
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2004-07-12

A Numerical Scheme for Mullins-Sekerka Flow in Three Space A Numerical Scheme for Mullins-Sekerka Flow in Three Space

Dimensions Dimensions

Sarah Marie Brown
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Mathematics Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Brown, Sarah Marie, "A Numerical Scheme for Mullins-Sekerka Flow in Three Space Dimensions" (2004).
Theses and Dissertations. 136.
https://scholarsarchive.byu.edu/etd/136

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsarchive.byu.edu%2Fetd%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/136?utm_source=scholarsarchive.byu.edu%2Fetd%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

A NUMERICAL SCHEME FOR MULLINS-SEKERKA FLOW

IN THREE SPACE DIMENSIONS

by

Sarah M. Brown

A dissertation submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Mathematics

Brigham Young University

August 2004

Copyright c© 2004 Sarah M. Brown

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Sarah Brown

This dissertation has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Peter W. Bates, Chair

Date S. -Sum Chow

Date John C. Dallon

Date Christopher P. Grant

Date Vianey Villamizar

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the dissertation of Sarah M.
Brown in its final form and have found that (1) its format, citations, and bibliographical
style are consistent and acceptable and fulfill university and department style requirements;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the graduate committee and is ready for submission to the
university library.

Date Peter W. Bates
Chair, Graduate Committee

Accepted for the Department
Tyler J. Jarvis
Graduate Coordinator

Accepted for the College
G. Rex Bryce, Associate Dean
College of Physical and Mathematical Sciences

ABSTRACT

A NUMERICAL SCHEME FOR MULLINS-SEKERKA FLOW

IN THREE SPACE DIMENSIONS

Sarah M. Brown

Department of Mathematics

Doctor of Philosophy

The Mullins-Sekerka problem, also called two-sided Hele-Shaw flow, arises in modeling a

binary material with two stable concentration phases. A coarsening process occurs, and large

particles grow while smaller particles eventually dissolve. Single particles become spherical.

This process is described by evolving harmonic functions within the two phases with the

moving interface driven by the jump in the normal derivatives of the harmonic functions at

the interface. The harmonic functions are continuous across the interface, taking on values

equal to the mean curvature of the interface. This dissertation reformulates the three-

dimensional problem as one on the two-dimensional interface by using boundary integrals.

A semi-implicit scheme to solve the free boundary problem numerically is implemented.

Numerical analysis tasks include discretizing surfaces, overcoming node bunching, and deal-

ing with topology change in a toroidal particle. A particle (node)-cluster technique is devel-

oped with the aim of alleviating excessive run time caused by filling the dense matrix used

in solving a system of linear equations.

ACKNOWLEDGEMENTS

I am indebted to my advisor, Peter Bates. One could not ask for a better advisor, not just

because of his expertise, but also his willingness to give of his time. My committee members

Sum Chow, John Dallon, Chris Grant, and Vianey Villamizar were always more than willing

to discuss my various mathematical dilemmas. Other faculty members of the Brigham Young

University Mathematics Department who were extremely helpful are Michael Dorff, David

Clark, Wayne Barrett, and Steve McKay. Fellow graduate student Zhifu Xie spent many

lunch hours brainstorming with me. I owe a big thanks for moral support from Daniel and

Jacob Brown, two of my brothers. I would like to acknowledge Ira Fulton, who donated

the super computer marylou to Brigham Young University. Finally, Lonette Stoddard, our

intrepid math department secretary, typed some of the dissertation and also answered my

many LaTeX questions.

Contents

1 Introduction 1

1.1 Background . 2

1.2 Contributions of Dissertation . 5

1.3 Outline of Dissertation . 6

2 Mathematical Formulation 9

2.1 Description of Problem . 9

2.2 Reformulation of Problem . 11

2.3 Equivalency of Formulations . 14

2.4 Existence and Uniqueness . 19

3 Numerical Scheme 25

3.1 Surface Modeling . 26

3.1.1 Torus . 27

3.1.2 Distorted Torus . 28

3.1.3 Ellipsoid . 30

3.1.4 Distorted Ellipsoid . 33

3.2 Nearest Neighbors . 34

3.2.1 Torus . 34

3.2.2 Ellipsoid . 35

3.3 Surface Area Estimates . 35

3.3.1 Subdivision Points . 36

vii

3.3.2 Patch Area . 38

3.3.3 Convergence of Surface Area Estimates 39

3.4 Volume Estimates . 46

3.4.1 Ellipsoid . 46

3.4.2 Torus . 47

3.5 Best Fit Surface and Outward Normal . 48

3.5.1 Mean Curvature . 53

3.5.2 Choice of Initial Coordinate System in Best Fit Surface Scheme . . . 55

3.5.3 Iteration Limit in Outward Normal Scheme 56

3.6 Integral . 58

3.7 Integral Equations . 58

3.7.1 Particle-Particle Method . 63

3.7.2 Particle-Cluster Method . 64

3.7.3 Efficiency . 72

3.7.4 Advancing the Surface . 74

4 Validation of Scheme 79

4.1 Volume Conservation . 79

4.2 Non-increasing Area . 80

4.3 Numerical Volume and Area Results . 81

4.3.1 Ellipsoid . 81

4.3.2 Multiple Spheres of Unequal Radii 83

4.3.3 Torus . 85

4.3.4 Torus with Redistribution . 86

4.3.5 Torus with Symmetry and Redistribution 88

4.3.6 Torus Taken Past Topology Change 90

4.3.7 Distorted Sphere . 92

4.4 Analytic Solution . 94

4.4.1 Sphere . 94

4.4.2 Multiple Spheres of Equal Radii . 97

4.4.3 Concentric Spheres . 98

4.5 Summary . 103

5 Numerical Results 105

5.1 Various Surfaces . 105

5.1.1 Distorted Torus . 105

5.1.2 Two Spheres of Unequal Radii . 106

5.1.3 Two Spheres of Slightly Unequal Radii 106

5.1.4 Three Spheres of Unequal Radii . 107

6 Conclusion 109

6.1 Strengths . 109

6.2 Further Work . 109

6.2.1 Convexity . 110

6.2.2 Node Enrichment and Refinement . 110

6.2.3 Convergence of Surface Estimate Scheme 110

6.2.4 Stiffness . 111

6.2.5 Smoothness of V . 112

ix

x

Chapter 1

Introduction

The Mullins-Sekerka problem arises in modeling a binary material with two stable concen-

tration phases. A coarsening process occurs, and large particles grow while the smaller

particles eventually dissolve. Single particles become spherical. This process is described

by evolving harmonic functions within the two phases (quasi-static approximation) with the

moving interface driven by the jump in the normal derivatives of the harmonic functions

at the interface. The field (harmonic functions) is continuous across the interface, taking

on values equal to the mean curvature of the interface. This dissertation begins by refor-

mulating the three-dimensional problem as one on the two-dimensional interface by using

boundary integrals. The result includes a Fredholm integral equation of the 1st kind, which

are usually considered ill-conditioned because solutions are sensitive to small perturbations

of, in our case, the mean curvature. Fortunately, for a singular kernel, as occurs in our

formulation, the ill-conditioning is quite controllable [4]. We develop a stable algorithm to

solve the problem numerically.

Interface

Phase 2

Phase 1

1

The numerical analysis is the major challenge with tasks that include discretizing two-

dimensional surfaces in three-dimensional space, overcoming node bunching, and dealing

with topology changes in particles. Instability necessitates small time-stepping and hence

extremely long computational run-time, and this problem is addressed by developing and

implementing a semi-implicit scheme. Another cause of excessive run time is filling the

large matrix required in solving the discretized system of boundary integrals. A particle

(node)-cluster technique is developed with the aim of alleviating this problem.

Simulating the evolution process confirms that larger objects absorb smaller particles

while overall volume remains constant, consistence with conservation of species. Surface

area decreases until the particles reach equilibrium, after which it remains constant.

1.1 Background

In 1963, W. W. Mullins and R. F. Sekerka published the article Morphological stability of a

particle growing by diffusion and heat flow [36] which proposed a model to describe phase

transitions governed by the diffusion of material or heat. The two examples discussed in the

paper were a precipitate particle in a supersaturated solution undergoing diffusion-controlled

growth and a solid sphere in a supercooled melt whose growth is regulated by the flow of

heat.

Key assumptions were threefold. First, crystallographic factors like elastic strain energy

or anisotropy of interface properties are negligible. Secondly, the thermal or diffusion fields

satisfy Laplace’s equation. Lastly, at each element of interface there is local equilibrium.

Mullins and Sekerka studied the stability of a spherical phase boundary by using spherical

harmonics to analyze the effects of infinitesimal perturbations. They found that for diffusion

controlled growth, the sphere loses its stability at a certain radius being seven times the

critical radius of nucleation theory. Analogous results were obtained for the solidification

case [36].

The Mullins-Sekerka problem is the following free boundary problem:

2

Let Ω denote a bounded and simply connected domain in R
3. Let Γ0 denote a finite collection

of smooth, simple closed surfaces in the domain. Find a function u(x, t) and a free boundary

Γ(t) which for all x ∈ Ω and t ≥ 0 satisfy

i) ∆u(·, t) = 0 in Ω\Γ(t)

ii)
∂u

∂n
= 0 on ∂Ω

iii) u = κ on Γ(t)

iv)

[
∂u

∂n

]

Γ(t)

= V on Γ(t)

v) Γ(0) = Γ0

where n is the outward unit normal,

[
∂u

∂n

]

Γ(t)

is the sum of the outward normal derivatives

of u from each side of Γ(t) or the jump of the normal derivative of u across Γ(t), κ is the

mean curvature of Γ(t), and V is the normal velocity of Γ(t). We follow the convention that

κ < 0 for spheres and that V > 0 if the surface is expanding.

Γ
n

κu=

u=0∆

u=0∆

See [31] for physical interpretations of the above conditions in the case that u represents a

solute field.

Thus Mullins and Sekerka’s model is quasi-static: latent heat is accounted for explicitly

on Γ while heat diffusion is instantaneous [10]. It is a Stefan problem with surface tension for

which Laplace’s equation replaces the diffusion equation. This assumption is valid when the

speed of the interface is slow compared to the speed of diffusion, which occurs for materials

of negligible specific heat. For further discussion of this see [46].

The Mullins-Sekerka problem is the sharp interface model corresponding to a diffuse

interface model introduced by J. Cahn and J. Hilliard [11, 12]. The Cahn-Hilliard equation,

3

φt = ∆
(

−η∆φ + 1
η
(φ − φ3)

)

with boundary condition

∂φ

∂n
=

∂∆φ

∂n
= 0,

models a binary alloy as it undergoes phase separation and a coarsening process. R. Pego

formally derived Mullins-Sekerka flow as the asymptotic limit of the Cahn-Hilliard equation

as η → 0 [38]. N. Alikakos, P. Bates, and X. Chen later rigorously proved this result under

the assumption that the Mullins-Sekerka problem has a smooth classical solution by using

asymptotic expansions and spectral analysis [1]. B. Stoth proved convergence with less

restrictive assumptions but had the additional assumption of radially symmetric solutions

[42]. In [15], X. Chen gave a definition for a weak solution to the Mullins-Sekerka problem

and showed that the asymptotic limit of solutions to the Cahn-Hilliard equation gives rise

to weak solutions of the Mullins-Sekerka problem, assuming the initial energy is bounded

independent of η.

Many other results have been produced. Milic used underlying conservation laws to

obtain global growth conditions for interfacial area and phase volumes [34]. Existence of

solutions locally in time was proved by X. Chen in [13], as was global existence for curves

close to a circle in R
2. Well-posedness is proved in arbitrary dimensions by X. Chen, J.

Hong, and F. Yi in [14]. J. Escher and G. Simonett proved existence and regularity of

classical solutions using a center manifold analysis [17]. The two-dimensional case where the

interface meets the boundary orthogonally in exactly two places was studied in [2] by N.

Alikakos, P. Bates, X. Chen, and G. Fusco under the assumptions that the curvature of the

almost spherical droplet moving along the boundary is large compared to the curvature of

the boundary. U. Mayer showed that convexity is not preserved for a bounded domain in R
2

or for the entire plane [29]. In [10], G. Caginalp related the Mullins-Sekerka problem and

similar models to an asymptotic limit of a conserved phase field system.

Other numerical schemes to model Mullins-Sekerka evolution have been given. P. Bates,

X. Chen, and X. Deng reformulated the Mullins-Sekerka problem as a system of boundary

4

integral equations and developed a quasi-implicit numerical algorithm which included node

redistribution [5, 16]. In [46], J. Zhu, X. Chen, and T. Hou used a tangent angle and arclength

formulation and implemented an implicit numerical scheme that simulated interface evolution

until particles underwent topological change. Both of these schemes were in two space-

dimensions.

The above evolution has various names, including the two-phase Mullins-Sekerka problem

[5, 17], and two-sided Mullins-Sekerka flow [29]. The Mullins-Sekerka problem is similar to

the Hele-Shaw problem and has been labelled the Hele-Shaw problem [1, 13], the two-phase

Hele-Shaw problem [16], or the two-phase Hele-Shaw problem with surface tension [19]. (One-

phase) Hele-Shaw flow usually refers to the above evolution with the additional requirement

that u be constant on one side of the interface [14].

We also make mention of the work of G. McFadden, P. Voorthees, R. Boisvert, and

D. Meiron [31, 44], who applied boundary integral techniques to Ostwald ripening in two-

dimensions and developed a numerical scheme to find the solution. Ostwald ripening, or late

stage phase transformation [44], arises in modeling crystal growth [7], and the mathematical

description differs from the Mullins-Sekerka problem only in a more general condition for far

field behavior and the restriction to multiply-connected, exterior domains [31, 44]. While the

reformulation of the Mullins-Sekerka problem presented in this dissertation uses a single layer

potential, the reformulation for Ostwald ripening uses a double layer potential. The double

layer potential is also used in a very general setting by A. Greenbaum, L. Greengard, and G.

McFadden in [22], where the solution to the Dirichlet problem in two-dimensional multiply-

connected domains is given and a numerical algorithm using a fast multipole method is set

forth.

1.2 Contributions of Dissertation

The main contribution of this dissertation is the design and implementation of a numerical

scheme for the Mullins-Sekerka flow in three-dimensional space, as nearly all of the previous

5

work has been in two space-dimensions.

Within this numerical scheme is a gridding of the sphere which has nearly equally spaced

nodes and also makes it possible to catalog each node’s eight nearest neighbors. This is

then mapped onto particles that are topologically equivalent to spheres. A combination of a

particle-particle method and a particle-cluster method helps reduce computation when the

number of nodes is large.

As a toroidal particle evolves, nodes tend to bunch along its outer perimeter, leading to

erroneous results. A redistribution scheme alleviates this problem. A particle starting with

a toroidal interface undergoes a topology change as its center shrinks and the particle tends

towards a spherical shape. By projecting the partly evolved torus onto a nearly pinched

sphere, the evolution passes beyond the critical point of topology change. We also utilize

the symmetry of the torus.

Convergence of various estimations is analyzed with respect to mesh size or time step,

as applicable. Comparing numerical results to the predictions given by the mathematical

model helps validate the scheme.

1.3 Outline of Dissertation

Chapter 2 reformulates the Mullins-Sekerka problem as a system of boundary integral equa-

tions and gives a proof of the equivalence of the formulations. Uniqueness of solutions is also

proved under certain existence assumptions.

Chapter 3 describes the numerical scheme, including how surfaces are modeled discretely,

how surface area and volume are estimated, what method is used to determine mean curva-

ture and surface normals, and how the system of surface integral equations is solved.

The validation of the scheme is contained in Chapter 4 and includes comparing the be-

havior of volume and surface area predicted by the mathematical model to behavior demon-

strated numerically. Evolution of single spheres, multiple spheres of equal radii, and con-

centric spheres can be found analytically as well as numerically, and we compare the two

6

methods.

In Chapter 5 the numerical results are given for various particles. We present an example

that suggests pinching off may occur.

Chapter 6 has the concluding remarks and includes further areas of study.

The numerical algorithm was implemented in C. The graphics were created using Mapler

and the charts were created using Microsoft Excelr.

7

8

Chapter 2

Mathematical Formulation

In this chapter we reformulate the Mullins-Sekerka problem as system of boundary integral

equations. By so doing, the dimension of the problem is reduced effectively by one since

instead of dealing with all of R
3, we concern ourselves only with the surface Γ. We show

the reformulation is equivalent and prove uniqueness of solutions under certain existence

assumptions. The arguments are an adaptation of those found in [5, 16], where the two-

dimensional problem is reformulated to one along curves. See also [6, 8].

2.1 Description of Problem

We first establish some definitions as found in [21]. Let Ω denote a domain in three-

dimensional space. Let Γ ∈ C2 be a finite collection of simple, closed surfaces in the domain.

Denote the domain enclosed by Γ as Ω− and denote Ω\Ω− as Ω+. Let n(x) be the outward

unit normal to Γ at x ∈ Γ. Note that n ∈ C1(Γ) [21].

+

-

- Ω

Ω

Ω
Γ

Γ

Recall that C(Ω±) is the space of functions u ∈ C(Ω±) such that u extends continuously

to Ω±. We define Cn(Ω−) as the space of functions u ∈ C1(Ω−)∩C(Ω−) such that for every

x ∈ Γ,

∂n−u(x) = limt<0,t→0 n(x) · ∇u(x + tn(x))

9

exists and the convergence is uniform on Γ. Likewise, Cn(Ω+) is the space of functions

u ∈ C1(Ω+) ∩ C(Ω+) such that

∂n+u(x) = limt>0,t→0 n(x) · ∇u(x + tn(x)),

exists for each x ∈ Γ, again with the convergence uniform on Γ. The interior and exterior

normal derivatives on Γ are defined to be the operators ∂n− and ∂n+ , respectively. Note that

since convergence is uniform, ∂n±u is continuous on Γ.

We now define the Mullins-Sekerka problem. Let Ω denote a bounded, smooth, and

simply connected domain in R
3. Let Γ0 denote a finite collection of simple closed surfaces in

the domain. We want to find a free boundary Γ(t) and a function u(x, t) which for all x ∈ Ω

and 0 ≤ t ≤ T for some finite T satisfy

i) ∆u(·, t) = 0 in Ω\Γ(t),

ii)
∂u

∂n
= 0 on ∂Ω,

iii) u = κ on Γ(t),

iv)

[
∂u

∂n

]

Γ(t)

= V on Γ(t),

v) Γ(0) = Γ0,

where n is the outward unit normal to Ω and Ω−,

[
∂u

∂n

]

Γ(t)

≡ ∂n−u− ∂n+u is the sum of the

outward normal derivatives of u from each side of Γ(t) or the jump of the normal derivative

of u across Γ(t), κ is the mean curvature of Γ(t), and V is the normal velocity of Γ(t). We

follow the convention that κ < 0 for spheres and that V > 0 if the surface of the sphere is

expanding.

Γ
n

κu=

u=0∆

u=0∆

10

We consider only Ω = R
3, and therefore replace ii) with

∇u(·, t) = O
(

1

|x|3
)

as |x| → ∞.

Note that the condition ∇u(·, t) = O
(

1

|x|3
)

as |x| → ∞ insures that the net flux through

a large sphere of radius R goes to zero, i.e.,

∫

∂BR

∂u

∂n
→ 0 as R → ∞. We label this system

on R
3 as (2.1). We write Ω = R

3 as the disjoint union Ω = Ω−(t)∪ Γ(t)∪Ω+(t), where Γ(t)

encloses Ω−(t).

+

-

- Ω

Ω

Ω
Γ

Γ

Observe that for iv) to make sense, we need u(·, t) ∈ Cn(Ω−(t)) ∩ Cn(Ω+(t)) and Γ(t) ∈

C2. Also note that i) requires u ∈ C2(R3\Γ). However, we can relax this since every

distribution solution of 4u = 0 satisfies u ∈ C∞(R3\Γ) [21]. Note that Γ(t) ∈ C2 gives that

κ(·, t) ∈ C(Γ). Finally, for Γ(0) sufficiently smooth, there exists a T such that Γ(t) is also

smooth for t ∈ [0, T] [13].

2.2 Reformulation of Problem

We now show there exists an integral representation of the solution to system (2.1) via a

single layer potential. For a similar reformulation in two dimensions using a double layer

potential as applied to Ostwald ripening, see [31, 44].

Lemma 2.2.1 Let Γ be the union of finitely many disjoint simple, closed, C2 surfaces such

that Γ separates R
3 into finitely many bounded regions, collectively denoted as Ω−, and one

unbounded region Ω+. Let n denote the outward unit normal to Γ. For each g ∈ C(Γ) define

Wg : R
3 → R

3 by

Wg(x) = − 1

4π

∫

Γ

1

|x − y|g(y)dSy

Then the following hold:

11

1. Wg is well-defined and continuous on R
3.

2. ∆Wg = 0 in R
3\Γ.

3. Wg ∈ Cn(Ω−) ∩ Cn(Ω+) and −
[
∂Wg

∂n

]

Γ

≡ −(∂n−Wg − ∂n+Wg) = g on Γ.

4. Wg = O
(

1

|x|

)

as |x| → ∞.

5. If we also assume that

∫

Γ

g(y)dSy = 0, then ∇Wg = O
(

1

|x|3
)

.

Proof. Since
1

|y| ∈ L1(Γ) and g is bounded, Wg is well-defined. To prove continuity, we

show that given x ∈ R
3, for every ε > 0 there exists δ such that |x − v| < δ implies

|Wg(x) − Wg(v)| < ε. In the arguments that follow, C will absorb constants as necessary.

For x /∈ Γ, let α be the distance from x to Γ and assume |x − v| <
α

2
. Then

|Wg(x) − Wg(v)| = | − 1

4π

∫

Γ

(
1

|x − y| −
1

|v − y|

)

g(y)dSy|

≤ C

∫

Γ

|x − v|
|x − y||v − y|dSy

≤ C
|x − v|

α2
.

Choose δ small enough so that C
|x − v|

α2
< ε.

Now consider x ∈ Γ. Since Γ ∈ C2, Γ is locally diffeomorphic to the plane and we can

consider the integral

Wg(x) = − 1

4π

(∫

Γ\φ−1(BR)

1

|x − y|g(y)dSy +

∫

φ−1(BR)

1

|x − y|g(y)dSy

)

where BR is a ball of radius R centered at the origin in R
2 and φ is a C2 embedding of a

neighborhood of x in R
3 into R

3 mapping x to the origin and a neighborhood of x in Γ into

the xy-plane. We may assume that φ−1(B2R) lies in this neighborhood. We also assume

|x − v| < R. We denote φ(v) as v′. Then

|Wg(x) − Wg(v)| =

∣
∣
∣
∣
− 1

4π

∫

Γ

(
1

|x − y| −
1

|v − y|

)

g(y)dSy

∣
∣
∣
∣

≤ C

(∫

Γ\φ−1(BR)

|x − v|
|x − y||v − y|dSy +

∫

BR

1

|y|dSy +

∫

BR

1

|v′ − y|dSy

)

.

