3 120 … 3 … 2 … … 
http://average.miq.net/index.html - Set 1 60 … 0 … 0 … … 
                                                        Set 2 90 … 2 … 0 … … 
                                                       Set 3 120 … 3 … 2 … … 
http://watt.nlanr.net/active/maps/ 
ampmap_active.php - Set 1 60 

… 
0 

… 
0 

… … 

                                   Set 2 90 … 2 … 0 … … 
                                  Set 3 120 … 3 … 2 … … 

 (D)ata transmission Rate (Kbps); (C)hannel Capacity (Kbps); (N)umber of Attributes to be filtered 
 
Table 5: Experimental results for showing the number of attributes to be filtered with 
changes in data (transmission) rate and channel capacity 

4.4 Experimental Results on Recovering Filtered Data 

We have verified the correctness of our data recovery approach by (i) filtering data from 

test data (since data recovery is carried out in real-time on source data), (ii) recovering the 

filtered data values, and (iii) graphically comparing the recovered data values to the 

original data values. The results of the experiments on data recovery on three different 
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application domains using 2 GB, 3 GB, and 2 GB of data, respectively, which are portions 

of the data in Table 2, are shown in Table 6, which lists attribute values that were not 

recovered from the synopsis matrix of the three Web data sources. The data filtering 

schemes for the three data sources are {Minimum Delay}, {Percentage Change}, and {Sun 

Set}, respectively. Table 7, which includes error threshold values of various application 

domains that are different from the ones shown in Example 3, summarizes the experiments 

conducted on our data recovery approach. 

Recall that when there is an attempt to recover a filtered value that was stored in the 

corresponding synopsis recovery matrix, the recovered value has no error; otherwise, an 

error occurs, which has the error rate value less than the error threshold value, since if this 

is not the case, then the filtered data value would have been stored in the synopsis recovery 

matrix. Hence, our data recovery approach would have low error value in the recovered 

data if the corresponding error threshold value were low. We claim that our filtered data 

recovery method achieves high accuracy in recovering filtered data, i.e., low error 

percentage in the recovered data, which is in the range of 0.37% and 9.83% with an average 

of 4.36%5 (as shown in Table 7), at low information storage cost, i.e., percentage of the 

filtered data to be stored in the synopsis matrix, with an average of 2.2×10−4%, as shown in 

Table 7. The processing times and memory usage for the synopsis matrix have been found 

to be insignificant. 
 

                                                 
5 5Note that the error in recovered data is the complement of recovery accuracy.  
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Internet Traffic Stock Information Weather Information 
Original 
Values 

Recovered 
Values 

Original 
Values 

Recovered 
Values 

Original 
Values 

Recovered 
Values 

3.979 4.761 0.3 0.297 7.06 6.991 

2.666 2.382 0.71 0.716 6.79 7.004 

2.659 3.148 -0.04 -0.04 7.06 7.243 

2.648 3 0.02 0.02 7.32 7.539 

2.663 2.97 0.14 0.141 6.22 6.398 

2.655 3.123 0.04 0.04 7.22 7.187 

2.650 2.757 -0.1 -0.101 6.49 6.595 

2.663 2.871 0.45 0.452 6.41 6.373 

2.648 3.002 0.37 0.372 7.16 7.435 

2.662 2.9 0.18 0.181 6.22 6.476 

2.649 2.386 1.19 1.202 6.03 5.927 

2.641 2.402 -0.06 -0.061 6.24 6.366 

 
Table 6: Filtered data values that were not stored in the synopsis matrix for an Internet 
traffic (http://www.Internettrafficreport.com), a stock exchange (http://quotes.nasdaq. 
com/quote.dll?page=nasdaq100), and a weather (http://weather.yahoo.com/) data sources 
 
 

Data Stream Source 

Data 
Size 
(GB) 

Error  
Threshold
Value 

Data 
recovery 
Accuracy
(%) 

Error 
% 

% of Shed  
data Stored 

http://www.internettrafficreport.com 2 20 90.17 9.83 1.71×10-4 
http://quotes.nasdaq.com/quote.dll? 
page=nasdaq100 3 1.3 99.63 0.37 1.73×10-4 
http://weather.yahoo.com/ 2 4.5 97.12 2.88 3.2×10-4 
Average 2.3 8.6 95.64 4.36 2.2×10-4 

 
Table 7: Summary of the experiments conducted on the filtered data recovery approach 

4.5 Experimental Comparisons of Our Data Filtering and Recovery Approach 

In this section, we provide experimental comparisons of our data filtering approach with 

some of the closely related works. As discussed in Section 2, [BWL06] accomplishes 

redundant data removal by retaining only the first (or the earliest) record within a sliding 

window and eliminating all new records, which are treated as duplicates.  

