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ABSTRACT

TIME BLANKING FOR GBT DATA WITH RADAR RFI

Weizhen Dong

Department of Electrical and Computer Engineering

Master of Science

The 1215 MHz to 1400 MHz band is important for radio astronomers to ob-

serve redshifted extragalactic hydrogen ionic (HI). Observations at these frequencies

are complicated by radio frequency interference (RFI) from strong man-made trans-

missions such as the ARSR-3 Air Surveillance Radar. In this thesis, we characterize

some data files recorded at the National Radio Astronomy Observatory (NRAO) at

Green Bank, West Virginia, USA, where this RADAR system causes significant data

corruption. Using this data, we present a blanking technique to separate RFI from

cosmic signal.

There are generally two blanking approaches, time window blanking and de-

tected pulse blanking. Compared with time window blanking, the advantage of de-

tected pulse blanking is that the loss of integration time is much less (i.e. less data is

discarded). But some pulses fail to be blanked because they are too weak to detect.

So in order to blank weak pulses, it is desirable to optimize detection performance. In

this work, we will combine these two blanking techniques and present a new Bayesian



algorithm which combines Kalman tracking with pulse detection. This new algo-

rithm will help to locate the weaker or missed detections, so as to help improve the

performance of pulse blanking.
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Chapter 1

Introduction

Radio astronomical observation is more and more frequently polluted by all

kinds of radio frequency interference (RFI) such as aeronautical RADAR and dis-

tance measuring equipment (DME) from aircraft at 960-1400 MHz, pager and cellu-

lar phone signals below 1000 MHz, television and FM radio transmitters, microwave

ovens, and a variety of satellite transmitters including Iridium, GLONASS and GPS.

Astronomers and engineers are facing unprecedented challenges as they attempt to

solve the problem of RFI mitigation.

Different techniques must be devised to accommodate the wide range of inter-

ferences and science goals [1][2]. RFI mitigation can be placed in four categories: Time

blanking, adaptive cancelling, interferometric nulling, and post-correlation analysis.

Ground-based aviation RADAR (GBAR) transmissions occur in the important red

shifted Hydrogen line observation frequency range from 960-1400 MHz. These sig-

nals may dramatically disturb radio astronomical observations by wrongly influencing

spectrum estimation. However, the induced pollution is often transient, so for radio

astronomy observation, one solution is to simply not include RADAR pulse corrupted

data samples during spectrum estimation. This technique, termed “time-blanking”

[3][4], remains efficient as long as RFI pulses are reliably detected and the corrupted

samples are a small percentage of the whole data set.

The ARSR-3 Air Surveillance RADAR is an example of one such interfering

system which affects observations at the Green Bank Telescope (GBT). The transmit

pulse for this system is 2 microseconds long with a 1292 MHz carrier and an average

repetition rate of 341 Hz. Pulses are easily seen at the GBT through the RADAR
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antenna sidelobes, and are very strong when the RADAR beam is directly pointed to

local terrain features, such as the mountain ridge about 8km west of the GBT or a

reflecting object, such as an aircraft.

Since the RADAR system operates continuously, observing near 1292 MHz

requires that data containing interfering pulses must be removed, or blanked. There

are two popular techniques, time window blanking and detected pulse blanking. Time

window blanking is implemented by not accumulating spectra that has any of the

input data extending into the time interval. Pulse blanking operates only when a

pulse is detected and only for a period which equals the length of the pulse.

This thesis will focus on developing an algorithm to help improve performance

of pulse detection for use by a pulse blanking process. The improved algorithm will

exploit knowledge of the prior probability distribution of the pulses derived from a

Kalman tracker, so as to improve the performance of pulse blanking.

1.1 Problem Statement

To illustrate the interference problem addressed in this thesis, we present some

1292 MHz data recorded at the GBT which clearly shows the RADAR signal. This

data was recorded on the GBT by Dr. J. Richard Fisher, who also provided some

valuable analysis of the data in [5][6]. Figure 1.1 shows pulse intensity as a function

of delay relative to the first arriving pulse. Strong pulses can be seen out to a delay of

135 microseconds, most of which are due to reflections from the hilly terrain around

the GBT. The group of returns at 430 microseconds is probably from an aircraft.

Nothing can be done with the data prior to 135 microseconds, so it is all simply

excised or blanked. Here we employ time window blanking by not accumulating

spectra that has any of the input data extending into the time interval to be blanked.

Figure 1.2 shows the blanking window beginning 20 microseconds before and ending

150 microseconds after the first pulses arriving from the radar. This simple window

blanks the strong pulses from terrain reflection.

However, the weak pulses at 345 and 430 microseconds are very isolated aircraft

echoes, and the goal is to remove only the few corrupted data samples containing the

2



Figure 1.1: Pulse intensity as a function of delay from the directly arriving pulse.

pulses, while preserving neighboring time bins. Also, some weaker echoes may not

be easily detected, but would still bias spectral estimates if not removed. So for

long-delay pulse reflections from aircraft which fall outside of the selected blanking

time window, we will apply detected pulse blanking. Pulse blanking removes data

only when a pulse is detected and only for a period which equals to the length of the

pulse.

The goal of this work is to develop an advanced “intelligent” algorithm ap-

proach to detecting these echoes, so more corrupted aircraft data can be removed

without sacrificing neighboring data unnecessarily. The proposed algorithm will uti-

lize time-history information across multiple RADAR antenna sweeps to built track

estimate for aircraft motion. These track data will be used to improve echo detection

performance.

The GBT experiments present in Chapter 6 demonstrate that detected pulse

blanking is a useful technique for rejecting transient pulse reflections that fall outside

of the selected time window, in combination with time window blanking for long-term

corrupted data.

3
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Figure 1.2: Time blanking window.

1.2 Related Work

There have been several previous studies on interference mitigation technique

in radio astronomy. Leshem and Veen formulate the astronomical problem in an

array signal processing language and provide an introduction to some elementary al-

gorithms from that field [7][8]. Ellingson and Hampson have tested pulse-detection

and blanking of radar at Arecibo and achieve 16 dB of suppression but find that

undetected pulses limit performance [9][10]. Research by Fisher [5] at the GBT has

demonstrated that about 10% and 0.4% of the spectra were rejected in the integra-

tion by using time window blanking and detected pulse blanking, respectively. This

research suggests that detected pulse blanking does play a role in radar rejection in

combination with time window blanking for rejecting transient pulse reflections that

fall outside of the selected time window.
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1.3 Approach

The Kalman Filter is an established technique widely applied in the fields

of navigation, guidance, satellite orbit determination, aircraft and missiles tracking,

etc. The main goal of this work is to present a new technique, which uses Kalman

tracking to predict the position of moving aircraft. This prediction can be used to

form not only predict regions for the next expected echoes, but also a prior probability

distribution for the presence of the next echoes, which is then applied to improve echo

detection performance, and further to improve blanking performance.

The Kalman tracker can be used for both real-time process and post pro-

cessing. Real-time processing blanks the corrupted data before detection, using only

prediction regions derived from the Kalman tracker. It only takes advantage of time-

history information without the need to process the current data prior to blanking.

By contrast, post processing blanks after detection. In this case, the blanked area

should be smaller and more accurate than the one for real-time because both predic-

tion information for the previous data and detection information for the current data

are used.

1.4 Thesis Organization

This work first presents a description to characterize the 1292 MHz RADAR

signal seen at the GBT. After that, we discuss the development of the proposed

pulse detection technique, which includes matched filtering and time alignment by

Constant False Alarm Rate (CFAR) detection of the first arriving pulses. The CLEAN

algorithm is introduced as a technique used to locate single echo source points when

many range-azimuth bins exceed the threshold due to the RADAR beam pattern

sidelobes. The principle of Kalman filtering is discussed as a method of tracking the

moving aircraft. Finally we propose the idea of combining Kalman tracking with pulse

detection for better echo detection and blanking performance, and give experimental

results for both simulation data and real RADAR data sets from the GBT.

5



1.5 Summary of Contributions

The original contributions of this thesis are as follows:

• Chapter 3

1. Presents a matched filter followed by Constant False Alarm Rate (CFAR)

detection of the first arriving pulse to align data in range-bearing form.

2. Proposes an adaptation of the CLEAN algorithm to locate single echo

source points when many range-azimuth bins exceed the threshold due to

the RADAR beam pattern.