12

Since
1

|y| ∈ L1(Γ), we can choose R sufficiently small so that C

∫

BR

1

|y|dSy <
ε

3
. We next

bound

∫

BR

1

|v′ − y|dSy by

∫

B2R

1

|y|dSy. First we take the simple case that v′ lies on the z-

axis. Then |v′− y|2 = |v′|2 + |y|2, so
1

|v′ − y| ≤
1

|y| . Therefore

∫

BR

1

|v′ − y|dSy ≤
∫

BR

1

|y|dSy.

If v′ = (v′
1, v

′
2, v

′
3) is not on the z-axis, we make the change of variables u = y − (v′

1, v
′
2, 0).

Then
∫

BR

1

|v′ − y|dSy ≤
∫

B2R

1

|(0, 0, v′
3) − u|dSu ≤

∫

B2R

1

|u|dSu.

Choose R small enough so that C

∫

B2R

1

|u|dSu <
ε

3
.

Having fixed R, we now consider

∫

Γ\φ−1(BR)

|x − v|
|x − y||v − y|dSy. Denote by α the distance

from x to Γ\φ−1(BR) and assume |x − v| <
α

2
. Then

∫

Γ\φ−1(BR)

|x − v|
|x − y||v − y|dSy ≤ |x − v| 1

α2

Choose δ small enough so that C
|x − v|

α2
<

ε

3
. This completes the proof of Statement 1.

We note that g ∈ Lp with p > 2 is sufficient to prove Statement 1. The proof uses

Holder’s inequality and is similar to the one given. However, continuity of g is required

for Statement 3. The above proof of continuity is essentially the same as that given in [21]

although there continuity is shown only on Γ. Continuity on Γ with g bounded is also proved

for a more general kernel. In [33], continuity of Wg is proved for g measurable and bounded

and Γ a closed Lyapunov surface.

Statement 2 holds since we can differentiate under the integral sign by Lebesgue’s domi-

nated convergence theorem and ∆x

(
1

|x − y|

)

= 0 for x /∈ Γ.

Statement 3 is in [21] as Theorem 3.28 and Corollary 3.29.

Statement 4 follows from
1

|x − y| = O
(

1

|x|

)

and the boundedness of Γ.

To show Statement 5 we note that if

∫

Γ

g(y)dSy = 0

∇Wg(x) =
1

4π

∫

Γ

x − y

|x − y|3 g(y)dSy

=
1

4π

∫

Γ

(
x − y

|x − y|3 − x

|x|3
)

g(y)dSy.

13

Utilizing the Triangle Inequality, we have

∣
∣
∣
∣

x − y

|x − y|3 − x

|x|3
∣
∣
∣
∣
=

∣
∣
∣
∣

|x|3 − |x − y|3
|x − y|3 · |x|3 x − y

|x − y|3
∣
∣
∣
∣

≤
∣
∣
∣
∣

|x|3 − (|x| − |y|)3

|x − y|3|x|3 x − y

|x − y|3
∣
∣
∣
∣

=

∣
∣
∣
∣

3|x|2|y| − 3|x||y|2 + |y|3
|x − y|3|x|3 x − y

|x − y|3
∣
∣
∣
∣

= O
(

1

|x|3
)

.

Therefore ∇Wg(x) = O
(

1

|x|3
)

. �

2.3 Equivalency of Formulations

We have just found a function which is harmonic on R
3\Γ. This function plus any constant

is also harmonic on R
3\Γ. We now show that the trace of a harmonic function is realized

by the harmonic function found previously from the jump in the normal derivative, up to a

constant.

We will use the following version of Green’s First Identity, which is almost exactly the

one stated without detailed proof in [21], differing only in the smoothness requirement of the

boundary. It differs from most statements of the identity in its relaxing of the hypothesis

u ∈ C2(U). Thanks to Peter Bates and David Clark for their help with this proof.

Lemma 2.3.1 Let U be a bounded domain with C1 boundary. Let u, v ∈ C1(U). Then
∫

∂U

v∂nudS =

∫

U

(v4u + ∇v · ∇u)dx

Proof. First we point out that C2(U) is dense in C1(U). This can be shown by modifying the

constructive proof of the Weierstrass Approximation Theorem found in [21] to include the

first partial derivatives of the approximating polynomials. Let {uk} be a sequence of functions

in C2(U) such that uk → u in the C1(Ω) norm, i.e.,
∑

|α|≤1

sup
x∈U

∣
∣
∣
∣

∂αuk

∂xα
(x) − ∂αu

∂xα
(x)

∣
∣
∣
∣
→ 0 as

k → ∞. Since 4u may not exist, we view u as the distribution defined by <u, φ>≡
∫

Γ

uφ and

14

note that the sequence of distributions

{
∂αuk

∂xα

}

converges to the distribution
∂αu

∂xα
, where

|α| ≥ 0 [35]. Convergence of a sequence {uk} of distributions to a distribution u means that

<uk, φ> → <u, φ> for every test function φ ∈ C∞
c (Γ).

By the usual Green’s first identity,
∫

∂U

v∂νukdS =

∫

U

(v4uk + ∇v · ∇uk)dx.

We let k → ∞ to get our desired result. �

We also need the following technical lemma.

Lemma 2.3.2 Let u be continuous on R
3 or continuous on the compliment of a bounded

open set whose boundary is a finite collection of simple closed surfaces. Let u be continuously

differentiable for |⇀x| sufficiently large. Also let ∇u = O
(

1

|⇀x|3

)

. Then u tends to a constant

limit as |⇀x| → ∞. In particular, u is bounded.

Proof. We show that u tends to a constant limit in the first octant. The proofs for other

octants are similar and by the continuity of u, u tends to the same limit in all octants. Let

{⇀
xn} = {(xn, yn, zn)} be any sequence such that |⇀xn| → ∞ as n → ∞ and xn, yn, zn ≥ 0.

We will show {u(
⇀
xn)} is a Cauchy sequence and hence has a limit. We have the following

for m,n sufficiently large:

∣
∣
∣u(

⇀
xn) − u(

⇀
xm)

∣
∣
∣ =

∣
∣
∣
∣

∫ 1

0

∇u(
⇀
xm + s(

⇀
xn − ⇀

xm)) · (⇀
xn − ⇀

xm)ds

∣
∣
∣
∣

≤
∣
∣
∣
⇀
xn − ⇀

xm

∣
∣
∣

∫ 1

0

∣
∣
∣∇u(

⇀
xm + s(

⇀
xn − ⇀

xm))
∣
∣
∣ ds

≤ C
∣
∣
∣
⇀
xn − ⇀

xm

∣
∣
∣

∫ 1

0

1

|⇀xm + s(
⇀
xn − ⇀

xm)|3
ds

= C
∣
∣
∣
⇀
xn − ⇀

xm

∣
∣
∣

∫ 1

0

1

|(a, 0) + s((b, c) − (a, 0))|3ds

where we rotate the triangle having vertices
⇀
xm,

⇀
xm, and (0, 0, 0) so it lies on the xy-plane,

where it has vertices (a, 0), (b, c), and (0, 0) with a = |⇀xm|. Note that b, c ≥ 0 and |⇀xn| =
√

b2 + c2.

15

To evaluate

∫ 1

0

1

|(a, 0) + s((b, c) − (a, 0))|3ds, we consider two cases. If c = 0, then

∫ 1

0

1

|(a, 0) + s((b, c) − (a, 0))|3ds =
a + b

2a2b2
=

|⇀xm| + |⇀xn|
2|⇀xm|2|

⇀
xn|2

.

Thus
∣
∣
∣u(

⇀
xn) − u(

⇀
xm)

∣
∣
∣ ≤ C

∣
∣
∣
⇀
xn − ⇀

xm

∣
∣
∣
|⇀xm| + |⇀xn|
2|⇀xm|2|

⇀
xn|2

≤ C
(|⇀xm| + |⇀xn|)2

2|⇀xm|2|
⇀
xn|2

, which we can make

as small as desired by choosing n,m large.

In the case that c 6= 0 we have with the aid of Mapler,

∫ 1

0

1

|(a, 0) + s((b, c) − (a, 0))|3ds =
−b

√
b2 + c2 + a

√
b2 + c2 + b2 + c2 − ab

a2c2
√

b2 + c2

=
(|⇀xm| + |⇀xn|)(|

⇀
xn| − b)

|⇀xm|2|
⇀
xn|c2

=
|⇀xm| + |⇀xn|

|⇀xm|2|
⇀
xn|(|

⇀
xn| + b)

≤ |⇀xm| + |⇀xn|
|⇀xm|2|

⇀
xn|2

.

We have
∣
∣
∣u(

⇀
xn) − u(

⇀
xm)

∣
∣
∣ ≤ C

∣
∣
∣
⇀
xn − ⇀

xm

∣
∣
∣
|⇀xm| + |⇀xn|
|⇀xm|2|

⇀
xn|2

≤ C
(|⇀xm| + |⇀xn|)2

|⇀xm|2|
⇀
xn|2

→ 0 as n,m →

∞.

Thus {u(
⇀
xn)} is a Cauchy sequence and has a limit. �

The lemma is also true for ∇u = O
(

1

|⇀x|2

)

, and we conjecture that it holds for ∇u =

O
(

1

|⇀x|p

)

with p > 1. We now return to proving equivalency of formulations.

Lemma 2.3.3 Let Γ be the union of finitely many disjoint simple closed C2 surfaces such

that Γ separates R
3 into finitely many bounded regions, collectively denoted as Ω−, and one

unbounded region Ω+. Let n denote the outward unit normal to Γ. Suppose u ∈ Cn(Ω+) ∩

Cn(Ω−) and g ∈ C(Γ) satisfy

i) ∆u = 0 in R
3\Γ

ii) ∇u = O
(

1

|x|3
)

as |x| → ∞.

iii) −
[
∂u

∂n

]

Γ

= g on Γ.

16

Then

∫

Γ

g(y)dSy = 0. Furthermore, if f ≡ u|Γ, there exists a constant c such that for x ∈ Γ,

f(x) = − 1
4π

∫

Γ
1

|x−y| g(y)dSy + c.

Proof. To show

∫

Γ

g(y)dSy = 0, we let BR be a ball of radius R in R
3 centered at the origin,

where R is large enough so that Γ ⊂ BR. Denote the region between ∂BR and Γ as Ω0, i.e.,

Ω0 = BR\Ω−.

|x|=R

o

-

- Ω

Ω

Ω
Γ

Γ

Then we have
∫

Γ

g = −
∫

Γ

[
∂u

∂n

]

= −
(

−
∫

Γ

∂n+u +

∫

∂BR

∂nu

)

−
∫

Γ

∂n−u +

∫

∂BR

∂nu

= −
∫

Ω0

4u −
∫

Ω−

4u +

∫

∂BR

∂nu

=

∫

∂BR

n · ∇u

= 4πR2 · O
(

1

R3

)

= O
(

1

R

)

.

Let R → ∞ to get

∫

Γ

g(y)dSy = 0.

We must justify our use of Green’s first identity. Here we give details of the explanation

in [21]. With regard to Ω−, Green’s first identity requires u ∈ C1(Ω−), but we have only

u ∈ C1(Ω−) ∩ C(Ω−). However, we can replace Ω− with Ω−
s , where the boundary of Ω−

s is

Γs ≡ {x + sn(x)|x ∈ Γ} and s < 0 is sufficiently close to 0 to for Γs to be C1. Note that

the normal to Γs is also n. Then

∫

Γs

∂nu =

∫

Ω−
s

4u = 0. We take the limit of

∫

Γs

∂nu as

s → 0−. Since n(x) · ∇u(x + sn(x)) converges uniformly on Γ by the definition of Cn(Ω−),

we can apply Lebesgue’s Dominated Convergence Theorem:

17

lim
s→0−

∫

Γs

∂nu(y)dSy = lim
s→0−

∫

Γ

n(x + sn(x)) · ∇u(x + sn(x))dSx

=

∫

Γ

lim
s→0−

n(x) · ∇u(x + sn(x))dSx

=

∫

Γ

∂n−u.

The case for Ω0 is similar.

Let Wg be defined as in 2.3.1. Define

c(x) = u(x) − Wg(x).

We will show c is constant. Since u and Wg belong to Cn(Ω+)∩Cn(Ω−), we have f ∈ C(Γ),

c is continuous on R
3, and ∇c is continuous on R

3\Γ. We also have ∆c = 0 in R
3\Γ and

[
∂c

∂n

]

Γ

= −g − (−g) = 0. Finally, ∇c = O
(

1

|x|3
)

as |x| → ∞, which implies that c is

bounded by Lemma 2.3.2. We now apply Green’s first identity to Ω− and Ω0 = BR\Ω−

where R is large enough so that Ω− ⊂ BR. We have
∫

Γ
c∂n−c =

∫

Ω− (c4c + |∇c|2) and
∫

∂BR
c∂nc−

∫

Γ
c∂n+c =

∫

Ω0
(c4c + |∇c|2) Since ∆c = 0

on BR\Γ = Ω− ∪ Ω0 and

[
∂c

∂n

]

Γ

= 0, we can combine these to get
∫

∂BR

c∂nc =

∫

BR\Γ
|∇c|2.

Since ∂nc = O
(

1

R3

)

and c is bounded,
∫

BR\Γ
|∇c|2 = 4πR2O

(
1

R3

)

= O
(

1

R

)

as R → ∞.

Thus ∇c = 0 and c is constant. Then u(x) = Wg(x) + c and for x ∈ Γ, f(x) = Wg(x) + c.

Thus we’ve shown

f(x) = − 1

4π

∫

Γ

1

|x − y| g(y)dSy + c for x ∈ Γ. �

We now combine Lemmas 2.2.1 and 2.3.3 and let f = κ and g = −V , the mean curvature

and normal velocity of Γ, respectively. We show this system is equivalent to (2.1). We impose

the requirement that Γ0 ∈ C2+α in order to use the uniqueness results found in [17, 18].

18

Theorem 2.3.1 Let α ∈ (0, 1) and suppose there exists some finite time T and c ∈ C([0, T])

such that ∪0≤t≤T Γ(t) is a family of surfaces with Γ0 ∈ C2+α that satisfies

i) κ(x, t) =
1

4π

∫

Γ(t)

1

|x − y|V (y, t)dSy + c(t) for x ∈ Γ(t).

ii)

∫

Γ(t)

V (y, t)dSy = 0.

where V (·, t) ∈ C(Γ(t)) is the normal velocity of Γ(t) and κ(x, t) is the mean curvature of

Γ(t). Then Γ(t) is the interface associated with the solution of (2.1).

Conversely, if (u, Γ(t)) is a solution to (2.1) with Γ0 ∈ C2 and V (·, t) ∈ C(Γ(t)), then i)

and ii) hold.

Proof. Suppose ∪0≤t≤T Γ(t) is a family of surfaces with Γ0 ∈ C2+α that satisfies

i) κ(x, t) =
1

4π

∫

Γ(t)

1

|x − y|V (y, t)dSy + c(t) for x ∈ Γ(t).

ii)

∫

Γ(t)

V (y, t)dSy = 0.

By Lemma 2.2.1, u(·, t) defined on R
3 by

u(x, t) =
1

4π

∫

Γ

1

|x − y|V (y, t)dSy + c(t)

is a solution of (2.1). By [17, 18], solutions to (2.1) are unique given Γ0 ∈ C2+α. Hence Γ(t)

is that solution.

To prove the converse we simply apply Lemma 2.3.3 with g = −V and f = κ. �

2.4 Existence and Uniqueness

We now show that the mean curvature uniquely determines the normal velocity for a simple

closed surface Γ ∈ C3 assuming the existence of a sufficiently smooth solution to an exterior

Dirichlet problem. The more stringent smoothness condition on Γ is needed for the existence

of a sufficiently smooth solution, namely u ∈ Cn(Ω−), to the interior Dirichlet problem, where

as done previously, we denote the portion of R
3 enclosed by Γ as Ω− and the unbounded

portion outside Γ as Ω+. We have the following interior and exterior Dirichlet problem:

19

∆u = 0 on R
3\Γ,

u = κ on Γ,

∇u = O
(

1

|x|3
)

as |x| → ∞.

where κ ∈ C1(Γ) is the mean curvature of Γ. Since for a surface locally represented as

(u, v, f(u, v)) the mean curvature is κ =
fuu(1 + f 2

v) − 2fufvfuv + fvv(1 + f 2
u)

2(1 + f 2
u + f 2

v)
3

2

, we need f ∈

C3 for κ ∈ C1(Γ), i.e., we need Γ ∈ C3.

Previous results for existence (and uniqueness) for the interior Dirichlet problem give

u ∈ C∞(Ω−) ∩ C(Ω−) if κ ∈ C(Γ) [32]. Since κ ∈ C1(Γ), we have u ∈ C∞(Ω−) ∩ C1(Ω−)

and hence u ∈ Cn(Ω−).

The author is not aware of existence or uniqueness results for the above exterior Dirichlet

problem. There are other exterior Dirichlet problems for which existence and uniqueness is

known. If u is bounded and the limit of u at infinity is specified, the exterior problem is

uniquely solvable [30]. Another exterior problem requires u to be harmonic at infinity and

has a (unique) solution u ∈ C(Ω+) [21]. By definition, a function u satisfying the Laplace

equation on an exterior domain is harmonic at infinity if its Kelvin transform has a removable

singularity at the origin [21].

The difference between the three exterior problems is shown by the case that Γ is the unit

sphere centered at the origin and κ ≡ −1. The function u(x) = − 1

|x| is the solution that is

harmonic at infinity, but it does not satisfy ∇u = O
(

1

|x|3
)

. However, u ≡ −1 does satisfy

∇u = O
(

1

|x|3
)

. Furthermore, u ≡ −1 is not harmonic at infinity, as its Kelvin transform

is
−1

|x| [21, 40]. Both u ≡ −1 and u(x) = − 1

|x| tend to a limit as |x| → ∞. In general,

as proved in Lemma 2.3.2, ∇u = O
(

1

|x|3
)

implies u has a limit, assuming u exists. We

note that for a function u satisfying the Laplace equation on an exterior domain, harmonic

at infinity is equivalent to u = O
(

1

|x|

)

and also equivalent to u(x) → 0 as |x| → ∞ [21].

20

Existence and uniqueness using the condition u = O
(

1

|x|

)

are proved in [33].

We now prove that the mean curvature κ uniquely determines the normal velocity V ,

assuming the existence of a sufficiently smooth solution to the above exterior Dirichlet prob-

lem.

Theorem 2.4.1 Let Γ be the union of finitely many disjoint simple closed C3 surfaces such

that Γ separates R
3 into finitely many bounded regions, collectively denoted as Ω−, and one

unbounded region Ω+. Let n denote the outward unit normal to Γ. Let f ∈ C1(Γ). Assume

there exists a solution u ∈ Cn(Ω+) to the exterior Dirichlet problem

∆u = 0 on Ω+,

u = f on Γ,

∇u = O
(

1

|x|3
)

as |x| → ∞.

Then there exists a unique g ∈ C(Γ) and constant c such that

i) f(x) = − 1

4π

∫

Γ

1

|x − y|g(y)dSy + c for x ∈ Γ.

ii)

∫

Γ

g(y)dSy = 0.

Proof. We first show the existence of g and c. Let u ∈ Cn(Ω−) ∩ Cn(Ω+) be a solution to

the Dirichlet problem below:

∆u = 0 on R
3\Γ,

u = f on Γ,

∇u = O
(

1

|x|3
)

as |x| → ∞.

Let g = −
[
∂u

∂n

]

Γ

. Then g is continuous and by Lemma 2.3.3,

∫

Γ

g = 0 and c ≡ u(x) +

1

4π

∫

Γ

1

|x − y|g(y)dSy = u(x) − Wg(x), x ∈ Γ, is constant.

21

We now show uniqueness. Since i) and ii) is a linear system, we need only show that

f ≡ 0 implies g ≡ 0 and c = 0. Let w(x) ≡ − 1
4π

∫

Γ
1

|x−y|g(y)dSy + c = Wg(x) + c. Utilizing

Lemma 2.2.1, we have

1. w is well-defined and continuous on R
3.

2. ∆w = 0 in R
3\Γ.

3. w ∈ Cn(Ω−) ∩ Cn(Ω+) and −
[
∂w

∂n

]

Γ

≡ −(∂n−w − ∂n+w) = g on Γ.

4. w = c + O
(

1

|x|

)

as |x| → ∞.

5. ∇w = O
(

1

|x|3
)

as |x| → ∞.

Also, w = f = 0 on Γ.

We show w ≡ 0 using Green’s first identity. The relaxed regularity of w can be justified

using the technique found in Lemma 2.3.3. First we consider Ω−. We have

∫

Γ

w∂n−w =

∫

Ω−

(
w4w + |∇w|2

)

=⇒ 0 =

∫

Ω−

|∇w|2.

Hence w is constant on Ω−. Since w = 0 on Γ and w is continuous on R
3, w = 0 on Ω−.

Now consider Ω0 = BR\Ω− where R is large enough so that Ω− ⊂ BR.

|x|=R

o

-

- Ω

Ω

Ω
Γ

Γ

Again by Green’s first identity we have

22

∫

∂BR

w∂nw −
∫

Γ

w∂n+w =

∫

Ω0

(
w4w + |∇w|2

)

=⇒
∫

∂BR

w∂nw =

∫

Ω0

|∇w|2

=⇒ 4πR2

(

c + O
(

1

R

))

O
(

1

R3

)

=

∫

Ω0

|∇w|2

=⇒ O
(

1

R

)

=

∫

Ω0

|∇w|2.

Then ∇w = 0 and w = 0 on R
3.

Since 0 = −
[
∂w

∂n

]

Γ

= −
[
∂Wg

∂n

]

Γ

= g, we have g ≡ 0 on Γ. Hence, c = 0. �

We can now solve (2.1) in the following way: Given Γ(t) we calculate κ(x, t) on Γ(t). We

solve the system 





κ(x, t) =
1

4π

∫

Γ(t)

1

|x − y|V (y, t)dSy + c(t)

∫

Γ(t)

V (y, t)dSy = 0

for V (·, t) and c(t). We then advance the surface to Γ(t + ∆t) by a suitable scheme. In our

case we use a semi-implicit method based on the Implicit Trapezoid method [9].

23

24

Chapter 3

Numerical Scheme

This chapter describes the numerical scheme. The first component of the scheme is modeling

surfaces discretely. Various factors must be taken into account, including ease of cataloging

the nodes onto a rectangular grid and having nodes as equidistant as possible.

Surface area must be estimated, both locally for the discretized surface integrals and

globally as a validation of the scheme. We use triangular patches and show theoretically

and numerically that smaller mesh size leads to convergence of estimated surface area to

actual surface area. We also derive estimates of the volume enclosed by the surfaces, which

is necessary only for scheme validation.

Speed of evolution of a node, or point, on a surface is governed by the mean curvature, so

a good estimate is vital. The node then travels in the direction of the normal to the surface,

which must also be found numerically. The method we use, obtained from [45], utilizes an

iterative method to fit a node and its neighbors to a quadratic surface. We explain it in

detail and show numerical results of convergence.

The system of boundary integral equations must be evaluated over the triangular patches

that comprise the surface. We use an average over the vertices to estimate the value of the

function
1

|x − y| over a patch. This discretization leads to a system of linear equations whose

solution gives the normal velocities of the nodes. Solving the system of equations is extremely

computationally expensive, so a particle-cluster method is used to reduce the computations

involved for large numbers of nodes, or points on the surfaces.