We compared the method proposed in [BWL06] with our data filtering approach 

using the Internet traffic test data, which come with eight attributes. The amount of data to 

be filtered was set at 25%, and thus the ‘Minimum Delay’ and ‘Average Delay’, which are 

the two least informative attributes out of the eight, are filtered out using our data filtering 

approach. For each original attribute value that was filtered, we computed an estimated 
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value used for measuring the data loss. (Estimated value is the most recent non-filtered 

value of the affected attribute with the same SID value.) Table 8 presents the data loss for 

some of the filtered values, along with the cumulative data loss, which is 0.3% using our 

data filtering approach. Furthermore, we applied the redundant data removal method 

proposed in [BWL06] on the same test data described above. According to [BWL06], in 

order to achieve a 25% data filtering, we should retain the first three records, i.e., tuples, 

and filter every fourth tuple within a data segment. Since complete tuples were filtered out, 

we measured the data loss for each eliminated attribute. Table 8 shows the data losses for 

each attribute, six in total of the Internet traffic application domain, along with the 

cumulative data loss, which is 38.75%, which is much higher than the cumulative data loss 

using our data filtering approach. 

The reason behind the difference in the data loss is that our data filtering approach 

filters less-informative attributes, instead of complete tuples, which may include 

informative, as well as, less-informative attributes, as filtered by [BWL06]. 
 

 
Our Data Filtering Approach 
Minimum Delay Average Delay 
Original Estimated Data Original Estimated Data 
Value Value Loss (%) Value Value Loss (%) 
3.97 3.98 0.35 3.97 3.98 0.34 
2.66 2.67 0.51 2.66 2.67 0.51 
2.65 2.66 0.47 2.65 2.66 0.47 
2.64 2.65 0.26 2.64 2.65 0.26 
2.67 2.67 0.06 2.66 2.66 0.06 
2.67 2.66 0.36 2.68 2.66 0.36 
: : : : : : 
: : : : : : 
  0.30   0.30 
Cumulative Data Loss = 0.30% 
[BWL06] Data Filtering Approach 
Current Index Response Time Packet Loss 
Original Estimated Data Original Estimated Data Original Estimated Data 
Value Value Loss (%) Value Value Loss (%) Value Value Loss (%) 
87.49 87.40 0.1 123.23 123.67 0.35 0.02 0.93 7311.39 

88.53 88.56 0.05 110.59 110.21 0.35 0.66 0.78 17.33 

88.88 88.15 0.83 111.87 111.96 0.08 0.90 0.46 48.78 

0.65 0.07 89.04 0.84 0.6 27.94 100.9 100.95 0.05 

87.59 87.44 0.17 125.31 125.85 0.43 0.52 0.87 66.13 

88.77 88.11 0.75 111.71 111.32 0.36 0.82 0.94 14.08 
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: : : : : : : : : 

: : : : : : : : : 

  7.74   17.14   206.68 
Minimum Delay Average Delay Maximum Delay 
Original Estimated Data Original Estimated Data Original Estimated Data 
Value Value Loss (%) Value Value Loss (%) Value Value Loss (%) 
2.64 2.67 0.92 2.64 2.67 0.91 2.65 2.68 0.92 

2.66 2.66 0.11 2.66 2.66 0.11 2.67 2.67 0.11 

2.67 2.66 0.44 2.67 2.66 0.44 2.68 2.66 0.49 

5.31 5.31 0.03 5.31 5.31 0.03 5.33 5.33 0.03 

2.66 2.66 0.34 2.66 2.66 0.34 2.67 2.68 0.34 

2.67 2.67 0.11 2.66 2.67 0.11 2.67 2.68 0.12 

: : : : : : : : : 

  0.31   0.31   0.31 
Cumulative Data Loss = 38.75% 

 
Table 8: Comparisons of our data filtering approach and the data filtering approach 
presented in [BWL06] using Set 1 of the Internet traffic test data in Table 2. 