• Chapter 4

1. Sets up an extended Kalman filter model for aircraft tracking.

2. Proposes a tracking management system for dynamical multi-objective

tracking.

• Chapter 5

1. Proposes a Bayesian prior probability distribution model for echo pulses

using knowledge from the Kalman tracker.

2. Proposes a new idea of a variable threshold for the CLEAN algorithm

detection step according to the prior probability of the pulses.

3. Proposes a new algorithm which compares tracking with pulse detection

to improve the performance of pulse detection.

• Chapter 6

1. Uses Monte-Carlo simulation to compare the performance improvement of

the new algorithm over the conventional one, and gives an analysis of the

tradeoff between PFA and PD for the new Bayesian detection scheme.

2. Demonstrations of the new algorithm using real data are presented to

illustrate performance.

6



3. Compares the performance of detected pulse blanking using the new Bayesian

detection scheme with the traditional time window blanking.

7
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Chapter 2

Characterization of the 1292 MHz RADAR at the GBT

In this work, we focus on the 1292 MHz RADAR signal seen at the GBT.

This signal is used for valuable commercial or government purposes such as radio

navigation, but to the radio telescopes at Green Bank it is seen as radio frequency

interference (RFI), sometimes covering up weak radiation from celestial radio sources.

The main intent of studying this RADAR signal is to aid engineering research into

ways of separating such man-made RFI from cosmic signals. In this chapter, we

discuss some of the radar characteristics and parameters which are important to the

design of the proposed blanking technique.

2.1 Data Collection

The RADAR antenna is located 104 km south-southeast of Green Bank at

an azimuth of 163.87 degrees relative to the GBT. The antenna sweep period is 12

seconds per rotation, and the beamwidth is approximately 1 degree. The data used

for this work are A/D samples received by the RFI monitor station in the GBT,

recorded by Dr. Rick Fisher and his colleagues [5]. There are two data sets which

were recorded in 2002 and 2003, respectively.

The 2002 data set is unsigned 8-bit A/D samples with a sampling frequency

of 10.81818 Msamp/s and includes 37 data files.

• Data files t2.dat through t17.dat were recorded primarily to get samples of

the strongest radar pulse at number of different RF gain settings. Data were

recorded in the afternoon of March 25, 2002, with a horn antenna pointed

toward 177 or 320 degrees indicated azimuth.
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• Data file t18.dat through t33.dat were recorded in the morning of March 26,

2002. The purpose of these measurements was to record full-sensitivity radar

pulses reflected from surrounding terrain and nearby aircraft. The first nine files

used receiving horn azimuths spaced by 60 degrees over the full azimuth range.

Because the available computer memory limited each data sequence to about 5

seconds, a full 12-second run was not possible to record in a single file. So the

last seven files contain data recorded at approximately three minute intervals

with the horn pointed at 357 degree azimuth to look for moving targets in this

direction.

• Data set t34.dat through t38.dat were recorded at approximately one minute

intervals with the receiving horn pointed to indicated azimuth 357 degree in the

morning of April 5, 2002. The purpose of these data were to look for aircraft

passing north of the observatory by looking for echoes that move uniformly in

delay and radar antenna azimuth position.

The 2003 data set contains continuous 10-minutes-data blocks sampled with a

new data acquisition system running in Green Bank. It was recorded using essentially

the same receiver and antenna conditions as 2002 data set. The main differences are

that the new data rate is 10 Msamp/s, and the data are now signed 8-bit.

As we discussed in Section 1.1, we are only interested in the aircraft echo for

detected pulse blanking, so we will mainly focus on data set t34.dat through t38.dat

and the 2003 data set in this work.

2.2 Pulse Signature

The RADAR pulse is 2 microsecond long with a 1292 MHz carrier. This carrier

was heterodyned to a frequency of approximately 6 MHz where it was sampled at 20

megasamples/sec using the internal clock of the PDA500 data acquisition board. A

typical pulse signature sampled by the 8-bit A/D converter is shown in Figure 2.1. It

can be seen that the transmitted pulse was distorted by multipath propagation along
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the 104 km separation distance. In the later Section 3.1, we will use a function that

closely matches this pulse signature to achieve better pulse sensitivity.

Figure 2.1: Pulse signature sampled by the A/D.

2.3 Pulse Repetition Rate

The measured average pulse repetition rate is 341.4 Hz with pulse time offset

of an integer number of 100 microseconds in the repeating sequence of [0,4,0,3,1,2,1,3].

This offset is used to resolve ambiguities due to reflections beyond the range interval

of 440 km set by the pulse spacing.

2.4 Pulse Arrival Times

By searching for the identifiable first arriving pulses, we reorganize the given

data into a two-dimensional delay and radar antenna azimuth plot. Figure 2.2 shows

a plot for a 2-second-data set with the measured pulse arrival times.

11



Time in seconds

D
el

ay
 in

 m
ic

ro
se

co
nd

s

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

100

200

300

400

500

600

700

800

900

Figure 2.2: Pulse arrival times for about 2 seconds data set.

There are three notable features for this figure. First, pulses at constant arrival

times are present during the full length of the data set. This is due to the fact that

pulses can be seen through the transmit antenna sidelobes from the radar even when

the radar beam is pointed well away from the Green Bank.

The second feature of Figure 2.2 is that the earliest pulses are not the most

prevalent. The shortest path distance from the radar to GBT must produce the

earliest arriving pulses. Since the GBT is about 400 meters below the elevation of the

nearest diffraction obstacle about 12 km away, strong echoes from the high mountain

ridge about 8 km west of the GBT are apparently longer paths with stronger signals.

The third notable feature of Figure 2.2 is the cluster of pulses around 2.2

seconds into the data sample. This is when the radar beam passes directly over

Green Bank, and we clearly see reflection from local terrain features in addition to
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the directly-arriving pulse, likely due to the sidelobe structure of the transmitting

antenna beampattern. We acknowledge the help of Dr. Rick Fisher of NRAO in

obtaining and interpreting this data.
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Chapter 3

Pulse Detection

In this chapter, we will discuss the scheme for detecting an individual aircraft

echo pulse. In the absence of multi-path and assuming additive spectrally-white

Gaussian noise, the optimum detector of a single pulse is a filter matched to the

transmitted pulse waveform, followed by pulse time alignment which reorganizes the

one-dimensional data into two-dimensional range-bearing form. Then a modification

of the well known CLEAN algorithm [11] will be used to accurately locate the single

echo source points in the presence of broad transmit antenna sidelobe patterns.

3.1 Matched Filter

A matched filter [5][9] is a demodulation technique which achieves the max-

imum signal-to-noise ratio and the minimum probability of undetected pulse errors.

Figure 2.1 shows that many of the pulses in the data set are severely distorted by mul-

tipath propagation before they are received, so the exact transmitted pulse which was

designed for the RADAR system is unknown. We therefore introduce a model which

is a reasonable approximation to the transmitted pulse. Figure 3.1 shows the approx-

imation based on a rough manual fit of a Hamming window curve to the observed

pulse in the time domain.

The matched filter is realized by convolving the data with this Hamming win-

dow function to achieve better pulse sensitivity. It is not strictly necessary to perform

the matched filter in the time domain. An alternative [5] is to operate on the Fourier

transformed input data, in which case the matched filter can be implemented as a

multiplication of the frequency domain filter function, as opposed to a convolution of
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the time series. This approach is theoretically equivalent to a time-domain matched

filter.
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Figure 3.1: Hamming window function fit to a received pulse for the purpose deriving
a pulse convolution.

Figure 3.2 shows the full digital receiver architecture. It is a maximum likeli-

hood detector for a transmitted pulse with unknown phase in additive spectrally-white

Gaussian noise (AWGN) [12] and the receiver includes three main steps:

1. The real valued RADAR signal x(n) is converted to the real part Re{x(n)} and

imaginary part Im{x(n)} by IQ demodulation [13][14].

2. A matched filter h(n) is applied to the real and imaginary part separately.

3. The square of the complex magnitude, y(n), forms the output of the matched

filter.
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Figure 3.2: The full digital receiver architecture, which includes IQ demodulation
part and matched filter part.

3.2 Pulse Time Alignment

To proceed further, we will reorganize the filtered time series data into two-

dimensional delay-azimuth form by looking for the first arriving pulses as the time

reference. It is more difficult to build a complete RADAR receiver to find the first

arriving pulse in this case than for the true RADAR system. This is due to the

following facts:

• The RADAR parameters are derived by analyzing the data, so we do not know

exactly when the first arriving pulse comes.