25

Many choices are available to advance the surface. A semi-implicit scheme is the most

advantageous, and we show how the necessary calculations are made.

3.1 Surface Modeling

Our purpose is to discretize any number of simple, smooth closed surfaces. For simplicity

we consider only ellipsoids, torii, and distortions thereof.

Several factors come into play as we choose discrete representations of various surfaces.

Of course simplicity and flexibility are overriding goals. Since the points on the surface, or

nodes, must be stored in computer memory in a way that is easily referred back to, we want

the discretization to easily adapt to a rectangular array. A rectangular N × M array also

makes exhaustive algorithms more straightforward. In the C programming language, indices

of arrays begin at 0, so visually we have the following:

n

m (n,m)

(N–1,M–1)

(N–1,0)

(0,M–1)

(0,0)

Keeping track of a node’s eight nearest neighbors is easier if neighbors spatially are also

neighbors on the array.

Another consideration is that when nodes that are fairly equally spaced, we can use a

much larger time step than if nodes are clustering in certain areas. For example, below

are two different ways to discretize a sphere. The left discretization, based on spherical

coordinates, is extremely simple to fit with a rectangular array and the nearest neighbor

scheme is straightforward, but the clustering of nodes at the poles quickly leads to “blow-up,”

or isolated nodes suddenly evolving large distances from the other nodes. The discretization

on the below right, which is based on a regular icosahedron, has very evenly distributed

nodes, but is quite complicated with regard to record keeping. The latter is what we use.

26

We also want a decrease in mesh size, which is the average of the distance between nodes

and their eight neighboring nodes, to lead to greater accuracy in area, volume, outward

normal, and mean curvature approximations. We analyze convergence of these estimates.

3.1.1 Torus

The torus is the simplest surface to discretize. The following method was also utilized in

[8]. The surface can be given implicitly by z2 + (
√

x2 + y2 − R)2 = r2 where R denotes the

large radius of the torus and r the small radius. However, it is simpler to use an angular

parametrization. We have

x = (R + r cos φ) cos θ

y = (R + r cos φ) sin θ

z = r sin φ

where θ ∈ [0, 2π) is the angle between the positive x axis and the projection of the line from

the origin to the node onto the xy-plane. We find φ by intersecting the torus with a plane

perpendicular to the xy-plane containing the node to get a circle. We let φ ∈ [0, 2π) be the

angle between the line on the xy-plane and the line from the center of the circle.

rR
φθ

27

As our array is N by M, we let n vary from 0 to N − 1 and m vary from 0 to M − 1 and

assign

θ =
2πn

N

φ =
2πm

M
.

This, in effect, wraps the grid into a cylinder and then bends the cylinder around to join the

ends. Below is the case N = 20, M = 10, R = 3, and r = 1.

3.1.2 Distorted Torus

We shall distort the torus by perturbing the radii, cross sections, and the distance from the

xy-plane. The objects below are a distortion of a torus with large radius R = 4 and small

radius r = 2. The discretization below is based on a 40×20 array, i.e., N = 40 and M = 20.

Recall that for a non-distorted torus we have the parametrization

x = (R + r cos φ) cos θ

y = (R + r cos φ) sin θ

z = r sin φ

The distorted torus will be parameterized by

28

x = (R′ + r′ cos φ) cos θ

y = (R′ + r′ cos φ) sin θ

z = b sin φ + h

First we distort the radii R and r to find R′(θ) and r′(θ). The torus projected onto the

xy-plane is an annulus with inner radius R−r and outer radius R+r. We perturb this inner

radius to RI = (R − r)(1 + 0.1 sin 2θ) and the outer radius to RO = (R + r)(1 + 0.1 sin 2θ),

although other functions may be used. Then the small radius r′ of the perturbed torus is

RO − RI

2
and the large radius R′ is RI + r′. Note that at θ = 0 and θ = π we have R′ = R

and r′ = r.

θ=3π/2

θ=π

θ=π/2

θ=0

The cross sections are varied from circular to elliptical by specifying b = r′ − r′

2
sin θ.

Again, other functions may be used. At θ = 0 and θ = π the cross sections are circular with

radius r while at θ =
π

2
and θ =

3π

2
the cross sections are the ellipses

x2

(r′)2
+

y2

(r′

2
)2

= 1 and

x2

(r′)2
+

y2

(3r′

2
)2

= 1, respectively.

We add h =
r

2
cos 2θ to the z value to distort the distance from the xy-plane, again realizing

we have many choices of functions.

29

3.1.3 Ellipsoid

Given a sphere or more generally an ellipsoid, we wish discretize its surface. The model is

based on the regular icosahedron. We arrange nodes on each of its 20 equilateral triangles

and project the results onto an ellipsoid.

First we find the coordinates of the 12 vertices. The vertices (±1,±τ, 0), (0,±1,±τ), and

(±τ, 0,±1), where τ =
1 +

√
5

2
is the golden ratio, form a regular icosahedron [43]. However,

placing two of the vertices on (1, 0, 0) and (−1, 0, 0) simplifies the discretizations of tubes

and barbells, which are areas of work in progress. We next show how to find the vertices

given this constraint.

1

–1

1–1

We will use the term ‘pole’ to refer to (1, 0, 0) or (−1, 0, 0). The five triangles surrounding

the pole (1, 0, 0) are the ‘right cap’. ‘Left cap’ is defined similarly. The remaining 10 triangles

form what we shall call the ‘belt’.

To find the appropriate coordinates of the vertices, we consider the triangle formed by

the edge lying on the first quadrant of the xz-plane and by the line segments connecting the

vertices of the edge to the origin. Here s denotes the length of an edge. The eventual goal

is to calculate cos α and sin α, where α is as shown below.

30

α γ

s1

1

By the law of cosines we have cos γ =
s

2
, so the height of the triangle is

s

2

√
4 − s2.

-
2

2
_s _____

|4-s

2

2
_s

γ

s

Next we look at the right cap of the icosahedron as projected onto the yz-plane.

5
_2π

-
2

2
_s_____

|4-s

s

By the law of cosines, s2 = 2
(s

2

√
4 − s2

)2

−2
(s

2

√
4 − s2

)2

cos
2π

5
, and s =

√

4 − 2

1 − cos 2π
5

.

Fortunately cos
2π

5
can be found algebraically in the following way. Express cos 5x in

terms of cos x by using sum and double angle formulas along with the relation cos2 x+sin2 x =

1. Let x =
2π

5
and use an algebraic solver such as Mapler to solve the resulting fifth degree

polynomial equation 16a5 − 20a3 + 5a − 1 = (a − 1)(4a2 + 2a − 1)2 = 0 where a = cos
2π

5
.

The applicable root is cos
2π

5
=

√
5 − 1

4
.

We can now calculate cos α = 1 − s2

2
=

1√
5
. It follows directly that sin α =

2√
5
. The

coordinates of the vertices of the icosahedron other than the poles are as follows: The x-

coordinates are ± cos α. The y-coordinates are sin α cos β where β is
π

2
plus a multiple of

2π

5
for the right cap and −π

2
plus a multiple of

2π

5
for the left cap. The z-coordinate is

sin α sin β.

31

The next step is to arrange nodes onto the twenty faces. Since the nodes are to be stored

in a rectangular array, it is convenient to section an array into 20 isosceles right triangles

and put the same number of nodes in the isosceles triangles onto the triangular faces of the

icosahedron, as shown below.

Since there are 20 faces, if there are M nodes in the array vertically, there are 10(M+1) nodes

along the array horizontally and 10M(M + 1) nodes total. Below are faces with M = 5, 7,

and 10.

Our method of bookkeeping dictates there be the same number of nodes on each face,

so to prevent overlap or omission of nodes when arranging the triangular clusters of nodes

on the icosahedron, we don’t put nodes on the edges. Instead we create a small buffer zone

which is half the horizontal distance between nodes. Below is a face scaled so that the

distance between nodes is 1.

_
|3/2

π/6
1/2

1

Given the three vertices P,Q,R of a face of the icosahedron, we generate the nodes by first

finding the distance, or mesh size m, between nodes given the buffer zone as described above.

32

Since the length of an edge is s =

√

4 − 2

1 − cos 2π
5

=

√

10 − 2
√

5

5
, m =

√

10−2
√

5
5

M − 1 +
√

3
.

We next find the node nearest one of the vertices, say P . We label this node as S, and

S = P +

√
3

2
m

−→
PR

‖ −→
PR ‖

+
1

2
m

−→
PQ +

−→
RQ

‖ −→
PQ +

−→
RQ ‖

Then we find vectors u,v of length m parallel to

−→
PQ and

−→
PR. Adding integer multiples of u and v to S generates the nodes on the face.

R

Q

P

S m

v

u

P R

Q

P

We generate nodes on all the faces of the icosahedron and project the nodes onto an

ellipsoid by the following method. Supposing first that the ellipsoid is centered at the origin,

we need to find for each node (u, v, w) on the icosahedron the constant k such that the

product k(u, v, w) lies on the surface
x2

a2
+

y2

b2
+

z2

c2
= 1. Then

(ku)2

a2
+

(kv)2

b2
+

(kw)2

c2
= 1

and k =
abc√

u2b2c2 + v2a2c2 + w2a2b2
. If the ellipsoid is centered at a node C other than the

origin, we simply translate by finding k(u, v, w) + C. Below we show the case for a sphere

where M = 5 is the number of nodes along each edge, for a total of 300 nodes.

3.1.4 Distorted Ellipsoid

An ellipsoid of radius R is easily distorted by adding perturbations to the radius based on

the spherical coordinates θ and φ. For example, the radius of the distorted unit sphere shown

below is

ρ = 1 + 0.2 sin(2φ) + 0.3 sin(2φ) sin θ +
0.3

√

0.25 sin2 φ cos2 θ + 2 sin2 φ sin2 θ + 0.1 cos2 φ

33

A distorted ellipsoid is discretized similarly to a non-distorted ellipsoid, differing only

in the projection step. Given a node (u, v, w) on the discretized icosahedron, we calculate

φ = cos−1 w√
u2 + v2 + w2

and θ = cos−1 u

u2 + v2
for v ≥ 0 and θ = 2π − cos−1 u

u2 + v2
for

v < 0. Then ρ = f(φ, θ) is the perturbed radius. Lastly, we find the rectangular coordinates

using x = ρ sin φ cos θ, y = ρ sin φ sin θ, and z = ρ cos φ.

3.2 Nearest Neighbors

For each node on the discretized surface we catalogue 8 neighboring nodes. These neighbors

are used in estimating surface area, volume, mean curvature, and outward normals. We

choose the neighbors based largely on spacial considerations. Occasionally ease of cataloguing

or facilitating the tiling of the surface with triangular patches will dictate that a neighbor

may not be one of the nearest eight nodes. However, in most cases the neighbors will be the

nearest ones.

3.2.1 Torus

The torus is the simplest surface for which to catalogue the neighbors. The nearest neighbors

on the surface correspond to the nearest neighbors on the array. Thus a node indexed by

(n,m) will have neighbors indexed by (n+1,m), (n+1,m+1), (n,m+1), (n−1,m+1), (n−

1,m), (n−1,m−1), (n,m−1), and (n+1,m−1). However, this is valid only if (n,m) does not

lie on the edge of the array, i.e., n 6= N and m 6= M . Since the array wraps around, we have

the more general formula for the neighbors of (n,m): ((n + 1) %N,m) , ((n + 1)%N, (m +

1)%M), (n, (m + 1)%M), ((n − 1 + N)%N, (m + 1)%M), ((n − 1 + N)%N,m), ((n − 1 +

N)%N, (m− 1 + M)%M), (n, (m− 1 + M)%M), and ((n + 1)%N, (m− 1 + M)%M), where

34

we adopt the C programming language’s notation % for modular arithmetic.

n

m (n,m)

(N–1,M–1)

(N–1,0)

(0,M–1)

(0,0)

3.2.2 Ellipsoid

The ellipsoid’s neighbor scheme is more complex because special cases are needed where

triangular faces meet. We omit the details for these special cases. For a node which is

interior to a face, the scheme is straightforward. Six of the nodes are obvious choices for

neighbors: they form a hexagon around the node. For the other two nodes, we simply make

a choice and stick with it. We pick the nodes directly above and below the central node.

Below is an example face with an interior node and its neighbors. The left triangle is the

node and neighbor as they are catalogued in the rectangular array in which they are stored.

Neighbors on Array Neighbors on Face

3.3 Surface Area Estimates

Dividing a surface into “patches” serves two purposes. First, we can estimate the total

surface area, providing a check that surface area is indeed non-increasing as mathematically

predicted (see 4.2). Secondly, the patches are used in approximating surface integrals (see

3.7).

35

3.3.1 Subdivision Points

We tile surfaces with triangular patches by designating four triangular patches for each node,

with the node a vertex of each of the four triangles. The other vertices are found by averaging

the node and three of its eight nearest neighbors. We call these vertices subdivision points.

 Xi

Node and 8 Neighbors Subdivision Points Triangular Patches

We demonstrate with a torus discretized by 256 nodes.

Nodes Nodes and Subdivision Points

Patches

The patches completely tile the torus. We omit the details, but the ellipsoid also is covered

by the patches, although this requires some adjustments of the subdivision points near the

poles. Distortions do not cause any gaps in the tiling.

36

The subdivision points do not lie on the surface itself since they are found by averaging

four nodes that lie on the surface. The chart below shows the maximum over the subdivision

points of the distance between a subdivision point and the surface of a torus versus the mesh

size. Mesh size refers to the average distance between the nodes and their eight nearest

neighbors. For simplicity when doing error analysis for the torus, we use N = M , i.e., the

number of nodes on a radial slice is equal to the number of such slices. For this analysis the

torus has large radius 2 and small radius 1. Further discussion on these choices is in 3.3.3.

For a subdivision point (x, y, z), the distance to the surface of a torus with large radius R

and small radius r is

∣
∣
∣
∣
r −

√

(
√

x2 + y2 − R)2 + z2

∣
∣
∣
∣
.

Distance from Subdivision Points to Surface

Torus

y = 0.1384x1.9808

0

0.05

0.1

0.15

0.2

0.3 0.5 0.7 0.9 1.1

Mesh Size

D
is

ta
n

c
e

Using Microsoft Excelr, we can fit a function of the form y = axb to the data. The error is

inversely proportional to the square of the mesh size.

The sphere also has this relationship, as shown below. In the case of a sphere of radius

r, the distance from a subdivision point (x, y, z) to the surface is r −
√

x2 + y2 + z2.

37

Distance from Subdivision Points to Surface

Unit Sphere

y = 0.2107x1.9951

0

0.005

0.01

0.015

0.02

0.025

0.075 0.125 0.175 0.225 0.275 0.325

Mesh Size

D
is

ta
n

c
e

Finding subdivision points which lie nearer to the surface is an area of further work. One

possibility is for the subdivision point to lie on the approximating surface through a nearby

node (see 3.5).

3.3.2 Patch Area

Given a node and two subdivision points which form the vertices of a patch, we now calculate

the area of the patch. We also discuss other options for estimating surface area and why

they are not used.

The area of a triangular patch with vertices A,B, and C is simply
1

2
‖−→AB × −→

AC‖.

Assuming the subdivision points lie on the surface, a more accurate way of calculating

the area would be finding the area of the surface itself instead of the triangular patch.

However, surface area in general is hard to calculate. Indeed, even for the quadratic sur-

face z = Ax + By + Cx2 + Dxy + Ey2, to find the area of the surface above the lines

connecting (0, 0, 0), (a, 0, z(a, 0)), and (0, b, z(0, b)) we are required to find the integral
∫ a

0

∫ −b
a

x+b

0

√

(A + 2Cx + Dy)2 + (B + Dx + 2Ey)2 + 1 dy dx analytically, which is not an

easy task. The first integral of the double integral is not hard to find, but the outer integral

would require a numerical algorithm. Ascertaining whether the computational expense is

justified by greater accuracy is an area of future work.

38

A surface simpler than a general quadratic surface is a sphere. Given three nodes P,Q,R

on the surface of a sphere with radius R centered at the origin, we let α, β, γ be the angles

between the vectors connecting the nodes to the origin. If two of the angles are equal, say

α = β, then the surface area bordered by the arcs connecting P,Q, and R is γ(R2 − cos α).

Otherwise the surface area is γR2

(

1 +
sin α − sin β

β − α

)

. Unfortunately this latter formula is

extremely sensitive to roundoff error when α is near β, as we have a small number divided by

a small number:
sin α − sin β

β − α
. A future area of investigation is whether this can be overcome,

perhaps by using Taylor series approximations. If we can find a workable formula for the

area, the next step would be deciding what radius R is appropriate given any discretized

surface.

In view of these difficulties, we use the area of triangles to estimate surface area.

3.3.3 Convergence of Surface Area Estimates

There are two things to consider in analyzing the validity of our surface estimates. First

we need that the total area of these estimates converges to the area of the entire surface.

Without this latter result, we cannot reasonably ascertain whether the scheme is true to

the mathematical model’s prediction that surface area is non-increasing (see 4.2). Secondly,

we show that the area of a triangular estimate converges to the actual area of the surface

“above” the triangle, where the triangle’s vertices lie on the surface and convergence is with

respect to the maximum length of the sides of a triangle. This helps confirm the validity of

integrating over patches as an approximation to integrating over a surface (see 3.7).

To estimate the surface area, we sum the area of all the patches. Numerical convergence

results are quite good. For a sphere of radius 1, we have the following tables showing the

the relationship between the error and the mesh size. The error is inversely proportional to

the square of the mesh size.

39

Error in Area

Sphere

y = 1.5985x1.9848

0

0.05

0.1

0.15

0.2

0.075 0.125 0.175 0.225 0.275 0.325

Mesh Size

E
rr

o
r

Before continuing the error analysis of surface area estimates, we take a moment to discuss

the error analysis tables. Since we directly control the number of nodes rather than the mesh

size, we would like to find a relationship between the two. Recall that mesh size is the average

distance between the nodes and their eight nearest neighbors. In the argument below we

assume patch areas and mesh sizes are approximately the same throughout a surface. Since

surface area ≈ (# nodes)4(area of patch)

≈ (# nodes)(mesh size)2
,

we have the relationship for some constant k:

nodes ≈ k

(mesh size)2
.

Experimentally we have this relationship for the unit sphere, as shown below.

40

Mesh Size vs Nodes

Unit Sphere

y = 20.132x-2.0018

0

500

1000

1500

2000

2500

0.075 0.125 0.175 0.225 0.275 0.325

Mesh Size

N
o

d
e
s

For the torus more care is needed to analyze error. A large number of nodes does not

necessarily mean smaller mesh size because the choices of N , the number of radial slices, and

M , the number of nodes per radial slice, have a great effect. For example, the torii below all

are discretized with NM = 400 nodes but have different N and M values and also different

mesh sizes.

N=40, M=10 N=20, M=20 N=10, M=40

The table below shows the mesh size for different values of N with the number of nodes fixed

at 400. The torus has large radius 2 and small radius 1.

41

N vs Mesh Size

Torus 400 Nodes

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

N

M
e
s
h

 S
iz

e

Using N = M = 20 gives one of the smaller mesh sizes. In future error analysis with respect

to the torus, we will use N = M with large radius 2 and small radius 1. This will give that

the nodes on the inner perimeter are the same distance apart as the nodes on each radial

slice. Below we show the experimental relationship between number of nodes and mesh size

given that N = M .

Mesh Size vs Nodes

Torus, N=M

y = 136.31x-2.0185

0

500

1000

1500

2000

2500

0.2 0.4 0.6 0.8 1 1.2

Mesh Size

N
o

d
e
s

Again we have # nodes ≈ k

(mesh size)2
.

We now return to surface area estimates. For the torus we have the following error:

42

Error in Area

Torus

y = 0.9189x2.3303

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1 1.2

Mesh Size

E
r
r
o

r

Again we have good convergence.

Next we show analytically that both the total surface area and local surface area patch

estimates converge as the mesh size approaches zero. As mentioned previously, surface area

in general is hard to find exact formulas for. Therefore we will restrict ourselves to two

surfaces for which the area is easier to find: the sphere and the cylinder. We also simplify by

using triangles and sometimes rectangles that are larger than the patches constructed above,

but this effects the rate of convergence only by a constant.

First we consider the curved side of a cylinder with radius a and height H. Shown below

is the cylinder divided into triangles. Each of the triangles has height h and spans an angle

β.

H

a

For simplicity we compute the area of the surface enclosed by a rectangular region. Consider

the two patches below, both of which have the same vertices. In cylindrical coordinates

(r, θ, z) these vertices are (a, 0, 0), (a, β, 0), (a, 0, h), and (a, β, h). Recall that a is the

radius of the cylinder, β is the angle spanned by the patch, and h is the height of the

43

patch. In rectangular coordinates the vertices are (a, 0, 0), (a cos β, a sin β, 0), (a, 0, h), and

(a cos β, a sin β, h).

The estimated area of the cylindrical patch is simply the base times the height, or Aest =
√

(a cos β − a)2 − (a sin β)2 h = ah
√

2 − 2 cos β. The actual area of the cylindrical patch is

simply the arc length times the height, or Aact = aβh. Subtracting the areas and utilizing

Taylor series for cos β, we have

∆A = Aact − Aest

= ah
√

2 − 2 cos β − ahβ

= ahβ

(√

1 − β2

12
+ O(β4) − 1

)

= ahβ
−β2

12
+ O(β4)

√

1 − β2

12
+ O(β4) + 1

= O (hβ3).

Hence our estimate on the local level is quite reasonable.

We now consider the sum of the patches as an estimate of the surface area of the entire

curved side of the cylinder. The actual area is simply Aact = 2πaH. Now there are
2π

β

triangles in a slice of height h, and there are
H

h
slices. Therefore the estimated total area is

Aest =
2π

β

H

h
ah
√

2 − 2 cos β. Subtracting these total areas and again utilizing Taylor series,

we have

∆A = Aact − Aest

= 2πaH − 2πaH

β

√

2 − 2 cos β

= O (β2).

Thus our approximation is second order and again quite reasonable.

For a sphere, we consider an isosceles triangle for simplicity. Consider the two patches

below, both of which have the same vertices. In spherical coordinates (ρ, θ, φ) these ver-

44

tices are (r, 0, 0), (r, 0, β), and (r, α, β), where r is the radius of the sphere, α is the

angle spanned by the base of the patch, and β is angle from the z-axis to the base of

the triangle. In rectangular coordinates the vertices are (0, 0, r), (r sin β, 0, r cos β), and

(r sin β cos α, r sin β sin α, r cos β). Both α and β are small.

The area of the flat triangular patch is one half the magnitude of the cross product of

two of the edge vectors. Thus

Aest =
1

2
‖ (r sin β, 0, r(cos β − 1) × (r sin β (cos α − 1), r sin β sin α, 0) ‖

=
1

2

√

r4 sin2β sin2α(cosβ−1)2+r4 sin2β(cosα−1)2(cosβ−1)2+r4 sin2β sin2α

=
1

2
r2 sinβ

√

(1 − cosα)2(1 − cosβ)2 + 2 sin2α (1 − cosβ).