 In [BDM04], the authors propose the usage of aggregate values to compensate for 

data lost caused by load shedding on stream data.  We compared the method proposed in 

[BDM04] with our data recovery scheme using the Internet traffic and the Yahoo Weather 

information test data in Table 2 for recovering the ‘Minimum Delay’ and ‘Sun Set’ 

attribute values, respectively. For each original attribute value that is recovered, we 

compute the error in the recovered value using (i) our data recovery scheme and (ii) the 

data recovery approach described in [BDM04]. Table 9 shows the error rates in the 

recovered data, which is 4.54% using our approach, and 7.55% using the approach in 

[BDM04]. The error rate in recovered attribute values using our approach is computed as 

(V – R1)/V, and the error rate using the approach described in [BDM04] is computed as (V – 

R2)/V, where V is the original attribute value before filtering, R1 is the recovered attribute 

value using our filtered data recovery approach, and R2 is the recovered attribute value 

using the approach described in [BDM04]. 

The reason behind the difference in the recovered data accuracy is that our data 

recovery approach uses the intelligent synopsis based approach, which stores the actual or 

nearly actual filtered value, whereas the approach employed in [BDM04] uses an aggregate 

value to compensate for data lost by filtering. 
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Web data source 
  

Error percentage using our  
data recovery approach 

Error percentage using the data 
recovery approach in [BDM04] 

http://www.internettrafficreport.com 6.83 8.5 
http://weather.yahoo.com/ 2.25 6.6 
Average 4.54 7.55 

 
Table 9: Comparisons of our data recovery approach and the data recovery approach 
presented in [BDM06] using Internet traffic Set 1 and weather Set 1 test data as shown in 
Table 2. 

5 Conclusions 

In this paper we have proposed a dynamic data filtering and recovery approach for solving 

the excessive amount of data transmitted on the Internet. Our data filtering and recovery 

approach (i) detects and filters less-informative attribute(s) from a source Website, which 

reduces the information loss by retaining more-informative data from the source Website, 

and (ii) includes a unique data recovery method with low storage overhead and high 

accuracy in recovering filtered Web data.  

 We have conducted experiments to verify (i) the correctness of our less-informative 

attribute data filtering approach, with a 100% accuracy in choosing the less-informative 

attributes of a source Website to be filtered, (ii) the correctness of our data filtering scheme 

generation and reevaluation, with a 94.3% accuracy rate in generating and reevaluating a 

data filtering scheme, and (iii) the accuracy of our data recovery approach, with 90.2%, 

99.6%, and 97.1% success rates in recovering data in Internet traffic, stock exchange, and 

weather Web data, respectively, with an average data recovery accuracy of 95.6%.  

 Our data filtering approach (i) is dynamic in nature, since it is reevaluated in 

real-time, and (ii) is applicable to any kind of Web data with a static schema. In addition, 

the criticality of predefined category of data in a source Website S is computed 

automatically in defining the error threshold value of S, which facilitates automatic 

detection of the error threshold value of S. Furthermore, our data recovery approach is also 

adaptive, since it stores filtered data in a synopsis matrix of S whenever the change in the 

value to be filtered and the previous value stored in the synopsis matrix is greater than the 

error threshold value. 
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Although our data filtering and recovery approach is capable of handling numerical 

attribute data while detecting the less-informative attributes with high accuracy, the SD 

based approach for determining less-informative attributes and SIDs can be further 

enhanced so that it can handle non-numerical data by converting them into their ASCII 

equivalences. In addition, if the predefined lists of attributes for the various criticality 

categories used to detect the criticality category to which the Web data belongs is 

incomplete, this can affect our ability to detect the category recovery error rate accurately. 

Use of adaptive predefined lists should solve this problem, where the predefined lists are 

updated every time Web data are detected to belong to their category, by including similar 

or new attributes contained in the Web data. 
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