• The long separation distance between the RADAR antenna and Green Bank

makes the first arriving pulse distorted and weak, so it is sometimes not very

obvious. Since the first arrival pulse may not be over a line-of-sight path, it can

even be weaker than aircraft target echoes.

• In some data sets there were dropped or missing samples which corrupted time

alignment even when it could once be established.

• All signal references, local oscillators, and sample clocks are asynchronous with

respect to the RADAR transmitter.

This pulse time alignment problem is very critical because its accuracy will

have strong effect on the performance of the CLEAN algorithm and Kalman tracking.
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3.2.1 Initial Alignment

For simplicity, we will first make the alignment by approximating the first

arriving pulse time based on estimated global parameters as follows:

• The measured average pulse repetition rate (PRF) is 341.4 Hz.

• The timing of the directly arriving pulses follows a time offset of an integer

number of 100 microseconds in a repeating sequence of [0,4,0,3,1,2,1,3].

Then we can easily compute every pulse repetition interval (PRI) and reor-

ganize the 1-D filtered RADAR data to a two-dimensional delay-angle (range-angle)

form by using the derived first arriving pulses as the time references. Figure 3.3 shows

the result of initial time alignment. Here the plot only includes about 3 seconds of

data (about 90 degrees) while the radar beam passes directly over the GBT, because

the echoes from the local terrain features and the aircrafts are most prevalent in this

time period.

3.2.2 Improved Alignment using Constant False Alarm Rate Detection

Unfortunately, the initial alignment shown in our experiments was not accurate

enough. Figure 3.3 shows that the first part of the data run was found to have a

constant pulse arrival time. The drift in arrival times (notice the slope of the white

lines) in the later part of the data was due to either a drift in the radar timing

generator or the internal clock of the data acquisition board. Because of this, a

more accurate pulse alignment had to be estimated directly from the filtered GBT

data for each pulse interval. Here we will use a constant false alarm rate (CFAR)

detection process to locate the first direct-path pulse arrival at the GBT for each

pulse transmission. This first arrival pulse serves as a reliable time reference for the

set of the echoes in the pulse interval.

A similar pulse detection algorithm was discussed in [9] to detect the onset of

the pulse. Combined with the predicted position for first arriving pulses derived in

Section 3.2.1, we will propose a CFAR algorithm for detecting first direct-path pulses

as follows:
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Figure 3.3: The result of initial time alignment. Note the echo pulse beampattern
sidelobes (white stripes) are not perfectly horizontal. This indicates a drift error in
transmit pulse timing detection.

1. Compute the “local” standard deviation σ of a sample sequence s1 in the absence

of radar pulses.

2. Detection of the first arriving pulse is declared when s2(t) ≥ Cσ occurs for the

first time, where s2 is a sample sequence inside a small window where a pulse

probably occurs and C is the user-selected threshold which is set by maintaining

an acceptable false alarm rate (FAR) for the χ2 distributed noise in y(n).

3. If there is no data in s2 which satisfies s2(t) ≥ Cσ, then we will choose the

predicted time derived in Section 3.2.1 as the first arriving pulse.

In step 1, as Figure 3.4 shows, for every pulse interval we define a data sample

sequence s2 inside window 2 around the predicted pulse position. The size of window
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2 is 2-3 times the pulse length and we only look for fine position detection of the

first arrival within window 2. Then we define another 100-microsecond-long window

1 immediately prior to window 2 and calculate σ from the sample sequence, s1, inside

it. This guarantees that pulse signatures are effectively eliminated from s1, so they

do not bias the estimate of σ.

Although the true detection is probably not in the predicted position, at least

it will be somewhere around the predicted one. So in steps two and three, we will

look for the first sample of s2 whose amplitude satisfies s2(t) ≥ Cσ and classify it as

the beginning of a pulse. If there is no sample in s2 which satisfies this condition, we

will just decide that the predicted detection is a reliable one.

Figure 3.4: Improved pulse time alignment using a CFAR algorithm.

Figure 3.5 shows the resulting delay-azimuth image of improved time alignment

using CFAR as first arrival pulse detection, with the same data set as figure 3.3.

3.3 Modified CLEAN Algorithm

To proceed further, we must locate the isolated echo source points because

many range-azimuth bins exceed the threshold due to the RADAR antenna beam-

pattern. The basic CLEAN method [15][16] is a very well-known algorithm used in the

astronomical community to remove the severely sidelobe-contaminated point-spread

beampattern from images produced by sparse array imaging systems.
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Figure 3.5: The result of improved time alignment by using CFAR.

3.3.1 Algorithm Realization

The modified CLEAN algorithm [17] is realized as follows:

1. Establish a clean image C(rm, θn): build a blank image field with all pixels set

equal to zero;

2. Initialize the residual dirty image: k=1, R1(rm, θn) = P (rm, θn);

3. Find the peak (brightest pixel): M, N = arg max
m,n

|Rk(rm, θn)|;

4. If this peak is really from a complete beampattern, add the location of the peak

to the clean image by setting the corresponding pixel to one, then continue;

otherwise, go to 8.

5. Form residue vector around the neighborhood of the peak: p = vec{Rk(rm, θn)},∀(m,n) ∈
N{(M,N)}, where N{(M, N)} is large enough to contain a full beampattern.
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6. Find the least squares fit to the residual peak for a shifted, scaled, 2-D beam

response:

αopt = arg min
α,δr,δθ

‖p− αp̂(δr, δθ)‖2

p̂(δr, δθ) = vec{br(rm − rM − δr)× bθ(θn − θN − δθ)}, ∀(m,n) ∈ N{(M, N)}

αopt =
pHp

p̂H p̂

7. Remove the peak from residual: Rk+1(rm, θn) = Rk(rm, θn)− αoptp̂;

8. If the residual magnitude drops below the threshold, such that max
m,n

|Rk(rm, θn)| <
T0, done; otherwise, k = k+1, go to 3.

The main modifications from the original CLEAN algorithm are in the form

of a scaling parameter αopt and choosing the area to be cleaned. Here we use a least

squares fit to find the optimum scaling which matches the estimated beampattern

model p̂ to the dirty beam p. Compared with the standard CLEAN algorithm, which

just takes the peak of the dirty image as the position of the next CLEAN component,

the modified algorithm carefully chooses the area to be cleaned. This is because

with an approximated dirty beam model, some peak brightness feature may be just a

region of residual overlapping sidelobes plus noise instead of a complete beampattern.

The process of adding to the CLEAN image and subtracting from the dirty

image is cyclically repeated. It is subject to the constraint that when the peak is lower

than the noise floor, the process is stopped and the CLEAN image is considered to be

complete. This leads to a problem of selecting the threshold T0. If the threshold is set

too high, we will not be able to detect all the echoes. If it is too low, the probability

of false alarm, PFA, will increase dramatically. The proposed radar detection with

threshold setting scheme is as follows:

Assume that a received signal is represented as

R = S + N ,
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where N is random noise, and S is a random variable indicating the presence or

absence of some target. The two hypotheses can now be described as

H0 : target is absent: S < T0,

H1 : target is present: S ≥ T0.

Based upon the observation x, we must make a decision regarding which hy-

pothesis to accept. We divide the entire space, X , into two disjoint regions, R and

A, with X = R∪A. We formulate our decision function φ(x) as

φ(x) =





1, if x ∈ R,

0, if x ∈ A.

(3.1)

We interpret this decision rule as follows [18]: If x ∈ R (reject) we take action δ1

(accepting H1, rejecting H0); and if x ∈ A (accept) we take action δ0 (accepting H0,

rejecting H1). The probability of rejecting the null hypothesis H0 when it is true is

called the false alarm probability. For the simple binary hypothesis test,

α = P [decide H1|H0 is true]

= PFA,

We will set the threshold T0 by using an acceptable false alarm rate PFA: choose T0

such that ∫ ∞

T0

f(x|H0) dx = PFA. (3.2)

Here f(x|H0) follows a Rayleigh distribution because we assume x is the square root

of the output y[n] of the complex I-Q matched filter of Figure 3.2. Here we use 10−7

as a false alarm rate, which represents the number of false alarm pixels over the total

pixels number of the delay-azimuth plot.
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3.3.2 Experimental Result

Figure 3.6 shows the CLEAN algorithm result on the same data set as Figure

3.5. Here the stars represent the isolated echoes which the modified CLEAN algo-

rithm detects. It correctly locates the mainlobe position from the severely sidelobe-

contaminated point-spread beampattern. Notice that in this operation, we ignore the

first strong echo band in the bottom of the plot.
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Figure 3.6: The result of the CLEAN algorithm, where the stars represent the echoes
which the CLEAN algorithm detects.