The actual area of the patch on the sphere is Aact = r2α(1 − cos β), which can be found

by integration. Subtracting the areas and utilizing Taylor series, we have

∆A = Aact − Aest

=
1

2
r2 sinβ

√

(1 − cosα)2(1 − cosβ)2 + 2 sin2α (1 − cosβ) − r2α(1 − cos β)

= O(αnβm).

where n + m = 5. Our estimate is again quite reasonable.

Comparing the total area, we make the assumption that
4πr2

r2α(1 − cos β)
, which is the

surface area of a sphere divided by the actual area of a patch, triangular patches cover the

sphere. Then

∆A = Aact − Aest

= 4πr2 − 4πr2

r2α(1 − cos β)

1

2
r2 sinβ

√

(1 − cosα)2(1 − cosβ)2 + 2 sin2α (1 − cosβ)

= O(α2) + O(β2).

Hence the area of a sphere can be reasonably approximated by triangular patches.

45

3.4 Volume Estimates

Volume estimates are not necessary for any part of the scheme, but as volume must be

preserved, finding a way to accurately measure the volume of particles serves as a way to

validate the scheme. How we estimate volume is specific to each type of surface.

3.4.1 Ellipsoid

Approximating generally ellipsoidal surfaces is perhaps the most straightforward. We first

calculate the centroid of a (single) particle enclosed by a surface by taking the average over

all nodes. Recall that the volume of a prism formed by connecting four nodes is |(A×B) ·C|

where A, B, and C are any three vectors formed by the four nodes [41]. For each node we

form four such prisms using the subdivision points and the centroid. Finally we sum over

all prisms to estimate the volume. Notice that this is an underestimate.

centroid

 subdivision point
subdivision point

 node

The chart below shows how error in volume relates to mesh size with respect to the unit

sphere.

Error in Volume Estimates

Unit Sphere

y = 2.1222x1.983

0

0.05

0.1

0.15

0.2

0.25

0.075 0.125 0.175 0.225 0.275 0.325

Mesh Size

E
rr

o
r

46

The error is inversely proportional to the square of the mesh size.

3.4.2 Torus

The torus estimate utilizes Pappus’ Theorem [41], which states that the volume of a solid

of revolution is the area of a cross section multiplied by the distance the centroid of the

cross section is revolved. Note that the volume estimate is valid only for axially symmetric

objects, so we have no volume estimate for distorted torii. Such a scheme is an area for further

investigation. We choose one radial slice of the discretized torus and find the centroid C

of the slice by taking the average of its nodes. The area A of the slice is approximated by

joining the centroid to the nodes on the perimeter to form triangles and then summing the

area of these triangles. We find the area of a triangle with sides
⇀

P and
⇀

Q by 1
2
‖

⇀

P ×
⇀

Q‖.

Then the estimated volume is 2π‖C‖A for a torus centered at the origin.

Discretized Torus

centroid C

Slice Triangles

We have the following numerical results for a torus with large radius 2 and small radius

1.

Error in Volume Estimates

Torus

y = 1.8834x2.0094

0

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1 1.2

Mesh Size

E
r
r
o

r

The error shows similar behavior to that of the sphere’s error.

47

3.5 Best Fit Surface and Outward Normal

Given a node and its 8 nearest neighbors, we need a surface so that we can approximate

mean curvature and the outward normal at that node. Instead of a surface that goes through

all 9 nodes, we use the surface of the form z = Ax + By + Cx2 + Dxy + Ey2 that best fits

the nodes. As shown in [45], through an iterative process we find the coefficients A,B,C,D,

and E that minimize the vertical distance between the surface and the nodes and so that

the outward unit normal n lies on the z-axis.

The first step is to translate the nodes so that the center node is the origin. Next we

choose a coordinate axis so that the nodes will lie on the graph of a function, i.e., we make

sure no node is directly above another. There are many ways to do this. We explain first

a simple choice, which later on we modify to speed up convergence. Let the basis for the

x-axis to be the unit vector passing through the first neighbor. Denoting the ith neighbor

as (xi, yi, zi), the vector is

(x1, y1, z1)
√

x2
1 + y2

1 + z2
1

The basis for the z-axis is found by taking the cross product of the vectors passing from the

origin to the first and third neighbors and normalizing the result. Thus the vector is

(x1, y1, z1) × (x3, y3, z3)

‖(x1, y1, z1) × (x3, y3, z3)‖
The y-axis is simply the cross product of the other two basis vectors.

To find the best fit surface, we minimize

F (A,B,C,D,E) =
8∑

i=1

(Axi + Byi + Cx2
i + Dxiyi + Ey2

i − zi)
2

x2
i + y2

i + z2
i

where (xi, yi, zi) is now the ith neighbor in the current coordinate system. The x2
i + y2

i + z2
i

in the denominator serves to weight nearby nodes more heavily. Thus we need A,B,C,D,

and E to satisfy

∂F

∂A
=

8∑

i=1

2xi(Axi + Byi + Cx2
i + Dxiyi + Ey2

i − zi)

x2
i + y2

i + z2
i

= 0

∂F

∂B
=

8∑

i=1

2yi(Axi + Byi + Cx2
i + Dxiyi + Ey2

i − zi)

x2
i + y2

i + z2
i

= 0

48

∂F

∂C
=

8∑

i=1

2x2
i (Axi + Byi + Cx2

i + Dxiyi + Ey2
i − zi)

x2
i + y2

i + z2
i

= 0

∂F

∂D
=

8∑

i=1

2xiyi(Axi + Byi + Cx2
i + Dxiyi + Ey2

i − zi)

x2
i + y2

i + z2
i

= 0

∂F

∂E
=

8∑

i=1

2y2
i (Axi + Byi + Cx2

i + Dxiyi + Ey2
i − zi)

x2
i + y2

i + z2
i

= 0

Equivalently we need to solve the following system of linear equations, where ‖xi‖2 denotes

x2
i + y2

i + z2
i :
























8∑

i=1

x2
i

‖xi‖2

8∑

i=1

xiyi

‖xi‖2

8∑

i=1

x3
i

‖xi‖2

8∑

i=1

x2
i yi

‖xi‖2

8∑

i=1

xiy
2
i

‖xi‖2

8∑

i=1

xiyi

‖xi‖2

8∑

i=1

y2
i

‖xi‖2

8∑

i=1

x2
i yi

‖xi‖2

8∑

i=1

xiy
2
i

‖xi‖2

8∑

i=1

y3
i

‖xi‖2

8∑

i=1

x3
i

‖xi‖2

8∑

i=1

x2
i yi

‖xi‖2

8∑

i=1

x4
i

‖xi‖2

8∑

i=1

x3
i yi

‖xi‖2

8∑

i=1

x2
i y

2
i

‖xi‖2

8∑

i=1

x2
i yi

‖xi‖2

8∑

i=1

xiy
2
i

‖xi‖2

8∑

i=1

x3
i yi

‖xi‖2

8∑

i=1

x2
i y

2
i

‖xi‖2

8∑

i=1

xiy
3
i

‖xi‖2

8∑

i=1

xiy
2
i

‖xi‖2

8∑

i=1

y3
i

‖xi‖2

8∑

i=1

x2
i y

2
i

‖xi‖2

8∑

i=1

xiy
3
i

‖xi‖2

8∑

i=1

y4
i

‖xi‖2



















































A

B

C

D

E


























=


























8∑

i=1

xizi

‖xi‖2

8∑

i=1

yizi

‖xi‖2

8∑

i=1

x2
i zi

‖xi‖2

8∑

i=1

xiyizi

‖xi‖2

8∑

i=1

y2
i zi

‖xi‖2


























In order to have a unique solution [AB C D E]T , the determinant of the coefficient matrix

must be nonzero. It is sufficient to show the matrix is positive definite [23]. Again we use

the convenient notation ‖xi‖ =
√

x2
i + y2

i + z2
i . But the coefficient matrix is the product of

a matrix and its transpose, as shown below.












x1

‖x1‖
x2

‖x2‖
x3

‖x3‖
x4

‖x4‖
x5

‖x5‖
x6

‖x6‖
x7

‖x7‖
x8

‖x8‖
y1

‖x1‖
y2

‖x2‖
y3

‖x3‖
y4

‖x4‖
y5

‖x5‖
y6

‖x6‖
y7

‖x7‖
y8

‖x8‖
x2
1

‖x1‖
x2
2

‖x2‖
x2
3

‖x3‖
x2
4

‖x4‖
x2
5

‖x5‖
x2
6

‖x6‖
x2
7

‖x7‖
x2
8

‖x8‖
x1y1

‖x1‖
x2y2

‖x2‖
x3y3

‖x3‖
x4y4

‖x4‖
x5y5

‖x5‖
x6y6

‖x6‖
x7y7

‖x7‖
x8y8

‖x8‖
y2
1

‖x1‖
y2
2

‖x2‖
y2
3

‖x3‖
y2
4

‖x4‖
y2
5

‖x5‖
y2
6

‖x6‖
y2
7

‖x7‖
y2
8

‖x8‖


































x1

‖x1‖
y1

‖x1‖
x2
1

‖x1‖
x1y1

‖x1‖
y2
1

‖x1‖
x2

‖x2‖
y2

‖x2‖
x2
2

‖x2‖
x2y2

‖x2‖
y2
2

‖x2‖
x3

‖x3‖
y3

‖x3‖
x2
3

‖x3‖
x3y3

‖x3‖
y2
3

‖x3‖
x4

‖x4‖
y4

‖x4‖
x2
4

‖x4‖
x4y4

‖x4‖
y2
4

‖x4‖
x5

‖x5‖
y5

‖x5‖
x2
5

‖x5‖
x5y5

‖x5‖
y2
5

‖x5‖
x6

‖x6‖
y6

‖x6‖
x2
6

‖x6‖
x6y6

‖x6‖
y2
6

‖x6‖
x7

‖x7‖
y7

‖x7‖
x2
7

‖x7‖
x7y7

‖x7‖
y2
7

‖x7‖
x8

‖x8‖
y8

‖x8‖
x2
8

‖x8‖
x8y8

‖x8‖
y2
8

‖x8‖























Note that any matrix of the form GGT is positive semi-definite. since xT GGTx =

(GTx)T GTx = ‖GTx‖2 ≥ 0. A matrix of this form is called a Gram matrix [23].

49

To show that the coefficient matrix is positive definite, we investigate when equality

holds, i.e., GTx = 0. Since x 6= 0, this occurs only when the columns of GT are linearly

dependent [23]. Then there exist constants a, b, c, d, and e with at least one constant nonzero

such that for i = 1 to 8,

a xi

‖xi‖ + b yi

‖xi‖ + c
x2

i

‖xi‖ + d xiyi

‖xi‖ + e
y2

i

‖xi‖ = 0

Multiplying through by ‖xi‖, we have that for i = 1 to 8,

a xi + b yi + c x2
i + d xiyi + e y2

i = 0

This means that we have a surface z = ax + by + cx2 + dxy + ey2 such that all of the 8

neighbor nodes lie on the xy-plane. In this case the mean curvature is simply zero.

We pause to comment on solving this system of linear equations. The coefficient matrix

is symmetric, so we use dsysv, a library function that uses a diagonal pivoting method to

factor the coefficient matrix as UDUT where U is an upper triangular matrix and D is a

symmetric block diagonal matrix. For more detail, see [3].

Now that we have a quadratic surface, we calculate the outward normal, which is needed

to advance the surface in time. Since z = Ax + By + Cx2 + Dxy + Ey2 is a level surface of

f(x, y, z) = z−Ax−By−Cx2−Dxy−Ey2−z, we calculate the gradient of f , denoted ∇f ,

to find the outward normal to the surface. Now ∇f = (−A − 2Cx − Dy)
⇀

i + (−B − Dx −

2Ey)
⇀

j +
⇀

k evaluated at the origin, or the central node, is −A
⇀

i − B
⇀

j +
⇀

k . We normalize

this to get the unit vector
−A

⇀

i − B
⇀

j +
⇀

k√
1 + A2 + B2

. Our hope is that this vector lies on the positive

z-axis. Given some small predetermined ε, we find the distance between
(−A,−B, 1)√
1 + A2 + B2

and

(0, 0, 1). If the distance is less than ε, we are done. Otherwise we choose a new coordinate

system under which
(−A,−B, 1)√
1 + A2 + B2

becomes (0, 0, 1).

The new coordinate system is not unique, as there are infinitely many choices of the unit

vectors that determine the new x-axis and y-axis. For simplicity we take the new y-axis to

be the unit vector along the cross product of the new z-axis and the old x-axis. Thus the

new basis for the y-axis is

50

(−A,−B,1)√
1+A2+B2

× (1, 0, 0)

‖ (−A,−B,1)√
1+A2+B2

× (1, 0, 0)‖
=

(0, 1, B)√
1 + B2

Finally we take the cross product of both of these basis vectors to get the basis vector for

the new x-axis, i.e.,

(−A,−B,1)√
1+A2+B2

× (0,1,B)√
1+B2

‖ (−A,−B,1)√
1+A2+B2

× (0,1,B)√
1+B2

‖
=

(1 + B2,−AB,A)
√

(1 + A2 + B2)(1 + B2)

Using these we can find the change of basis matrix, which is the inverse of the 3 × 3

matrix having the basis vectors as columns, i.e.,











1 + B2

√

(1 + A2 + B2)(1 + B2)
0

−A√
1 + A2 + B2

−AB
√

(1 + A2 + B2)(1 + B2)

1√
1 + B2

−B√
1 + A2 + B2

A
√

(1 + A2 + B2)(1 + B2)

B√
1 + B2

1√
1 + A2 + B2












−1

We now multiply each of the 8 neighbor nodes by the change of basis matrix and begin

the process of finding A,B,C,D, and E in the new coordinate system. The iterative scheme

continues until the outward unit normal to the surface at the origin,
(−A,−B, 1)√
1 + A2 + B2

, is

within ε of (1, 0, 0) in the current coordinate system. In practice this usually takes about 3

iterations using ε = 0.0001. We also set the number of maximum iterations to 50 to prevent

infinite looping. Infinite looping will occur in some circumstances, such as when neighbors

differ greatly in absolute value. Using N = 5 and M = 80 when discretizing a torus with

large radius 2 and small radius 1 gives rise to this problem. However, using discretizations

with nodes fairly evenly spaced is a simple antidote. An area of future study is determining

conditions that guarantee convergence.

Below is a node and its eight neighbors and a quadratic surface through those nodes.

Also shown is the outward normal, which lies along the z-axis.

51

We also look at the error in the outward normal estimates for the unit sphere and a torus

with large radius 2 and small radius 1. To find the error, for each node we subtract the

estimated and actual normals and find the norm of the result. The average of this norm over

all the nodes is the error value used in the charts below.

Error in Outward Normal Estimates

Sphere

y = 0.0442x3.475

0

0.0002

0.0004

0.0006

0.0008

0.001

0.075 0.125 0.175 0.225 0.275 0.325

Mesh Size

E
rr

o
r

Error in Normal Estimates

Torus

y = 0.0418x1.805

0

0.01

0.02

0.03

0.04

0.05

0.06

0.2 0.4 0.6 0.8 1 1.2

Mesh Size

E
r
r
o

r

The sphere has extraordinarily good results, but the torus has room for improvement, though

the results are acceptable.

52

3.5.1 Mean Curvature

The mean curvature plays a large part in the Mullins-Sekerka problem as surfaces have a

higher normal velocity where the mean curvature is high.

The mean curvature, denoted here as κ, is the average of the principal curvatures, or

1

n
div




Du

(
1 + |Du|2

) 1

2



 where u : Rn → R [20]. We choose the convention that the mean

curvature of a sphere is negative. By way of example, the mean curvature of a sphere is the

negative reciprocal of its radius, and the mean curvature of a plane is 0. A saddle can also

have zero mean curvature. For the surface z = Ax + By + Cx2 + Dxy + Ey2, the mean

curvature is

κ =
1

2








A + 2Cx + Dy
(

1 +
∣
∣
∣(A + 2Cx + Dy)

⇀

i + (B + Dx + 2Ey)
⇀

j
∣
∣
∣

2
) 1

2








x

+
1

2








B + Dx + 2Ey
(

1 +
∣
∣
∣(A + 2Cx + Dy)

⇀

i + (B + Dx + 2Ey)
⇀

j
∣
∣
∣

2
) 1

2








y

=
1

2








2C

(

1 +
∣
∣
∣(A + 2Cx + Dy)

⇀

i + (B + Dx + 2Ey)
⇀

j
∣
∣
∣

2
)

(

1 +
∣
∣
∣(A + 2Cx + Dy)

⇀

i + (B + Dx + 2Ey)
⇀

j
∣
∣
∣

2
) 3

2

−1
2
(A + 2Cx + Dy) (4C (A + 2Cx + Dy) + 2D (B + Dx + 2Ey))

(

1 +
∣
∣
∣(A + 2Cx + Dy)

⇀

i + (B + Dx + 2Ey)
⇀

j
∣
∣
∣

2
) 3

2

+

2E

(

1 +
∣
∣
∣(A + 2Cx + Dy)

⇀

i + (B + Dx + 2Ey)
⇀

j
∣
∣
∣

2
)

(

1 +
∣
∣
∣(A + 2Cx + Dy)

⇀

i + (B + Dx + 2Ey)
⇀

j
∣
∣
∣

2
) 3

2

−1
2
(B + Dx + 2Ey) (2D (A + 2Cx + Dy) + 4E (B + Dx + 2Ey))

(

1 +
∣
∣
∣(A + 2Cx + Dy)

⇀

i + (B + Dx + 2Ey)
⇀

j
∣
∣
∣

2
) 3

2








.

Evaluating this at the point (0, 0) gives us

53

κ =
1

2

(

2C (1 + A2 + B2) − 1
2
A (4CA + 2DB)

(1 + A2 + B2)
3

2

+
2E (1 + A2 + B2) − 1

2
B (2DA + 4EB)

(1 + A2 + B2)
3

2

)

=
(C + E) (1 + A2 + B2) − (CA2 + EB2 + ADB)

(1 + A2 + B2)
3

2

=
C + E + EA2 + CB2 − ADB

(1 + A2 + B2)
3

2

.

Note that mean curvature is independent of coordinate system [37] up to a sign.

Below are the error charts for mean curvature. Again we use the unit sphere and a torus

with large radius 2 and small radius 1.

Error in Mean Curvature Estimates

Sphere

y = 0.3152x2.0594

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.075 0.125 0.175 0.225 0.275 0.325

Mesh Size

E
rr

o
r

Error in Mean Curvature Estimates

Torus

y = 0.0397x1.8097

0

0.01

0.02

0.03

0.04

0.05

0.06

0.2 0.4 0.6 0.8 1 1.2

Mesh Size

E
r
r
o

r

54

The torus does not perform as well as the sphere. Finding out why is an area of further work

3.5.2 Choice of Initial Coordinate System in Best Fit Surface

Scheme

We now analyze the effects of changes in the choice of initial coordinate axes in the iterative

process of finding the best fit quadratic surface through a node and its eight nearest neighbors

(see 3.5).

We label the node’s neighbors as {xi}, i = 1..8, once they have been translated so that

the node is located at the origin. Recall the initial z-axis is in the direction of x1 × x3, i.e.,

the cross product of the 1st and 3rd neighbor. The x-axis is simply the first neighbor x1

normalized. The y-axis is the cross product of the x and z axes.

What happens if the z-axis is chosen differently? The table below shows how the values

of A,B,C,D, and E in the quadratic surface z = Ax + By + Cx2 + Dxy + Ey2 change.

We use the selected node (0.59614731, 0.39251667, 0.70038493) on the unit sphere discretized

with 420 nodes.

z-axis
Direction A B C D E
x1 × x3 -1.3e-08 4.0e-08 -0.5078 0.0104 -0.5068
x2 × x4 1.9e-07 -8.0e-09 -0.5121 0.0039 -0.5025
x3 × x5 1.3e-07 5.7e-08 -0.5114 -0.0065 -0.5032
x4 × x6 4.3e-08 2.3e-07 -0.5026 -0.0044 -0.5120
x5 × x7 3.9e-08 3.7e-08 -0.5120 0.0046 -0.5026
x6 × x8 2.4e-07 4.3e-08 -0.5125 -0.0008 -0.5021
x7 × x1 1.1e-07 7.3e-08 -0.5092 -0.0097 -0.5054
x8 × x2 4.1e-08 2.2e-07 -0.5026 -0.0044 -0.5120

The values vary, although A and B approach zero and the others are within a hundredth of

each other. This means that even if we start with nodes lying on a quadratic surface we are

unlikely to get the same coefficients we began with.

The next table shows the effect of different initial coordinate systems on the mean cur-

vature and normal. The actual mean curvature is -1 and the actual normal is the node

itself, (0.59614731, 0.39251667, 0.70038493). Note, however, that the table below is evaluat-

55

ing how results change with choice of axis, not closeness to the actual values. To improve

the estimates for mean curvature and normals, we decrease mesh size, as shown in previ-

ous sections. We are looking instead at consistency of error with regard to changing the

direction of the z-axis. Here the error is the weighted error between the actual z values of

the nodes and the z values that lie on the surface z = Ax + By + Cx2 + Dxy + Ey2, i.e.,

F (A,B,C,D,E) =
8∑

i=1

(Axi + Byi + Cx2
i + Dxiyi + Ey2

i − zi)
2

x2
i + y2

i + z2
i

.

z-axis Mean
Direction Curvature Error Normal
x1 × x3 -1.0145942409 5.8e-06 (0.59608416,0.39268448,0.70034461)
x2 × x4 -1.0145942424 5.8e-06 (0.59608433,0.39268437,0.70034453)
x3 × x5 -1.0145942423 5.8e-06 (0.59608429,0.39268438,0.70034456)
x4 × x6 -1.0145942430 5.8e-06 (0.59608435,0.39268433,0.70034453)
x5 × x7 -1.0145942419 5.8e-06 (0.59608415,0.39268443,0.70034465)
x6 × x8 -1.0145942402 5.8e-06 (0.59608399,0.39268455,0.70034472)
x7 × x1 -1.0145942405 5.8e-06 (0.59608408,0.39268451,0.70034466)
x8 × x2 -1.0145942400 5.8e-06 (0.59608402,0.39268455,0.70034469)

Notice that the mean curvature, normal, and the weighted error are consistent with at least

six places beyond the decimal point; only the coefficients A,B,C,D, and E of our surface

z = Ax + By + Cx2 + Dxy + Ey2 change. We do not show it here, but the number of

iterations needed for the scheme to converge is also consistence. We can reasonably trust

that the initial choice of axes is arbitrary as long as no nodes lie on a vertical line, i.e., the

nodes lie on a well-defined surface.

However, choosing the initial z-axis to be in the direction of the average of the normalized

cross products x1×x3, x3×x5, x5×x7, and x7×x1 has the effect of reducing the number of

iterations required by about one. Hence we choose the normalized average to be the z-axis.

3.5.3 Iteration Limit in Outward Normal Scheme

Now we look at the effects of changing ε, the distance the normals must be within each other

for the iterative process to stop. Should convergence fail, the iterative process is stopped at 50

iterations to prevent infinite looping. We again use the node (0.59614731, 0.39251667, 0.70038493)

on the unit sphere discretized with 420 nodes.