3.4 Conclusions

Figure 3.7 shows a hand-made plot of the echoes in five snapshots from the

observations of Dr. Fisher. Our experiment with the real data demonstrates that

24



two apparent echoes inside the rectangles are miss detected by the CLEAN algorithm

with constant threshold T0 derived by Equation 3.2 because of their weak magnitude.

Figure 3.7: The hand-made plot of the echoes in five time intervals by Dr. Fisher.
Note that two weaker aircraft echoes, indicated by the square boxes, are miss detected
by the CLEAN algorithm with constant threshold T0.

Astronomers at the GBT would like to find an “intelligent” way to detect all

aircraft echoes and blank them from the spectrum, even if some of them are very

weak. This motivates using the tracker to improve echo detection performance. We

will introduce Kalman tracking in the next chapter to associate the pulses across

antenna sweep intervals and build the tracks. For the area where a pulse will occur
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with a higher probability, the threshold should be decreased to detect the weaker

pulse.
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Chapter 4

Kalman Tracking

The Kalman filter theory published in 1960 significantly boosted the devel-

opment of sophisticated digital filter algorithms for tracking aircraft, artillery shells,

submarines and space vehicles. As a result, tracking of objects based on Kalman filter

theory has become an established technique of fundamental importance in many en-

gineering applications and scientific investigations. With a Kalman filter it is possible

to use the noisy measurements obtained by a track-while-scan RADAR sensor.

From the preceding chapter, we can see that the conventional CLEAN algo-

rithm has limitations in locating weaker aircraft echoes. In this chapter, we will try

to estimate the position and velocity of the aircraft with the noisy measurements in

range r and bearing θ by introducing an extended Kalman filter. In Chapter 5, we

will discuss how this track information can be exploited to derive a prior probability

distribution for the pulse to improve the performance of pulse detection in a Bayesian

framework.

4.1 Model Selection

Consider an aircraft or similar space vehicle moving with constant velocity

perturbed by a zero mean random acceleration. The position of the vehicle is assumed

to be measured by range r and bearing θ obtained by a two-dimensional track-while-

scan radar sensor. The problem is to obtain the optimum estimates of position and

velocity of the vehicle, which leads to a discrete-time two-dimensional, two-state

tracking filter.
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The measurements obtained at discrete intervals of time of T seconds are

assumed to be corrupted with both range and angular noise. The tracking operation

is assumed to be performed in the Cartesian coordinate system. In this case, the

measurements will not be a linear function of the state. So we will employ extended

Kalman filtering for this tracking problem.

4.1.1 Dynamic Model

For each coordinate x and y, aircraft dynamics at snapshot n can be described

as [19]

xn+1 = xn + ẋnT +
1

2
anT

2, (4.1)

ẋn+1 = ẋn + anT, (4.2)

where

xn = aircraft position at snapshot n,

ẋn = aircraft velocity at snapshot n,

an = acceleration acting on the aircraft at snapshot n,

T = interval between observations.

In this problem, we will choose as states the position and velocity of the aircraft

in the x and y directions. Thus, the proposed states are given by

XT
n =

[
xn yn ẋn ẏn

]
(4.3)

Therefore, the aircraft dynamics may be represented by a vector-matrix equa-

tion of the form

Xn+1 = FXn + Gan, (4.4)
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where

F =




1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1




, (4.5)

and

G =




T 2

2
0

0 T 2

2

T 0

0 T




, (4.6)

Xn is the aircraft state vector, F is the transition matrix, and G is the input distri-

bution matrix.

4.1.2 Measurement Model

Here the nonlinear relation between the quantities measured by the radar and

the Cartesian coordinate system selected for tracking operation is explicitly consid-

ered. When the measurement equations are nonlinear polar functions of the state,

the measurement model is given in [20] by

Zn = h(Xn) + V n, (4.7)

where

Zn =


rn

θn


 , (4.8)

h(Xn) =




√
x2

n + y2
n

tan−1 yn

xn


 , (4.9)

V n =


vr(n)

vθ(n)


 , (4.10)
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rn = measured range r at snapshot n,

θn = measured bearing θ at snapshot n,

vr(n) = random noise on range r measurement at snapshot n, and

vθ(n) = random noise on bearing θ measurement at snapshot n.

4.2 Kalman Tracking Equation

There are two steps for the tracking problem. The first one is a time update

step which computes the predictions. The second one is a propagation step which

includes computing Kalman gain and measurement update.

4.2.1 Prediction Equation

Since the dynamic model equation is a linear function of the state, then we

can still use the traditional prediction equation with initial conditions X̂(0|0) and

P (0|0):

X̂(n + 1|n) = FX̂(n|n), (4.11)

P (n + 1|n) = FP (n|n)F + GQ(n)G,

where

X̂(n|n) = filtered state estimate at tn given data through tn,

X̃(n|n) = X(n|n)− X̂(n|n), filtered state estimate error at tn,

P (n|n) = E{X̃(n|n)X̃
T
(n|n)}, filtered state error covariance at tn,

X̂(n + 1|n) = predicted state estimate at tn+1 given data through tn,

P (n + 1|n) = E{X̃(n + 1|n)X̃
T
(n + 1|n)}, predicted state error covariance at tn+1,

F = discrete state transition matrix,

G = input distribution matrix,

Q(n) = discrete process noise covariance matrix.
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4.2.2 Filter Equation

Because the states have been chosen to be Cartesian, the radar measurements r

and θ will automatically be nonlinear function of those states. Therefore, a linearized

measurement equation can be described as [20]


∆r?

∆θ?


 =




∂r
∂xT

∂r
∂yT

∂r
∂ẋT

∂r
∂ẏT

∂θ
∂xT

∂θ
∂yT

∂θ
∂ẋT

∂θ
∂ẏT







∆xT

∆yT

∆ẋT

∆ẏT




+


vr

vθ


 , (4.12)

where vθ and vr represent the measurement noise on angle and range, respectively.

Here we define the measurement sensitivity matrix used in calculating the

weighing matrix and the updated covariance as

H
4
=

[
∂h

∂X

]

X=X̂(n+1|n)

=




∂r
∂x(n+1|n)

∂r
∂y(n+1|n)

∂r
∂ẋ(n+1|n)

∂r
∂ẏ(n+1|n)

∂θ
∂x(n+1|n)

∂θ
∂y(n+1|n)

∂θ
∂ẋ(n+1|n)

∂θ
∂ẏ(n+1|n)




=




x(n+1|n)√
x2(n+1|n)+y2(n+1|n)

y(n+1|n)√
x2(n+1|n)+y2(n+1|n)

0 0

−y(n+1|n)√
x2(n+1|n)+y2(n+1|n)

x(n+1|n)√
x2(n+1|n)+y2(n+1|n)

0 0


 .

(4.13)

So the filter equations are given by:

X̂(n + 1|n + 1) = X̂(n + 1|n) + K(n + 1)

[
z(n + 1)− h

(
X̂(n + 1|n), tn+1

)]
,

P (n + 1|n + 1) =

[
I −K(n + 1)H(n + 1)

]
P (n + 1|n), (4.14)

K(n + 1) = P (n + 1|n)HT (n + 1)
[
H(n + 1)P (n + 1|n)HT + R(n + 1)

]−1
,
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where

z(n + 1) = vector of measurements at tn+1,

h(X, t) = vector of measurement model equations,

h
(
X̂(n + 1|n), tn+1

)
= vector of predicted measurements at tn+1,

H(n + 1) =

[
∂h(X, t)

∂X

]

X=X̂(n+1|n),t=tn+1

,

R(n + 1) = measurement noise covariance matrix at tn+1,

K(n + 1) = Kalman filter gain matrix at tn+1.

4.3 Parameter Selection

The appropriate selection of process noise covariance matrix Q and the mea-

surement noise covariance matrix R are important for the design of Kalman tracker.

In this section, we will describe the selection of these two parameters when we build

the Kalman trackers for GBT Radar Data.

4.3.1 Process Noise Covariance Matrix Q

The statistical model of the signal process is assumed to be described by a

linear vector-matrix equation of the form

Xn+1 = FXn + Gan,

where

an =


ax(n)

ay(n)


 ,

and Q is the covariance matrix of the process noise an.

Here we will discuss two kinds of maneuver models: a white noise maneuver

model and a colored noise maneuver model. There are three assumptions for the

white noise maneuver model:

1. Acceleration values at different snapshots are assumed to be uncorrelated.
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2. The random acceleration is assumed to be of equal variance and also indepen-

dent along both the x and y axes.

3. The acceleration along the x and y axes is assumed a random constant across

successive scans with zero mean and constant variance σ2
a.

In this case,

E{ax} = 0,

E{ay} = 0,

E{axa
T
y } = Q =


σ2

a 0

0 σ2
a


 . (4.15)

In a practical scenario, the movement of the aircraft generated by the white

noise maneuver model is not smooth enough to model commercial aircraft trajectories.

To smooth the movement, we introduce the colored noise maneuver model, which can

be easily generated by passing the white noise through a FIR low-pass filter. So the

plant noise Q can be expressed as:

Q = E{axay} =


 σ2

x(n) σ2
xy(n)

σ2
xy(n) σ2

y(n)


 . (4.16)

4.3.2 Measurement Noise Covariance Matrix R

The statistical model of the measurement process is assumed to be described

by

Zn = h(Xn) + V n,

where

V n =


vr(n)

vθ(n)


 .

R is the covariance matrix of the measurement noise V n.

It is assumed that the measurement noise for r and bearing θ are independent

white Gaussian noise, So R can be expressed as:

R =


σ2

r 0

0 σ2
θ


 (4.17)
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4.4 Track Management

For multi-target tracking, track management such as track association, track

dropping and the strategy for cases when some measurements are missed or some new

tracks are created, is very critical to tracking performance. This section introduces

the approach used in each of these cases.

4.4.1 Track Association

Kalman tracking consists of two phases: prediction and update. For a single

tracker, after getting a new prediction X̂n+1|n, we need the following rules to associate

this prediction with the possible measurements around it.

We will define an elliptical region for each track inside of which we will probably

find the next snapshot detection measurement associated with the prediction. Only

detections within the ellipse may be associated with the given track. The origin of

the ellipse is the prediction point (x̂n+1|n, ŷn+1|n), and the radii are a factor multiplied

by
√

P n+1|n(1, 1) and
√

P n+1|n(2, 2), where P n+1|n is the estimation error covariance

matrix before processing the measurement.

It is possible that there are several candidate measurements around the predic-

tion point inside the elliptical region, whose amplitudes are higher than the proposed

threshold. The rule is to choose at most two echoes which have the higher amplitudes

as the measurements to continue the update phase.

4.4.2 Some Measurements Missed

Sometimes when the echo is so weak that we cannot find any detection around

the prediction, then it is probably that some measurement is missed at that snapshot.

We will have to make a two-step prediction and try to find measurement around that

new prediction in the succeeding snapshot. As a result, the prediction equation for

time interval 2T are given by:

34



2.21 2.22 2.23 2.24 2.25 2.26 2.27

x 10
6

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

x 10
5

x

y

initial point 1
initial point 2
prediction
ellipse region
measurement

Figure 4.1: The ellipse region around the prediction.

X̂(n + 2|n) = FX̂(n|n)

P (n + 2|n) = FP (n|n)F + GQ(n)G

where

F =




1 0 2T 0

0 1 0 2T

0 0 1 0

0 0 0 1




(4.18)
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and

G =




(2T )2

2
0

0 (2T )2

2

2T 0

0 2T




(4.19)

The size of the ellipse region will also increase as the time interval changes

from T to 2T. The time interval could also keep increasing to 3T, if there is one more

detection missed. Figure 4.2 shows the kalman tracking for two-step prediction.

4.4.3 Dropping a Track

If there are more than three measurements continuously missed, we assume

that this track is not reliable, so it has to be dropped. Figure 4.3 shows that a track

will be dropped from a track list and will receive no new associations after successively

missing three detections in a row.

4.4.4 Creating a New Track

At each snapshot, it is possible to create some new tracks in addition to con-

tinuing the existing tracks. Figure 4.4 shows that a new track is created in the second

snapshot, which locates in the bottom right part of the figure. This feature guarantees

that the tracking system can automatically find new tracks in every snapshot.

4.4.5 Splitting a Track

Sometimes it is possible to find more than one detection following the existing

tracks at a measurement. In this case, the track will be split. We will then track

these split tracks respectively. Figure 4.4 also shows that some splits can happen in

some snapshots.
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Chapter 5

A Proposed Bayesian Combined tracking With Detection Al-

gorithm

In this chapter, we focus on developing a Bayesian algorithm to help the per-

formance of echo detection by using the Kalman tracker to provide a prior probability

distribution for the pulses. We will discuss two modes here: real-time processing and

post processing.

5.1 Real-Time Processing

Assume we have k data files, D1 to Dk, recorded at time indices t1, t2, ......, tk.

The scheme for real-time processing mode at time index tn is as follows:

1. Build the track prediction for aircraft motion at tn using time-history detection

information from previous data files D1 to Dn−1;

2. Blank the data in the prediction regions found in step 1;

3. Compute the prior probability distribution of the pulses at tn and incorporate

this prior distribution model to calculate detection thresholds;

4. Detect the pulses with the proposed threshold and use the CLEAN algorithm

to locate positions for isolated echo points in Dn. This step prepares track

information for the next run;

5. if n < k, then n = n + 1; Go to step 1.
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5.1.1 Pulse Arrival Prior Distribution

Given the position information for pulses from data files D1 to Dn, we can

use Kalman tracking to find a prediction point (x̂n+1|n, ŷn+1|n) where a detection is

expected at time tn+1. In section 4.4.1, we defined an elliptical region S with the

prediction point as the centroid and radii rx and ry proportional to
√

P n+1|n(1, 1)

and
√

P n+1|n(2, 2) respectively, where P n+1|n is the estimation error covariance ma-

trix before processing the measurement. Next we will establish a prior probability

distribution model over that elliptical region.

We define the probability density model for the occurrence of an echo over the

elliptical region as a two-dimensional Gaussian distribution in a truncated elliptical

area, S, as follows:

f(x, y) =





1
2πσxσy

e
− 1

2
[
(x−x̂n+1|n)2

σ2
x

+
(y−ŷn+1|n)2

σ2
y

]
, if (x, y) ∈ S;

1−PS
|Ω|−|S| , if (x, y) ∈ S̄.

(5.1)

where

S :
(x− x̂n+1|n)2

r2
x

+
(y − ŷn+1|n)2

r2
y

≤ 1 and S ∪ S̄ = Ω;

PS =

∫∫

S

f(x, y) dS, (x, y) ∈ S;

|Ω| =
∫∫

Ω

dxdy, (x, y) ∈ Ω;

|S| =
∫∫

S

dxdy, (x, y) ∈ S.

This model assumes that a given track leads to the presence with probability

one of one echo occurring somewhere in the field, Ω, at tn+1 . Outside of S, there is a

low constant probability density. Near the prediction point, the probability increases.

This model is an arbitrary but reasonable practical choice because it satisfies the

following characteristics needed for the proposed f(x,y):

• The prior probability of the presence of an echo decreases as the distance from

the centroid increases.
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• The distribution has a smooth shape over S to guarantee the prior probabil-

ity derived from it is smoothly changing as a function of distance from the

prediction point.

• The shape of the density surface depends on prediction error covariance, P n+1|n,

such that higher prediction error leads to lower probability density.

To simplify notation , we set

α
4
=

rx

ry

=
σx

σy

, (5.2)

so that α determines the shape of the elliptical region S. We also move the centroid

of the ellipse, (x̂n+1|n, ŷn+1|n), to (0,0). This will not affect the calculation of prior

probability later. Using (5.2), we can simplify (5.1) as:

f(x, y) =





1
2πασ2

y
e
− 1

2
[ x2

α2σ2
y

+ y2

σ2
y

]
, if (x, y) ∈ S;

1−PS
|Ω|−|S| , if (x, y) ∈ S̄.

(5.3)

Figure 5.1 shows this density function f(x,y) for α = 0.5.