56

Iterations Mean Surface
ε to Converge Curvature Error A B

1.0e-01 1 -1.0146444129694545 0.0011 -0.017 0.00033
1.0e-02 2 -1.0145940896106787 6.8e-06 0.00046 -0.00012
1.0e-03 2 -1.0145940896106787 6.8e-06 0.00046 -0.00012
1.0e-04 3 -1.0145942069966092 5.8e-06 -1.4e-05 6.1e-06
1.0e-05 4 -1.0145942433475457 5.8e-06 4.2e-07 -2.4e-07
1.0e-06 4 -1.0145942433475457 5.8e-06 4.2e-07 -2.4e-07
1.0e-07 5 -1.0145942413807711 5.8e-06 -1.3e-08 8.9e-09
1.0e-08 6 -1.0145942414606859 5.8e-06 4.3e-10 -3.1e-10
1.0e-09 6 -1.0145942414606859 5.8e-06 4.3e-10 -3.1e-10
1.0e-10 7 -1.0145942414577487 5.8e-06 -1.4e-11 1.1e-11
1.0e-11 8 -1.0145942414578522 5.8e-06 4.7e-13 -3.6e-13
1.0e-12 8 -1.0145942414578522 5.8e-06 4.7e-13 -3.6e-13
1.0e-13 9 -1.0145942414578486 5.8e-06 -1.6e-14 1.2e-14
1.0e-14 10 -1.0145942414578486 5.8e-06 4.8e-16 -4.3e-16
1.0e-15 10 -1.0145942414578486 5.8e-06 4.8e-16 -4.3e-16
1.0e-16 11 -1.0145942414578482 5.8e-06 -6.8e-18 -7.8e-18
1.0e-17 17 -1.0145942414578482 5.8e-06 -2.4e-18 7.6e-18
1.0e-18 50 -1.0145942414578486 5.8e-06 -1.9e-17 -2.4e-18

Although we do not show it here, the normal and coefficients C,D, and E show the same

pattern in relation to ε as the mean curvature, namely they gradually agree to more and

more decimal places. Notice that the surface error stops decreasing. The author conjectures

this is because the neighbors lie on a sphere, which cannot be fitted exactly to a quadratic

surface in general. Future work includes testing this hypothesis, by using nodes lying on a

quadratic surface to see if the error continues decreasing as ε decreases.

We conclude that reasonable precision is obtained for ε = 0.0001. The last value of

ε, 10−18 is beyond the truncation limits of the computer and presumably is considered 0.

Hence the normals never come within ε of each other and the iterative process stops when

the maximum number of iterations, 50, is reached.

57

3.6 Integral

3.7 Integral Equations

We now need to solve for the normal velocity V , and the constant c. We have the following

system of integral equations to discretize:

K(x) =
1

4π

∫

Γ

1

|x − y| V (y)dSy + c

0 =

∫

Γ

V (y)dSy.

We do this by considering the normal velocity V and mean curvature κ to be constant on each

of the patches comprising the surface, i.e., we are using a piecewise constant discretization.

Let N be the total number of nodes on our discretized surfaces and let xi denote the ith

node. Note that N is not the same as that used to discretize the torus. Similarly, we denote

as κi and Vi the mean curvature and normal velocity, respectively, of the surface at xi.

The area of the patch surrounding xi, really the sum of four triangular patches, is denoted

∆i = ∆i1 +∆i2 +∆i3 +∆i4 . Occasionally we abuse notation and use ∆i to denote the surface

rather than its area, but the meaning should be clear from the context.

 Xi

Node and 8 Neighbors Triangular Patches Notation

i4

i3 i2

i1∆

∆ ∆

∆

S4

S3

S2

S1

 Xi

Then we want to solve the following for {Vi}i=1..N and c′, where c′ = 4πc.

4πκi =
i−1∑

j=1

Vj

∫

∆j

1

|xi − y|dSy +

∫

∆i

Vi

|xi − y|dSy +
N∑

j=i+1

Vj

∫

∆j

1

|xi − y|dSy + c′

0 =
N∑

j=1

Vj∆j.

We have N + 1 unknowns and N + 1 linear equations.

To estimate

58

∫

∆j

1

|xi − y|dSy =

∫

∆j1

1

|xi − y|dSy+

∫

∆j2

1

|xi − y|dSy+

∫

∆j3

1

|xi − y|dSy+

∫

∆j4

1

|xi − y|dSy

we use a two dimensional version of the trapezoid rule, namely we average the value of

1

|xi − y| on the three vertices of each triangular patch and multiply this by the area of the

patch.

The center vertex of ∆j is yj. Denote the other vertices forming ∆j = ∆j1+∆j2+∆j3+∆j4

as s1, s2, s3, s4. Then

∫

∆j

1

|xi − y|dSy =

∫

∆j1

1

|xi − y|dSy +

∫

∆j2

1

|xi − y|dSy +

∫

∆j3

1

|xi − y|dSy +

∫

∆j4

1

|xi − y|dSy

≈ 1

3
∆j1

(
1

|xi − yj|
+

1

|xi − s1|
+

1

|xi − s2|

)

+
1

3
∆j2

(
1

|xi − yj|
+

1

|xi − s2|
+

1

|xi − s3|

)

+
1

3
∆j3

(
1

|xi − yj|
+

1

|xi − s3|
+

1

|xi − s4|

)

+
1

3
∆j4

(
1

|xi − yj|
+

1

|xi − s4|
+

1

|xi − s1|

)

=
1

3

(
∆j

|xi − yj|
+

∆j1 + ∆j4

|xi − s1|
+

∆j1 + ∆j2

|xi − s2|
+

∆j2 + ∆j3

|xi − s3|
+

∆j3 + ∆j4

|xi − s4|

)

Note that the last step of regrouping cuts computational time approximately in half.

We can calculate

∫

∆i

1

|xi − y|dSy, which has a removable singularity, directly.

Triangular Patches Xi

We derive an integral for each of the four triangular patches comprising ∆i by first

translating each triangle (denoted 4) so that we have the following:

59

�
�

�
�

�
�

�
��A

A
A
A
A
A
A
AA

(|
⇀

B| cos α, |
⇀

B| sin α)

⇀

B

α��

⇀

A (|
⇀

A|, 0)

where cos α =
A · B
|
⇀

A||
⇀

B|
and sin α =

√
1 − cos2 α. Note that sin α is necessarily positive, which

gives the restriction that 0 < α < π. Then

∫

4

1

|x − z| dSz =

∫ α

0

∫ f(θ)

0

1

r
rdr dθ

=

∫ α

0

f(θ)dθ

where f(θ) describes the line opposite α.

If the line is vertical, its equation is x = |
⇀

A|, which in polar coordinates is r =
|
⇀

A|
cos θ

.

Then
∫ α

0
f(θ)dθ = |

⇀

A|
∫ α

0
sec θdθ = |

⇀

A| ln | sec α + tan α| = |
⇀

A| ln
∣
∣1+sin α

cos α

∣
∣ .

If the line is not vertical, its equation is y =
|
⇀

B| sin α

|
⇀

B| cos α − |
⇀

A|
x− |

⇀

A||
⇀

B| sin α

|
⇀

B| cos α − |
⇀

A|
which in

polar coordinates is r =
m|

⇀

A|
m cos θ − sin θ

where m =
|
⇀

B| sin α

|
⇀

B| cos α − |
⇀

A|
is the slope.

We now evaluate

∫ α

0

m|
⇀

A|
m cos θ − sin θ

dθ. Let β = tan−1(m). Note that −π

2
< β <

π

2
,

cos β =
1√

m2 + 1
, and sin β =

m√
m2 + 1

. Then

m cos θ − sin θ =
√

m2 + 1

(
m√

m2 + 1
cos θ − 1√

m2 + 1
sin θ

)

=
√

m2 + 1(sin β cos θ − cos β sin θ)

=
√

m2 + 1 sin(β − θ).

We now have

∫ α

0

m|
⇀

A|
m cos θ − sin θ

dθ =
m|

⇀

A|√
m2 + 1

∫ α

0

1

sin(β − θ)
dθ.

60

Before evaluating

∫ α

0

1

sin(β − θ)
dθ, we show β /∈ [0, α]. Suppose to the contrary that

β ∈ [0, α]. Since α ∈ (0, π), this implies sin β ≥ 0, which in turn requires that m > 0

(note that m = 0 is impossible because the triangular patch would have 0 area). Since

m =
|
⇀

B| sin α

|
⇀

B| cos α − |
⇀

A|
> 0, we have |

⇀

B| cos α − |
⇀

A| > 0. Then

√
m2 + 1 =

√
√
√
√ |

⇀

B|2 sin2 α

(|
⇀

B| cos α − |
⇀

A|)2

+ 1

=

√

|
⇀

B|2 sin2 α + |
⇀

B|2 cos2 α − 2|
⇀

A| |
⇀

B| cos α + |
⇀

A|2

| |
⇀

B| cos α − |
⇀

A| |

=

√

|
⇀

B|2 − 2|
⇀

A| |
⇀

B| cos α + |
⇀

A|2

|
⇀

B| cos α − |
⇀

A|

Now since β ∈ [0, α],

sin β ≤ sin α ⇔ m√
m2 + 1

≤ sin α

⇔ |
⇀

B| cos α − |
⇀

A|
√

|
⇀

B|2 − 2|
⇀

A| |
⇀

B| cos α + |
⇀

A|2
|
⇀

B| sin α

|
⇀

B| cos α − |
⇀

A|
≤ sin α

⇔ |
⇀

B|2 sin2 ≤ sin2 α(|
⇀

B|2 − 2|
⇀

A| |
⇀

B| cos α + |
⇀

A|2)

⇔ cos α ≤ |
⇀

A|
2|

⇀

B|
.

However, since m > 0,

|
⇀

A| < |
⇀

B| cos α ⇔ |
⇀

A|
|
⇀

B|
< cos α.

Then
|
⇀

A|
|
⇀

B|
< cos α ≤ |

⇀

A|
2|

⇀

B|
, which is impossible. Hence β /∈ [0, α].

We return to the integral

∫ α

0

1

sin(β − θ)
dθ. We want to show sin(β − θ) 6= 0. Since

0 ≤ θ ≤ α, 0 < α < π, and −π

2
< β <

π

2
, we have −3π

2
< β − θ <

π

2
. Then sin(β − θ) =

61

0 ⇔ β = θ. But previously we showed β 6= [0, α], so

∫ α

0

1

sin(β − θ)
dθ exists. Then

∫ α

0

m|
⇀

A|
m cos θ − sin θ

dθ =
m|

⇀

A|√
m2 + 1

∫ α

0

1

sin(β − θ)
dθ

=
−m|

⇀

A|√
m2 + 1

ln

∣
∣
∣
∣

csc(β − α) − cot(β − α)

csc β − cot β

∣
∣
∣
∣

=
m|

⇀

A|√
m2 + 1

ln

∣
∣
∣
∣

sin(β − α)(1 − cos β)

sin β(1 − cos(β − α))

∣
∣
∣
∣

Note that sin β 6= 0 and 1 − cos β 6= 0; otherwise m = 0, which is impossible. We proved

previously that β 6= α, so sin(β − α) 6= 0 and 1 − cos(β − α) 6= 0.

We simplify further to get

∫ α

0

m|
⇀

A|
m cos θ − sin θ

dθ =
m|

⇀

A|√
m2 + 1

ln

∣
∣
∣
∣
∣

sin(β − α)(
√

m2 + 1 − 1)

m(1 − cos(β − α))

∣
∣
∣
∣
∣

=
m|

⇀

A|√
m2 + 1

ln

∣
∣
∣
∣
∣

(sin β cos α − cos β sin α)(
√

m2 + 1 − 1)

m(1 − [cos β cos α + sin β sin α])

∣
∣
∣
∣
∣

=
m|

⇀

A|√
m2 + 1

ln

∣
∣
∣
∣
∣

(m cos α − sin α)(
√

m2 + 1 − 1)

m(
√

m2 + 1 − cos α − m sin α)

∣
∣
∣
∣
∣

=
m|

⇀

A|√
m2 + 1

ln

∣
∣
∣
∣
∣

|
⇀

A|(
√

m2 + 1 − 1)

|
⇀

B|(
√

m2 + 1 − cos α − m sin a)

∣
∣
∣
∣
∣
.

This last step follows from r(α) =
m|

⇀

A|
m cos α − sin α

= |
⇀

B|.

To alleviate the bulky notation in the following explanations, we will denote the dis-

cretization of

κ(x) =
1

4π

∫

Γ

1

|x − y| V (y)dSy + c

0 =

∫

Γ

V (y)dSy

as

4πκi =
i−1∑

j=1

Vj∆j

|xi − xj|
+ IiVi +

N∑

j=i+1

Vj∆j

|xi − xj|
+ c′

0 =
N∑

j=1

Vj∆j

62

where c′ = 4πc, Ii =

∫

∆i

1

|xi − y|dSy, and

Vj∆j

|xi − xj|
=

Vj

3

(
∆j

|xi − yj|
+

∆j1 + ∆j4

|xi − s1|
+

∆j1 + ∆j2

|xi − s2|
+

∆j2 + ∆j3

|xi − s3|
+

∆j3 + ∆j4

|xi − s4|

)

.

3.7.1 Particle-Particle Method

We are solving the following for the constants {Vi}i=1..N and c′.

4πκi =
i−1∑

j=1

Vj∆j

|xi − xj|
+ IiVi +

N∑

j=i+1

Vj∆j

|xi − xj|
+ c′

0 =
N∑

j=1

Vj∆j

where c′ = 4πc and Ii =

∫

∆i

1

|xi − y|dSy, which we calculate directly. The particle-particle

method, also called direct summation [27], requires the following system of linear equations

to be solved:






























I1
∆2

|x1−x2|
∆3

|x1−x3|
. . .

∆N−1

|x1−xN−1|
∆N

|x1−xN |
1

∆1

|x2−x1|
I2

∆3

|x2−x3|
. . .

∆N−1

|x2−xN−1|
∆N

|x2−xN |
1

∆1

|x3−x1|
∆2

|x3−x2|
I3 . . .

∆N−1

|x3−xN−1|
∆N

|x3−xN |
1

...
...

...
. . .

...
...

...

∆1

|xN−1−x1|
∆2

|xN−1−x2|
∆3

|xN−1−x3|
. . . IN−1

∆N

|xN−1−xN |
1

∆1

|xN−x1|
∆2

|xN−x2|
∆3

|xN−x3|
. . .

∆N−1

|xN−xN−1|
IN 1

∆1 ∆2 ∆3 . . . ∆N−1 ∆N 0































































V1

V2

V3

...

VN−1

VN

c′
































=
































4πκ1

4πκ2

4πκ3

...

4πκN−1

4πκN

0
































This is a dense, (N + 1)× (N + 1) matrix. Filling this matrix is extremely computationally

expensive, but can be reduced some by observing that while the coefficient matrix is not

symmetric, we can take advantage of repeated denominators. We use the library function

dgesv to solve the system of linear equations. dgesv uses LU decomposition with partial

pivoting; see [3] for more detail. Solving the system by LU decomposition requires O(N3)

63

operations [25]. In practice N ranges anywhere from several hundred to several thousand.

3.7.2 Particle-Cluster Method

As filling the coefficient matrix requires a prohibitive amount of computing time, we need

to find a more efficient method than the particle-particle method. Hence we turn to the

particle-cluster method. See K. Lindsay’s PhD thesis [27] and a paper he coauthored with

R. Krasny [28] for the application of this method to vortex sheet motion, from which the

following argument was adapted.

The particle-cluster method takes a cluster, or group of nearby nodes, and treats them

as one. Hence, when we calculate
1

|xi − xj|
, for a cluster of xj’s sufficiently far away from xi

we consider their influence as a whole, not individually.

Mathematical Justification

We now establish some notation. Divide the surface into M clusters. Let m̃ = {i |xi ∈

mthcluster}, that is, m̃ is the set of indices of all nodes in the mth cluster. Let x̃m be a node

on the surface representing the mth cluster. x̃m is usually chosen to be the center of mass

or geometrical center of the cluster of nodes. In our case we choose a node near or on the

geometrical center.

For convenience let Ψ(x,y) =
1

|x − y| where x,y ∈ R
3 and x 6= y. Consider the sum

∑

j∈m̃

1

|xi − xj|
Vj∆j =

∑

j∈m̃

Ψ(xi,xj)Vj∆j

where i /∈ m̃, i.e., we are summing over all nodes {xj} in a cluster which does not contain

xi.

For xi and xj sufficiently separated, we can use the Taylor series representation for Ψ

where k = (k1, k2, k3) is a multi-index:

64

∑

j∈m̃

Ψ(xi,xj)Vj∆j =
∑

j∈m̃

Ψ(xi, x̃m + (xj − x̃m))Vj∆j

=
∑

j∈m̃

(
∑

k

1

k!
Dk

y Ψ(xi, x̃m)(xj − x̃m)k

)

Vj∆j

=
∑

k

1

k!
Dk

y Ψ(xi, x̃m)
︸ ︷︷ ︸

independent of j

∑

j∈m̃

(xj − x̃m)kVj∆j

︸ ︷︷ ︸

independent of i

.

Truncating, we have
∑

j∈m̃

Ψ(xi,xj)Vj∆j ≈
∑

|k|<p

1

k!
Dk

y Ψ(xi, x̃m)
∑

j∈m̃

(xj − x̃m)kVj∆j

where p is a positive integer chosen large enough to achieve the desired accuracy. In practice

p = 3 is sufficient.

Recurrence Relation for Taylor Coefficients

We want to find a simple way to calculate the Taylor coefficients
1

k!
Dk

y Ψ(xi, x̃m) where

k = (k1, k2, k3) is a multi-index. We do this by showing the coefficients satisfy a recurrence

relation.

For notational convenience define Ck(x,y) ≡ 1

k!
Dk

y Ψ(x,y), i.e.,

Ck1,k2,k3
≡ 1

k1!k2!k3!

∂|k|Ψ(x,y)

∂k1y1∂k2y2∂k3y3

.

In the case that ki < 0 for i = 1, 2, or 3, we define Ck = 0.

The following lemma and proof are adapted from a similar one in [27].

Lemma 3.7.1 Ck satisfies the following recurrence relations:

(i)
|x−y|2Ck1,k2,k3

−(x1−y1)(2−
1

k1

)Ck1−1,k2,k3
+(1− 1

k1

)Ck1−2,k2,k3

−2(x2−y2)Ck1,k2−1,k3
+Ck1,k2−2,k3

−2(x3−y3)Ck1,k2,k3−1+Ck1,k2,k3−2 = 0 (k16=0)

(ii)
|x−y|2Ck1,k2,k3

−(x2−y2)(2−
1

k2

)Ck1,k2−1,k3
+(1− 1

k2

)Ck1,k2−2,k3

−2(x1−y1)Ck1−1,k2,k3
+Ck1−2,k2,k3

−2(x3−y3)Ck1,k2,k3−1+Ck1,k2,k3−2 = 0 (k26=0)

(iii)
|x−y|2Ck1,k2,k3

−(x3−y3)(2−
1

k3

)Ck1,k2,k3−1+(1− 1

k3

)Ck1,k2,k3−2

−2(x1−y1)Ck1−1,k2,k3
+Ck1−2,k2,k3

−2(x2−y2)Ck1,k2−1,k3
+Ck1,k2−2,k3

= 0 (k36=0)

65

Proof. First we note that Ψ satisfies the following differential equations for i = 1, 2, 3, where

x = (x1, x2, x3) and y = (y1, y2, y3):

|x−y|2∂Ψ

∂yi

− (xi − yi)Ψ(x,y) = 0 .

This is shown by direct calculation:

|x−y|2 (xi − yi)

|x−y|3 − (xi − yi)
1

|x−y| = 0 .

We will prove (i). The proofs of (ii) and (iii) are similar. Now given that

|x−y|2 ∂Ψ

∂y1

− (x1 − y1)Ψ(x,y) = 0 .

differentiate k1 − 1 times with respect to y1. Utilizing Leibnitz Rule, we get
(k1 − 1)(k1 − 2)

2
2Ψk1−2 − (k1 − 1)2(x1 − y1)Ψ

k1−1

+|x − y|2Ψk1 + (k1 − 1)Ψk1−2 − (x1 − y1)Ψ
k1−1 = 0

⇔ |x − y|2Ψk1 − (2k1 − 1)(x1 − y1)Ψ
k1−1 + (k1 − 1)2Ψk1−2 = 0 .

Next differentiate with respect to y2 k2 times to get
|x − y|2Ψk1,k2 − (2k1 − 1)(x1 − y1)Ψ

k1−1,k2 + (k1 − 1)2Ψk1−2,k2

−2k2(x2 − y2)Ψ
k1,k2−1 + k2(k2 − 1)Ψk1,k2−2 = 0 .

Now differentiate with respect to y3 k3 times to get
|x − y|2Ψk1,k2,k3 − (2k1 − 1)(x1 − y1)Ψ

k1−1,k2,k3 + (k1 − 1)2Ψk1−2,k2,k3

−2k2(x2 − y2)Ψ
k1,k2−1,k3 + k2(k2 − 1)Ψk1,k2−2,k3

−2k3(x3 − y3)Ψ
k1,k2,k3−1 + k3(k3 − 1)Ψk1,k2,k3−2 = 0 .

Finally, divide by k1!k2!k3! to get our desired recurrence relation. �

Error Analysis

We now analyze the error incurred by truncating the Taylor series in the approximation
∑

j∈m̃

Ψ(xi,xj)Vj∆j ≈
∑

|k|<p

1

k!
Dk

y Ψ(xi, x̃m)
∑

j∈m̃

(xj − x̃m)kVj∆j .

We do this by showing the absolute value of the terms in the Taylor series approximation of

Ψ decreases geometrically.

Recall that Ck(x,y) ≡ 1

k!
Dk

y Ψ(x,y), i.e.,

Ck1,k2,k3
≡ 1

k1!k2!k3!

∂|k|Ψ(x,y)

∂k1y1∂k2y2∂k3y3

and in the case that ki < 0 for i = 1, 2, or 3, we define Ck = 0. Define Tn ≡
∑

|k|=n

1

k!
Dk

y Ψ(xi, x̃m)(xj−

x̃m)k, i.e.,

66

Tn ≡
∑

|k|=n

Ck(xi, x̃m)(xj − x̃m)k.

Here i ∈ {1, 2, ..., N}, N being the number of nodes on our discretized surface, and i /∈ m̃

where m̃ is the set of indices of the nodes contained in the mth cluster. x̃m is the central

node of the mth cluster. We also have that j ∈ m̃. Hence Tn is the sum of all terms in the

Taylor series with k1+k2+k3 = n. We will eventually show that |Tn| decreases geometrically

with n.

The following is modified from a similar lemma in [27].

Lemma 3.7.2 The following recurrence relation is satisfied by Tn for all i /∈ m̃, j ∈ m̃, n ∈

Z+, and n ≥ 3:

|xi − x̃m|2 Tn − (xi − x̃m) · (xj − x̃m)(2 − 1

n
) Tn−1 + |xj − x̃m|2 Tn−2 = 0.