As figure 5.2 shows, for any point (x1, y1) inside the elliptical region S, we can

always fit this point to an ellipse S1 with the following form:

S1 :
x2

r2
x1

+
y2

r2
y1

= 1, (5.4)

where rx1 and ry1 are the radii of the ellipse S1 which satisfy
rx1

ry1
= rx

ry
= α.

Then we define a very small “patch” Sp around a particular point (x1, y1) and

make the following assumptions about this small area:

• The small “patch” is defined within range and bearing angle resolution scope,

∆R ≈ 13.8655 meter and ∆θ ≈ 0.0015 radian. ∆R is the range resolution of

the row data determined by time sample spacing. ∆θ is the bearing resolu-

tion determined by the pulse repetition rate and antenna rotation rate at the

RADAR transimitter. So the area for this patch A ≈ 0.0208R, where R is the

range measurement of point (x1, y1).

• The probability density function f(x, y) is approximate the same constant inside

this patch.
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Figure 5.1: Two dimensional Gaussian model over the elliptical region S. Note that
(x1, y1) is a particular point inside S.

So for a particular point (x1, y1), the prior probabilities P (H1) and P (H0) where H1

and H0 are defined in section 3.3.1 can be described by the piecewise probabilities

over Sp as follows:

P (H1) =

∫∫

Sp

f(x1, y1) dS (5.5)

= A ∗ f(x1, y1) (5.6)

= A ∗ 1

2πσxσy

e
− 1

2
[
x2
1

σ2
x

+
y2
1

σ2
y

]

= A ∗ 1

2πασ2
y

e
− 1

2
[

x2
1

α2σ2
y

+
y2
1

σ2
y

]
(5.7)

= A ∗ 1

2πασ2
y

e
− r2

y1
2σ2

y . (5.8)

Here (5.7) follows from the fact that σx/σy = rx1/ry1 = α, and (5.8) is follows from

the fact that (x1, y1) satisfies
x2
1

r2
x1

+
y2
1

r2
y1

= 1. In (5.8), the area of the patch A in (5.8)

will increase as the range R increases, as figure 5.3 shows. But for the same track

quality (i.e. no change in P n+1|n), an increase in R will lead to the radius of the
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Figure 5.2: Contours of density function f(x, y), where the radii of S and S1 have
the following relationship: rx/ry = rx1/ry1 = α.

elliptical region ry increasing. This will cause a decrease of σy (We will mention that

σy is inversely proportional to ry later). So the second term of (5.8) will decrease as

R increases, which will approximately cancel out the effect of linear relation R in the

first term A. Thus P (H1) is not dependent on range.

Finally, we will have the expression of P (H1) and P (H0) as follows:

P (H1) = Ce
− r2

y1
2σ2

y , (5.9)

P (H0) = 1− P (H1),

= 1− Ce
− r2

y1
2σ2

y . (5.10)

where C is a constant.
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Figure 5.3: The area of patch increases as the range R increases.

To calculate P (H1) and P (H0) in (5.9) and (5.10), we must have two param-

eters: ry1 and σy. We define σy is to be inversely proportional to ry, the radius of

the elliptical region S along the y axis. So when the size of the region increases, the

density function becomes shorter and wider. This will lead to a smaller decrease in

the detection threshold, T (x, y), in the Bayesian detection scheme defined below. We

will discuss the reason for this parameter selection in section 5.1.3. In general, ry1

can be seen as a relative “distance” from a point (x1, y1) to the prediction point and

can be computed by:

r2
y1

=
(x1 − x̂n+1|n)2

α2
+

(y1 − ŷn+1|n)2

12
, (5.11)

where α can be derived by (5.2). We notice that a point closer to the prediction point

will have a higher P (H1) than a point further away.
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5.1.2 Threshold Setting for the CLEAN Algorithm

The main idea of the variable threshold for the CLEAN algorithm is that we

want to decrease the threshold for the weaker pulses to be detected if they happen to

be located in an area where the echo occurs with higher probability. We will now use

the prior probability calculated using Kalman tracking information to set a variable

threshold for the areas around the prediction points.

But first, we want to clarify the definition of probability of false alarm, PFA,

and probability of detection, PD. They represent the probability of a received signal,

x, exceeding a threshold under the hypotheses of the absence, H0, or presence, H1, of

the echo respectively, as figure 5.4 shows.

By taking into account the true probability of the presence of the echo, PH1 ,

or the absence of the echo, PH0 , we introduce definitions for total PFA and total PD

as follows:

PTFA = total PFA

4
= (PH0)(PFA)

= P (x > T ∩H0)

= (PH0)

∫ ∞

T

f(x|H0) dx,

PTD = total PD (5.12)

4
= (PH1)(PD)

= P (x > T ∩H1)

= (PH1)

∫ ∞

T

f(x|H1) dx.

These are unconditional probabilities of false alarm and detection respectively.

The state, H0 or H1, is treated as random, so that we may incorporate our prior model

PH0 into the detection scheme as follows:

PTFA = constant, (5.13)
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Figure 5.4: PFA and PD under the two hypotheses: H0 and H1.

that is,

PH0 ×
∫ ∞

T (x,y)

f(x|H0) dx = constant. (5.14)

This constant will be set by design at an acceptably low level, and the corresponding

threshold value, T (x, y) wil be computed for each point in the data. Compared

with the constant threshold, T0, discussed in section 3.3.1, T (x, y) is decided by

the prior distribution of the presence of pulse: PH0 = 1 − PH1 . According to the

prior distribution model we discussed, from the edge to the centroid of the elliptical

region around the prediction point, T (x, y), decreases as H0 decreases, in order to

keep total PFA as a constant. Compared with the conventional CLEAN algorithm

with a constant threshold, by using the decreased threshold in the region where the

pulse occurs with higher probability, the weaker pulses will be detected. This occurs

without increasing the overall number of false alarms. Figure 5.5 demonstrates the

variable threshold T (x, y).
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Figure 5.5: The threshold T is decided by the prior distribution of the presence
of pulse, where T0 is the constant threshold outside the elliptical region around the
prediction point and the sectional drawings of two concavities represent the decreased
threshold T (x, y) according to the prior probability inside the elliptical region.

5.1.3 Tradeoff between Probability of False Alarm and Probability of

Detection

This Bayesian Combined tracking with detection Algorithm helps to detect the

weaker pulses, but it may pick up some false alarms due to the decreased threshold in

the region around the prediction. So if the constant threshold outside the prediction

regions is not adjusted up slightly, the new algorithm may have a higher false alarm

rate than the old algorithm. There are two criteria for setting the threshold, that is,

for parameter selection in the prior distribution model.

• The decreased threshold T (x, y) in the elliptical region around the prediction

point should not dramatically increase PFA when it improves PD. This is

achieved by carefully selecting the parameters for f(x, y).

• The decreased threshold T (x, y) is inversely proportional to the size of the

elliptical region. This guarantees that PFA will not increase dramatically as the

size of elliptical region increases significantly, which usually occurs when some

measurements are missed. Figure 5.5 demonstrates that the left concavity has

less threshold decrease than the right one because the right elliptical region has

smaller size than the left one. This is achieved by setting σy in (5.9) to be
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inversely proportional to ry, the radius of the elliptical region S along the y

axis.

5.2 Post Processing

The main difference between post processing and real-time processing modes is

that post processing blanks corrupted data after detection, while real-time processing

blanks before detection, using only the prediction regions derived from the Kalman

tracker.

For post processing, the detection step will identify all the echoes which exceed

the threshold set by existing tracker information. Thus the blanking area should be

smaller and more accurate than the prediction region for real-time process because

actual detections rather than prediction regions are need to define blanking areas. As

a result, the post processing mode has better performance than the real-time model.
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Chapter 6

Results

In this chapter, we will first demonstrate results for the new Bayesian combined

tracking with detection algorithm. When compared with conventional pulse detection,

this new algorithm is able to detect weaker aircraft echoes, and thus improves the

detection performance significantly. We will demonstrate this improvement for both

simulation data and real data from the GBT in real time processing mode. The effect

on data spectrum at the GBT when using simple time window blanking, tracked pulse

blanking, and Bayesian tracking with detection, will be studied.

6.1 Simulation Data

To evaluate the detection performance improvement of the Bayesian combined

tracking with detection algorithm under known, controlled conditions, we can use

some simplified data to simulate the real case. Several performance criteria such

as probability of detection, PD, v.s. probability of false alarm, PFA, and PD v.s.

signal-to-noise ratio (SNR) exhibit some improvements when compared with the con-

ventional approach.

6.1.1 Simulation Model

The assumptions for this simplified simulation model are as follows:

• The receiver and antenna follow the same conditions as the real ones in the

GBT, so the radar parameters keep as same as in the real ones.
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• We use additive white gaussian noise (AWGN) with the variance ση
2 matching

sample variance estimated from real GBT data.

• There is only one simulated echo track in each randomly generated trail ob-

servation. The state space model and the measurement model of the aircraft

exactly follow the same rule as in the real data case.

• The pulse echo amplitude follows a Swirling distribution IV model for a square

law receiver [21]. The radar received pulses have constant amplitude throughout

an entire scan, but are uncorrelated from pulse to pulse. The echo amplitude

probability density function (pdf) is given by

fΣ(σ) =
4σ

σ2
av

exp(− 2σ

σav

), (6.1)

where σav denotes the average radar cross section (RCS) over all target fluctu-

ations.

6.1.2 Performance Evaluation and Comparison

In this section, we will use Monte-Carlo simulation for repeated random trials

to evaluate PD v.s. PFA in order to estimate the likelihood ratio statistics and the re-

ceiver operating characteristic (ROC). When comparing the two algorithms, we must

creafully consider the differences in how false alarms arise by conventional definition:

PFA =

∫ ∞

T0

f(x|H0) dx = P (x > T0|H0). (6.2)

That is, PFA only depends on the noise floor and a fixed threshold. In section 5.1.3,

we discussed the new algorithm improves PD at the cost of a slight increase of PFA

due to a position descendant threshold controlled by the tracker. So as to make a

fair comparison of detection performance for two algorithms, we have to compare PD

for both algorithms for the same effective total PFA value, by slightly decreasing the

constant threshold T0 for the conventional algorithm to match the increased PFA of

the new algorithm.

Figure 6.1 demonstrates the performance improvement of the new algorithm

compared with the conventional one for different signal-to-noise ratios (SNRs). From
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the plot, we notice that the conventional algorithm achieves the same PD level in

theory by decreasing the constant threshold, but this causes PFA to increase remark-

ably. The new algorithm can improve PD without significantly increasing PFA. This

controlled experiment suggests that the Bayesian tracking-detection approach is very

promising.
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Figure 6.1: PFA v.s. PD in different SNR for two algorithms: “new” Bayesian com-
bined tracking with detection algorithm and “old” pulse detection algorithm.
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6.2 Real Data

Detection would usually not be directly from GBT data, but using a test horn

antenna located nearby with some higher gain in the direction of expected echoes

(GBT sidelobe response level peaks at about 0 dBi, and the horn antenna has a few

dB more gain). This yields higher INR to improve detection, then the detected pulse

times would be used to control blanking at the same times in the simultaneously

observed GBT high gain antenna data.

Two sets of real data were used to test our algorithms: The first data set was

recorded at the GBT the morning of April 5, 2002. The purpose of these data were

to look for aircraft passing north of the observatory by taking sample sets one minute

apart and looking for echoes that move uniformly in delay and radar antenna azimuth

position. The receiving horn was pointed to +5 degrees elevation and indicated

azimuth 357 degree. The second one contains continuous 10-minute-data blocks (50

radar rotations) recorded in Jan, 2003 with essentially the same receiver and antenna

conditions. The main difference is that the new data rate is 10 Msamp/s, as compared

to 10.81818 Msamp/s for data set 1.

6.2.1 Data Set 1

There are five data files in the first data set, which include many pulses from

the aircraft. Some of the strong pulses exhibit a prominent transmitter antenna

beampattern with the sidelobes covering a wide angle range. Analysis of this data

set is valuable for studying of blanking with complex RFI. Here we will detect the

echoes in the first two data files, t34 and t35, by using the conventional algorithm

and use detections to initiate the Kalman tracker. Figure 6.2 shows the pulse delay

distribution and the detected echoes for data files t34 and t35. Figure 6.3, Figure 6.4

and Figure 6.5 show the process of Kalman tracking and echo detection using both

the new and conventional algorithms for the succeeding data files, i.e. t35 to t38.

Figure 6.6 shows the improved detection performance for the new algorithm. There

are two weak echoes in t35 and one weak echo in t37 detected by the new algorithm

that are not detected by the conventional method.
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Figure 6.2: The pulse delay distribution and the detected echoes for data file t34 and
t35, where ‘+’ and ‘*’ mark detected pulses using the conventional tracker-detection.
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Figure 6.3: Tracking-detection process for data files: t36. Figure in the top shows the
prediction from Kalman tracker in x-y coordinate by using time-history information
and the elliptical region around this prediction where we will utilize the decreased
threshold. Figure in the bottom shows the detections by using conventional and old
algorithms, respectively.
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Figure 6.4: Tracking-detection process for data files: t37. Figure in the top shows the
prediction from Kalman tracker in x-y coordinate by using time-history information
and the elliptical region around this prediction where we will utilize the decreased
threshold. Figure in the bottom shows the detections by using conventional and old
algorithms, respectively.
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Figure 6.5: Tracking-detection process for data files: t38. Figure in the top shows the
prediction from Kalman tracker in x-y coordinate by using time-history information
and the elliptical region around this prediction where we will utilize the decreased
threshold. Figure in the bottom shows the detections by using conventional and old
algorithms, respectively.
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Figure 6.6: The detection results by using the new algorithm and the conventional
one, respectively. Note that 3 weaker pulses (inside the rectangles) are detected by
new algorithm.
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6.2.2 Data Set 2

For data set 2, the echoes from local terrain and aircraft can be clearly seen

when the RADAR beam is directly pointed to the GBT. So we will focus on only

about two seconds of data in every other sweep when the RADAR beam passes

directly over the GBT. We process the data only for every other sweep (such as

the even data files t06, t08......t34 here), because the data from continuous sweeps

exhibit little movement between frames and the Kalman tracker works well with this

“decimated” data. Figures 6.7 to 6.11 present the results for this data set. These

figures are organized by time index order as follows: the two figures in every row

show the tracking and detection process in two-second time interval in one sweep.

The left one shows the prediction from the Kalman tracker in x-y coordinate by using

time-history information, and the ellipse region around this prediction where we will

utilize the decreased threshold. The right figure shows detections made using the

conventional and old algorithms, respectively.

Figure 6.12 shows all the detections for the even numbered data files in data

set two using the conventional and new algorithm, respectively. By using the tracker

information, the new algorithm is able to detect some weaker echoes which are miss-

detected by the conventional one, without increasing the false alarm detection signif-

icantly. As a comparison, we tried to detect those weaker echoes by decreasing the

constant threshold for the conventional algorithm, as shown in the bottom plot of

Figure 6.12. This scheme does pick up two weaker echoes (inside the squares), but

also pick up four false alarm detections (inside the triangles) at the same time. So we

conclude that the Bayesian combined tracking with detection algorithm did indeed

improve the PD v.s. PFA performance in real data as expected.

6.3 Time Blanking Results

Our ultimate objective is to eliminate RADAR interference from the the data

received at the telescope. To mitigate RADAR interference while preserving useful

data, we propose a time blanking scheme based on the structure of the RADAR inter-

ference. The idea is to only perform the rejection in those time intervals during which
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Figure 6.7: Data files: t06, t08 and t10. In every data file process, first use Kalman
tracking to locate the prediction, then use the new algorithm and the conventional
one for detection, respectively.
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Figure 6.8: Data files: t12, t14 and t16. In every data file process, first use Kalman
tracking to locate the prediction, then use the new algorithm and the conventional
one for detection, respectively.
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Figure 6.9: Data files: t18, t20 and t22. In every data file process, first use Kalman
tracking to locate the prediction, then use the new algorithm and the conventional
one for detection, respectively.
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Figure 6.10: Data files: t24, t26 and t28. In every data file process, first use Kalman
tracking to locate the prediction, then use the new algorithm and the conventional
one for detection, respectively.
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Figure 6.11: Data files: t30, t32 and t34. In every data file process, first use Kalman
tracking to locate the prediction, then use the new algorithm and the conventional
one for detection, respectively.