Proof. We take a linear combination of the recurrence relations satisfied by Ck with k1 +

k2 + k3 = n, k1, k2, k3 > 0,x = xi = (xi1, xi2, xi3), y = x̃m = (x̃m1, x̃m2, x̃m3).

67

k1

n
(i) +

k2

n
(ii) +

k1

n
(iii) ⇔

k1

n

(

|xi−x̃m|2Ck1,k2,k3
−(xi1−x̃m1)(2−

1

k1

)Ck1−1,k2,k3
+(1− 1

k1

)Ck1−2,k2,k3

−2(xi2−x̃m2)Ck1,k2−1,k3
+Ck1,k2−2,k3

−2(xi3−x̃m3)Ck1,k2,k3−1+Ck1,k2,k3−2)

+
k2

n

(

|xi−x̃m|2Ck1,k2,k3
−(xi2−x̃m2)(2−

1

k2

)Ck1,k2−1,k3
+(1− 1

k2

)Ck1,k2−2,k3

−2(xi1−x̃m1)Ck1−1,k2,k3
+Ck1−2,k2,k3

−2(xi3−x̃m3)Ck1,k2,k3−1+Ck1,k2,k3−2)

+
k3

n

(

|xi−x̃m|2Ck1,k2,k3
−(xi3−x̃m3)(2− 1

k3
)Ck1,k2,k3−1+(1− 1

k3
)Ck1,k2,k3−2

−2(xi1−x̃m1)Ck1−1,k2,k3
+Ck1−2,k2,k3

−2(xi2−x̃m2)Ck1,k2−1,k3
+Ck1,k2−2,k3

) = 0

⇔
(

k1

n
+

k2

n
+

k3

n

)

|xi−x̃m|2 Ck1,k2,k3

−
(

k1

n
(xi1−x̃m1)(2−

1

k1

)+
k2

n
2(xi1−x̃m1)+

k3

n
2(xi1−x̃m1)

)

Ck1−1,k2,k3

+

(
k1

n
(1− 1

k1

) +
k2

n
+

k3

n

)

Ck1−2,k2,k3

−
(

k1

n
2(xi2−x̃m2)+

k2

n
(xi2−x̃m2)(2−

1

k2

)+
k3

n
2(xi2−x̃m2)

)

Ck1,k2−1,k3

+

(
k1

n
+

k2

n
(1− 1

k2

) +
k3

n

)

Ck1,k2−2,k3

−
(

k1

n
2(xi3−x̃m3) +

k2

n
2(xi3−x̃m3)+

k3

n
(xi3−x̃m3)(2−

1

k3

)

)

Ck1,k2,k3−1

+

(
k1

n
+

k2

n
+

k3

n
(1− 1

k3

)

)

Ck1,k2,k3−2 = 0

⇔

|xi−x̃m|2 Ck1,k2,k3

−
(

2 − 1

n

)

((xi1−x̃m1)Ck1−1,k2,k3
+ (xi2−x̃m2)Ck1,k2−1,k3

+ (xi3−x̃m3)Ck1,k2,k3−1)

+

(

1 − 1

n

)

(Ck1−2,k2,k3
+ Ck1,k2−2,k3

+ Ck1,k2,k3−2) = 0.

68

Recall the notation (x − y)k = (x − y)(k1,k2,k3) = (x1 − y1)
k1(x2 − y2)

k2(x3 − y3)
k3 . We

now multiply the above equation through by (xj−x̃m)k where k1 + k2 + k3 = n. Sum over

all such k to get

|xi−x̃m|2
∑

|k|=n

Ck1,k2,k3
(xj−x̃m)k

−
(

2 − 1

n

) [

(xi1−x̃m1)(xj1−x̃m1)
∑

k1−1+k2+k3=n−1

Ck1−1,k2,k3
(xj−x̃m)(k1−1,k2,k3)

+(xi2−x̃m2)(xj2−x̃m2)
∑

k1+k2−1+k3=n−1

Ck1,k2−1,k3
(xj−x̃m)(k1,k2−1,k3)

+(xi3−x̃m3)(xj3−x̃m3)
∑

k1+k2+k3−1=n−1

Ck1,k2,k3−1 (xj−x̃m)(k1,k2,k3−1)

]

+

(

1 − 1

n

) [

(xj1−x̃m1)
2

∑

k1−2+k2+k3=n−2

Ck1−2,k2,k3
(xj−x̃m)(k1−2,k2,k3)

+(xj2−x̃m2)
2

∑

k1+k2−2+k3=n−2

Ck1,k2−2,k3
(xj−x̃m)(k1,k2−2,k3)

+(xj3−x̃m3)
2

∑

k1+k2+k3−2=n−2

Ck1,k2,k3−2 (xj−x̃m)(k1,k2,k3−2)

]

= 0

⇔

|xi − x̃m|2 Tn − (xi − x̃m) · (xj − x̃m)(2 − 1

n
) Tn−1 + |xj − x̃m|2 Tn−2 = 0

Since

Tn−1 =
∑

k1−1+k2+k3=n−1

Ck1−1,k2,k3
(xj−x̃m)(k1−1,k2,k3)

=
∑

k1+k2−1+k3=n−1

Ck1,k2−1,k3
(xj−x̃m)(k1,k2−1,k3)

=
∑

k1+k2+k3−1=n−1

Ck1,k2,k3−1 (xj−x̃m)(k1−1,k2,k3−1) .

Tn−2 can be written similarly. Thus we have our desired recurrence relation. �

69

We now relate Tn to the Legendre polynomials Pn, defined as follows [24]:

P0(x) = 1, P1(x) = x, Pn(x) =
1

n!2n

dn

dxn
(x2 − 1)n

Be aware that there are different, albeit related ways of defining the polynomials [25]. We

eventually use the inequality |Pn(x)| ≤ 1 for |x| ≤ 1 [24] when we bound Tn.

The following lemma and proof are adapted from [27].

Lemma 3.7.3 For n ≥ 2,

Tn =
|xj−x̃m|n
|xi−x̃m|n+1

Pn

(
(xi−x̃m) · (xj−x̃m)

|xi−x̃m||xj−x̃m|

)

.

Proof. Define Sn to be the right hand side of the above equation. To prove that Sn = Tn, it

is sufficient to show that S0 = T0, S1 = T1, and that Sn satisfies the same recurrence relation

as Tn satisfies, given in the previous lemma. We have

T0 =
∑

|k|=0

1

k!
Dk

y

1

|xi − x̃m|
(xj − x̃m)k

=
1

|xi − x̃m|
= S0.

Also,

T1 =
∑

|k|=1

1

k!
Dk

y

1

|xi − x̃m|
(xj − x̃m)k

=
(xi1 − x̃m1)(xj1 − x̃m1)

|xi − x̃m|3
+

(xi2 − x̃m2)(xj2 − x̃m2)

|xi − x̃m|3
+

(xi3 − x̃m3)(xj3 − x̃m3)

|xi − x̃m|3

=
(xi−x̃m) · (xj−x̃m)

|xi−x̃m|3

= S1.

Now the Legendre polynomials satisfy the following recurrence relation for n ≥ 2 [24].

Pn(x) − x(2 − 1

n
) Pn−1(x) + (1 − 1

n
) Pn−2(x) = 0.

Let x =
(xi−x̃m) · (xj−x̃m)

|xi−x̃m||xj−x̃m|
and multiply through by

|xj−x̃m|n
|xi−x̃m|n+1

to get

70

|xj−x̃m|n
|xi−x̃m|n+1

Pn

(
(xi−x̃m) · (xj−x̃m)

|xi−x̃m||xj−x̃m|

)

− |xj−x̃m|n
|xi−x̃m|n+1

(2 − 1

n
)
(xi−x̃m) · (xj−x̃m)

|xi−x̃m||xj−x̃m|
Pn−1

(
(xi−x̃m) · (xj−x̃m)

|xi−x̃m||xj−x̃m|

)

+
|xj−x̃m|n
|xi−x̃m|n+1

(1 − 1

n
) Pn−2

(
(xi−x̃m) · (xj−x̃m)

|xi−x̃m||xj−x̃m|

)

= 0

⇔

Sn −
(

2 − 1

n

)
(xi−x̃m) · (xj−x̃m)

|xi−x̃m|2
Sn−1 +

(

1 − 1

n

) |xj−x̃m|2
|xi−x̃m|2

Sn−2 = 0

⇔

|xi−x̃m|2 Sn −
(

2 − 1

n

)

(xi−x̃m) · (xj−x̃m) Sn−1 +

(

1 − 1

n

)

|xj−x̃m|2 Sn−2 = 0

which is the same recurrence relation satisfied by Tn. �

We next bound Tn. Since
(xi−x̃m) · (xj−x̃m)

|xi−x̃m||xj−x̃m|
is the cosine of the angle between the

vectors xi−x̃m and xj−x̃m, we have

∣
∣
∣
∣

(xi−x̃m) · (xj−x̃m)

|xi−x̃m||xj−x̃m|

∣
∣
∣
∣
≤ 1. Since |Pn(x)| ≤ 1 for |x| ≤ 1

[24], we have

∣
∣
∣
∣
Pn

(
(xi−x̃m) · (xj−x̃m)

|xi−x̃m||xj−x̃m|

)∣
∣
∣
∣
≤ 1. Therefore |Tn| ≤

|xj−x̃m|n
|xi−x̃m|n+1

.

We now put restrictions on our clusters. Let R = max
j∈m̃

|xj − x̃m|, i.e., the maximum

distance from the mth cluster’s center node x̃m to a node xj in the cluster. We require the

center of the cluster containing xi to be at least 3R units away from x̃m. Then |xj−x̃m| ≤ R

and |xi−x̃m| ≤ 2R. Under these restrictions we have

|Tn| ≤
Rn

(2R)n+1
=

1

R 2n+1
.

Hence, the magnitude of Tn decreases geometrically.

A similar result to the following lemma was previously proved in [27].

Lemma 3.7.4 The error incurred by truncating Taylor series is bounded by
1

R 2p
.

Proof. Because the magnitude of Tn decreases geometrically, the following inequalities hold:
∑

n≥p

Tn ≤ Tp−1 ≤
1

R 2p
.

71

But Tp−1 =
∑

k

1

k!
Dk

y

(
1

xi − x̃m

)

(xj − x̃m)k −
∑

|k|<p

1

k!
Dk

y

(
1

xi − x̃m

)

(xj − x̃m)k. Hence,

the error is bounded by
1

R 2p
. �

3.7.3 Efficiency

Recall that we are solving the following for the constants {Vi}i=1..N and c′.

4πκi =
i−1∑

j=1

Vj∆j

|xi − xj|
+ IiVi +

N∑

j=i+1

Vj∆j

|xi − xj|
+ c′ ,

0 =
N∑

j=1

Vj∆j .

We rewrite

4πκi =
i−1∑

j=1

Vj∆j

|xi − xj|
+ Ii Vi +

N∑

j=i+1

Vj∆j

|xi − xj|
+ c′

as

4πκi =
∑

j 6= i
xj in clusters

near or

containing xi

Vj∆j

|xi − xj|
+

∑

j
xj in

clusters not

neighboring xi

Vj∆j

|xi − xj|
+ IiVi + c′.

We have split the sum in order to keep the particle-particle method for nodes near xi,

but we want to apply the particle-cluster method for clusters sufficiently separated from the

cluster containing xi. In the latter case we use the following approximation, where M is

the number of clusters and x̃m is the center node of the mth cluster, and m̃ is the set of all

indices j such that xj is in the mth cluster:
∑

j

xj in

clusters not

neighboring xi

Vj∆j

|xi − xj|
≈
∑

m ∈ M

mth cluster

far from xi

∑

|k|<p

1

k!
Dk

y

(
1

|xi − x̃m|

)
∑

j∈m̃

(xj − x̃m)kVj∆j.

For each i, calculating
∑

|k|<p

1

k!
Dk

y

(
1

|xi − x̃m|

)

requires O(p3M) operations.

72

Cluster Formation

We describe how to divide our surfaces into clusters. There are many ways this can be done,

with preference given to ways that give the most flexibility in terms of changing cluster size

and numbers of clusters.

For ellipsoids we simply let each face of the icosahedron from which the discretization

was derived be a cluster.

Recall that the torus is based on an N by M rectangular array. We designate the number

of clusters h in the horizontal direction and the number of clusters v in the vertical direction

and partition the rectangular array appropriately. The clusters do not have to be the same

size, as h and v may not divide N and M evenly. Below are the clusters for a torus discretized

by a 30 by 10 rectangular array with h = 4 and v = 2.

Time Savings

The particle-cluster method is indeed faster for small p, where p is the highest order of

derivative in the truncated Taylor series. For a unit sphere discretized by 420 nodes, the

particle-cluster method is faster than the particle-particle method for p = 0 and p = 1. For

p = 2 the two methods are equal. For p ≥ 3 the particle-particle method is faster.

The time savings is greater for increased nodes. For a sphere with 4200 nodes and

p = 1, the time savings is approximately 10 seconds per iteration. For 9300 nodes the

73

particle-cluster scheme is roughly 45 seconds faster per iteration. For the latter surface, one

iteration takes approximately 10 minutes on an SGI Onyx2 Origin 2000 supercomputer. As

the surfaces evolve through hundreds and often thousands of iterations, further time savings

techniques are necessary for the particle-cluster method to be practical. The approach shows

promise and is an area of further work.

3.7.4 Advancing the Surface

Once we have solved for the normal velocity, there are many ways to estimate Γ(t+∆t). The

easiest methods are explicit in nature, but require an extremely small time step. Instead we

develop a semi-implicit scheme based on the Implicit Trapezoid method [9]:
Γ(0) = Γ0

Γ(t + ∆t) = Γ(t) +
∆t

2
[n(t + ∆t)V (t + ∆t) + n(t)V (t)] .

Thus we are averaging the advancement of Γ at times t and t + ∆t. Instead of finding

n(t + ∆t) we use a O(∆t2) approximation, namely n(t + ∆t) ≈ n(t) + ∆t nt(t). Since the

normal to the surface z = Ax + By + Cx2 + Dxy + Ey2 is
(−A,−B, 1)√
1 + A2 + B2

we calculate

∂ni

∂t
=

∂ni

∂A

∂A

∂t
+

∂ni

∂B

∂B

∂t

for i = 1..3, where n = (n1, n2, n3). Finding
∂ni

∂A
and

∂ni

∂B
is straightforward differentiation.

∂n1

∂A
= − 1 + B2

(1 + A2 + B2)
3

2

,

∂n1

∂B
=

AB

(1 + A2 + B2)
3

2

,

∂n2

∂A
=

AB

(1 + A2 + B2)
3

2

,

∂n2

∂B
= − 1 + A2

(1 + A2 + B2)
3

2

,

∂n3

∂A
= − A

(1 + A2 + B2)
3

2

,

∂n3

∂B
= − B

(1 + A2 + B2)
3

2

.

Calculating
∂A

∂t
and

∂B

∂t
is more involved. Since we will need

∂C

∂t
,

∂D

∂t
, and

∂E

∂t
in

74

future approximations, we show how to find these quantities also. Now A, B, C, D, and

E are found by solving the system of linear equations shown below. Recall ‖xi‖2 denotes

x2
i + y2

i + z2
i :


























8∑

i=1

x2
i

‖xi‖2

8∑

i=1

xiyi

‖xi‖2

8∑

i=1

x3
i

‖xi‖2

8∑

i=1

x2
i yi

‖xi‖2

8∑

i=1

xiy
2
i

‖xi‖2

8∑

i=1

xiyi

‖xi‖2

8∑

i=1

y2
i

‖xi‖2

8∑

i=1

x2
i yi

‖xi‖2

8∑

i=1

xiy
2
i

‖xi‖2

8∑

i=1

y3
i

‖xi‖2

8∑

i=1

x3
i

‖xi‖2

8∑

i=1

x2
i yi

‖xi‖2

8∑

i=1

x4
i

‖xi‖2

8∑

i=1

x3
i yi

‖xi‖2

8∑

i=1

x2
i y

2
i

‖xi‖2

8∑

i=1

x2
i yi

‖xi‖2

8∑

i=1

xiy
2
i

‖xi‖2

8∑

i=1

x3
i yi

‖xi‖2

8∑

i=1

x2
i y

2
i

‖xi‖2

8∑

i=1

xiy
3
i

‖xi‖2

8∑

i=1

xiy
2
i

‖xi‖2

8∑

i=1

y3
i

‖xi‖2

8∑

i=1

x2
i y

2
i

‖xi‖2

8∑

i=1

xiy
3
i

‖xi‖2

8∑

i=1

y4
i

‖xi‖2



















































A

B

C

D

E


























=


























8∑

i=1

xizi

‖xi‖2

8∑

i=1

yizi

‖xi‖2

8∑

i=1

x2
i zi

‖xi‖2

8∑

i=1

xiyizi

‖xi‖2

8∑

i=1

y2
i zi

‖xi‖2


























.

We will demonstrate how to find
∂A

∂t
. The method for finding

∂B

∂t
,

∂C

∂t
,

∂D

∂t
, and

∂E

∂t
is

similar.

A depends on the components of the neighbors {xi, yi, zi|i = 1 . . . 8}, so
∂A

∂t
=

8∑

i=1

(
∂A

∂xi

∂xi

∂t
+

∂A

∂yi

∂yi

∂t
+

∂

∂

By Cramer’s rule [26],

A =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑ x2
i

‖xi‖2

∑
xiyi

‖xi‖2

∑ x3
i

‖xi‖2

∑ x2
i yi

‖xi‖2

∑ xiy
2
i

‖xi‖2

∑
xiyi

‖xi‖2

∑ y2
i

‖xi‖2

∑ x2
i yi

‖xi‖2

∑ xiy
2
i

‖xi‖2

∑ y3
i

‖xi‖2

∑ x3
i

‖xi‖2

∑ x2
i yi

‖xi‖2

∑ x4
i

‖xi‖2

∑ x3
i yi

‖xi‖2

∑ x2
i y2

i

‖xi‖2

∑ x2
i yi

‖xi‖2

∑ xiy
2
i

‖xi‖2

∑ x3
i yi

‖xi‖2

∑ x2
i y2

i

‖xi‖2

∑ xiy
3
i

‖xi‖2

∑ xiy
2
i

‖xi‖2

∑ y3
i

‖xi‖2

∑ x2
i y2

i

‖xi‖2

∑ xiy
3
i

‖xi‖2

∑ y4
i

‖xi‖2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑
xizi

‖xi‖2

∑
xiyi

‖xi‖2

∑ x3
i

‖xi‖2

∑ x2
i yi

‖xi‖2

∑ xiy
2
i

‖xi‖2

∑
yizi

‖xi‖2

∑ y2
i

‖xi‖2

∑ x2
i yi

‖xi‖2

∑ xiy
2
i

‖xi‖2

∑ y3
i

‖xi‖2

∑ x2
i zi

‖xi‖2

∑ x2
i yi

‖xi‖2

∑ x4
i

‖xi‖2

∑ x3
i yi

‖xi‖2

∑ x2
i y2

i

‖xi‖2

∑
xiyizi

‖xi‖2

∑ xiy
2
i

‖xi‖2

∑ x3
i yi

‖xi‖2

∑ x2
i y2

i

‖xi‖2

∑ xiy
3
i

‖xi‖2

∑ y2
i zi

‖xi‖2

∑ y3
i

‖xi‖2

∑ x2
i y2

i

‖xi‖2

∑ xiy
3
i

‖xi‖2

∑ y4
i

‖xi‖2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

We use this formula for A to find
∂A

∂xi

,
∂A

∂yi

, and
∂A

∂zi

for i = 1 . . . 8. This is not as tedious

as it seems, for we can reduce the 5 × 5 determinants to the sum of constant multiples of

4× 4, 3× 3, and finally 2× 2 determinants, the majority of which are repeated. Details are

75

omitted.

The last derivatives to find are
∂xi

∂t
,
∂yi

∂t
, and

∂zi

∂t
for i = 1 . . . 8. This is simply the normal

velocity of (xi, yi, zi) multiplied by the x, y, or z coordinate of the normal at (xi, yi, zi).

Thus we have found the necessary quantities to calculate n(t + ∆t) ≈ n(t) + ∆t nt(t).

We now find a O(∆t) approximation of V (t+∆t). Now V is found by solving the matrix

equation
































I1
∆2

|x1−x2|
∆3

|x1−x3|
. . .

∆N−1

|x1−xN−1|
∆N

|x1−xN |
1

∆1

|x2−x1|
I2

∆3

|x2−x3|
. . .

∆N−1

|x2−xN−1|
∆N

|x2−xN |
1

∆1

|x3−x1|
∆2

|x3−x2|
I3 . . .

∆N−1

|x3−xN−1|
∆N

|x3−xN |
1

...
...

...
. . .

...
...

...

∆1

|xN−1−x1|
∆2

|xN−1−x2|
∆3

|xN−1−x3|
. . . IN−1

∆N

|xN−1−xN |
1

∆1

|xN−x1|
∆2

|xN−x2|
∆3

|xN−x3|
. . .

∆N−1

|xN−xN−1|
IN 1

∆1 ∆2 ∆3 . . . ∆N−1 ∆N 0































































V1

V2

V3

...

VN−1

VN

c′
































=
































4πκ1

4πκ2

4πκ3

...

4πκN−1

4πκN

0
































.

We find a O(∆t2) approximations of κ(t + ∆t), namely κ(t + ∆t) ≈ κ(t) + ∆t κt(t). We

then solve the above system of equations for V (t + ∆t). Note that this will only be a O(∆t)

approximation since all entries in the coefficient matrix are at time t.

We now calculate
∂κ(x)

∂t
. We use the chain rule. Recall κ =

C + E + EA2 + CB2 − ADB

(1 + A2 + B2)
3

2

where z = Ax + By + Cx2 + Dxy + Ey2 is the equation of the surface. Then
∂κ

∂t
=

∂κ

∂A

∂A

∂t
+

∂κ

∂B

∂B

∂t
+

∂κ

∂C

∂C

∂t
+

∂κ

∂D

∂D

∂t
+

∂κ

∂E

∂E

∂t
.

It is straightforward to calculate the following:

76

∂κ

∂A
=

(2EA − DB) (1 + A2 + B2) − 3A (C + E + EA2 + CB2 − ADB)

(1 + A2 + B2)
5

2

∂κ

∂B
=

(2CB − AD) (1 + A2 + B2) − 3B (C + E + EA2 + CB2 − ADB)

(1 + A2 + B2)
5

2

∂κ

∂C
=

1 + B2

(1 + A2 + B2)
3

2

∂κ

∂D
=

−AB

(1 + A2 + B2)
3

2

∂κ

∂E
=

1 + A2

(1 + A2 + B2)
3

2

.

We found
∂A

∂t
,

∂B

∂t
,

∂C

∂t
,

∂D

∂t
, and

∂E

∂t
previously. Thus we have an approximation of

κ(t + ∆t).

77

78

Chapter 4

Validation of Scheme

To validate the scheme we look for properties that the solution should have, namely con-

servation of volume, non-increasing area, and the tendency of Γ to become spherical, and

see if the numerical solution exhibits these behaviors. If anomalies occur, we analyze the

limitations of the scheme and what restrictions, if any, need to be placed on node spacing,

time step size (∆t), etc.