65



−1 −0.5 0 0.5 1 1.5
100

200

300

400

500

600

700

800

bearing (second)

ra
ng

e 
(m

ic
ro

se
on

d)

conventional one
new one

−1 −0.5 0 0.5 1 1.5
100

200

300

400

500

600

700

800

bearing (second)

ra
ng

e 
(m

ic
ro

se
on

d)

conventional one
new one

Figure 6.12: All the detections for the even data files in data set 2, using the new
and conventional algorithms, respectively. The conventional detection algorithm sets
the threshold by using PFA = 3.8676 ∗ 10−8 for the top plot and PFA = 2.3205 ∗ 10−7

for the bottom one.
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the RADAR pulses are known to appear. Here we implement our blanker by “zero-

stuffing”, that is, putting zeros into the time samples where RADAR interference is

detected.

6.3.1 Data Set 1

Three different techniques are tried on data set one in the time interval from

1.7 to 2.4 seconds (shown in figure 6.13) to determine whether the RADAR signal

can be effectively removed from the spectrum:

• Simple time window blanking,

• Simple time window blanking with detected pulse blanking (using conventional

pulse detection),

• Simple time window blanking with detected pulse blanking (using Bayesian

combined tracking with detection algorithm).

There have been serval previous studies on this kind of blanking performance com-

parison [5][10][3].

In this work, the PSD is estimated by employing a 512-sample FFT with 50

percent overlap and a Hamming window. We use a reference spectrum to normalize

the computed PSD so that we have a good measure of the effectiveness of the cancel-

lation. This reference spectrum is obtained from the full 5 second data set in which

the obvious pulses and all data 30 microseconds before, and 550 microseconds after,

the predicted first arrival pulse are rejected. This rejection window guarantees that

the reference signal is free of interference. The resulting reference spectrum is shown

in Figure 6.14.

The normalized PSD, Φ(f), is given by [5][3]

Φ(f) =
S(f)− Ŝ(f)

Ŝ(f)
(6.3)

where f denotes the frequency, S(f) represents the estimated PSD, and Ŝ(f) denotes

the reference spectrum.
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Figure 6.13: The data from 1.7 to 2.4 second is used to test and compare the blanking
performance for three different techniques.

Figure 6.15 shows the unblanked spectrum accumulated over the 0.7-second

interval when the radar beam was closest to the Green Bank azimuth. The top spec-

trum in Figure 6.16 shows the time window blanked spectrum accumulated over this

same time interval but with time window blanking beginning 30 microseconds before

and ending 150 microseconds after the first arriving pulses to encompass multipath

echoes. This approach represents “simple time window blanking”, and is similar to

current practice at radio astronomy observatories. The samples within the window

are rejected, while the samples outside the window remain intact. Thus, about 94

percent of the record is automatically preserved. As Figure 6.16 shows, the simple

time window blanking does not completely eliminate the RADAR pulse from the
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Figure 6.14: Initial reference spectrum.

spectrum. The reason for this defect is that the window fails to blank aircraft echoes.

One obvious solution is to increase the window size to blank more pulses from the

integration. But this will waste a lot of valuable data and the associated integration

time.

We can improve blanking performance by combining pulse detected blanking

with simple time window blanking. Pulse detected blanking is implemented by throw-

ing away spectra that contain a detected pulse from the aircraft. Figure 6.16 compares

the spectra from all the blanking methods. In order to make qualitative comparison,

each estimate was normalized so that most of the spectral curves are aligned on top

of each other. We can see that pulse detected blanking combined with time window

blanking does eliminate the RADAR pulse completely from the spectrum. However
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Figure 6.15: The unblanked spectrum integrated over to time when the RADAR
beam was sweep over the GBT, between 1.7 and 2.4 seconds into the data shown as
figure 6.13.

the difference between the pulse detection methods is not obvious. About 13.2 percent

and 13.8 percent of the total data samples are rejected respectively in the integration

for these two different pulse detected blanking algorithms.

6.3.2 Data Set 2

Three different blanking techniques are also tried on data set two in the time

interval from 187.2 to 188.4 seconds (shown in figure 6.17).

Figure 6.18 shows unblanked spectrum in the time interval from 187.2 to 188.4

seconds and simple time window blanked spectrum accumulated over the same time

interval but with time window blanking beginning 30 microseconds before and ending
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Figure 6.16: The spectra integrated in the same time interval with figure 6.15 from
all the blanking methods: Top spectrum is for simple time window, which blanked
30 microseconds before and 150 microseconds after the earliest arriving pulses. Two
bottom spectra are for window blanking combined with detected pulse blanking (con-
ventional and new algorithms, respectively).

200 microseconds after the first arriving pulses spectra accumulated over the 1.2-

second interval when the radar beam was closest to the Green Bank azimuth. About

93 percent of the record is automatically preserved for simple time window blanking.

As Figure 6.17 shows, during the time interval from 187.2 to 188.4 seconds,

the new Bayesian combined tracking with detection algorithm detects three echoes,

compared with no detection from the conventional pulse detection. So in this particu-

lar case, the spectrum for simple time window blanking with detected pulse blanking

using conventional pulse detection will have the same blanking performance with sim-

ple time window blanking. Figure 6.19 compares the spectra from all the blanking
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Figure 6.17: The data from 187.2 to 188.4 seconds is used to test and compare the
blanking performance for three different techniques.

methods. In order to make qualitative comparison, each estimate was normalized

so that most of the spectral curves are aligned on top of each other. We note that

pulse detected blanking combined with simple time window blanking does eliminate

the RADAR pulse completely from the spectrum. Here we are also able to tell the

difference between the pulse detection methods.
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Figure 6.18: The unblanked and simple time window blanked spectra integrated over
to time when the RADAR beam was sweep over the GBT, between 187.2 and 188.4
seconds into the data shown as figure 6.17.
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Figure 6.19: The spectra with simple time window blanking combined with detected
pulse blanking (using new and conventional echo detection algorithms, respectively)
.
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Chapter 7

Conclusions

In this thesis, we have combined two blanking approaches, time window blank-

ing and detected pulse blanking, to mitigate RADAR RFI at the GBT. To achieve

better performance for detected pulse blanking, we proposed a new Bayesian com-

bined tracking with detection algorithm. This helps to locate the weaker aircraft

echoes, so as to help improve performance of detected pulse blanking. The exper-

iments in Chapter 6 prove that combining this Bayesian detection pulse blanking

with time window blanking achieves the advantages of both approaches, that is, it

eliminates as much as interference as possible, such as the strong pulses from terrain

reflection, but also removes only the corrupted data, such as those isolated aircraft

echoes, without sacrificing neighboring data unnecessarily.

Scientists at the GBT have tried different blanking techniques to separate

RADAR RFI from cosmic signal. The most popular way is to use time window

blanking to remove all data that could possibly contain echoes on direct path signals.

However, this is not completely effective, because of the loss of integration time. A

large fraction of the time between RADAR pulses cannot be used for high sensitivity

spectral line measurements. An alternative is detected pulse blanking, which retains

more useful integration time, but runs the risk of failing to blank some weaker echoes.

So detected pulse blanking is not a usable technique on its own, but it can be used

to reject long-delay pulse reflection that falls outside of the selected blanking time

window. The new Bayesian combined tracking with detection algorithm provides a

very important method to combine these two techniques and significantly improve

pulse detection performance.
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There are some new and unique contributions about this work:

• First to use Kalman tracking to enable real time blanking for RADAR pulse

detection RFI mitigation in radio astronomy.

• First to use a Kalman tracker in a Bayesian detection framework for RADAR

echoes to improve detection sensitivity. This is particularly important in ra-

dio astronomy where even echoes below the noise floor can bias cosmic signal

spectral.

• Demonstrated operation with two real data sets from the GBT.

• Demonstrated the ability to create and maintain multiple simultaneous tracks.

To put this work into practice for the astronomers in the GBT, there are few

issues which need to be solved:

• To realize real-time pulse detection, we will have to use a high speed DSP

processor and adapt the algorithm code for to a high speed DSP platform. The

RADAR receiver described in Section 3.1- 3.3 could be implemented in the same

DSP that Andrew Poulsen used for real-time GLONASS adaptive cancellation

[22].

• Kalman tracking and blanking has sufficiently low computational demands that

it can be implemented in a modest host personal computer in real time, but

this would require new code development.

• Because of limited memory, we must buffer the data on a hard drive prior to

analysis using Matlab codes for post processing.

Further extension to this work will consider a more complicated blanking technique

than simply stuffing zero in the pulse structure when a pulse is detected.
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