A problem that occurs during the numerical evolution of surfaces is the bunching, or clus-

tering, of nodes in areas of high mean curvature. With the torus, which is especially prone to

this bunching on its inner perimeter, a redistribution scheme alleviates the bunching. Other

means of improving the scheme specifically involving the torus include taking advantage of

symmetry and getting past the point of topology change. We explain the algorithms and

compare actual and predicted behavior before and after these adaptations.

We also can find the analytic solution to the system of boundary integral equations for

special situations; namely, the single sphere, spheres of equal radii, and concentric spheres.

We compare the analytic solutions to the numerical ones and discuss the correlation.

4.1 Volume Conservation

A binary alloy will preserve the amount of each species as it undergoes the coarsening process

as described in the Introduction. The mathematical model also obeys preservation of species.

Recall that Ω is a bounded and simply connected domain in R
3 and Γ0 is a finite collection

79

of smooth, simple closed surfaces in the domain. We follow the convention that V > 0 if

the surface of a sphere is expanding. Letting V ol(t) denote the volume enclosed by Γ(t), we

have by Green’s First Identity

d

dt
V ol(t) =

∫

Γ(t)

V dS =

∫

Γ(t)

[
∂u

∂n

]

dS = −
∫

∂Ω

∂u

∂n
dS +

∫

Ω\Γ(t)

∆u dx = 0

Hence the volume is constant. This result is proved for the two dimensional case in [2, 13, 46]

with the argument given for arbitrary dimensions in [17]. In [18], V ol(·) is shown to belong

to C∞((0, T), R). If Ω = R
3 and ∇u = O

(
1

|x|3
)

as |x| → ∞, we have for a ball BR of

radius R sufficiently large

d

dt
V ol(t) = −

∫

∂BR

∂u

∂n
dS = 4πR2O

(
1

R3

)

= O
(

1

R

)

→ 0 as R → ∞

4.2 Non-increasing Area

An important question to ask about the evolution of the interface Γ is what happens to

surface area over time. To find out what the model predicts, we take the derivative of the

area A(t) with respect to time and utilize Green’s First Identity. We follow the convention

that κ < 0 for a sphere. We have
1

2

d

dt
A(t) = −

∫

Γ(t)

κV dS = −
∫

Γ(t)

u

[
∂u

∂n

]

dS

=

∫

∂Ω

u
∂u

∂n
dS −

∫

Ω\Γ(t)

(
u4u + |∇u|2

)
dx

= −
∫

Ω\Γ(t)

|∇u|2dx

≤ 0.

Thus area is non-increasing. This is proved for the two dimensional case in [2, 13, 46].

In [17] the result is proved for arbitrary dimensions. In [18], A(·) is shown to belong to

C∞((0, T), R). If Ω = R
3 and ∇u = O

(
1

|x|3
)

as |x| → ∞, we have for a ball BR of radius

R sufficiently large

1

2

d

dt
A(t) =

∫

∂BR

u
∂u

∂n
dS −

∫

Ω\Γ(t)

|∇u|2dx = O
(

1

R

)

−
∫

Ω\Γ(t)

|∇u|2dx ≤ 0 as R → ∞.

The above calculations also show that particles will tend towards spheres, since
d

dt
A(t) =

0 ⇐⇒ ∇u = 0 ⇐⇒ u = k for some constant k. Then κ = k and Γ(t) is the surface of a

80

sphere of radius −1

k
.

4.3 Numerical Volume and Area Results

4.3.1 Ellipsoid

We use an ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1 with a = 1, b = 1.5, and c = 2 discretized by 420 nodes

with ∆t = 0.0005. As shown below, it indeed tends towards a sphere.

0 Iterations

–2

–1

1

2

–2

–1

1

2

–2

–1

1

2

500 Iterations

–2

–1

1

2

–2

–1

1

2

–2

–1

1

2

3000 Iterations

–2

–1

1

2

–2

–1

1

2

–2

–1

1

2

The volume enclosed by the surface
x2

a2
+

y2

b2
+

z2

c2
= 1 is

4

3
πabc. An ellipsoid with

a = 1, b = 1.5, and c = 2 has volume 4π ≈ 12.57. We track the volume enclosed by the

discretized surface as it evolves over time.

Volume of Ellipsoid

12.06

12.08

12.1

12.12

12.14

12.16

12.18

12.2

0 500 1000 1500 2000

Iterations

V
o

lu
m

e

81

The volume initially increases until stabilizing after about 700 iterations. The increase

is about 0.12, or 1% of the ellipsoid’s volume. We must bear in mind that the volumes

themselves are estimates: the estimate of the initial volume of the ellipsoid is 12.07 compared

to the actual value of 12.57, a discrepancy of 0.5. Thus a deviation in ideally constant volume

of 0.12 not unreasonable, and the numerical model behaves as predicted.

The area of the surface
x2

a2
+

y2

b2
+

z2

c2
= 1 does not have a simple formula, but can be

calculated numerically for given a, b, c. An ellipsoid with a = 1, b = 1.5, and c = 2, has

surface area 27.89 as calculated using Mapler. The chart below shows the ellipsoid’s area

versus iterations.

Area of Ellipsoid

25.5

26

26.5

27

27.5

28

0 1000 2000 3000 4000

Iterations

A
re

a

The surface area decreases, as hoped. We can predict the surface area of the sphere of

eventual equilibrium. Since the volume of the initial ellipsoid is
4

3
π(1)

(
3

2

)

(2) = 4π ≈ 12.57,

the radius of the sphere can be found using
4

3
πr3 = 4π. Then the predicted surface area of

the sphere is 4πr2 = 4π(3
√

3)2 ≈ 26.14. The numerical surface area begins at 27.57, rather

than the actual value of 27.89, and after 3000 iterations has stabilized at 25.91, which is 0.23

less than the projected value. This error is quite reasonable.

82

4.3.2 Multiple Spheres of Unequal Radii

As multiple spheres with differing radii evolve over time, larger spheres absorb the volume

of the smaller spheres. The spheres below have radii of 1, 1.1, and 1.2 and centers (2, 0, 0),

(−2, 0, 0), and (0, 4, 0), respectively. The two smaller spheres are discretized with 300 nodes

while the largest sphere has 420 nodes. Here ∆t = 0.0004.

0 Iterations

–1

1

1
2

3
4

5
6

–3
–2

–1

1
2

3

4000 Iterations

–1

1

1
2

3
4

5
6

–3
–2

–1

1
2

3

4426 Iterations

1

1
2

3
4

5
6

–3
–2

1
2

3

The smallest sphere “blows” at 4426 iterations as a result of extremely high normal

velocities. However, the model actually loses its validity long before, as shown by the graph

of the volume.

83

Volume of Three Unequal Spheres

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000

Iterations

V
o

lu
m

e
Small

Medium

Large

Total

The total volume stays within a hundredth of the initial value until about 2100 iterations,

or t = 0.84, when it begins gradually increasing. The surface area also decreases as desired

until about 2100 iterations.

Two ways to prolong the valid numerical evolution of these spheres are reducing the

time step and re-discretizing the spheres so that the largest sphere has more nodes and the

smallest sphere has fewer, as problems occur when nodes become too crowded.

The latter is done by approximating the evolved sphere by averaging the distance from

each node to the centroid. We take this average and use it as the radius of a new sphere.

The new spheres are discretized with more or less nodes as appropriate for their radii. After

regenerating the spheres there is a difference in volume, as the spheres lose their shapes over

time. Evolving the new spheres allow us to retain the validity of the model longer.

Decreasing the time step allows us to extend the scheme even longer than rediscretizing.

However, there is a large run time cost.

Combining the two techniques by reducing the time step size and regenerating the small-

est surface with fewer nodes gives about the same total time with less run time than just

reducing the time step. However, we still have the loss of accuracy when we approximate the

surfaces, although this could be overcome by a more sophisticated approximation scheme.

84

We conclude that a careful watch on the volume is necessary, and that the validity of the

scheme may be prolonged by reducing the time step and/or rediscretizing shrinking surfaces.

4.3.3 Torus

Shown below is a torus with large radius 2 and small radius 1 discretized with 400 nodes.

We use ∆t = 0.005. The surface indeed tends to a sphere, as the both the outer and inner

perimeters decrease.

0 Iterations

–2

–1

1

2
–3

–2
–1

2
3

–3
–2

–1

1
2

3

0 Iterations0 Iterations

–1

1

–3 –2 –1 1 2 3

800 Iterations

–2

–1

1

2
–3

–2
–1

2
3

–3
–2

–1

1
2

3

800 Iterations800 Iterations

–1

1

–3 –2 –1 1 2 3

1200 Iterations

–2

–1

1

2
–3

–2
–1

2
3

–3
–2

–1

1
2

3

1200 Iterations1200 Iterations

–1

1

–3 –2 –1 1 2 3

The exact volume of the torus is 2π2Rr2 ≈ 39.48. Unfortunately the volume of the

discretized torus bears no resemblance of being constant. Instead it steadily increases.

85

Volume of Torus

37

40

43

46

49

0 200 400 600 800 1000 1200

Iterations

V
o

lu
m

e

An adaptation of the scheme is necessary. An examination of cross sections reveals

that nodes are bunching on the outer perimeter and the opposite is occurring on the inner

perimeter. This behavior is likely a result of the higher normal velocities that result from

higher mean curvatures on the inner perimeter. Hence we utilize a redistribution scheme to

alleviate bunching with the goal to keep the volume constant.

4.3.4 Torus with Redistribution

We use a redistribution technique adapted from the two-dimensional version found in X.

Deng’s Master’s thesis [16]. We redistribute by taking three nodes, say A, B, and C, and

moving node B along the unique circle passing through the three nodes so B is equidistant

from A and C. The new position of B is

(‖B − C‖ − ‖B − A‖)
(−−−→

B−A
‖B−A‖ +

−−−→
C−B

‖C−B‖

)

2
(

1 +
−−−→
B−A

‖B−A‖ ·
−−−→
C−B

‖C−B‖

) ,

which is derived in two-dimensions in [16] and the vector argument is almost exactly the

same for three-dimensions.

86

Before Redistribution

C

B

A

After Redistribution

C

B

A

To implement this redistribution for the torus, we take the top half of one side of a radial

slice. The outermost node is assumed to lie on the xy-plane.

Discretized Torus

–2

–1

1

2
–3

–2
–1

2
3

–3
–2

–1

1
2

3

Top Half of Slice

–1

1

–3 –2 –1 1 2 3

We perform the above centering procedure beginning with the outermost three nodes and

progressing inward. The we utilize the symmetry of the torus with respect to the xy-plane

reflect the top half to the bottom half. We redistribute each slice in this manner after every

iteration. The result for the torus with large radius 2 and small radius 1 discretized with

400 nodes, ∆t = 0.005, is shown below.

0 Iterations

–2

–1

1

2
–3

–2
–1

2
3

–3
–2

–1

1
2

3

0 Iterations0 Iterations

–1

1

–3 –2 –1 1 2 3

1100 Iterations

–2

–1

1

2
–3

–2
–1

2
3

–3
–2

–1

1
2

3

1100 Iterations1100 Iterations

–1

1

–3 –2 –1 1 2 3

87

1121 Iterations

–2

–1

1

2
–3

–2
–1

2
3

–3
–2

–1

1
2

3

1121 Iterations1121 Iterations

–1

1

–3 –2 –1 1 2 3

The volume is fairly close to being constant until about 1100 iterations. We would like to

see the nodes on the inner perimeter converge closer to the origin before we lose validity, so

we next try utilizing the radial symmetry of the torus.

Volume of Torus with Redistribution

38

38.5

39

39.5

40

0 200 400 600 800 1000

Iterations

V
o

lu
m

e

4.3.5 Torus with Symmetry and Redistribution

Given the slice lying on the xz-axis with x positive, we generate the rest of the torus by

taking each node on this slice, say (x, y, z), and for j = 1..N where N is the number of radial

slices, generate the nodes (x cos

(
2πj

N

)

, y sin

(
2πj

N

)

, z). Again we evolve a torus with large

radius 2 and small radius 1 discretized with 400 nodes, ∆t = 0.005. Here N = 20.

88

0 Iterations

–2

–1

1

2
–3

–2
–1

2
3

–3
–2

–1

1
2

3

0 Iterations0 Iterations

–1

1

–3 –2 –1 1 2 3

1200 Iterations

–2

–1

1

2
–3

–2
–1

2
3

–3
–2

–1

1
2

3

1200 Iterations1200 Iterations

–1

1

–3 –2 –1 1 2 3

1300 Iterations

–2

–1

1

2
–3

–2

–1

1

2

3

–3

–2

–1

1300 Iterations1300 Iterations

–1

1

–3 –2 –1 1 2 3

1350 Iterations

–2

–1

1

2
–3

–2

–1

1

2

3

–3

–2

–1

1350 Iterations1350 Iterations

–1

1

–3 –2 –1 1 2 3

The inner perimeter shrinks to zero and the torus pushes up against itself. The volume starts

to deviate at this critical evolutionary phase.

89

Volume of Torus with Redistribution and

Symmetry

37

37.5

38

38.5

39

39.5

40

0 200 400 600 800 1000 1200 1400

Iteration

V
o

lu
m

e

Further adaptation is needed to take the torus to the point where it is no longer a

deformed torus but a deformed sphere.

4.3.6 Torus Taken Past Topology Change

To take the torus past its topology change, we project a sphere onto the torus when the

innermost nodes reach the origin. Because the discretizations of the torus and sphere are

quite difference, we need to have a surface to project the sphere onto. First we take the

nodes lying on the xz-plane with z positive and use linear interpolation to form a curve.

A cubic spline interpolation would seem to follow the round surface of a torus better, but

there are unwanted oscillations with when a node is almost directly above another, like the

outermost nodes.

Linear Interpolation

1

2

–3 –2 –1 1 2 3

The outermost node on the positive x-axis determines the radius of the sphere that will

be projected onto the torus. Once this sphere is generated, we take each node, say (x, y, z)

and find its length. We find the equation of the interpolated line above (
√

x2 + y2 + z2, 0)

90

on the xz-plane, say y = mx + b. The projected node will be (x, y,±(mx + b)) with the sign

determined by z. Below we take the previous torus and project a sphere with 560 nodes

onto it. The projected sphere will not pinch at the origin because the discretization of the

sphere has no nodes on the z-axis.

1300 Iterations

–2

–1

1

2
–3

–2

–1

1

2

3

–3

–2

–1

1400 Iterations

–2

–1

1

2
–3

–2

–1

1

2

3

–3

–2

–1

1700 Iterations

–2

–1

1

2
–3

–2

–1

1

2

3

–3

–2

–1

6000 Iterations

–2

–1

1

2
–3

–2

–1

1

2

3

–3

–2

–1

The volume has a jump when the surface is rediscretized; however, the projected sphere

should have a lightly larger volume because of the missing pinch at the origin. This is ex-

plained partly by the volume lost through linear interpolation. Also, the volume is only

estimated, and the volume chart can give us qualitative information but not precise quanti-

tative information.

91

Volume of Torus Through Topology Change

37.8

38

38.2

38.4

38.6

38.8

39

39.2

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Iterations

V
o

lu
m

e

The area behaves as desired, namely it decreases until the surface stabilizes to a sphere,

where it is constant.

Area of Torus Past Topology Change

50

55

60

65

70

1300 6000

Iterations

A
re

a

Thus the torus exhibits good behavior provided we make adaptations to keep nodes

distributed evenly and to take it past its topology change.

4.3.7 Distorted Sphere

All the surfaces under consideration up to this point have had some sort of symmetry.

We would like to see if volume is constant and surface area decreases for non-symmetrical

surfaces. Below we have a distorted sphere with 420 nodes evolved through 1000 iterations

92

using ∆t = 0.0008.

0 Iterations

–2

–1

1

2
–2

–1

1

2

–2

–1

1

2

500 Iterations

–2

–1

1

2
–2

–1

1

2

–2

–1

1

2

1000 Iterations

–2

–1

1

2
–2

–1

1

2

–2

–1

1

2

The volume is initially 13.03 and deviates only 0.12 from that amount after 1000 itera-

tions. The area decreases but eventually stabilizes as the surface becomes spherical. Also of

interest are the maximum and minimum values of the normal velocity.

Normal Velocity for Distorted Spheres

-250

-200

-150

-100

-50

0

50

100

150

200

250

0 50 100 150 200

Iterations

N
o

rm
a
l

V
e
lo

c
it

y

93

The values quickly tend to zero as the surface tends to a sphere. The maximum and minimum

values of mean curvature for each iteration also tend towards the negative reciprocal of the

radius of the eventual sphere.

Mean Curvature for Distorted Sphere

-6

-4

-2

0

2

4

6

8

0 100 200 300 400 500

Iterations

M
e
a
n

 C
u

rv
a
tu

re

Thus the distorted sphere is an example of a non-symmetrical surface that behaves as

desired.

4.4 Analytic Solution

We find the exact solution to Mullins-Sekerka flow for a single sphere, spheres of equal radii,

and concentric spheres.

4.4.1 Sphere

For a sphere of radius R, u = − 1

R
satisfies

∆u = 0 in R3\Γ(t)

u = κ on Γ(t)

∇u = O
(

1

|x|3
)

as |x| → ∞.

where κ is the mean curvature with the convention that κ < 0 for a sphere. By uniqueness

of smooth solutions to the Mullins-Sekerka problem [1] this is the only possible solution to

94

i) ∆u(·, t) = 0 in R
3\Γ(t)

ii) ∇u = O
(

1

|x|3
)

as |x| → ∞

iii) u = κ on Γ(t)

iv)

[
∂u

∂n

]

Γ(t)

= V on Γ(t)

v) Γ(0) = Γ0

The normal velocity V is uniquely determined by Theorem 2.4.1. Since the sum of the

outward normal derivatives

[
∂u

∂n

]

Γ(t)

= 0, the normal velocity V is 0.

The model predicts that the surface area of a sphere should remain constant as well as its

volume, and as hoped for, a unit sphere discretized using 420 nodes remains at equilibrium.

In fact, after 500 iterations with ∆t = 0.0004, the volume and surface area remain constant

through four decimal places.

0 Iterations

–1

1

–1

1

–1

1

500 Iterations

–1

1

–1

1

–1

1

Below we show the maximum and minimum numerically calculated normal velocities over

all of the nodes for the first 100 iterations.

95

Bounds on Normal Velocity of Sphere

-0.02

-0.01

0

0.01

0.02

0.03

0 20 40 60 80 100

Iterations

N
o

rm
a
l

V
e
lo

c
it

y

Only about 50 iterations are required for the normal velocity to be within three decimal

places of zero.

The numerical method is quite sensitive to time step size. The charts below demonstrate

the effects of increasing ∆t on the area and volume of the unit sphere.

Surface Area of Sphere

12

13

14

15

16

17

18

0 100 200 300 400 500

Iterations

A
re

a

0.0004

0.0005

0.0006

0.0007

96

Volume of Sphere

3.5

4

4.5

5

5.5

6

6.5

7

0 100 200 300 400 500

Iterations

V
o

lu
m

e

0.0004

0.0005

0.0006

0.0007

Hence the sphere is both analytically and numerically an equilibrium solution provided the

time step ∆t is chosen small enough.

4.4.2 Multiple Spheres of Equal Radii

For Γ the union of spheres of radius R, u = − 1

R
is the unique solution to the Mullins

Sekerka problem. Just as in the case of the single sphere, we have the normal velocity

V =

[
∂u

∂n

]

Γ(t)

= 0 and Γ is at equilibrium. Below we show the numerical model’s results

for four spheres of radius 1 centered at (2, 0, 0), (2, 4, 2), (0, 2,−2), and (−2, 0, 0). Each is

discretized by 420 nodes and ∆t = 0.0004.

0 Iterations

–3

–2

–1

1

2

3

–1

1
2

3
4

5

–3
–2

–1

1
2

3

500 Iterations

–3

–2

–1

1

2

3

–1

1
2

3
4

5

–3
–2

–1

1
2

3

After 500 iterations the total volume and surface area have both deviated less than 10−5

from the initial values. After about 50 iterations, the normal velocity is less than 0.001 in

absolute value. Thus the numerical model agrees with the analytical solution.

97

4.4.3 Concentric Spheres

Suppose Γ(t) is the boundary of two concentric spheres with radii 0 < R1(t) < R2(t). We

consider Γ(t) as enclosing {⇀
x |R1 < |⇀x| < R2}. For ease of notation we abbreviate R1(t)

and R2(t) as R1 and R2, respectively.

R1

R2

We are looking for solutions of

∆u = 0 in R
3\Γ(t)

u = κ on Γ(t)

∇u = O
(

1

|⇀x|3

)

as |⇀x| → ∞.

Then for |⇀x| ≤ R1, u(
⇀
x) =

1

R1

and for |⇀x| ≥ R2, u(
⇀
x) = − 1

R2

satisfy the requirements. For

R1 < |⇀x| < R2, we note that a function of the form u(
⇀
x) = a +

b

|⇀x|
is harmonic. Letting

a =
−2

R2 − R1

and b =
R1 + R2

R2 − R1

insures that u is continuous on Γ(t). Hence u is a solution to

i) ∆u(·, t) = 0 in R
3\Γ(t)

ii) ∇u = O
(

1

|⇀x|3

)

as |⇀x| → ∞

iii) u = κ on Γ(t)

iv)

[
∂u

∂n

]

Γ(t)

= V on Γ(t)

v) Γ(0) = Γ0.

Uniqueness of solutions to the Mullins-Sekerka problem requires u to be sufficiently smooth

[1], which it is not. However, under certain assumptions about the exterior Dirichlet problem,

κ uniquely determines the normal velocity V by Theorem 2.4.1.

98

We next determine the normal velocity V at time t. For |⇀x| = R1, the outward normal is

n =
(−x,−y,−z)

R1

and for |⇀x| = R2, the outward normal is n =
(x, y, z)

R2

. Now V =

[
∂u

∂n

]

Γ(t)

is the jump in the normal derivative of u across Γ(t). Then for |⇀x| = R1,

VR1
=

[
∂u

∂n

]

Γ(t)

= ∂n−u − ∂n+u

= ∂n−

(

−2

R2 − R1

+
R1 + R2

R2 − R1

1

|⇀x|

)

− ∂n+

(
1

R1

)

=
(−x,−y,−z)

R1

· R1 + R2

R2 − R1

(−x,−y,−z)

R3
1

− 0

=
(R1 + R2)

(R2 − R1)R2
1

.

For |⇀x| = R2, a similar calculation yields VR2
= − (R1 + R2)

(R2 − R1)R2
2

. Now the volume enclosed

by Γ(t) is

Vol(t) =
4

3
πR3

2 −
4

3
πR3

1.

Then utilizing the normal velocities VR1
= −dR1

dt
and VR2

=
dR2

dt
, we have

∂Vol

∂t
= 4π R2

2

dR2

dt
− 4π R2

1

dR1

dt

= −4π R2
2

(R1 + R2)

(R2 − R1)R2
2

+ 4π R2
1

(R1 + R2)

(R2 − R1)R2
1

= 0.

Hence, the enclosed volume is constant.

Let this volume be
4

3
πM . Then M = R3

2−R3
1 and R2 = (M +R3

1)
1

3 . Now VR1
= −dR1

dt
=

(R1 + R2)

(R2 − R1)R2
1

, so we have

R2
1

(

R1 − (M + R3
1)

1

3

)

(M + R3
1)

1

3 + R1

dR1 = dt.

We can now solve for R1(t) implicitly using

t =

∫ R1(t)

R1(0)

r2
(

r − (M + r3)
1

3

)

(M + r3)
1

3 + r
dr

99

Using Romberg’s method for integration [9] in combination with a bisection method we

determine R1(t), the inner radius, given t. This is done by evaluating successive guesses,

denoted here as R̃1(t), to R1(t) until

∫ R̃1(t)

R1(0)

r2
(

r − (M + r3)
1

3

)

(M + r3)
1

3 + r
dr is within a specified

tolerance to t. Since 0 ≤ R1(t) ≤ R1(0), we use the initial guess R̃1(t) =
R1(0)

2
. In general,

given an upper bound U and lower bound L of R1(t), we use the approximation R̃1(t) =

U + L

2
. If

∫ R̃1(t)

R1(0)

r2
(

r − (M + r3)
1

3

)

(M + r3)
1

3 + r
dr < t, the estimate R̃1(t) is too large, and we let

U = R̃1(t) for finding the next approximation to R1(t). If

∫ R̃1(t)

R1(0)

r2
(

r − (M + r3)
1

3

)

(M + r3)
1

3 + r
dr > t,

then R̃1(t) is an underestimate, and we let L = R̃1(t). In this manner we find a sequence

{R̃1(t)} that converges to R1(t) as the integral converges to t. The integrals cannot be

evaluated algebraically, so we use Romberg’s method with code adapted from [9] to evaluate

the integrals numerically. Once we find R1(t), we find the outer radius R2(t) via the formula

R2 = (M + R3
1)

1

3

Below is the evolution of concentric spheres as determined analytically via the method

explained above. Here R1(0) = 1 and R2(0) = 2.

t=0.15t=0.1t=0

The results from our numerical scheme as compared to the analytical solution are shown

below. The correlation disappears as the inner radius shrinks to zero since the numerical

scheme cannot handle very small spheres, but initially the numerical scheme is a good ap-

proximation. We used 200 nodes to discretize the smaller sphere and 720 nodes for the

larger. The time step is ∆t = 0.0002.

100

Radii of Concentric Spheres

0

0.5

1

1.5

2

0 0.05 0.1 0.15

Time

R
a
d

iu
s

Analytic R1

Analytic R2

Numerical R1

Numerical R2

Below is the numerical evolution of the concentric spheres from t = 0 to t = 0.12.

0 Iterations

–2

–1

1

2

–2

–1

1

2

–2

–1

600 Iterations

–2

–1

1

2

–2

–1

1

2

–2

–1

While overall the results for the concentric spheres are very good, the numerical values

of the normal velocities are necessitating the small time step. The actual normal velocities

of the initial surfaces are VR1
=

(R1 + R2)

(R2 − R1)R2
1

= 3 and VR2
= − (R1 + R2)

(R2 − R1)R2
2

= −3

4
, where

R1 = 1 and R2 = 2. With regard to VR1
, the average of the numerical normal velocities for

the smaller sphere discretized by 200 nodes at t = 0 is 3.05 with a standard deviation of

0.15, not as close as hoped for to the actual value of 3. The velocities vary widely between

2.85 and 3.36, as shown in the table below where the nodes are labelled 1 through 200 for

convenience.

101

Numerical Normal Velocities

2.6

3

3.4

0 50 100 150 200

Nodes

N
o

rm
a
l

V
e
lo

c
it

y

The symmetries are presumably a result of the discretization based on the 20 faces of the

icosahedron. Unfortunately, increasing the number of nodes does not significantly improve

the numerically calculated normal velocities. For example, using the same radii but with 720

nodes yields an average of 3.00 with standard deviation 0.12, but the range is 2.77 to 3.38,

worse than before. By way of comparison, the average mean curvature estimates for the

smaller sphere (actual value 1) goes from 1.03 to 1.0079 with standard deviation decreasing

from 0.0011 to 0.00045 when we increase the number of nodes from 200 to 720.

Recall that the normal velocities Vi are found by solving the following matrix, which is

derived from using a piecewise constant discretization to estimate surface integrals.

102
































I1
∆2

|x1−x2|
∆3

|x1−x3|
. . .

∆N−1

|x1−xN−1|
∆N

|x1−xN |
1

∆1

|x2−x1|
I2

∆3

|x2−x3|
. . .

∆N−1

|x2−xN−1|
∆N

|x2−xN |
1

∆1

|x3−x1|
∆2

|x3−x2|
I3 . . .

∆N−1

|x3−xN−1|
∆N

|x3−xN |
1

...
...

...
. . .

...
...

...

∆1

|xN−1−x1|
∆2

|xN−1−x2|
∆3

|xN−1−x3|
. . . IN−1

∆N

|xN−1−xN |
1

∆1

|xN−x1|
∆2

|xN−x2|
∆3

|xN−x3|
. . .

∆N−1

|xN−xN−1|
IN 1

∆1 ∆2 ∆3 . . . ∆N−1 ∆N 0































































V1

V2

V3

...

VN−1

VN

c′
































=
































4πκ1

4πκ2

4πκ3

...

4πκN−1

4πκN

0
































Note that as the number of nodes increases, the patch areas 4i becomes very small, along

with some of the |xi−xj|’s. Roundoff error can be very large when dividing a small number by

a small number. Using the actual values of the mean curvature κ improves the numerically

calculated normal velocities slightly, but we still don’t see significant improvement when

the number of nodes is increased. This is an indicator that the roundoff error nullifies the

increased accuracy gained by increasing the number of nodes. Remedying this is an area for

further work.

4.5 Summary

Overall, our scheme agrees very well with theoretically predicted behavior and analytically

derived solutions. Care must be taken, however, with large time step sizes, bunched nodes,

and topological changes.

Thus our scheme loses validity for a time step size that borders the stability region, as

the change in surface area makes small oscillations.

As this surface actually has a significant increase in area, we conclude that a careful

watch on time step size is necessary, but within the stable range for ∆t we have very good

results.

103

104

Chapter 5

Numerical Results

Here we show how particles evolve over time. We use the Particle-Particle Method with the

first order implicit scheme.

5.1 Various Surfaces

5.1.1 Distorted Torus

We distort a torus of large radius 3 and small radius 1 discretized with 800 nodes. The time

step size is 0.0004. We redistribute each radial slice after each iteration. We note that the

redistribution for a distorted torus is slightly different from a non-perturbed torus because

we cannot utilized the symmetry with respect to the xy-plane.

0 Iterations

–2

–1

1

2
–3

–2
–1

1
2

3

–3
–2

–1

1
2

3

1000 Iterations

–2

–1

1

2
–3

–2
–1

1
2

3

–3
–2

–1

1
2

3

105

1650 Iterations

–2

–1

1

2
–3

–2
–1

1
2

3

–3
–2

–1

1
2

3

The scheme is not valid after 1650 iterations because surface area no longer decreases. The

bulging parts of the torus get fatter and the skinny part gets even skinnier as the inner

perimeter shrinks. This suggests that pinching off may occur. An area of work in the future

is creating a discretization that will allow the evolution to progress even farther by reducing

the number of nodes at the narrow neck and increasing the density of nodes at the bulge.

5.1.2 Two Spheres of Unequal Radii

The following spheres have radii 1.5 and 1. Here ∆t = 0.0004. Below we show the surfaces

at 0 and 3000 iterations.

0 Iterations

–1

1–1

1
–1

1

3

5

7

3000 Iterations

–1

1–1

1
–1

1

3

5

7

The smaller sphere shrinks and the larger sphere grows.

5.1.3 Two Spheres of Slightly Unequal Radii

A small perturbation goes a long way. One unit sphere is changed to an ellipsoid with

a = 1.1, b = 1, c = 1, and instead of equilibrium we have the following. The first surface is

106

at 0 iterations and the second is after 5000 iterations with ∆t = 0.0004.

0 Iterations

–1

1–1

1
–1

1

3

5

7

5000 Iterations

–1

1–1

1
–1

1

3

5

7

Below is a chart of the radii. Here the radius is the average distance of the nodes from the

centroid.

Unit Sphere and Slightly Perturbed Unit Sphere

0.8

0.9

1

1.1

1.2

0 1000 2000 3000 4000 5000

Iterations

R
a
d

iu
s

Smaller

Larger

This demonstrates that the Mullins-Sekerka problem is ill-conditioned: a small perturbation

in Γ(0) can completely change the nature of the solution.

5.1.4 Three Spheres of Unequal Radii

Two of the spheres have a radius of 1, and shrink at the approximately same rate. The

larger sphere has radius 2. We use ∆t = 0.0004. Below are shown the initial surface and the

surface after 1500 iterations.

107

0 Iterations

–1

1

2

1
2

3
4

5
6

–3
–2

–1

1
2

3

1500 Iterations

–1

1

2

1
2

3
4

5
6

–3
–2

–1

1
2

3

The smaller spheres shrink and the larger spheres grow.

108

Chapter 6

Conclusion

We review the strengths of our scheme and give areas where further work remains to be

done.

6.1 Strengths

The strengths of the numerical scheme presented in this dissertation include utilizing a re-

formulation of the Mullins-Sekerka problem so that computations are performed with regard

to a surface instead of R
3. A discretization of the sphere based on an icosahedron has nearly

equally spaced nodes, which is an important ingredient when discretizing surfaces. The

scheme is semi-implicit to increase stability with respect to time step size. Redistribution of

nodes for the torus significantly extends the time interval for which the scheme is valid. We

also deal with the topology change the torus undergoes as its shape tends toward that of a

sphere. We presented a distorted torus that showed the tendency to pinch off.

6.2 Further Work

Improvements can be made to the scheme, such as further reducing runtime and resolving

node spacing issues adaptively as surfaces evolve. Questions about Mullins-Sekerka flow have

yet to be answered, specifically with regard to stiffness and convexity preservation in three

dimensions.

109

6.2.1 Convexity

In two dimensions, Mullins-Sekerka flow has been shown both numerically [5] and theoreti-

cally [29] to not preserve convexity. However, there are no results for the three-dimensional

case. Numerically, a promising surface candidate for showing loss of convexity is a long, hot

dog shaped tube.

6.2.2 Node Enrichment and Refinement

When evolving multiple particles other than spheres of equal radii, larger particles grow

and smaller particles shrink. This leads to very large mesh size in the larger particles and

bunching problems in the smaller particles, effecting the validity of our results. For example,

the three spheres with initial radii 1,1, and 2 show this phenomenon. The left plot is the

original surfaces and the right is after 1000 iterations.

2
3

1

3
5

7

1
2

3

2
3

1

3
5

7

1
2

3

A solution to this would be a node enrichment and refinement scheme that added or removed

nodes as necessary. Ultimately particles sufficiently tiny would be removed altogether.

6.2.3 Convergence of Surface Estimate Scheme

A very important part of our numerical scheme involves the estimation of mean curvature

and the normal at a node. We do this by using the iterative method found in [45] to find a

surface of the form z = Ax + By + Cx2 + Dxy + Ey2 that best fits the node and its eight

nearest neighbors. The method supposes that such a surface with the z-axis corresponding

110

to the normal to the surface is the best fit surface and hence gives the best estimate of mean

curvature.

Several things need to be proved. First is that the iterative process does indeed yield a

surface that minimizes error, i.e., we need to show that the weighted error of the jth iteration

Fj(A,B,C,D,E) =
8∑

i=1

(Axi + Byi + Cx2
i + Dxiyi + Ey2

i − zi)
2

x2
i + y2

i + z2
i

is bounded above by a sequence converging to 0. Note that Fj is bounded below by 0.

The iterative process involves a change of coordinate system at each step. This results in

a product of change of basis matrices. We need to show that these change of basis matrices

approach the identity and also that their product approaches the identity. For the change of

basis matrices to approach the identity, it is necessary that Aj and Bj approach 0. This is

equivalent to the normal to the surface approaching the z-axis. Numerical implementation of

the iterative scheme show that the matrices and their products do indeed converge as desired

provided nodes are reasonably equally spaced, but this needs to be proved rigorously.

Finally it remains to rigorously show that the mean curvature and normal are independent

of the initial choice of coordinate system, as this is largely arbitrary.

6.2.4 Stiffness

Our problem shows indications of being stiff. The first is that the time step is necessarily

constrained to be quite small or we lose validity. Secondly, when the explicit Euler’s Method

is used, it performs better than both the Center Difference Method and Adams-Bashforth

Method, even though the latter two are both O(∆t2) while Euler’s Method is O(∆t). Euler’s

Method can be shown to be more suitable for stiff equations than the Center Difference and

Adams-Bashforth Methods via analysis of a test equation [?]. On the other hand, the Implicit

Trapezoid Method is A-Stable. Our adaptation of the Implicit Trapezoid Method works well

for our problem.

Ascertaining whether the Mullins-Sekerka problem would be beneficial in explaining the

behavior mentioned above. It would also help in deciding which numerical method should

111

be used to advance the surface.

To verify that our problem is stiff, we need to show that the Jacobian matrix of V (X)

has eigenvalues with negative real part and the magnitude of these real parts differ widely

[25].

6.2.5 Smoothness of V

In the theoretical derivation of the integral formulation, we require V to be continuous. We

would like to relax this to V ∈ L2(Γ) or V measurable and bounded. If this is not possible,

we would like to demonstrate why.

112

Bibliography

[1] Alikakos, Nicholas D.; Bates, Peter W.; Chen, Xinfu Convergence of the Cahn-Hilliard

Equation to the Hele-Shaw Model, Archive for Rational Mechanics and Analysis 128

(1994), 165–205.

[2] Alikakos, Nicholas D.; Bates, Peter W.; Chen, Xinfu; Fusco, Giorgio Mullins-Sekerka

Motion of Small Droplets on a Fixed Boundary, The Jounal of Geometric Analysis

10 (2000), 575–596.

[3] Anderson, E. (Editor); Bischof, C.; Bai, Z.; Blackford, L. S.; LAPACK Users’ Guide,

SIAM, 1999.

[4] Atkinson, Kendall E. The Numerical Solution of Integral Equations of the Second

Kind, Cambridge, Cambridge, 1997.

[5] Bates, Peter W.; Chen, Xinfu; Deng, Xinyu A Numerical Scheme for the Two Phase

Mullins-Sekerka Problem, Electronic Journal of Differential Equations (1995), No.

11, 1–28.

[6] Bates, Peter W.; Lu, Kening; Xu, Daoyi Differential Equations and Computational

Simulations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2000.

[7] Boistelle, R.; Astier, J. P. Crystallization Mechanisms in Solution, Journal of Crystal

Growth 90 (1988), 14-30.

[8] Brown, Sarah M. The Mullins-Sekerka Problem in Three Dimensional Space MS

Thesis Brigham Young University 1999.

113

[9] Burden, Richard L.; Faires, J. Douglas Numerical Analysis (7th ed.), Brooks/Cole,

Pacific Grove, CA, 2001.

[10] Caginalp, G. The Dynamics of a Conserved Phase Field System: Stefan-like, Hele-

Shaw and Cahn-Hilliard Models as Asymptotic Limits, IMA Journal of Applied Math-

ematics 34 (1990), 77–94.

[11] Cahn, John W.; Hilliard, John E. Free Energy of a Nonuniform System. I. Interfacial

Free Energy, The Journal of Chemical Physics, 28 (1958), No. 2, 258–267.

[12] Cahn, John, W. On Spinodal Decomposition, Acta Metallurgica, 9 (1961), 795–801.

[13] Chen, Xinfu The Hele-Shaw Problem and Area-Preserving Curve-Shortening Motions,

Archive for Rational Mechanics and Analysis 123 (1993), 117–151.

[14] Chen, Xinfu; Hong, Hiaxing; Yi,Fahuai Existance, Uniqueness, and Regularity of

Classical Solutions of the Mullins-Sekerka Problem, Communications in Partial Dif-

ferential Equations 21 (1996), No. 11&12, 1705–1727.

[15] Chen, Xinfu Global Asymptotic Limit of Solutions of the Cahn-Hilliard Equation,

Journal of Differential Geometry 44 (1996), 262–311.

[16] Deng, Xinyu A Numerical Analysis Approach for the Hele-Shaw Problem, M. S. The-

sis, Brigham Young University, April 1994.

[17] Escher, Joachim; Simonett, Gieri A Center Manifold Analysis for the Mullins-Sekerka

Model, Journal of Differential Equations 143 (1998), 267–292.

[18] Escher, Joachim; Simonett, Gieri Classical Solutions for Hele-Shaw Models with Sur-

face Tension, Advances in Differential Equations 2 (1997), No. 4, 619–642.

[19] Escher, Joachim; Simonett, Gieri On Hele-Shaw Models with Surface Tension, Math-

ematical Research Letters 3 (1996), 467–474.

114

[20] Evans, Lawrence C. Partial Differential Equations, AMS, Providence, RI, 1998.

[21] Folland, Gerald. B. Introduction to Partial Differential Equations (2nd ed.), Prince-

ton University Press, Princeton, NJ, 1995.

[22] Greenbaum, A.; Greengard, L.; McFadden, G. B. Laplace’s Equation and the

Dirichlet-Neumann Map in Multiply Connected Domains, Journal of Computational

Physics 105 (1993), 267–278.

[23] Horn, Roger A.; Johnson, Charles R. Martix Analysis, Cambridge, Cambridge, 1985.

[24] Isaacson, Eugene Analysis of Numerical Methods John Wiley & Sons, Inc., New York.

1966

[25] Kincaid, David; Cheney, Ward Numerical Analysis (2nd ed.), Brooks/Cole, Pacific

Grove, 1996.

[26] Larson, Roland E.; Hostetler, Robert P. Algebra and Trigonometry (4th ed.),

Houghton Mifflin, Boston, 1997.

[27] Lindsay, Keith A Three-Dimensional Cartesian Tree-Code and Applications to Vortex

Sheet Roll-Up, Ph.D. thesis (University of Michigan, Ann Arbor, MI. 1997).

[28] Lindsay, Keith; Kransy, Robert A Particle Method and Adaptive Treecode for Vortex

Sheet Motion in Three-Dimensional Flow, Journal of Computational Physics 172

(2001), 879–907.

[29] Mayer, Uwe F. Two-Sided Mullins-Sederda Flow Does Not Preserve Convexity, Pro-

ceedings of the Third Mississippi State Conference of Difference [sic] Equations and

Computational Simulations (1997), 171–179.

[30] Meyers, Norman; Serrin, James The Exterior Dirichlet Problem for Second Order

Elliptic Partial Differential Equations, Journal of Mathematics and Mechanics, 9

No. 4 (1960), 513–538.

115

[31] McFadden, G.B.; Voorhees, P.W.; Boisvert, R.F.; Meiron, D.I. A Boundary Inte-

gral Methods for the Simulation of Two-Dimensionl Particle Coarsening, Journal of

Scientific Computing 1 No. 2 (1986) 117–144

[32] McOwen, Robert Partial Differential Equations: Methods and Applications, Prentice-

Hall, Inc., Upper Saddle River, NJ, 1996

[33] Mikhlin, S. G. An Advanced Course of Mathematical Physics, American Elsevier

Publishing Company, Inc., New York, NY, 1970.

[34] Milic, Natasa On the Mullins-Sekerka Model for the Phase Transitions in Mixtures,

Quarterly of Applied Mathematics 49 No. 3 (1991), 437–445.

[35] Mitrovic, Dragisa; Zubrinic, Darko Fundamentals of Applied Functional Analysis,

Addison Wesley Longman Limited, England, 1998

[36] Mullins, W. W.; Sekerka, R. F. Morphological Stability of a Particle Growing by

Diffusion and Heat Flow, Journal of Applied Physics 34 (1963), No. 2, 323–329.

[37] Oprea, John The Mathematics of Soap Films: Explorations with Maple, AMS, Prov-

idence, RI, 2000.

[38] Pego, R. L. Front Migration in the Nonlinear Cahn Hilliard Equation, Proceedings

of the Royal Society of London. Series A, Mathematical and Physical Sciences 422

No. 1863 (1989), 261–278.

[39] Protter, M. H.; Morrey, C. B. A First Course in Real Analysis, Springer-Verlag, New

York, 1991.

[40] Smirnov, V.I. Integral Equations and Partial Differential Equations, Pergamon Press

Ltd. 1964

[41] Stein, Sherman K. Calculus and Analytic Geometry, McGraw Hill, New York, 1987.

116

[42] Stoth, Barbara E. E. Convergence of the Cahn-Hilliard Equation to the Mullins-

Sekerka Problem in Spherical Symmetry, Journal of Differential Equations 125

(1996), 154–183.

[43] Sutton, Daud Platonic & Archimedean Solids, Walker & Company, New York, 2002.

[44] Voorhees, P.W.; McFadden, G.B.; Boisvert, R.F.; Meiron, D.I. Numerical Simulation

of Morphological Development During Ostwald Ripening, Acta. Metall. 36, No. 1

(1988), 207–222.

[45] Zinchenko, Alexander Z.; Rother, Michael A.; Davis, Robert H. A Novel Boundary-

Integral Algorithm for Viscous Interaction of Deformable Drops, Physics of Fluids 9

(1996) No. 6, 1493–1511.

[46] Zhu, Jinhyi; Chen, Xinfu; and Hou, Thomas Y. An Efficient Boundary Integral

Method for the Mullins-Sekerka Problem, Journal of Computational Physics 127

(1996), 246–267.

117

	A Numerical Scheme for Mullins-Sekerka Flow in Three Space Dimensions
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	Introduction
	Background
	Contributions of Dissertation
	Outline of Dissertation

	Mathematical Formulation
	Description of Problem
	Reformulation of Problem
	Equivalency of Formulations
	Existence and Uniqueness

	Numerical Scheme
	Surface Modeling
	Torus
	Distorted Torus
	Ellipsoid
	Distorted Ellipsoid

	Nearest Neighbors
	Torus
	Ellipsoid

	Surface Area Estimates
	Subdivision Points
	Patch Area
	Convergence of Surface Area Estimates

	Volume Estimates
	Ellipsoid
	Torus

	Best Fit Surface and Outward Normal
	Mean Curvature
	Choice of Initial Coordinate System in Best Fit Surface Scheme
	Iteration Limit in Outward Normal Scheme

	Integral
	Integral Equations
	Particle-Particle Method
	Particle-Cluster Method
	Efficiency
	Advancing the Surface

	Validation of Scheme
	Volume Conservation
	Non-increasing Area
	Numerical Volume and Area Results
	Ellipsoid
	Multiple Spheres of Unequal Radii
	Torus
	Torus with Redistribution
	Torus with Symmetry and Redistribution
	Torus Taken Past Topology Change
	Distorted Sphere

	Analytic Solution
	Sphere
	Multiple Spheres of Equal Radii
	Concentric Spheres

	Summary

	Numerical Results
	Various Surfaces
	Distorted Torus
	Two Spheres of Unequal Radii
	Two Spheres of Slightly Unequal Radii
	Three Spheres of Unequal Radii

	Conclusion
	Strengths
	Further Work
	Convexity
	Node Enrichment and Refinement
	Convergence of Surface Estimate Scheme
	Stiffness
	Smoothness of V

